SlideShare a Scribd company logo
1 of 97
Lecture 2. Intensity Transformation
and Spatial Filtering
4/22/2024 2
Spatial Domain vs. Transform Domain
► Spatial domain
image plane itself, directly process the intensity values of
the image plane
► Transform domain
process the transform coefficients, not directly process the
intensity values of the image plane
4/22/2024 3
Spatial Domain Process
( , ) [ ( , )])
( , ) :input image
( , ) :output image
:an operator on defined over
a neighborhood of point ( , )
g x y T f x y
f x y
g x y
T f
x y

4/22/2024 4
Spatial Domain Process
4/22/2024 5
Spatial Domain Process
Intensity transformation function
( )
s T r

4/22/2024 6
Some Basic Intensity Transformation
Functions
4/22/2024 7
Image Negatives
Image negatives
1
s L r
  
4/22/2024 8
Example: Image Negatives
Small
lesion
4/22/2024 9
Log Transformations
Log Transformations
log(1 )
s c r
 
4/22/2024 10
Example: Log Transformations
4/22/2024 11
Power-Law (Gamma) Transformations
s cr

4/22/2024 12
Example: Gamma Transformations
4/22/2024 13
Example: Gamma Transformations
Cathode ray tube
(CRT) devices have an
intensity-to-voltage
response that is a
power function, with
exponents varying
from approximately
1.8 to 2.5
1/2.5
s r

4/22/2024 14
Example: Gamma Transformations
4/22/2024 15
Example: Gamma Transformations
4/22/2024 16
Piecewise-Linear Transformations
► Contrast Stretching
— Expands the range of intensity levels in an image so that it spans
the full intensity range of the recording medium or display device.
► Intensity-level Slicing
— Highlighting a specific range of intensities in an image often is of
interest.
4/22/2024 17
4/22/2024 18
Highlight the major
blood vessels and
study the shape of the
flow of the contrast
medium (to detect
blockages, etc.)
Measuring the actual
flow of the contrast
medium as a function
of time in a series of
images
4/22/2024 19
Bit-plane Slicing
4/22/2024 20
Bit-plane Slicing
4/22/2024 21
Bit-plane Slicing
4/22/2024 22
Histogram Processing
► Histogram Equalization
► Histogram Matching
► Local Histogram Processing
► Using Histogram Statistics for Image Enhancement
4/22/2024 23
Histogram Processing
Histogram ( )
is the intensity value
is the number of pixels in the image with intensity
k k
th
k
k k
h r n
r k
n r

Normalized histogram ( )
: the number of pixels in the image of
size M N with intensity
k
k
k
k
n
p r
MN
n
r


4/22/2024 24
4/22/2024 25
Histogram Equalization
The intensity levels in an image may be viewed as
random variables in the interval [0, L-1].
Let ( ) and ( ) denote the probability density
function (PDF) of random variables and .
r s
p r p s
r s
4/22/2024 26
Histogram Equalization
( ) 0 1
s T r r L
   
. T(r) is a strictly monotonically increasing function
in the interval 0 -1;
. 0 ( ) -1 for 0 -1.
a
r L
b T r L r L
 
   
4/22/2024 27
Histogram Equalization
. T(r) is a strictly monotonically increasing function
in the interval 0 -1;
. 0 ( ) -1 for 0 -1.
a
r L
b T r L r L
 
   
( ) 0 1
s T r r L
   
( ) is continuous and differentiable.
T r
( ) ( )
s r
p s ds p r dr

4/22/2024 28
Histogram Equalization
0
( ) ( 1) ( )
r
r
s T r L p w dw
   
0
( )
( 1) ( )
r
r
ds dT r d
L p w dw
dr dr dr
 
  
 
 

( 1) ( )
r
L p r
 
 
( ) 1
( ) ( )
( )
( 1) ( ) 1
r r r
s
r
p r dr p r p r
p s
L p r
ds
ds L
dr
   

  
 
 
4/22/2024 29
Example
2
Suppose that the (continuous) intensity values
in an image have the PDF
2
, for 0 r L-1
( 1)
( )
0, otherwise
Find the transformation function for equalizing
the image histogra
r
r
L
p r

 


 


m.
4/22/2024 30
Example
0
( ) ( 1) ( )
r
r
s T r L p w dw
   
2
0
2
( 1)
( 1)
r w
L dw
L
 


2
1
r
L


4/22/2024 31
Histogram Equalization
0
Continuous case:
( ) ( 1) ( )
r
r
s T r L p w dw
   
0
Discrete values:
( ) ( 1) ( )
k
k k r j
j
s T r L p r

   
0 0
1
( 1) k=0,1,..., L-1
k k
j
j
j j
n L
L n
MN MN
 

  
 
4/22/2024 32
Example: Histogram Equalization
Suppose that a 3-bit image (L=8) of size 64 × 64 pixels (MN = 4096)
has the intensity distribution shown in following table.
Get the histogram equalization transformation function and give the
ps(sk) for each sk.
4/22/2024 33
Example: Histogram Equalization
0
0 0
0
( ) 7 ( ) 7 0.19 1.33
r j
j
s T r p r

    
 1

1
1 1
0
( ) 7 ( ) 7 (0.19 0.25) 3.08
r j
j
s T r p r

     
 3

2 3
4 5
6 7
4.55 5 5.67 6
6.23 6 6.65 7
6.86 7 7.00 7
s s
s s
s s
   
   
   
