SlideShare a Scribd company logo
1 of 26
Download to read offline
If i, j, k are orthonormal vectors and A = Axi + Ay j + Azk then |A|2
= A2
x + A2
y + A2
z. [Orthonormal vectors ≡
orthogonal unit vectors.]
Scalar product
A · B = |A| |B| cosθ where θ is the angle between the vectors
= AxBx + AyBy + AzBz = [ Ax Ay Az ]


Bx
By
Bz


Scalar multiplication is commutative: A · B = B · A.
Equation of a line
A point r ≡ (x, y, z) lies on a line passing through a point a and parallel to vector b if
r = a + λb
with λ a real number.
Vector Algebra
Page 1 of 24
ENGINEERING
MATHEMATICS FORMULAS &
SHORT NOTES HANDBOOK
Equation of a plane
A point r ≡ (x, y, z) is on a plane if either
(a) r · b
d = |d|, where d is the normal from the origin to the plane, or
(b)
x
X
+
y
Y
+
z
Z
= 1 where X, Y, Z are the intercepts on the axes.
Vector product
A×B = n |A| |B| sinθ, whereθ is the angle between the vectors and n is a unit vector normal to the plane containing
A and B in the direction for which A, B, n form a right-handed set of axes.
A × B in determinant form
i j k
Ax Ay Az
Bx By Bz
A × B in matrix form


0 −Az Ay
Az 0 −Ax
−Ay Ax 0




Bx
By
Bz


Vector multiplication is not commutative: A × B = −B × A.
Scalar triple product
A × B · C = A · B × C =
Ax Ay Az
Bx By Bz
Cx Cy Cz
= −A × C · B, etc.
Vector triple product
A × (B × C) = (A · C)B − (A · B)C, (A × B) × C = (A · C)B − (B · C)A
Non-orthogonal basis
A = A1e1 + A2e2 + A3e3
A1 = 0
· A where 0
=
e2 × e3
e1 · (e2 × e3)
Similarly for A2 and A3.
Summation convention
a = aiei implies summation over i = 1 . . . 3
a · b = aibi
(a × b)i = εijkajbk where ε123 = 1; εijk = −εikj
εijkεklm = δilδjm − δimδjl
Page 2 of 24
Unit matrices
The unit matrix I of order n is a square matrix with all diagonal elements equal to one and all off-diagonal elements
zero, i.e., (I)ij = δij. If A is a square matrix of order n, then AI = IA = A. Also I = I−1
.
I is sometimes written as In if the order needs to be stated explicitly.
Products
If A is a (n × l) matrix and B is a (l × m) then the product AB is defined by
(AB)ij =
l
∑
k=1
AikBkj
In general AB 6= BA.
Transpose matrices
If A is a matrix, then transpose matrix AT
is such that (AT
)ij = (A)ji.
Inverse matrices
If A is a square matrix with non-zero determinant, then its inverse A−1
is such that AA−1
= A−1
A = I.
(A−1
)ij =
transpose of cofactor of Aij
|A|
where the cofactor of Aij is (−1)i+j
times the determinant of the matrix A with the j-th row and i-th column deleted.
Determinants
If A is a square matrix then the determinant of A, |A| (≡ det A) is defined by
|A| = ∑
i,j,k,...
ijk...A1i A2j A3k . . .
where the number of the suffixes is equal to the order of the matrix.
2×2 matrices
If A =

a b
c d

then,
|A| = ad − bc AT
=

a c
b d

A−1
=
1
|A|

d −b
−c a

Product rules
(AB . . . N)T
= NT
. . . BT
AT
(AB . . . N)−1
= N−1
. . . B−1
A−1
(if individual inverses exist)
|AB . . . N| = |A| |B| . . . |N| (if individual matrices are square)
Orthogonal matrices
An orthogonal matrix Q is a square matrix whose columns qi form a set of orthonormal vectors. For any orthogonal
matrix Q,
Q−1
= QT
, |Q| = ±1, QT
is also orthogonal.
Matrix Algebra
Page 3 of 24
Solving sets of linear simultaneous equations
If A is square then Ax = b has a unique solution x = A−1
b if A−1
exists, i.e., if |A| 6= 0.
If A is square then Ax = 0 has a non-trivial solution if and only if |A| = 0.
An over-constrained set of equations Ax = b is one in which A has m rows and n columns, where m (the number
of equations) is greater than n (the number of variables). The best solution x (in the sense that it minimizes the
error |Ax − b|) is the solution of the n equations AT
Ax = AT
b. If the columns of A are orthonormal vectors then
x = AT
b.
Hermitian matrices
The Hermitian conjugate of A is A† = (A∗
)T
, where A∗
is a matrix each of whose components is the complex
conjugate of the corresponding components of A. If A = A† then A is called a Hermitian matrix.
Eigenvalues and eigenvectors
The n eigenvalues λi and eigenvectors ui of an n × n matrix A are the solutions of the equation Au = λu. The
eigenvalues are the zeros of the polynomial of degree n, Pn(λ) = |A − λI|. If A is Hermitian then the eigenvalues
λi are real and the eigenvectors ui are mutually orthogonal. |A − λI| = 0 is called the characteristic equation of the
matrix A.
Tr A = ∑
i
λi, also |A| = ∏
i
λi.
If S is a symmetric matrix, Λ is the diagonal matrix whose diagonal elements are the eigenvalues of S, and U is the
matrix whose columns are the normalized eigenvectors of A, then
UT
SU = Λ and S = UΛUT
.
If x is an approximation to an eigenvector of A then xT
Ax/(xT
x) (Rayleigh’s quotient) is an approximation to the
corresponding eigenvalue.
Commutators
[A, B] ≡ AB − BA
[A, B] = −[B, A]
[A, B]† = [B†, A†]
[A + B, C] = [A, C] + [B, C]
[AB, C] = A[B, C] + [A, C]B
[A, [B, C]] + [B, [C, A]] + [C, [A, B]] = 0
Hermitian algebra
b† = (b∗
1, b∗
2, . . .)
Matrix form Operator form Bra-ket form
Hermiticity b∗
· A · c = (A · b)∗
· c
Z
ψ∗
Oφ =
Z
(Oψ)∗
φ hψ|O|φi
Eigenvalues, λ real Aui = λ(i)ui Oψi = λ(i)ψi O |ii = λi |ii
Orthogonality ui · uj = 0
Z
ψ∗
i ψj = 0 hi|ji = 0 (i 6= j)
Completeness b = ∑
i
ui(ui · b) φ = ∑
i
ψi
Z
ψ∗
i φ

φ = ∑
i
|ii hi|φi
Rayleigh–Ritz
Lowest eigenvalue λ0 ≤
b∗
· A · b
b∗
· b
λ0 ≤
Z
ψ∗
Oψ
Z
ψ∗
ψ
hψ|O|ψi
hψ|ψi
Page 4 of 24
Pauli spin matrices
σx =

0 1
1 0

, σy =

0 −i
i 0

, σz =

1 0
0 −1

σxσy = iσz, σyσz = iσx, σzσx = iσy, σxσx = σyσy = σzσz = I
Notation
φ is a scalar function of a set of position coordinates. In Cartesian coordinates
φ = φ(x, y, z); in cylindrical polar coordinates φ = φ(ρ,ϕ, z); in spherical
polar coordinates φ = φ(r,θ,ϕ); in cases with radial symmetry φ = φ(r).
A is a vector function whose components are scalar functions of the position
coordinates: in Cartesian coordinates A = iAx + jAy + kAz, where Ax, Ay, Az
are independent functions of x, y, z.
In Cartesian coordinates ∇ (‘del’) ≡ i
∂
∂x
+ j
∂
∂y
+ k
∂
∂z
≡









∂
∂x
∂
∂y
∂
∂z









gradφ = ∇φ, div A = ∇ · A, curl A = ∇ × A
Identities
grad(φ1 + φ2) ≡ gradφ1 + gradφ2 div(A1 + A2) ≡ div A1 + div A2
grad(φ1φ2) ≡ φ1 gradφ2 + φ2 gradφ1
curl(A + A) ≡ curl A1 + curl A2
div(φA) ≡ φ div A + (gradφ) · A, curl(φA) ≡ φ curl A + (gradφ) × A
div(A1 × A2) ≡ A2 · curl A1 − A1 · curl A2
curl(A1 × A2) ≡ A1 div A2 − A2 div A1 + (A2 · grad)A1 − (A1 · grad)A2
div(curl A) ≡ 0, curl(gradφ) ≡ 0
curl(curl A) ≡ grad(div A) − div(grad A) ≡ grad(div A) − ∇2
A
grad(A1 · A2) ≡ A1 × (curl A2) + (A1 · grad)A2 + A2 × (curl A1) + (A2 · grad)A1
Vector Calculus
Page 5 of 24
Grad, Div, Curl and the Laplacian
Cartesian Coordinates Cylindrical Coordinates Spherical Coordinates
Conversion to
Cartesian
Coordinates
x = ρ cosϕ y = ρ sinϕ z = z
x = r cosϕ sinθ y = r sinϕ sinθ
z = r cosθ
Vector A Axi + Ay j + Azk Aρb
ρ + Aϕ b
ϕ + Azb
z Arb
r + Aθ
b
θ + Aϕ b
ϕ
Gradient ∇φ
∂φ
∂x
i +
∂φ
∂y
j +
∂φ
∂z
k
∂φ
∂ρ
b
ρ +
1
ρ
∂φ
∂ϕ
b
ϕ +
∂φ
∂z
b
z
∂φ
∂r
b
r +
1
r
∂φ
∂θ
b
θ +
1
r sinθ
∂φ
∂ϕ
b
ϕ
Divergence
∇ · A
∂Ax
∂x
+
∂Ay
∂y
+
∂Az
∂z
1
ρ
∂(ρAρ)
∂ρ
+
1
ρ
∂Aϕ
∂ϕ
+
∂Az
∂z
1
r2
∂(r2
Ar)
∂r
+
1
r sinθ
∂Aθ sinθ
∂θ
+
1
r sinθ
∂Aϕ
∂ϕ
Curl ∇ × A
i j k
∂
∂x
∂
∂y
∂
∂z
Ax Ay Az
1
ρ
b
ρ b
ϕ
1
ρ
b
z
∂
∂ρ
∂
∂ϕ
∂
∂z
Aρ ρAϕ Az
1
r2
sinθ
b
r
1
r sinθ
b
θ
1
r
b
ϕ
∂
∂r
∂
∂θ
∂
∂ϕ
Ar rAθ rAϕ sinθ
Laplacian
∇2
φ
∂2
φ
∂x2
+
∂2
φ
∂y2
+
∂2
φ
∂z2
1
ρ
∂
∂ρ