4/22/2024 34
Example: Histogram Equalization
4/22/2024 35
4/22/2024 36
Figure 3.22
(a) Image from Phoenix Lander. (b) Result of histogram
equalization. (c) Histogram of image (a). (d) Histogram of image
(b). (Original image courtesy of NASA.)
4/22/2024 38
Question
Is histogram equalization always good?
No
4/22/2024 39
Histogram Matching
Histogram matching (histogram specification)
— generate a processed image that has a specified histogram
Let ( ) and ( ) denote the continous probability
density functions of the variables and . ( ) is the
specified probability density function.
Let be the random variable with the prob
r z
z
p r p z
r z p z
s
0
0
ability
( ) ( 1) ( )
Define a random variable with the probability
( ) ( 1) ( )
r
r
z
z
s T r L p w dw
z
G z L p t dt s
  
  


4/22/2024 40
Histogram Matching
0
0
( ) ( 1) ( )
( ) ( 1) ( )
r
r
z
z
s T r L p w dw
G z L p t dt s
  
  


 
1 1
( ) ( )
z G s G T r
 
 
4/22/2024 41
Histogram Matching: Procedure
► Obtain pr(r) from the input image and then obtain the values of s
► Use the specified PDF and obtain the transformation function G(z)
► Mapping from s to z
0
( 1) ( )
r
r
s L p w dw
  
0
( ) ( 1) ( )
z
z
G z L p t dt s
  

1
( )
z G s


4/22/2024 42
Histogram Matching: Example
Assuming continuous intensity values, suppose that an image has
the intensity PDF
Find the transformation function that will produce an image
whose intensity PDF is
2
2
, for 0 -1
( 1)
( )
0 , otherwise
r
r
r L
L
p r

 


 


2
3
3
, for 0 ( -1)
( ) ( 1)
0, otherwise
z
z
z L
p z L

 

 



4/22/2024 43
Histogram Matching: Example
Find the histogram equalization transformation for the input image
Find the histogram equalization transformation for the specified histogram
The transformation function
2
0 0
2
( ) ( 1) ( ) ( 1)
( 1)
r r
r
w
s T r L p w dw L dw
L
    

 
2 3
3 2
0 0
3
( ) ( 1) ( ) ( 1)
( 1) ( 1)
z z
z
t z
G z L p t dt L dt s
L L
     
 
 
2
1
r
L


1/3
2
1/3 1/3
2 2 2
( 1) ( 1) ( 1)
1
r
z L s L L r
L
 
   
     
 
   

 
4/22/2024 44
Histogram Matching: Discrete Cases
► Obtain pr(rj) from the input image and then obtain the values of
sk, round the value to the integer range [0, L-1].
► Use the specified PDF and obtain the transformation function
G(zq), round the value to the integer range [0, L-1].
► Mapping from sk to zq
0 0
( 1)
( ) ( 1) ( )
k k
k k r j j
j j
L
s T r L p r n
MN
 

   
 
0
( ) ( 1) ( )
q
q z i k
i
G z L p z s

  

1
( )
q k
z G s


4/22/2024 45
Example: Histogram Matching
Suppose that a 3-bit image (L=8) of size 64 × 64 pixels (MN = 4096)
has the intensity distribution shown in the following table (on the
left). Get the histogram transformation function and make the output
image with the specified histogram, listed in the table on the right.
4/22/2024 46
Example: Histogram Matching
Obtain the scaled histogram-equalized values,
Compute all the values of the transformation function G,
0 1 2 3 4
5 6 7
1, 3, 5, 6, 7,
7, 7, 7.
s s s s s
s s s
    
  
0
0
0
( ) 7 ( ) 0.00
z j
j
G z p z

 

1 2
3 4
5 6
7
( ) 0.00 ( ) 0.00
( ) 1.05 ( ) 2.45
( ) 4.55 ( ) 5.95
( ) 7.00
G z G z
G z G z
G z G z
G z
 
 
 

0

0
 0

1
 2

6

5

7

4/22/2024 47
Example: Histogram Matching
4/22/2024 48
Example: Histogram Matching
Obtain the scaled histogram-equalized values,
Compute all the values of the transformation function G,
0 1 2 3 4
5 6 7
1, 3, 5, 6, 7,
7, 7, 7.
s s s s s
s s s
    
  
0
0
0
( ) 7 ( ) 0.00
z j
j
G z p z

 

1 2
3 4
5 6
7
( ) 0.00 ( ) 0.00
( ) 1.05 ( ) 2.45
( ) 4.55 ( ) 5.95
( ) 7.00
G z G z
G z G z
G z G z
G z
 
 
 

0

0
 0

1
 2

6

5

7

s0
s2 s3
s5 s6 s7
s1
s4
4/22/2024 49
Example: Histogram Matching
0 1 2 3 4
5 6 7
1, 3, 5, 6, 7,
7, 7, 7.
s s s s s
s s s
    
  
0
1
2
3
4
5
6
7
k
r
4/22/2024 50
Example: Histogram Matching
0 3
1 4
2 5
3 6
4 7
5 7
6 7
7 7
k q
r z









4/22/2024 51
Example: Histogram Matching
4/22/2024 52
Example: Histogram Matching
4/22/2024 53
Example: Histogram Matching
4/22/2024 54
Example: Histogram Matching
Figure 3.24
(a) An image, and (b) its histogram.
Figure 3.25
(a) Histogram equalization transformation obtained using the histogram
in Fig. 3.24(b). (b) Histogram equalized image. (c) Histogram of
equalized image.
Figure 3.26
Histogram specification. (a) Specified histogram. (b) Transformation  
q
G z ,
labeled (1),
and
 