ρ
∂φ
∂ρ

+
1
ρ2
∂2
φ
∂ϕ2
+
∂2
φ
∂z2
1
r2
∂
∂r

r2 ∂φ
∂r

+
1
r2
sinθ
∂
∂θ

sinθ
∂φ
∂θ

+
1
r2
sin2
θ
∂2
φ
∂ϕ2
Transformation of integrals
L = the distance along some curve ‘C’ in space and is measured from some fixed point.
S = a surface area
τ = a volume contained by a specified surface
b
t = the unit tangent to C at the point P
b
n = the unit outward pointing normal
A = some vector function
dL = the vector element of curve (= b
t dL)
dS = the vector element of surface (= b
n dS)
Then
Z
C
A · b
t dL =
Z
C
A · dL
and when A = ∇φ
Z
C
(∇φ) · dL =
Z
C
dφ
Gauss’s Theorem (Divergence Theorem)
When S defines a closed region having a volume τ
Z
τ
(∇ · A) dτ =
Z
S
(A · b
n) dS =
Z
S
A · dS
also
Z
τ
(∇φ) dτ =
Z
S
φ dS
Z
τ
(∇ × A) dτ =
Z
S
(b
n × A) dS
Page 6 of 24
Stokes’s Theorem
When C is closed and bounds the open surface S,
Z
S
(∇ × A) · dS =
Z
C
A · dL
also
Z
S
(b
n × ∇φ) dS =
Z
C
φ dL
Green’s Theorem
Z
S
ψ∇φ · dS =
Z
τ
∇ · (ψ∇φ) dτ
=
Z
τ

ψ∇2
φ + (∇ψ) · (∇φ)

dτ
Green’s Second Theorem
Z
τ
(ψ∇2
φ − φ∇2
ψ) dτ =
Z
S
[ψ(∇φ) − φ(∇ψ)] · dS
Complex numbers
The complex number z = x + iy = r(cosθ + i sinθ) = r ei(θ+2nπ)
, where i2
= −1 and n is an arbitrary integer. The
real quantity r is the modulus of z and the angle θ is the argument of z. The complex conjugate of z is z∗
= x − iy =
r(cosθ − i sinθ) = r e−iθ
; zz∗
= |z|2
= x2
+ y2
De Moivre’s theorem
(cosθ + i sinθ)n
= einθ
= cos nθ + i sin nθ
Power series for complex variables.
ez
= 1 + z +
z2
2!
+ · · · +
zn
n!
+ · · · convergent for all finite z
sin z = z −
z3
3!
+
z5
5!
− · · · convergent for all finite z
cos z = 1 −
z2
2!
+
z4
4!
− · · · convergent for all finite z
ln(1 + z) = z −
z2
2
+
z3
3
− · · · principal value of ln(1 + z)
This last series converges both on and within the circle |z| = 1 except at the point z = −1.
tan−1
z = z −
z3
3
+
z5
5
− · · ·
This last series converges both on and within the circle |z| = 1 except at the points z = ±i.
(1 + z)n
= 1 + nz +
n(n − 1)
2!
z2
+
n(n − 1)(n − 2)
3!
z3
+ · · ·
This last series converges both on and within the circle |z| = 1 except at the point z = −1.
Page 7 of 24
Complex Variables
cos2
A + sin2
A = 1 sec2
A − tan2
A = 1 cosec2
A − cot2
A = 1
sin 2A = 2 sin A cos A cos 2A = cos2
A − sin2
A tan 2A =
2 tan A
1 − tan2
A
.
sin(A ± B) = sin A cos B ± cos A sin B cos A cos B =
cos(A + B) + cos(A − B)
2
cos(A ± B) = cos A cos B ∓ sin A sin B sin A sin B =
cos(A − B) − cos(A + B)
2
tan(A ± B) =
tan A ± tan B
1 ∓ tan A tan B
sin A cos B =
sin(A + B) + sin(A − B)
2
sin A + sin B = 2 sin
A + B
2
cos
A − B
2
sin A − sin B = 2 cos
A + B
2
sin
A − B
2
cos A + cos B = 2 cos
A + B
2
cos
A − B
2
cos A − cos B = −2 sin
A + B
2
sin
A − B
2
cos2
A =
1 + cos 2A
2
sin2
A =
1 − cos 2A
2
cos3
A =
3 cos A + cos 3A
4
sin3
A =
3 sin A − sin 3A
4
Relations between sides and angles of any plane triangle
In a plane triangle with angles A, B, and C and sides opposite a, b, and c respectively,
a
sin A
=
b
sin B
=
c
sin C
= diameter of circumscribed circle.
a2
= b2
+ c2
− 2bc cos A
a = b cos C + c cos B
cos A =
b2
+ c2
− a2
2bc
tan
A − B
2
=
a − b
a + b
cot
C
2
area =
1
2
ab sin C =
1
2
bc sin A =
1
2
ca sin B =
q
s(s − a)(s − b)(s − c), where s =
1
2
(a + b + c)
Relations between sides and angles of any spherical triangle
In a spherical triangle with angles A, B, and C and sides opposite a, b, and c respectively,
sin a
sin A
=
sin b
sin B
=
sin c
sin C
cos a = cos b cos c + sin b sin c cos A
cos A = − cos B cos C + sin B sin C cos a
Page 8 of 24
Trigonometric Formulae
cosh x =
1
2
( ex
+ e−x
) = 1 +
x2
2!
+
x4
4!
+ · · · valid for all x
sinh x =
1
2
( ex
− e−x
) = x +
x3
3!
+
x5
5!
+ · · · valid for all x
cosh ix = cos x cos ix = cosh x
sinh ix = i sin x sin ix = i sinh x
tanh x =
sinh x
cosh x
sech x =
1
cosh x
coth x =
cosh x
sinh x
cosech x =
1
sinh x
cosh2
x − sinh2
x = 1
For large positive x:
cosh x ≈ sinh x →
ex
2
tanh x → 1
For large negative x:
cosh x ≈ − sinh x →
e−x
2
tanh x → −1
Relations of the functions
sinh x = − sinh(−x) sech x = sech(−x)
cosh x = cosh(−x) cosech x = − cosech(−x)
tanh x = − tanh(−x) coth x = − coth(−x)
sinh x =
2 tanh (x/2)
1 − tanh2
(x/2)
=
tanh x
q
1 − tanh2
x
cosh x =
1 + tanh2
(x/2)
1 − tanh2
(x/2)
=
1
q
1 − tanh2
x
tanh x =
q
1 − sech2
x sech x =
q
1 − tanh2
x
coth x =
q
cosech2
x + 1 cosech x =
q
coth2
x − 1
sinh(x/2) =
r
cosh x − 1
2
cosh(x/2) =
r
cosh x + 1
2
tanh(x/2) =
cosh x − 1
sinh x
=
sinh x
cosh x + 1
sinh(2x) = 2 sinh x cosh x tanh(2x) =
2 tanh x
1 + tanh2
x
cosh(2x) = cosh2
x + sinh2
x = 2 cosh2
x − 1 = 1 + 2 sinh2
x
sinh(3x) = 3 sinh x + 4 sinh3
x cosh 3x = 4 cosh3
x − 3 cosh x
tanh(3x) =
3 tanh x + tanh3
x
1 + 3 tanh2
x
Page 9 of 24
Hyperbolic Functions
sinh(x ± y) = sinh x cosh y ± cosh x sinh y
cosh(x ± y) = cosh x cosh y ± sinh x sinh y
tanh(x ± y) =
tanh x ± tanh y
1 ± tanh x tanh y
sinh x + sinh y = 2 sinh
1
2
(x + y) cosh
1
2
(x − y) cosh x + cosh y = 2 cosh
1
2
(x + y) cosh
1
2
(x − y)
sinh x − sinh y = 2 cosh
1
2
(x + y) sinh
1
2
(x − y) cosh x − cosh y = 2 sinh
1
2
(x + y) sinh
1
2
(x − y)
sinh x ± cosh x =
1 ± tanh (x/2)
1 ∓ tanh(x/2)
= e±x
tanh x ± tanh y =
sinh(x ± y)
cosh x cosh y
coth x ± coth y = ±
sinh(x ± y)
sinh x sinh y
Inverse functions
sinh−1 x
a
= ln
x +
p
x2 + a2
a
!
for −∞  x  ∞
cosh−1 x
a
= ln
x +
p
x2 − a2
a
!
for x ≥ a
tanh−1 x
a
=
1
2
ln

a + x
a − x

for x2
 a2
coth−1 x
a
=
1
2
ln

x + a
x − a

for x2
 a2
sech−1 x
a
= ln

 a
x
+
s
a2
x2
− 1

 for 0  x ≤ a
cosech−1 x
a
= ln

 a
x
+
s
a2
x2
+ 1

 for x 6= 0
nc
xn
→ 0 as n → ∞ if |x|  1 (any fixed c)
xn
/n! → 0 as n → ∞ (any fixed x)
(1 + x/n)n
→ ex
as n → ∞, x ln x → 0 as x → 0
If f (a) = g(a) = 0 then lim
x→a
f (x)
g(x)
=
f 0
(a)
g0
(a)
(l’Hôpital’s rule)
12
Page 10 of 24
Limits
(uv)0
= u0
v + uv0
,
u
v
0
=
u0
v − uv0
v2
(uv)(n)
= u(n)
v + nu(n−1)
v(1)
+ · · · + n
Cru(n−r)
v(r)
+ · · · + uv(n)
Leibniz Theorem
where n
Cr ≡

n
r

=
n!
r!(n − r)!
d
dx
(sin x) = cos x
d
dx
(sinh x) = cosh x
d
dx
(cos x) = − sin x
d
dx
(cosh x) = sinh x
d
dx
(tan x) = sec2
x
d
dx
(tanh x) = sech2
x
d
dx
(sec x) = sec x tan x
d
dx
(sech x) = − sech x tanh x
d
dx
(cot x) = − cosec2
x
d
dx
(coth x) = − cosech2
x
d
dx
(cosec x) = − cosec x cot x
d
dx
(cosech x) = − cosech x coth x
Standard forms
Z
xn
dx =
xn+1
n + 1
+ c for n 6= −1
Z
1
x
dx = ln x + c
Z
ln x dx = x(ln x − 1) + c
Z
eax
dx =
1
a
eax
+ c
Z
x eax
dx = eax

x
a
−
1
a2

+ c
Z
x ln x dx =
x2
2

ln x −
1
2

+ c
Z
1
a2
+ x2
dx =
1
a
tan−1
x
a

+ c
Z
1
a2
− x2
dx =
1
a
tanh−1
x
a

+ c =
1
2a
ln

a + x
a − x

+ c for x2
 a2
Z
1
x2
− a2
dx = −
1
a
coth−1
x
a

+ c =
1
2a
ln

x − a
x + a

+ c for x2
 a2
Z
x
(x2
± a2
)n
dx =
−1
2(n − 1)
1
(x2
± a2
)n−1
+ c for n 6= 1
Z
x
x2
± a2
dx =
1
2
ln(x2
± a2
) + c
Z
1
p
a2 − x2
dx = sin−1
x
a

+ c
Z
1
p
x2 ± a2
dx = ln

x +
p
x2 ± a2

+ c
Z
x
p
x2 ± a2
dx =
p
x2 ± a2 + c
Z p
a2 − x2 dx =
1
2
h
x
p
a2 − x2 + a2
sin−1
x
a
i
+ c
Page 11 of 24
Differentiation
Integration
Z ∞
0
1
(1 + x)xp dx = π cosec pπ for p  1
Z ∞
0
cos(x2
) dx =
Z ∞
0
sin(x2
) dx =
1
2
r
π
2
Z ∞
−∞
exp(−x2
/2σ2
) dx = σ
√
2π
Z ∞
−∞
xn
exp(−x2
/2σ2
) dx =



1 × 3 × 5 × · · · (n − 1)σn+1
√
2π
0
for n ≥ 2 and even
for n ≥ 1 and odd
Z
sin x dx = − cos x + c
Z
sinh x dx = cosh x + c
Z
cos x dx = sin x + c
Z
cosh x dx = sinh x + c
Z
tan x dx = − ln(cos x) + c
Z
tanh x dx = ln(cosh x) + c
Z
cosec x dx = ln(cosec x − cot x) + c
Z
cosech x dx = ln [tanh(x/2)] + c
Z
sec x dx = ln(sec x + tan x) + c
Z
sech x dx = 2 tan−1
( ex
) + c
Z
cot x dx = ln(sin x) + c
Z
coth x dx = ln(sinh x) + c
Z
sin mx sin nx dx =
sin(m − n)x
2(m − n)
−
sin(m + n)x
2(m + n)
+ c if m2
6= n2
Z
cos mx cos nx dx =
sin(m − n)x
2(m − n)
+
sin(m + n)x
2(m + n)
+ c if m2
6= n2
Standard substitutions
If the integrand is a function of: substitute:
(a2
− x2
) or
p
a2 − x2 x = a sinθ or x = a cosθ
(x2
+ a2
) or
p
x2 + a2 x = a tanθ or x = a sinhθ
(x2
− a2
) or
p
x2 − a2 x = a secθ or x = a coshθ
If the integrand is a rational function of sin x or cos x or both, substitute t = tan(x/2) and use the results:
sin x =
2t
1 + t2
cos x =
1 − t2
1 + t2
dx =
2 dt
1 + t2
.
If the integrand is of the form: substitute:
Z
dx
(ax + b)
p
px + q
px + q = u2
Z
dx
(ax + b)
q
px2 + qx + r
ax + b =
1
u
.
Page 12 of 24
Integration by parts
Z b
a
u dv = uv
b
a
−
Z b
a
v du
Differentiation of an integral
If f (x,α) is a function of x containing a parameter α and the limits of integration a and b are functions of α then
d
dα
Z b(α)
a(α)
f (x,α) dx = f (b,α)
db
dα
− f (a,α)
da
dα
+
Z b(α)
a(α)
∂
∂α
f (x,α) dx.
Special case,
d
dx
Z x
a
f (y) dy = f (x).
Dirac δ-‘function’
δ(t − τ) =
1
2π
Z ∞
−∞
exp[iω(t − τ)] dω.
If f (t) is an arbitrary function of t then
Z ∞
−∞
δ(t − τ) f (t) dt = f (τ).
δ(t) = 0 if t 6= 0, also
Z ∞
−∞
δ(t) dt = 1
Reduction formulae
Factorials
n! = n(n − 1)(n − 2) . . . 1, 0! = 1.
Stirling’s formula for large n: ln(n!) ≈ n ln n − n.
For any p  −1,
Z ∞
0
xp
e−x
dx = p
Z ∞
0
xp−1
e−x
dx = p!. (−1/2)! =
√
π, (1/2)! =
√
π/2, etc.
For any p, q  −1,
Z 1
0
xp
(1 − x)q
dx =
p!q!
(p + q + 1)!
.
Trigonometrical
If m, n are integers,
Z π/2
0
sinm
θ cosn
θ dθ =
m − 1
m + n
Z π/2
0
sinm−2
θ cosn
θ dθ =
n − 1
m + n
Z π/2
0
sinm
θ cosn−2
θ dθ
and can therefore be reduced eventually to one of the following integrals
Z π/2
0
sinθ cosθ dθ =
1
2
,
Z π/2
0
sinθ dθ = 1,
Z π/2
0
cosθ dθ = 1,
Z π/2
0
dθ =
π
2
.
Other
If In =
Z ∞
0
xn
exp(−αx2
) dx then In =
(n − 1)
2α
In−2, I0 =
1
2
r
π
α
, I1 =
1
2α
.
Page 13 of 24
Diffusion (conduction) equation
∂ψ
∂t
= κ∇2
ψ
Wave equation
∇2
ψ =
1
c2
∂2
ψ
∂t2
Legendre’s equation
(1 − x2
)
d2
y
dx2
− 2x
dy
dx
+ l(l + 1)y = 0,
solutions of which are Legendre polynomials Pl(x), where Pl(x) =
1
2l
l!

d
dx
l
x2
− 1
l
, Rodrigues’ formula so
P0(x) = 1, P1(x) = x, P2(x) =
1
2
(3x2
− 1) etc.
Recursion relation
Pl(x) =
1
l
[(2l − 1)xPl−1(x) − (l − 1)Pl−2(x)]
Orthogonality
Z 1
−1
Pl(x)Pl0 (x) dx =
2
2l + 1
δll0
Bessel’s equation
x2 d2
y
dx2
+ x
dy
dx
+ (x2
− m2
)y = 0,
solutions of which are Bessel functions Jm(x) of order m.
Series form of Bessel functions of the first kind
Jm(x) =
∞
∑
k=0
(−1)k
(x/2)m+2k
k!(m + k)!
(integer m).
The same general form holds for non-integer m  0.
Page 14 of 24
Differential Equations
Laplace’s equation
∇2
u = 0
If expressed in two-dimensional polar coordinates (see section 4), a solution is
u(ρ,ϕ) =