1
k
G s ,

labeled (2). (c) Result of histogram specification. (d)
Histogram of image (c).
4/22/2024 58
Local Histogram Processing
Define a neighborhood and move its center from pixel to
pixel
At each location, the histogram of the points in the
neighborhood is computed. Either histogram equalization or
histogram specification transformation function is obtained
Map the intensity of the pixel centered in the neighborhood
Move to the next location and repeat the procedure
4/22/2024 59
Local Histogram Processing: Example
Figure 3.33
(a) Original image. (b) Result of local enhancement based
on local histogram statistics. Compare (b) with Fig. 3.32(c).
4/22/2024 61
Using Histogram Statistics for Image
Enhancement
1
0
( )
L
i i
i
m r p r


 
1
0
( ) ( ) ( )
L
n
n i i
i
u r r m p r


 

1
2 2
2
0
( ) ( ) ( )
L
i i
i
u r r m p r



  

1 1
0 0
1
( , )
M N
x y
f x y
MN
 
 
 
 
1 1
2
0 0
1
( , )
M N
x y
f x y m
MN
 
 
 

Average Intensity
Variance
4/22/2024 62
Using Histogram Statistics for Image
Enhancement
1
0
Local average intensity
( )
denotes a neighborhood
xy xy
L
s i s i
i
xy
m r p r
s


 
1
2 2
0
Local variance
( ) ( )
xy xy xy
L
s i s s i
i
r m p r



 

4/22/2024 63
Using Histogram Statistics for Image
Enhancement: Example
0 1 2
0 1 2
( , ), if and
( , )
( , ), otherwise
:global mean; :global standard deviation
0.4; 0.02; 0.4; 4
xy xy
s G G s G
G G
E f x y m k m k k
g x y
f x y
m
k k k E
  

  


 


   
4/22/2024 64
Spatial Filtering
A spatial filter consists of (a) a neighborhood, and (b) a
predefined operation
Linear spatial filtering of an image of size MxN with a filter
of size mxn is given by the expression
( , ) ( , ) ( , )
a b
s a t b
g x y w s t f x s y t
 
  
 
4/22/2024 65
Spatial Filtering
4/22/2024 66
Spatial Correlation
The correlation of a filter ( , ) of size
with an image ( , ), denoted as ( , ) ( , )
w x y m n
f x y w x y f x y

( , ) ( , ) ( , ) ( , )
a b
s a t b
w x y f x y w s t f x s y t
 
  
 
4/22/2024 67
Spatial Convolution
The convolution of a filter ( , ) of size
with an image ( , ), denoted as ( , ) ( , )
w x y m n
f x y w x y f x y

( , ) ( , ) ( , ) ( , )
a b
s a t b
w x y f x y w s t f x s y t
 
  
 
Figure 3.35
Illustration of 1-D correlation and convolution of a kernel, w, with a function f consisting
of a discrete unit impulse. Note that correlation and convolution are functions of the
variable x, which acts to displace one function with respect to the other. For the
extended correlation and convolution results, the starting configuration places the
rightmost element of the kernel to be coincident with the origin of f. Additional padding
must be used.
4/22/2024 69
Figure 3.58
Transfer functions of ideal 1-D filters in the frequency
domain (u denotes frequency). (a) Lowpass filter. (b)
Highpass filter. (c) Bandreject filter. (d) Bandpass filter. (As
before, we show only positive frequencies for simplicity.)
Table 3.7
Summary of the four principal spatial filter types expressed
in terms of lowpass filters. The centers of the unit impulse
and the filter kernels coincide.
4/22/2024 72
Smoothing Spatial Filters
Smoothing filters are used for blurring and for noise
reduction
Blurring is used in removal of small details and bridging of
small gaps in lines or curves
Smoothing spatial filters include linear filters and nonlinear
filters.
4/22/2024 73
Spatial Smoothing Linear Filters
The general implementation for filtering an M N image
with a weighted averaging filter of size m n is given
( , ) ( , )
( , )
( , )
where 2 1
a b
s a t b
a b
s a t b
w s t f x s y t
g x y
w s t
m a
 
 


 

 
 
 
, 2 1.
n b
 
4/22/2024 74
Two Smoothing Averaging Filter Masks
4/22/2024 75
4/22/2024 76
Example: Gross Representation of Objects
4/22/2024 77
Order-statistic (Nonlinear) Filters
— Nonlinear
— Based on ordering (ranking) the pixels contained in the
filter mask
— Replacing the value of the center pixel with the value
determined by the ranking result
E.g., median filter, max filter, min filter
4/22/2024 78
Example: Use of Median Filtering for Noise Reduction
4/22/2024 79
Sharpening Spatial Filters
► Foundation
► Laplacian Operator
► Unsharp Masking and Highboost Filtering
► Using First-Order Derivatives for Nonlinear Image
Sharpening — The Gradient
4/22/2024 80
Sharpening Spatial Filters: Foundation
► The first-order derivative of a one-dimensional function f(x)
is the difference
► The second-order derivative of f(x) as the difference
( 1) ( )
f
f x f x
x

  

2
2
( 1) ( 1) 2 ( )
f
f x f x f x
x

    

4/22/2024 81
4/22/2024 82
Sharpening Spatial Filters: Laplace Operator
The second-order isotropic derivative operator is the
Laplacian for a function (image) f(x,y)
2 2
2
2 2
f f
f
x y
 
  
 
2
2
( 1, ) ( 1, ) 2 ( , )
f
f x y f x y f x y
x

    

2
2
( , 1) ( , 1) 2 ( , )
f
f x y f x y f x y
y

    