Aρn
+ Bρ−n

C exp(inϕ) + D exp(−inϕ)

where A, B, C, D are constants and n is a real integer.
If expressed in three-dimensional polar coordinates (see section 4) a solution is
u(r,θ,ϕ) =

Arl
+ Br−(l+1)

Pm
l

C sin mϕ + D cos mϕ

where l and m are integers with l ≥ |m| ≥ 0; A, B, C, D are constants;
Pm
l (cosθ) = sin|m|
θ

d
d(cosθ)
|m|
Pl(cosθ)
is the associated Legendre polynomial.
P0
l (1) = 1.
If expressed in cylindrical polar coordinates (see section 4), a solution is
u(ρ,ϕ, z) = Jm(nρ)

A cos mϕ + B sin mϕ

C exp(nz) + D exp(−nz)

where m and n are integers; A, B, C, D are constants.
Spherical harmonics
The normalized solutions Ym
l (θ,ϕ) of the equation

1
sinθ
∂
∂θ

sinθ
∂
∂θ

+
1
sin2
θ
∂2
∂ϕ2

Ym
l + l(l + 1)Ym
l = 0
are called spherical harmonics, and have values given by
Ym
l (θ,ϕ) =
s
2l + 1
4π
(l − |m|)!
(l + |m|)!
Pm
l (cosθ) eimϕ
×

(−1)m
for m ≥ 0
1 for m  0
i.e., Y0
0 =
r
1
4π
, Y0
1 =
r
3
4π
cosθ, Y±1
1 = ∓
r
3
8π
sinθ e±iϕ
, etc.
Orthogonality
Z
4π
Y∗m
l Ym0
l0 dΩ = δll0δmm0
The condition for I =
Z b
a
F(y, y0
, x) dx to have a stationary value is
∂F
∂y
=
d
dx

∂F
∂y0

, where y0
=
dy
dx
. This is the
Euler–Lagrange equation.
Page 15 of 24
Calculus of Variations
If φ = f (x, y, z, . . .) then
∂φ
∂x
implies differentiation with respect to x keeping y, z, . . . constant.
dφ =
∂φ
∂x
dx +
∂φ
∂y
dy +
∂φ
∂z
dz + · · · and δφ ≈
∂φ
∂x
δx +
∂φ
∂y
δy +
∂φ
∂z
δz + · · ·
where x, y, z, . . . are independent variables.
∂φ
∂x
is also written as

∂φ
∂x

y,...
or
∂φ
∂x y,...
when the variables kept
constant need to be stated explicitly.
If φ is a well-behaved function then
∂2
φ
∂x ∂y
=
∂2
φ
∂y ∂x
etc.
If φ = f (x, y),

∂φ
∂x

y
=
1

∂x
∂φ

y
,

∂φ
∂x

y

∂x
∂y

φ

∂y
∂φ

x
= −1.
Taylor series for two variables
If φ(x, y) is well-behaved in the vicinity of x = a, y = b then it has a Taylor series
φ(x, y) = φ(a + u, b + v) = φ(a, b) + u
∂φ
∂x
+ v
∂φ
∂y
+
1
2!

u2 ∂2
φ
∂x2
+ 2uv
∂2
φ
∂x ∂y
+ v2 ∂2
φ
∂y2

+ · · ·
where x = a + u, y = b + v and the differential coefficients are evaluated at x = a, y = b
Stationary points
A function φ = f (x, y) has a stationary point when
∂φ
∂x
=
∂φ
∂y
= 0. Unless
∂2
φ
∂x2
=
∂2
φ
∂y2
=
∂2
φ
∂x ∂y
= 0, the following
conditions determine whether it is a minimum, a maximum or a saddle point.
Minimum:
∂2
φ
∂x2
 0, or
∂2
φ
∂y2
 0,
Maximum:
∂2
φ
∂x2
 0, or
∂2
φ
∂y2
 0,









and
∂2
φ
∂x2
∂2
φ
∂y2


∂2
φ
∂x ∂y
2
Saddle point:
∂2
φ
∂x2
∂2
φ
∂y2


∂2
φ
∂x ∂y
2
If
∂2
φ
∂x2
=
∂2
φ
∂y2
=
∂2
φ
∂x ∂y
= 0 the character of the turning point is determined by the next higher derivative.
Changing variables: the chain rule
If φ = f (x, y, . . .) and the variables x, y, . . . are functions of independent variables u, v, . . . then
∂φ
∂u
=
∂φ
∂x
∂x
∂u
+
∂φ
∂y
∂y
∂u
+ · · ·
∂φ
∂v
=
∂φ
∂x
∂x
∂v
+
∂φ
∂y
∂y
∂v
+ · · ·
etc.
Page 16 of 24
Functions of Several Variables
Changing variables in surface and volume integrals – Jacobians
If an area A in the x, y plane maps into an area A0
in the u, v plane then
Z
A
f (x, y) dx dy =
Z
A0
f (u, v)J du dv where J =
∂x
∂u
∂x
∂v
∂y
∂u
∂y
∂v
The Jacobian J is also written as
∂(x, y)
∂(u, v)
. The corresponding formula for volume integrals is
Z
V
f (x, y, z) dx dy dz =
Z
V0
f (u, v, w)J du dv dw where now J =
∂x
∂u
∂x
∂v
∂x
∂w
∂y
∂u
∂y
∂v
∂y
∂w
∂z
∂u
∂z
∂v
∂z
∂w
Fourier series
If y(x) is a function defined in the range −π ≤ x ≤ π then
y(x) ≈ c0 +
M
∑
m=1
cm cos mx +
M0
∑
m=1
sm sin mx
where the coefficients are
c0 =
1
2π
Z π
−π
y(x) dx
cm =
1
π
Z π
−π
y(x) cos mx dx (m = 1, . . . , M)
sm =
1
π
Z π
−π
y(x) sin mx dx (m = 1, . . . , M0
)
with convergence to y(x) as M, M0
→ ∞ for all points where y(x) is continuous.
Fourier series for other ranges
Variable t, range 0 ≤ t ≤ T, (i.e., a periodic function of time with period T, frequency ω = 2π/T).
y(t) ≈ c0 + ∑cm cos mωt + ∑sm sin mωt
where
c0 =
ω
2π
Z T
0
y(t) dt, cm =
ω
π
Z T
0
y(t) cos mωt dt, sm =
ω
π
Z T
0
y(t) sin mωt dt.
Variable x, range 0 ≤ x ≤ L,
y(x) ≈ c0 + ∑cm cos
2mπx
L
+ ∑sm sin
2mπx
L
where
c0 =
1
L
Z L
0
y(x) dx, cm =
2
L
Z L
0
y(x) cos
2mπx
L
dx, sm =
2
L
Z L
0
y(x) sin
2mπx
L
dx.
Page 17 of 24
Fourier Series and Transforms
Fourier series for odd and even functions
If y(x) is an odd (anti-symmetric) function [i.e., y(−x) = −y(x)] defined in the range −π ≤ x ≤ π, then only
sines are required in the Fourier series and sm =
2
π
Z π
0
y(x) sin mx dx. If, in addition, y(x) is symmetric about
x = π/2, then the coefficients sm are given by sm = 0 (for m even), sm =
4
π
Z π/2
0
y(x) sin mx dx (for m odd). If
y(x) is an even (symmetric) function [i.e., y(−x) = y(x)] defined in the range −π ≤ x ≤ π, then only constant
and cosine terms are required in the Fourier series and c0 =
1
π
Z π
0
y(x) dx, cm =
2
π
Z π
0
y(x) cos mx dx. If, in
addition, y(x) is anti-symmetric about x =
π
2
, then c0 = 0 and the coefficients cm are given by cm = 0 (for m even),
cm =
4
π
Z π/2
0
y(x) cos mx dx (for m odd).
[These results also apply to Fourier series with more general ranges provided appropriate changes are made to the
limits of integration.]
Complex form of Fourier series
If y(x) is a function defined in the range −π ≤ x ≤ π then
y(x) ≈
M
∑
−M
Cm eimx
, Cm =
1
2π
Z π
−π
y(x) e−imx
dx
with m taking all integer values in the range ±M. This approximation converges to y(x) as M → ∞ under the same
conditions as the real form.
For other ranges the formulae are:
Variable t, range 0 ≤ t ≤ T, frequency ω = 2π/T,
y(t) =
∞
∑
−∞
Cm eimωt
, Cm =
ω
2π
Z T
0
y(t) e−imωt
dt.
Variable x0
, range 0 ≤ x0
≤ L,
y(x0
) =
∞
∑
−∞
Cm ei2mπx0/L
, Cm =
1
L
Z L
0
y(x0
) e−i2mπx0/L
dx0
.
Discrete Fourier series
If y(x) is a function defined in the range −π ≤ x ≤ π which is sampled in the 2N equally spaced points xn =
nx/N [n = −(N − 1) . . . N], then
y(xn) = c0 + c1 cos xn + c2 cos 2xn + · · · + cN−1 cos(N − 1)xn + cN cos Nxn
+ s1 sin xn + s2 sin 2xn + · · · + sN−1 sin(N − 1)xn + sN sin Nxn
where the coefficients are
c0 =
1
2N ∑ y(xn)
cm =
1
N ∑ y(xn) cos mxn (m = 1, . . . , N − 1)
cN =
1
2N ∑ y(xn) cos Nxn
sm =
1
N ∑ y(xn) sin mxn (m = 1, . . . , N − 1)
sN =
1
2N ∑ y(xn) sin Nxn
each summation being over the 2N sampling points xn.
Page 18 of 24
Fourier transforms
If y(x) is a function defined in the range −∞ ≤ x ≤ ∞ then the Fourier transform b
y(ω) is defined by the equations
y(t) =
1
2π
Z ∞
−∞
b
y(ω) eiωt
dω, b
y(ω) =
Z ∞
−∞
y(t) e−iωt
dt.
If ω is replaced by 2πf, where f is the frequency, this relationship becomes
y(t) =
Z ∞
−∞
b
y( f ) ei2π f t
d f , b
y( f ) =
Z ∞
−∞
y(t) e−i2π f t
dt.
If y(t) is symmetric about t = 0 then
y(t) =
1
π
Z ∞
0
b
y(ω) cosωt dω, b
y(ω) = 2
Z ∞
0
y(t) cosωt dt.
If y(t) is anti-symmetric about t = 0 then
y(t) =
1
π
Z ∞
0
b
y(ω) sinωt dω, b
y(ω) = 2
Z ∞
0
y(t) sinωt dt.
Specific cases
y(t) = a, |t| ≤ τ
= 0, |t|  τ

(‘Top Hat’), b
y(ω) = 2a
sinωτ
ω
≡ 2aτ sinc(ωτ)
where sinc(x) =
sin(x)
x
y(t) = a(1 − |t|/τ), |t| ≤ τ
= 0, |t|  τ

(‘Saw-tooth’), b
y(ω) =
2a
ω2
τ
(1 − cosωτ) = aτ sinc2
ωτ
2

y(t) = exp(−t2
/t2
0) (Gaussian), b
y(ω) = t0
√
π exp −ω2
t2
0/4

y(t) = f (t) eiω0t
(modulated function), b
y(ω) = b
f (ω − ω0)
y(t) =
∞
∑
m=−∞
δ(t − mτ) (sampling function) b
y(ω) =
∞
∑
n=−∞
δ(ω − 2πn/τ)
Page 19 of 24
Convolution theorem
If z(t) =
Z ∞
−∞
x(τ)y(t − τ) dτ =
Z ∞
−∞
x(t − τ)y(τ) dτ ≡ x(t) ∗ y(t) then b
z(ω) = b
x(ω) b
y(ω).
Conversely, c
xy = b
x ∗ b
y.
Parseval’s theorem
Z ∞
−∞
y∗
(t) y(t) dt =
1
2π
Z ∞
−∞
b
y∗
(ω) b
y(ω) dω (if b
y is normalised as on page 21)
Fourier transforms in two dimensions
b
V(k) =
Z
V(r) e−ik·r
d2
r
=
Z ∞
0
2πrV(r)J0(kr) dr if azimuthally symmetric
Fourier transforms in three dimensions
Examples
V(r) b
V(k)
1
4πr
1
k2
e−λr
4πr
1
k2
+ λ2
∇V(r) ikb
V(k)
∇2
V(r) −k2 b
V(k)
b
V(k) =
Z
V(r) e−ik·r
d3
r
=
4π
k
Z ∞
0
V(r) r sin kr dr if spherically symmetric
V(r) =
1
(2π)3
Z
b
V(k) eik·r
d3
k
Page 20 of 24
If y(t) is a function defined for t ≥ 0, the Laplace transform y(s) is defined by the equation
y(s) = L{y(t)} =
Z ∞
0
e−st
y(t) dt
Function y(t) (t  0) Transform y(s)
δ(t) 1 Delta function
θ(t)
1
s
Unit step function
tn n!
sn+1
t
1/
2
1
2
r
π
s3
t−1
/
2
r
π
s
e−at 1
(s + a)
sinωt
ω
(s2 + ω2
cosωt
s
(s2 + ω2)
sinh ωt
ω
(s2 − ω2)
coshωt
s
(s2 − ω2)
e−at
y(t) y(s + a)
y(t − τ) θ(t − τ) e−sτ
y(s)
ty(t) −
dy
ds
dy
dt
sy(s) − y(0)
dn
y
dtn
sn
y(s) − sn−1
y(0) − sn−2

dy
dt

0
· · · −

dn−1
y
dtn−1

0
Z t
0
y(τ) dτ
y(s)
s
Z t
0
x(τ) y(t − τ) dτ
Z t
0
x(t − τ) y(τ) dτ









x(s) y(s) Convolution theorem
[Note that if y(t) = 0 for t  0 then the Fourier transform of y(t) is b
y(ω) = y(iω).]
Page 21 of 24
Laplace Transforms
Finding the zeros of equations
If the equation is y = f (x) and xn is an approximation to the root then either
xn+1 = xn −
f (xn)
f 0
(xn)
. (Newton)
or, xn+1 = xn −
xn − xn−1
f (xn) − f (xn−1)
f (xn) (Linear interpolation)
are, in general, better approximations.
Numerical integration of differential equations
If
dy
dx
= f (x, y) then
yn+1 = yn + h f (xn, yn) where h = xn+1 − xn (Euler method)
Putting y∗
n+1 = yn + h f (xn, yn) (improved Euler method)
then yn+1 = yn +
h[ f (xn, yn) + f (xn+1, y∗
n+1)]
2
Central difference notation
If y(x) is tabulated at equal intervals of x, where h is the interval, then δyn+1/2 = yn+1 − yn and
δ2
yn = δyn+1/2 − δyn−1/2
Approximating to derivatives

dy
dx

n
≈
yn+1 − yn
h
≈
yn − yn−1
h
≈
δyn+1
/
2
+ δyn−1
/
2
2h
where h = xn+1 − xn

d2
y
dx2

n
≈
yn+1 − 2yn + yn−1
h2
=
δ2
yn
h2
Interpolation: Everett’s formula
y(x) = y(x0 + θh) ≈ θy0 + θy1 +
1
3!
θ(θ
2
− 1)δ2
y0 +
1
3!
θ(θ2
− 1)δ2
y1 + · · ·
where θ is the fraction of the interval h (= xn+1 − xn) between the sampling points and θ = 1 − θ. The first two
terms represent linear interpolation.
Numerical evaluation of definite integrals
Trapezoidal rule
The interval of integration is divided into n equal sub-intervals, each of width h; then
Z b
a
f (x) dx ≈ h

c
1
2
f (a) + f (x1) + · · · + f (xj) + · · · +
1
2
f (b)

where h = (b − a)/n and xj = a + jh.
Simpson’s rule
The interval of integration is divided into an even number (say 2n) of equal sub-intervals, each of width h =
(b − a)/2n; then
Z b
a
f (x) dx ≈
h
3

f (a) + 4 f (x1) + 2 f (x2) + 4 f (x3) + · · · + 2 f (x2n−2) + 4 f (x2n−1) + f (b)

Page 22 of 24
Numerical Analysis
Gauss’s integration formulae
These have the general form
Z 1
−1
y(x) dx ≈
n
∑
1
ci y(xi)
For n = 2 : xi = ±0·5773; ci = 1, 1 (exact for any cubic).
For n = 3 : xi = −0·7746, 0·0, 0·7746; ci = 0·555, 0·888, 0·555 (exact for any quintic).
Sample mean x =
1
n
(x1 + x2 + · · · xn)
Residual: d = x − x
Standard deviation of sample: s =
1
√
n
(d2
1 + d2
2 + · · · d2
n)1/2
Standard deviation of distribution: σ ≈
1
√
n − 1
(d2
1 + d2
2 + · · · d2
n)1/2
Standard deviation of mean: σm =
σ
√
n
=
1
q
n(n − 1)
(d2
1 + d2
2 + · · · d2
n)1/2
=
1
q
n(n − 1)

∑x2
i −
1
n ∑xi
2
1/2
Result of n measurements is quoted as x ± σm.
Range method
A quick but crude method of estimating σ is to find the range r of a set of n readings, i.e., the difference between
the largest and smallest values, then
σ ≈
r
√
n
.
This is usually adequate for n less than about 12.
Combination of errors
If Z = Z(A, B, . . .) (with A, B, etc. independent) then
(σZ)2
=

∂Z
∂A
σA
2
+

∂Z
∂B
σB
2
+ · · ·
So if
(i) Z = A ± B ± C, (σZ)2
= (σA)2
+ (σB)2
+ (σC)2
(ii) Z = AB or A/B,
σZ
Z
2
=
σA
A
2
+
σB
B
2
(iii) Z = Am
,
σZ
Z
= m
σA
A
(iv) Z = ln A, σZ =
σA
A
(v) Z = exp A,
σZ
Z
= σA
Page 23 of 24
Treatment of Random Errors
Mean and Variance
A random variable X has a distribution over some subset x of the real numbers. When the distribution of X is
discrete, the probability that X = xi is Pi. When the distribution is continuous, the probability that X lies in an
interval δx is f (x)δx, where f (x) is the probability density function.
Mean µ = E(X) = ∑Pixi or
Z
x f (x) dx.
Variance σ2
= V(X) = E[(X − µ)2
] = ∑Pi(xi − µ)2
or
Z
(x − µ)2
f (x) dx.
Probability distributions
Error function: erf(x) =
2
√
π
Z x
0
e−y2
dy
Binomial: f (x) =

n
x

px
qn−x
where q = (1 − p), µ = np, σ2
= npq, p  1.
Poisson: f (x) =
µx
x!
e−µ
, and σ2
= µ
Normal: f (x) =
1
σ
√
2π
exp