2
( 1, ) ( 1, ) ( , 1) ( , 1)
-4 ( , )
f f x y f x y f x y f x y
f x y
        
4/22/2024 83
Sharpening Spatial Filters: Laplace Operator
4/22/2024 84
Sharpening Spatial Filters: Laplace Operator
Image sharpening in the way of using the Laplacian:
2
2
( , ) ( , ) ( , )
where,
( , ) is input image,
( , ) is sharpenend images,
-1 if ( , ) corresponding to Fig. 3.37(a) or (b)
and 1 if either of the other two filters is us
g x y f x y c f x y
f x y
g x y
c f x y
c
 
  
 
 
 ed.
4/22/2024 85
4/22/2024 86
Unsharp Masking and Highboost Filtering
► Unsharp masking
Sharpen images consists of subtracting an unsharp (smoothed)
version of an image from the original image
e.g., printing and publishing industry
► Steps
1. Blur the original image
2. Subtract the blurred image from the original
3. Add the mask to the original
4/22/2024 87
Unsharp Masking and Highboost Filtering
Let ( , ) denote the blurred image, unsharp masking is
( , ) ( , ) ( , )
Then add a weighted portion of the mask back to the original
( , ) ( , ) * ( , )
mask
mask
f x y
g x y f x y f x y
g x y f x y k g x y
 
  0
k 
when 1, the process is referred to as highboost filtering.
k 
4/22/2024 88
Unsharp Masking: Demo
Figure 3.55
(a) Unretouched “soft-tone” digital image of size
469×600pixels
(b) Image blurred using
a
31×31 Gaussian lowpass filter with σ =
5.
(c) Mask. (d) Result of unsharp masking using Eq. (3-65) with k = 1.
(e) and (f) Results of highboost filtering with k = 2 and k = 3,
respectively.
4/22/2024 90
Unsharp Masking and Highboost Filtering: Example
4/22/2024 91
Image Sharpening based on First-Order Derivatives
For function ( , ), the gradient of at coordinates ( , )
is defined as
grad( )
x
y
f x y f x y
f
g x
f f
f
g
y

 
 
  
 
   
  
 
 
 

 
2 2
The of vector , denoted as ( , )
( , ) mag( ) x y
magnitude f M x y
M x y f g g

   
Gradient Image
4/22/2024 92
Image Sharpening based on First-Order Derivatives
2 2
The of vector , denoted as ( , )
( , ) mag( ) x y
magnitude f M x y
M x y f g g

   
( , ) | | | |
x y
M x y g g
 
z1 z2 z3
z4 z5 z6
z7 z8 z9
8 5 6 5
( , ) | | | |
M x y z z z z
   
4/22/2024 93
Image Sharpening based on First-Order Derivatives
z1 z2 z3
z4 z5 z6
z7 z8 z9
9 5 8 6
Roberts Cross-gradient Operators
( , ) | | | |
M x y z z z z
   
7 8 9 1 2 3
3 6 9 1 4 7
Sobel Operators
( , ) | ( 2 ) ( 2 ) |
| ( 2 ) ( 2 ) |
M x y z z z z z z
z z z z z z
     
     
4/22/2024 94
Image Sharpening based on First-Order Derivatives
4/22/2024 95
Example
4/22/2024 96
Example:
Combining
Spatial
Enhancement
Methods
Goal:
Enhance the
image by
sharpening it
and by bringing
out more of the
skeletal detail
4/22/2024 97
Example:
Combining
Spatial
Enhancement
Methods
Goal:
Enhance the
image by
sharpening it
and by bringing
out more of the
skeletal detail

More Related Content

Similar to G Intensity transformation and spatial filtering(1).ppt

Lect 03 - first portion
Lect 03 - first portionLect 03 - first portion
Lect 03 - first portionMoe Moe Myint
 
Image Enhancement in Spatial Domain
Image Enhancement in Spatial DomainImage Enhancement in Spatial Domain
Image Enhancement in Spatial DomainDEEPASHRI HK
 
Image Acquisition and Representation
Image Acquisition and RepresentationImage Acquisition and Representation
Image Acquisition and RepresentationAmnaakhaan
 
Digital signal and image processing FAQ
Digital signal and image processing FAQDigital signal and image processing FAQ
Digital signal and image processing FAQMukesh Tekwani
 
4.intensity transformations
4.intensity transformations4.intensity transformations
4.intensity transformationsYahya Alkhaldi
 
chapter-2 SPACIAL DOMAIN.pptx
chapter-2 SPACIAL DOMAIN.pptxchapter-2 SPACIAL DOMAIN.pptx
chapter-2 SPACIAL DOMAIN.pptxAyeleFeyissa1
 
image_enhancement_spatial
 image_enhancement_spatial image_enhancement_spatial
image_enhancement_spatialhoneyjecrc
 
Histogram based Enhancement
Histogram based Enhancement Histogram based Enhancement
Histogram based Enhancement Vivek V
 
Histogram based enhancement
Histogram based enhancementHistogram based enhancement
Histogram based enhancementliba manopriya.J
 
Lec_2_Digital Image Fundamentals.pdf
Lec_2_Digital Image Fundamentals.pdfLec_2_Digital Image Fundamentals.pdf
Lec_2_Digital Image Fundamentals.pdfnagwaAboElenein
 
Digital image processing using matlab: basic transformations, filters and ope...
Digital image processing using matlab: basic transformations, filters and ope...Digital image processing using matlab: basic transformations, filters and ope...
Digital image processing using matlab: basic transformations, filters and ope...thanh nguyen
 