−
(x − µ)2
2σ2

Weighted sums of random variables
If W = aX + bY then E(W) = aE(X) + bE(Y). If X and Y are independent then V(W) = a2
V(X) + b2
V(Y).
Statistics of a data sample x1, . . . , xn
Sample mean x =
1
n ∑xi
Sample variance s2
=
1
n ∑(xi − x)2
=

1
n ∑x2
i

− x2
= E(x2
) − [E(x)]2
Regression (least squares fitting)
To fit a straight line by least squares to n pairs of points (xi, yi), model the observations by yi = α + β(xi − x) + i,
where the i are independent samples of a random variable with zero mean and variance σ2
.
Sample statistics: s2
x =
1
n ∑(xi − x)2
, s2
y =
1
n ∑(yi − y)2
, s2
xy =
1
n ∑(xi − x)(yi − y).
Estimators: b
α = y, b
β =
s2
xy
s2
x
; E(Y at x) = b
α + b
β(x − x); b
σ2
=
n
n − 2
(residual variance),
where residual variance =
1
n ∑{yi − b
α − b
β(xi − x)}2
= s2
y −
s4
xy
s2
x
.
Estimates for the variances of b
α and b
β are
b
σ2
n
and
b
σ2
ns2
x
.
Correlation coefficient: b
ρ = r =
s2
xy
sxsy
.
Page 24 of 24
Statistics
Mathematical-Formula-Handbook.pdf-76-watermark.pdf-68.pdf

More Related Content

Similar to Mathematical-Formula-Handbook.pdf-76-watermark.pdf-68.pdf

f00a5f08-14cf-4f73-a749-f8e30a016fa4.pdf
f00a5f08-14cf-4f73-a749-f8e30a016fa4.pdff00a5f08-14cf-4f73-a749-f8e30a016fa4.pdf
f00a5f08-14cf-4f73-a749-f8e30a016fa4.pdfSRSstatusking
 
Last+minute+revision(+Final)+(1) (1).pptx
Last+minute+revision(+Final)+(1) (1).pptxLast+minute+revision(+Final)+(1) (1).pptx
Last+minute+revision(+Final)+(1) (1).pptxAryanMishra860130
 
Matrices & determinants
Matrices & determinantsMatrices & determinants
Matrices & determinantsindu thakur
 
Nbhm m. a. and m.sc. scholarship test 2007
Nbhm m. a. and m.sc. scholarship test 2007 Nbhm m. a. and m.sc. scholarship test 2007
Nbhm m. a. and m.sc. scholarship test 2007 MD Kutubuddin Sardar
 
A Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cubeA Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cubeVjekoslavKovac1
 
Capitulo 1, 7ma edición
Capitulo 1, 7ma ediciónCapitulo 1, 7ma edición
Capitulo 1, 7ma ediciónSohar Carr
 
Engg maths k notes(4)
Engg maths k notes(4)Engg maths k notes(4)
Engg maths k notes(4)Ranjay Kumar
 
Inverse Matrix & Determinants
Inverse Matrix & DeterminantsInverse Matrix & Determinants
Inverse Matrix & Determinantsitutor
 
Matrices - Mathematics
Matrices - MathematicsMatrices - Mathematics
Matrices - MathematicsDrishti Bhalla
 
Appendix B Matrices And Determinants
Appendix B  Matrices And DeterminantsAppendix B  Matrices And Determinants
Appendix B Matrices And DeterminantsAngie Miller
 
Trigonometry and its basic rules and regulation
Trigonometry and its basic rules and regulationTrigonometry and its basic rules and regulation
Trigonometry and its basic rules and regulationKartikey Rohila
 
Trigonometry
TrigonometryTrigonometry
TrigonometryMurali BL
 
Algebric Functions.pdf
Algebric Functions.pdfAlgebric Functions.pdf
Algebric Functions.pdfMamadArip
 
Curve Tracing cartesian form.pptx
Curve Tracing cartesian form.pptxCurve Tracing cartesian form.pptx
Curve Tracing cartesian form.pptxvittalgondkar
 
Aieee maths-quick review
Aieee maths-quick reviewAieee maths-quick review
Aieee maths-quick reviewSharath Kumar
 

Similar to Mathematical-Formula-Handbook.pdf-76-watermark.pdf-68.pdf (20)

f00a5f08-14cf-4f73-a749-f8e30a016fa4.pdf
f00a5f08-14cf-4f73-a749-f8e30a016fa4.pdff00a5f08-14cf-4f73-a749-f8e30a016fa4.pdf
f00a5f08-14cf-4f73-a749-f8e30a016fa4.pdf
 
Last+minute+revision(+Final)+(1) (1).pptx
Last+minute+revision(+Final)+(1) (1).pptxLast+minute+revision(+Final)+(1) (1).pptx
Last+minute+revision(+Final)+(1) (1).pptx
 
Matrices & determinants
Matrices & determinantsMatrices & determinants
Matrices & determinants
 
Nbhm m. a. and m.sc. scholarship test 2007
Nbhm m. a. and m.sc. scholarship test 2007 Nbhm m. a. and m.sc. scholarship test 2007
Nbhm m. a. and m.sc. scholarship test 2007
 
A Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cubeA Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cube
 
Capitulo 1, 7ma edición
Capitulo 1, 7ma ediciónCapitulo 1, 7ma edición
Capitulo 1, 7ma edición
 
Engg maths k notes(4)
Engg maths k notes(4)Engg maths k notes(4)
Engg maths k notes(4)
 
Inverse Matrix & Determinants
Inverse Matrix & DeterminantsInverse Matrix & Determinants
Inverse Matrix & Determinants
 
Matrices - Mathematics
Matrices - MathematicsMatrices - Mathematics
Matrices - Mathematics
 
Lect 1_TMT 20303.pptx
Lect 1_TMT 20303.pptxLect 1_TMT 20303.pptx
Lect 1_TMT 20303.pptx
 
Appendix B Matrices And Determinants
Appendix B  Matrices And DeterminantsAppendix B  Matrices And Determinants
Appendix B Matrices And Determinants
 
Trigonometry and its basic rules and regulation
Trigonometry and its basic rules and regulationTrigonometry and its basic rules and regulation
Trigonometry and its basic rules and regulation
 
Trigonometry
TrigonometryTrigonometry
Trigonometry
 
Matrix
MatrixMatrix
Matrix
 
Final
Final Final
Final
 
Algebric Functions.pdf
Algebric Functions.pdfAlgebric Functions.pdf
Algebric Functions.pdf
 
Matrices 1.pdf
Matrices 1.pdfMatrices 1.pdf
Matrices 1.pdf
 
Curve Tracing cartesian form.pptx
Curve Tracing cartesian form.pptxCurve Tracing cartesian form.pptx
Curve Tracing cartesian form.pptx
 
Aieee maths-quick review
Aieee maths-quick reviewAieee maths-quick review
Aieee maths-quick review
 
eigenvalue
eigenvalueeigenvalue
eigenvalue
 

More from 9866560321sv

ME101-Lecture11 civil engineers use ful and
ME101-Lecture11 civil engineers use ful andME101-Lecture11 civil engineers use ful and
ME101-Lecture11 civil engineers use ful and9866560321sv
 
civil ngineering of research for civil engner
civil ngineering of research for civil engnercivil ngineering of research for civil engner
civil ngineering of research for civil engner9866560321sv
 
Handbook of Formulae and Constafor nts.pdf
Handbook of Formulae and Constafor nts.pdfHandbook of Formulae and Constafor nts.pdf
Handbook of Formulae and Constafor nts.pdf9866560321sv
 
use ful for civil engineering for use fu
use ful for civil engineering for use fuuse ful for civil engineering for use fu
use ful for civil engineering for use fu9866560321sv
 
Fluid Mechanics (2)civil engineers sksks
Fluid Mechanics (2)civil engineers sksksFluid Mechanics (2)civil engineers sksks
Fluid Mechanics (2)civil engineers sksks9866560321sv
 
Strength of Materials formu laws for civ
Strength of Materials formu laws for civStrength of Materials formu laws for civ
Strength of Materials formu laws for civ9866560321sv
 

More from 9866560321sv (6)

ME101-Lecture11 civil engineers use ful and
ME101-Lecture11 civil engineers use ful andME101-Lecture11 civil engineers use ful and
ME101-Lecture11 civil engineers use ful and
 
civil ngineering of research for civil engner
civil ngineering of research for civil engnercivil ngineering of research for civil engner
civil ngineering of research for civil engner
 
Handbook of Formulae and Constafor nts.pdf
Handbook of Formulae and Constafor nts.pdfHandbook of Formulae and Constafor nts.pdf
Handbook of Formulae and Constafor nts.pdf
 
use ful for civil engineering for use fu
use ful for civil engineering for use fuuse ful for civil engineering for use fu
use ful for civil engineering for use fu
 
Fluid Mechanics (2)civil engineers sksks
Fluid Mechanics (2)civil engineers sksksFluid Mechanics (2)civil engineers sksks
Fluid Mechanics (2)civil engineers sksks
 
Strength of Materials formu laws for civ
Strength of Materials formu laws for civStrength of Materials formu laws for civ
Strength of Materials formu laws for civ
 

Recently uploaded

办理学位证(SFU证书)西蒙菲莎大学毕业证成绩单原版一比一
办理学位证(SFU证书)西蒙菲莎大学毕业证成绩单原版一比一办理学位证(SFU证书)西蒙菲莎大学毕业证成绩单原版一比一
办理学位证(SFU证书)西蒙菲莎大学毕业证成绩单原版一比一F dds
 
Call Girls Bapu Nagar 7397865700 Ridhima Hire Me Full Night
Call Girls Bapu Nagar 7397865700 Ridhima Hire Me Full NightCall Girls Bapu Nagar 7397865700 Ridhima Hire Me Full Night
Call Girls Bapu Nagar 7397865700 Ridhima Hire Me Full Nightssuser7cb4ff
 
shot list for my tv series two steps back
shot list for my tv series two steps backshot list for my tv series two steps back
shot list for my tv series two steps back17lcow074
 
Call Girls In Safdarjung Enclave 24/7✡️9711147426✡️ Escorts Service
Call Girls In Safdarjung Enclave 24/7✡️9711147426✡️ Escorts ServiceCall Girls In Safdarjung Enclave 24/7✡️9711147426✡️ Escorts Service
Call Girls In Safdarjung Enclave 24/7✡️9711147426✡️ Escorts Servicejennyeacort
 
VIP Kolkata Call Girl Gariahat 👉 8250192130 Available With Room
VIP Kolkata Call Girl Gariahat 👉 8250192130  Available With RoomVIP Kolkata Call Girl Gariahat 👉 8250192130  Available With Room
VIP Kolkata Call Girl Gariahat 👉 8250192130 Available With Roomdivyansh0kumar0
 
call girls in Harsh Vihar (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Harsh Vihar (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Harsh Vihar (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Harsh Vihar (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
NO1 Famous Amil Baba In Karachi Kala Jadu In Karachi Amil baba In Karachi Add...
NO1 Famous Amil Baba In Karachi Kala Jadu In Karachi Amil baba In Karachi Add...NO1 Famous Amil Baba In Karachi Kala Jadu In Karachi Amil baba In Karachi Add...
NO1 Famous Amil Baba In Karachi Kala Jadu In Karachi Amil baba In Karachi Add...Amil baba
 
办理学位证(TheAuckland证书)新西兰奥克兰大学毕业证成绩单原版一比一
办理学位证(TheAuckland证书)新西兰奥克兰大学毕业证成绩单原版一比一办理学位证(TheAuckland证书)新西兰奥克兰大学毕业证成绩单原版一比一
办理学位证(TheAuckland证书)新西兰奥克兰大学毕业证成绩单原版一比一Fi L
 
Abu Dhabi Call Girls O58993O4O2 Call Girls in Abu Dhabi`
Abu Dhabi Call Girls O58993O4O2 Call Girls in Abu Dhabi`Abu Dhabi Call Girls O58993O4O2 Call Girls in Abu Dhabi`
Abu Dhabi Call Girls O58993O4O2 Call Girls in Abu Dhabi`dajasot375
 
VIP Call Girls Service Kukatpally Hyderabad Call +91-8250192130
VIP Call Girls Service Kukatpally Hyderabad Call +91-8250192130VIP Call Girls Service Kukatpally Hyderabad Call +91-8250192130
VIP Call Girls Service Kukatpally Hyderabad Call +91-8250192130Suhani Kapoor
 
Kindergarten Assessment Questions Via LessonUp
Kindergarten Assessment Questions Via LessonUpKindergarten Assessment Questions Via LessonUp
Kindergarten Assessment Questions Via LessonUpmainac1
 
PORTFOLIO DE ARQUITECTURA CRISTOBAL HERAUD 2024
PORTFOLIO DE ARQUITECTURA CRISTOBAL HERAUD 2024PORTFOLIO DE ARQUITECTURA CRISTOBAL HERAUD 2024
PORTFOLIO DE ARQUITECTURA CRISTOBAL HERAUD 2024CristobalHeraud
 
ARt app | UX Case Study
ARt app | UX Case StudyARt app | UX Case Study
ARt app | UX Case StudySophia Viganò
 
Passbook project document_april_21__.pdf
Passbook project document_april_21__.pdfPassbook project document_april_21__.pdf
Passbook project document_april_21__.pdfvaibhavkanaujia
 
Top 10 Modern Web Design Trends for 2025
Top 10 Modern Web Design Trends for 2025Top 10 Modern Web Design Trends for 2025
Top 10 Modern Web Design Trends for 2025Rndexperts
 
306MTAMount UCLA University Bachelor's Diploma in Social Media
306MTAMount UCLA University Bachelor's Diploma in Social Media306MTAMount UCLA University Bachelor's Diploma in Social Media
306MTAMount UCLA University Bachelor's Diploma in Social MediaD SSS
 
Design Portfolio - 2024 - William Vickery
Design Portfolio - 2024 - William VickeryDesign Portfolio - 2024 - William Vickery
Design Portfolio - 2024 - William VickeryWilliamVickery6
 
定制(RMIT毕业证书)澳洲墨尔本皇家理工大学毕业证成绩单原版一比一
定制(RMIT毕业证书)澳洲墨尔本皇家理工大学毕业证成绩单原版一比一定制(RMIT毕业证书)澳洲墨尔本皇家理工大学毕业证成绩单原版一比一
定制(RMIT毕业证书)澳洲墨尔本皇家理工大学毕业证成绩单原版一比一lvtagr7
 

Recently uploaded (20)

办理学位证(SFU证书)西蒙菲莎大学毕业证成绩单原版一比一
办理学位证(SFU证书)西蒙菲莎大学毕业证成绩单原版一比一办理学位证(SFU证书)西蒙菲莎大学毕业证成绩单原版一比一
办理学位证(SFU证书)西蒙菲莎大学毕业证成绩单原版一比一
 
Call Girls Bapu Nagar 7397865700 Ridhima Hire Me Full Night
Call Girls Bapu Nagar 7397865700 Ridhima Hire Me Full NightCall Girls Bapu Nagar 7397865700 Ridhima Hire Me Full Night
Call Girls Bapu Nagar 7397865700 Ridhima Hire Me Full Night
 
shot list for my tv series two steps back
shot list for my tv series two steps backshot list for my tv series two steps back
shot list for my tv series two steps back
 
Call Girls in Pratap Nagar, 9953056974 Escort Service
Call Girls in Pratap Nagar,  9953056974 Escort ServiceCall Girls in Pratap Nagar,  9953056974 Escort Service
Call Girls in Pratap Nagar, 9953056974 Escort Service
 
Call Girls In Safdarjung Enclave 24/7✡️9711147426✡️ Escorts Service
Call Girls In Safdarjung Enclave 24/7✡️9711147426✡️ Escorts ServiceCall Girls In Safdarjung Enclave 24/7✡️9711147426✡️ Escorts Service
Call Girls In Safdarjung Enclave 24/7✡️9711147426✡️ Escorts Service
 
VIP Kolkata Call Girl Gariahat 👉 8250192130 Available With Room
VIP Kolkata Call Girl Gariahat 👉 8250192130  Available With RoomVIP Kolkata Call Girl Gariahat 👉 8250192130  Available With Room
VIP Kolkata Call Girl Gariahat 👉 8250192130 Available With Room
 
Cheap Rate ➥8448380779 ▻Call Girls In Iffco Chowk Gurgaon
Cheap Rate ➥8448380779 ▻Call Girls In Iffco Chowk GurgaonCheap Rate ➥8448380779 ▻Call Girls In Iffco Chowk Gurgaon
Cheap Rate ➥8448380779 ▻Call Girls In Iffco Chowk Gurgaon
 
call girls in Harsh Vihar (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Harsh Vihar (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Harsh Vihar (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Harsh Vihar (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
NO1 Famous Amil Baba In Karachi Kala Jadu In Karachi Amil baba In Karachi Add...
NO1 Famous Amil Baba In Karachi Kala Jadu In Karachi Amil baba In Karachi Add...NO1 Famous Amil Baba In Karachi Kala Jadu In Karachi Amil baba In Karachi Add...
NO1 Famous Amil Baba In Karachi Kala Jadu In Karachi Amil baba In Karachi Add...
 