Image processing second unit Notes
Image processing second unit NotesImage processing second unit Notes
Image processing second unit NotesAAKANKSHA JAIN
 

Similar to G Intensity transformation and spatial filtering(1).ppt (20)

Dip3
Dip3Dip3
Dip3
 
chap3.ppt
chap3.pptchap3.ppt
chap3.ppt
 
Lecture 5.pptx
Lecture 5.pptxLecture 5.pptx
Lecture 5.pptx
 
Lect 03 - first portion
Lect 03 - first portionLect 03 - first portion
Lect 03 - first portion
 
chap3.ppt
chap3.pptchap3.ppt
chap3.ppt
 
Image Enhancement in Spatial Domain
Image Enhancement in Spatial DomainImage Enhancement in Spatial Domain
Image Enhancement in Spatial Domain
 
Image Acquisition and Representation
Image Acquisition and RepresentationImage Acquisition and Representation
Image Acquisition and Representation
 
Digital signal and image processing FAQ
Digital signal and image processing FAQDigital signal and image processing FAQ
Digital signal and image processing FAQ
 
Lec-04 Image Enhancement II.ppt
Lec-04 Image Enhancement II.pptLec-04 Image Enhancement II.ppt
Lec-04 Image Enhancement II.ppt
 
N045077984
N045077984N045077984
N045077984
 
4.intensity transformations
4.intensity transformations4.intensity transformations
4.intensity transformations
 
chapter-2 SPACIAL DOMAIN.pptx
chapter-2 SPACIAL DOMAIN.pptxchapter-2 SPACIAL DOMAIN.pptx
chapter-2 SPACIAL DOMAIN.pptx
 
Digtial Image Processing Q@A
Digtial Image Processing Q@ADigtial Image Processing Q@A
Digtial Image Processing Q@A
 
image_enhancement_spatial
 image_enhancement_spatial image_enhancement_spatial
image_enhancement_spatial
 
Image Processing
Image ProcessingImage Processing
Image Processing
 
Histogram based Enhancement
Histogram based Enhancement Histogram based Enhancement
Histogram based Enhancement
 
Histogram based enhancement
Histogram based enhancementHistogram based enhancement
Histogram based enhancement
 
Lec_2_Digital Image Fundamentals.pdf
Lec_2_Digital Image Fundamentals.pdfLec_2_Digital Image Fundamentals.pdf
Lec_2_Digital Image Fundamentals.pdf
 
Digital image processing using matlab: basic transformations, filters and ope...
Digital image processing using matlab: basic transformations, filters and ope...Digital image processing using matlab: basic transformations, filters and ope...
Digital image processing using matlab: basic transformations, filters and ope...
 
Image processing second unit Notes
Image processing second unit NotesImage processing second unit Notes
Image processing second unit Notes
 

Recently uploaded

Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Call Girls in Nagpur High Profile
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINESIVASHANKAR N
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...ranjana rawat
 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingrknatarajan
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)Suman Mia
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxAsutosh Ranjan
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations120cr0395
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Christo Ananth
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxpranjaldaimarysona
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
 

Recently uploaded (20)

Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
 

G Intensity transformation and spatial filtering(1).ppt

  • 1. Lecture 2. Intensity Transformation and Spatial Filtering
  • 2. 4/22/2024 2 Spatial Domain vs. Transform Domain ► Spatial domain image plane itself, directly process the intensity values of the image plane ► Transform domain process the transform coefficients, not directly process the intensity values of the image plane
  • 3. 4/22/2024 3 Spatial Domain Process ( , ) [ ( , )]) ( , ) :input image ( , ) :output image :an operator on defined over a neighborhood of point ( , ) g x y T f x y f x y g x y T f x y 
  • 5. 4/22/2024 5 Spatial Domain Process Intensity transformation function ( ) s T r 
  • 6. 4/22/2024 6 Some Basic Intensity Transformation Functions
  • 7. 4/22/2024 7 Image Negatives Image negatives 1 s L r   
  • 8. 4/22/2024 8 Example: Image Negatives Small lesion
  • 9. 4/22/2024 9 Log Transformations Log Transformations log(1 ) s c r  
  • 10. 4/22/2024 10 Example: Log Transformations
  • 11. 4/22/2024 11 Power-Law (Gamma) Transformations s cr 
  • 12. 4/22/2024 12 Example: Gamma Transformations
  • 13. 4/22/2024 13 Example: Gamma Transformations Cathode ray tube (CRT) devices have an intensity-to-voltage response that is a power function, with exponents varying from approximately 1.8 to 2.5 1/2.5 s r 
  • 14. 4/22/2024 14 Example: Gamma Transformations
  • 15. 4/22/2024 15 Example: Gamma Transformations
  • 16. 4/22/2024 16 Piecewise-Linear Transformations ► Contrast Stretching — Expands the range of intensity levels in an image so that it spans the full intensity range of the recording medium or display device. ► Intensity-level Slicing — Highlighting a specific range of intensities in an image often is of interest.
  • 18. 4/22/2024 18 Highlight the major blood vessels and study the shape of the flow of the contrast medium (to detect blockages, etc.) Measuring the actual flow of the contrast medium as a function of time in a series of images
  • 22. 4/22/2024 22 Histogram Processing ► Histogram Equalization ► Histogram Matching ► Local Histogram Processing ► Using Histogram Statistics for Image Enhancement
  • 23. 4/22/2024 23 Histogram Processing Histogram ( ) is the intensity value is the number of pixels in the image with intensity k k th k k k h r n r k n r  Normalized histogram ( ) : the number of pixels in the image of size M N with intensity k k k k n p r MN n r  
  • 25. 4/22/2024 25 Histogram Equalization The intensity levels in an image may be viewed as random variables in the interval [0, L-1]. Let ( ) and ( ) denote the probability density function (PDF) of random variables and . r s p r p s r s
  • 26. 4/22/2024 26 Histogram Equalization ( ) 0 1 s T r r L     . T(r) is a strictly monotonically increasing function in the interval 0 -1; . 0 ( ) -1 for 0 -1. a r L b T r L r L      
  • 27. 4/22/2024 27 Histogram Equalization . T(r) is a strictly monotonically increasing function in the interval 0 -1; . 0 ( ) -1 for 0 -1. a r L b T r L r L       ( ) 0 1 s T r r L     ( ) is continuous and differentiable. T r ( ) ( ) s r p s ds p r dr 
  • 28. 4/22/2024 28 Histogram Equalization 0 ( ) ( 1) ( ) r r s T r L p w dw     0 ( ) ( 1) ( ) r r ds dT r d L p w dw dr dr dr           ( 1) ( ) r L p r     ( ) 1 ( ) ( ) ( ) ( 1) ( ) 1 r r r s r p r dr p r p r p s L p r ds ds L dr            
  • 29. 4/22/2024 29 Example 2 Suppose that the (continuous) intensity values in an image have the PDF 2 , for 0 r L-1 ( 1) ( ) 0, otherwise Find the transformation function for equalizing the image histogra r r L p r          m.
  • 30. 4/22/2024 30 Example 0 ( ) ( 1) ( ) r r s T r L p w dw     2 0 2 ( 1) ( 1) r w L dw L     2 1 r L  
  • 31. 4/22/2024 31 Histogram Equalization 0 Continuous case: ( ) ( 1) ( ) r r s T r L p w dw     0 Discrete values: ( ) ( 1) ( ) k k k r j j s T r L p r      0 0 1 ( 1) k=0,1,..., L-1 k k j j j j n L L n MN MN        
  • 32. 4/22/2024 32 Example: Histogram Equalization Suppose that a 3-bit image (L=8) of size 64 × 64 pixels (MN = 4096) has the intensity distribution shown in following table. Get the histogram equalization transformation function and give the ps(sk) for each sk.
  • 33. 4/22/2024 33 Example: Histogram Equalization 0 0 0 0 ( ) 7 ( ) 7 0.19 1.33 r j j s T r p r        1  1 1 1 0 ( ) 7 ( ) 7 (0.19 0.25) 3.08 r j j s T r p r         3  2 3 4 5 6 7 4.55 5 5.67 6 6.23 6 6.65 7 6.86 7 7.00 7 s s s s s s            
  • 37. Figure 3.22 (a) Image from Phoenix Lander. (b) Result of histogram equalization. (c) Histogram of image (a). (d) Histogram of image (b). (Original image courtesy of NASA.)
  • 38. 4/22/2024 38 Question Is histogram equalization always good? No
  • 39. 4/22/2024 39 Histogram Matching Histogram matching (histogram specification) — generate a processed image that has a specified histogram Let ( ) and ( ) denote the continous probability density functions of the variables and . ( ) is the specified probability density function. Let be the random variable with the prob r z z p r p z r z p z s 0 0 ability ( ) ( 1) ( ) Define a random variable with the probability ( ) ( 1) ( ) r r z z s T r L p w dw z G z L p t dt s        
  • 40. 4/22/2024 40 Histogram Matching 0 0 ( ) ( 1) ( ) ( ) ( 1) ( ) r r z z s T r L p w dw G z L p t dt s           1 1 ( ) ( ) z G s G T r    
  • 41. 4/22/2024 41 Histogram Matching: Procedure ► Obtain pr(r) from the input image and then obtain the values of s ► Use the specified PDF and obtain the transformation function G(z) ► Mapping from s to z 0 ( 1) ( ) r r s L p w dw    0 ( ) ( 1) ( ) z z G z L p t dt s     1 ( ) z G s  
  • 42. 4/22/2024 42 Histogram Matching: Example Assuming continuous intensity values, suppose that an image has the intensity PDF Find the transformation function that will produce an image whose intensity PDF is 2 2 , for 0 -1 ( 1) ( ) 0 , otherwise r r r L L p r          2 3 3 , for 0 ( -1) ( ) ( 1) 0, otherwise z z z L p z L         
  • 43. 4/22/2024 43 Histogram Matching: Example Find the histogram equalization transformation for the input image Find the histogram equalization transformation for the specified histogram The transformation function 2 0 0 2 ( ) ( 1) ( ) ( 1) ( 1) r r r w s T r L p w dw L dw L         2 3 3 2 0 0 3 ( ) ( 1) ( ) ( 1) ( 1) ( 1) z z z t z G z L p t dt L dt s L L           2 1 r L   1/3 2 1/3 1/3 2 2 2 ( 1) ( 1) ( 1) 1 r z L s L L r L                     
  • 44. 4/22/2024 44 Histogram Matching: Discrete Cases ► Obtain pr(rj) from the input image and then obtain the values of sk, round the value to the integer range [0, L-1]. ► Use the specified PDF and obtain the transformation function G(zq), round the value to the integer range [0, L-1]. ► Mapping from sk to zq 0 0 ( 1) ( ) ( 1) ( ) k k k k r j j j j L s T r L p r n MN          0 ( ) ( 1) ( ) q q z i k i G z L p z s      1 ( ) q k z G s  
  • 45. 4/22/2024 45 Example: Histogram Matching Suppose that a 3-bit image (L=8) of size 64 × 64 pixels (MN = 4096) has the intensity distribution shown in the following table (on the left). Get the histogram transformation function and make the output image with the specified histogram, listed in the table on the right.
  • 46. 4/22/2024 46 Example: Histogram Matching Obtain the scaled histogram-equalized values, Compute all the values of the transformation function G, 0 1 2 3 4 5 6 7 1, 3, 5, 6, 7, 7, 7, 7. s s s s s s s s         0 0 0 ( ) 7 ( ) 0.00 z j j G z p z     1 2 3 4 5 6 7 ( ) 0.00 ( ) 0.00 ( ) 1.05 ( ) 2.45 ( ) 4.55 ( ) 5.95 ( ) 7.00 G z G z G z G z G z G z G z        0  0  0  1  2  6  5  7 
  • 48. 4/22/2024 48 Example: Histogram Matching Obtain the scaled histogram-equalized values, Compute all the values of the transformation function G, 0 1 2 3 4 5 6 7 1, 3, 5, 6, 7, 7, 7, 7. s s s s s s s s         0 0 0 ( ) 7 ( ) 0.00 z j j G z p z     1 2 3 4 5 6 7 ( ) 0.00 ( ) 0.00 ( ) 1.05 ( ) 2.45 ( ) 4.55 ( ) 5.95 ( ) 7.00 G z G z G z G z G z G z G z        0  0  0  1  2  6  5  7  s0 s2 s3 s5 s6 s7 s1 s4
  • 49. 4/22/2024 49 Example: Histogram Matching 0 1 2 3 4 5 6 7 1, 3, 5, 6, 7, 7, 7, 7. s s s s s s s s         0 1 2 3 4 5 6 7 k r
  • 50. 4/22/2024 50 Example: Histogram Matching 0 3 1 4 2 5 3 6 4 7 5 7 6 7 7 7 k q r z         
  • 55. Figure 3.24 (a) An image, and (b) its histogram.
  • 56. Figure 3.25 (a) Histogram equalization transformation obtained using the histogram in Fig. 3.24(b). (b) Histogram equalized image. (c) Histogram of equalized image.
  • 57. Figure 3.26 Histogram specification. (a) Specified histogram. (b) Transformation   q G z , labeled (1), and   1 k G s ,  labeled (2). (c) Result of histogram specification. (d) Histogram of image (c).
  • 58. 4/22/2024 58 Local Histogram Processing Define a neighborhood and move its center from pixel to pixel At each location, the histogram of the points in the neighborhood is computed. Either histogram equalization or histogram specification transformation function is obtained Map the intensity of the pixel centered in the neighborhood Move to the next location and repeat the procedure
  • 59. 4/22/2024 59 Local Histogram Processing: Example
  • 60. Figure 3.33 (a) Original image. (b) Result of local enhancement based on local histogram statistics. Compare (b) with Fig. 3.32(c).
  • 61. 4/22/2024 61 Using Histogram Statistics for Image Enhancement 1 0 ( ) L i i i m r p r     1 0 ( ) ( ) ( ) L n n i i i u r r m p r      1 2 2 2 0 ( ) ( ) ( ) L i i i u r r m p r        1 1 0 0 1 ( , ) M N x y f x y MN         1 1 2 0 0 1 ( , ) M N x y f x y m MN        Average Intensity Variance
  • 62. 4/22/2024 62 Using Histogram Statistics for Image Enhancement 1 0 Local average intensity ( ) denotes a neighborhood xy xy L s i s i i xy m r p r s     1 2 2 0 Local variance ( ) ( ) xy xy xy L s i s s i i r m p r      
  • 63. 4/22/2024 63 Using Histogram Statistics for Image Enhancement: Example 0 1 2 0 1 2 ( , ), if and ( , ) ( , ), otherwise :global mean; :global standard deviation 0.4; 0.02; 0.4; 4 xy xy s G G s G G G E f x y m k m k k g x y f x y m k k k E                 
  • 64. 4/22/2024 64 Spatial Filtering A spatial filter consists of (a) a neighborhood, and (b) a predefined operation Linear spatial filtering of an image of size MxN with a filter of size mxn is given by the expression ( , ) ( , ) ( , ) a b s a t b g x y w s t f x s y t       
  • 66. 4/22/2024 66 Spatial Correlation The correlation of a filter ( , ) of size with an image ( , ), denoted as ( , ) ( , ) w x y m n f x y w x y f x y  ( , ) ( , ) ( , ) ( , ) a b s a t b w x y f x y w s t f x s y t       
  • 67. 4/22/2024 67 Spatial Convolution The convolution of a filter ( , ) of size with an image ( , ), denoted as ( , ) ( , ) w x y m n f x y w x y f x y  ( , ) ( , ) ( , ) ( , ) a b s a t b w x y f x y w s t f x s y t       
  • 68. Figure 3.35 Illustration of 1-D correlation and convolution of a kernel, w, with a function f consisting of a discrete unit impulse. Note that correlation and convolution are functions of the variable x, which acts to displace one function with respect to the other. For the extended correlation and convolution results, the starting configuration places the rightmost element of the kernel to be coincident with the origin of f. Additional padding must be used.
  • 70. Figure 3.58 Transfer functions of ideal 1-D filters in the frequency domain (u denotes frequency). (a) Lowpass filter. (b) Highpass filter. (c) Bandreject filter. (d) Bandpass filter. (As before, we show only positive frequencies for simplicity.)
  • 71. Table 3.7 Summary of the four principal spatial filter types expressed in terms of lowpass filters. The centers of the unit impulse and the filter kernels coincide.
  • 72. 4/22/2024 72 Smoothing Spatial Filters Smoothing filters are used for blurring and for noise reduction Blurring is used in removal of small details and bridging of small gaps in lines or curves Smoothing spatial filters include linear filters and nonlinear filters.
  • 73. 4/22/2024 73 Spatial Smoothing Linear Filters The general implementation for filtering an M N image with a weighted averaging filter of size m n is given ( , ) ( , ) ( , ) ( , ) where 2 1 a b s a t b a b s a t b w s t f x s y t g x y w s t m a                , 2 1. n b  
  • 74. 4/22/2024 74 Two Smoothing Averaging Filter Masks
  • 76. 4/22/2024 76 Example: Gross Representation of Objects
  • 77. 4/22/2024 77 Order-statistic (Nonlinear) Filters — Nonlinear — Based on ordering (ranking) the pixels contained in the filter mask — Replacing the value of the center pixel with the value determined by the ranking result E.g., median filter, max filter, min filter
  • 78. 4/22/2024 78 Example: Use of Median Filtering for Noise Reduction
  • 79. 4/22/2024 79 Sharpening Spatial Filters ► Foundation ► Laplacian Operator ► Unsharp Masking and Highboost Filtering ► Using First-Order Derivatives for Nonlinear Image Sharpening — The Gradient
  • 80. 4/22/2024 80 Sharpening Spatial Filters: Foundation ► The first-order derivative of a one-dimensional function f(x) is the difference ► The second-order derivative of f(x) as the difference ( 1) ( ) f f x f x x      2 2 ( 1) ( 1) 2 ( ) f f x f x f x x       
  • 82. 4/22/2024 82 Sharpening Spatial Filters: Laplace Operator The second-order isotropic derivative operator is the Laplacian for a function (image) f(x,y) 2 2 2 2 2 f f f x y        2 2 ( 1, ) ( 1, ) 2 ( , ) f f x y f x y f x y x        2 2 ( , 1) ( , 1) 2 ( , ) f f x y f x y f x y y        2 ( 1, ) ( 1, ) ( , 1) ( , 1) -4 ( , ) f f x y f x y f x y f x y f x y         
  • 83. 4/22/2024 83 Sharpening Spatial Filters: Laplace Operator
  • 84. 4/22/2024 84 Sharpening Spatial Filters: Laplace Operator Image sharpening in the way of using the Laplacian: 2 2 ( , ) ( , ) ( , ) where, ( , ) is input image, ( , ) is sharpenend images, -1 if ( , ) corresponding to Fig. 3.37(a) or (b) and 1 if either of the other two filters is us g x y f x y c f x y f x y g x y c f x y c           ed.
  • 86. 4/22/2024 86 Unsharp Masking and Highboost Filtering ► Unsharp masking Sharpen images consists of subtracting an unsharp (smoothed) version of an image from the original image e.g., printing and publishing industry ► Steps 1. Blur the original image 2. Subtract the blurred image from the original 3. Add the mask to the original
  • 87. 4/22/2024 87 Unsharp Masking and Highboost Filtering Let ( , ) denote the blurred image, unsharp masking is ( , ) ( , ) ( , ) Then add a weighted portion of the mask back to the original ( , ) ( , ) * ( , ) mask mask f x y g x y f x y f x y g x y f x y k g x y     0 k  when 1, the process is referred to as highboost filtering. k 
  • 89. Figure 3.55 (a) Unretouched “soft-tone” digital image of size 469×600pixels (b) Image blurred using a 31×31 Gaussian lowpass filter with σ = 5. (c) Mask. (d) Result of unsharp masking using Eq. (3-65) with k = 1. (e) and (f) Results of highboost filtering with k = 2 and k = 3, respectively.
  • 90. 4/22/2024 90 Unsharp Masking and Highboost Filtering: Example
  • 91. 4/22/2024 91 Image Sharpening based on First-Order Derivatives For function ( , ), the gradient of at coordinates ( , ) is defined as grad( ) x y f x y f x y f g x f f f g y                           2 2 The of vector , denoted as ( , ) ( , ) mag( ) x y magnitude f M x y M x y f g g      Gradient Image
  • 92. 4/22/2024 92 Image Sharpening based on First-Order Derivatives 2 2 The of vector , denoted as ( , ) ( , ) mag( ) x y magnitude f M x y M x y f g g      ( , ) | | | | x y M x y g g   z1 z2 z3 z4 z5 z6 z7 z8 z9 8 5 6 5 ( , ) | | | | M x y z z z z    
  • 93. 4/22/2024 93 Image Sharpening based on First-Order Derivatives z1 z2 z3 z4 z5 z6 z7 z8 z9 9 5 8 6 Roberts Cross-gradient Operators ( , ) | | | | M x y z z z z     7 8 9 1 2 3 3 6 9 1 4 7 Sobel Operators ( , ) | ( 2 ) ( 2 ) | | ( 2 ) ( 2 ) | M x y z z z z z z z z z z z z            
  • 94. 4/22/2024 94 Image Sharpening based on First-Order Derivatives
  • 96. 4/22/2024 96 Example: Combining Spatial Enhancement Methods Goal: Enhance the image by sharpening it and by bringing out more of the skeletal detail
  • 97. 4/22/2024 97 Example: Combining Spatial Enhancement Methods Goal: Enhance the image by sharpening it and by bringing out more of the skeletal detail