办理学位证(TheAuckland证书)新西兰奥克兰大学毕业证成绩单原版一比一
办理学位证(TheAuckland证书)新西兰奥克兰大学毕业证成绩单原版一比一办理学位证(TheAuckland证书)新西兰奥克兰大学毕业证成绩单原版一比一
办理学位证(TheAuckland证书)新西兰奥克兰大学毕业证成绩单原版一比一
 
Abu Dhabi Call Girls O58993O4O2 Call Girls in Abu Dhabi`
Abu Dhabi Call Girls O58993O4O2 Call Girls in Abu Dhabi`Abu Dhabi Call Girls O58993O4O2 Call Girls in Abu Dhabi`
Abu Dhabi Call Girls O58993O4O2 Call Girls in Abu Dhabi`
 
VIP Call Girls Service Kukatpally Hyderabad Call +91-8250192130
VIP Call Girls Service Kukatpally Hyderabad Call +91-8250192130VIP Call Girls Service Kukatpally Hyderabad Call +91-8250192130
VIP Call Girls Service Kukatpally Hyderabad Call +91-8250192130
 
Kindergarten Assessment Questions Via LessonUp
Kindergarten Assessment Questions Via LessonUpKindergarten Assessment Questions Via LessonUp
Kindergarten Assessment Questions Via LessonUp
 
PORTFOLIO DE ARQUITECTURA CRISTOBAL HERAUD 2024
PORTFOLIO DE ARQUITECTURA CRISTOBAL HERAUD 2024PORTFOLIO DE ARQUITECTURA CRISTOBAL HERAUD 2024
PORTFOLIO DE ARQUITECTURA CRISTOBAL HERAUD 2024
 
ARt app | UX Case Study
ARt app | UX Case StudyARt app | UX Case Study
ARt app | UX Case Study
 
Passbook project document_april_21__.pdf
Passbook project document_april_21__.pdfPassbook project document_april_21__.pdf
Passbook project document_april_21__.pdf
 
Top 10 Modern Web Design Trends for 2025
Top 10 Modern Web Design Trends for 2025Top 10 Modern Web Design Trends for 2025
Top 10 Modern Web Design Trends for 2025
 
306MTAMount UCLA University Bachelor's Diploma in Social Media
306MTAMount UCLA University Bachelor's Diploma in Social Media306MTAMount UCLA University Bachelor's Diploma in Social Media
306MTAMount UCLA University Bachelor's Diploma in Social Media
 
Design Portfolio - 2024 - William Vickery
Design Portfolio - 2024 - William VickeryDesign Portfolio - 2024 - William Vickery
Design Portfolio - 2024 - William Vickery
 
定制(RMIT毕业证书)澳洲墨尔本皇家理工大学毕业证成绩单原版一比一
定制(RMIT毕业证书)澳洲墨尔本皇家理工大学毕业证成绩单原版一比一定制(RMIT毕业证书)澳洲墨尔本皇家理工大学毕业证成绩单原版一比一
定制(RMIT毕业证书)澳洲墨尔本皇家理工大学毕业证成绩单原版一比一
 

Mathematical-Formula-Handbook.pdf-76-watermark.pdf-68.pdf

  • 1.
  • 2. If i, j, k are orthonormal vectors and A = Axi + Ay j + Azk then |A|2 = A2 x + A2 y + A2 z. [Orthonormal vectors ≡ orthogonal unit vectors.] Scalar product A · B = |A| |B| cosθ where θ is the angle between the vectors = AxBx + AyBy + AzBz = [ Ax Ay Az ]   Bx By Bz   Scalar multiplication is commutative: A · B = B · A. Equation of a line A point r ≡ (x, y, z) lies on a line passing through a point a and parallel to vector b if r = a + λb with λ a real number. Vector Algebra Page 1 of 24 ENGINEERING MATHEMATICS FORMULAS & SHORT NOTES HANDBOOK
  • 3. Equation of a plane A point r ≡ (x, y, z) is on a plane if either (a) r · b d = |d|, where d is the normal from the origin to the plane, or (b) x X + y Y + z Z = 1 where X, Y, Z are the intercepts on the axes. Vector product A×B = n |A| |B| sinθ, whereθ is the angle between the vectors and n is a unit vector normal to the plane containing A and B in the direction for which A, B, n form a right-handed set of axes. A × B in determinant form i j k Ax Ay Az Bx By Bz A × B in matrix form   0 −Az Ay Az 0 −Ax −Ay Ax 0     Bx By Bz   Vector multiplication is not commutative: A × B = −B × A. Scalar triple product A × B · C = A · B × C = Ax Ay Az Bx By Bz Cx Cy Cz = −A × C · B, etc. Vector triple product A × (B × C) = (A · C)B − (A · B)C, (A × B) × C = (A · C)B − (B · C)A Non-orthogonal basis A = A1e1 + A2e2 + A3e3 A1 = 0 · A where 0 = e2 × e3 e1 · (e2 × e3) Similarly for A2 and A3. Summation convention a = aiei implies summation over i = 1 . . . 3 a · b = aibi (a × b)i = εijkajbk where ε123 = 1; εijk = −εikj εijkεklm = δilδjm − δimδjl Page 2 of 24
  • 4. Unit matrices The unit matrix I of order n is a square matrix with all diagonal elements equal to one and all off-diagonal elements zero, i.e., (I)ij = δij. If A is a square matrix of order n, then AI = IA = A. Also I = I−1 . I is sometimes written as In if the order needs to be stated explicitly. Products If A is a (n × l) matrix and B is a (l × m) then the product AB is defined by (AB)ij = l ∑ k=1 AikBkj In general AB 6= BA. Transpose matrices If A is a matrix, then transpose matrix AT is such that (AT )ij = (A)ji. Inverse matrices If A is a square matrix with non-zero determinant, then its inverse A−1 is such that AA−1 = A−1 A = I. (A−1 )ij = transpose of cofactor of Aij |A| where the cofactor of Aij is (−1)i+j times the determinant of the matrix A with the j-th row and i-th column deleted. Determinants If A is a square matrix then the determinant of A, |A| (≡ det A) is defined by |A| = ∑ i,j,k,... ijk...A1i A2j A3k . . . where the number of the suffixes is equal to the order of the matrix. 2×2 matrices If A = a b c d then, |A| = ad − bc AT = a c b d A−1 = 1 |A| d −b −c a Product rules (AB . . . N)T = NT . . . BT AT (AB . . . N)−1 = N−1 . . . B−1 A−1 (if individual inverses exist) |AB . . . N| = |A| |B| . . . |N| (if individual matrices are square) Orthogonal matrices An orthogonal matrix Q is a square matrix whose columns qi form a set of orthonormal vectors. For any orthogonal matrix Q, Q−1 = QT , |Q| = ±1, QT is also orthogonal. Matrix Algebra Page 3 of 24
  • 5. Solving sets of linear simultaneous equations If A is square then Ax = b has a unique solution x = A−1 b if A−1 exists, i.e., if |A| 6= 0. If A is square then Ax = 0 has a non-trivial solution if and only if |A| = 0. An over-constrained set of equations Ax = b is one in which A has m rows and n columns, where m (the number of equations) is greater than n (the number of variables). The best solution x (in the sense that it minimizes the error |Ax − b|) is the solution of the n equations AT Ax = AT b. If the columns of A are orthonormal vectors then x = AT b. Hermitian matrices The Hermitian conjugate of A is A† = (A∗ )T , where A∗ is a matrix each of whose components is the complex conjugate of the corresponding components of A. If A = A† then A is called a Hermitian matrix. Eigenvalues and eigenvectors The n eigenvalues λi and eigenvectors ui of an n × n matrix A are the solutions of the equation Au = λu. The eigenvalues are the zeros of the polynomial of degree n, Pn(λ) = |A − λI|. If A is Hermitian then the eigenvalues λi are real and the eigenvectors ui are mutually orthogonal. |A − λI| = 0 is called the characteristic equation of the matrix A. Tr A = ∑ i λi, also |A| = ∏ i λi. If S is a symmetric matrix, Λ is the diagonal matrix whose diagonal elements are the eigenvalues of S, and U is the matrix whose columns are the normalized eigenvectors of A, then UT SU = Λ and S = UΛUT . If x is an approximation to an eigenvector of A then xT Ax/(xT x) (Rayleigh’s quotient) is an approximation to the corresponding eigenvalue. Commutators [A, B] ≡ AB − BA [A, B] = −[B, A] [A, B]† = [B†, A†] [A + B, C] = [A, C] + [B, C] [AB, C] = A[B, C] + [A, C]B [A, [B, C]] + [B, [C, A]] + [C, [A, B]] = 0 Hermitian algebra b† = (b∗ 1, b∗ 2, . . .) Matrix form Operator form Bra-ket form Hermiticity b∗ · A · c = (A · b)∗ · c Z ψ∗ Oφ = Z (Oψ)∗ φ hψ|O|φi Eigenvalues, λ real Aui = λ(i)ui Oψi = λ(i)ψi O |ii = λi |ii Orthogonality ui · uj = 0 Z ψ∗ i ψj = 0 hi|ji = 0 (i 6= j) Completeness b = ∑ i ui(ui · b) φ = ∑ i ψi Z ψ∗ i φ φ = ∑ i |ii hi|φi Rayleigh–Ritz Lowest eigenvalue λ0 ≤ b∗ · A · b b∗ · b λ0 ≤ Z ψ∗ Oψ Z ψ∗ ψ hψ|O|ψi hψ|ψi Page 4 of 24
  • 6. Pauli spin matrices σx = 0 1 1 0 , σy = 0 −i i 0 , σz = 1 0 0 −1 σxσy = iσz, σyσz = iσx, σzσx = iσy, σxσx = σyσy = σzσz = I Notation φ is a scalar function of a set of position coordinates. In Cartesian coordinates φ = φ(x, y, z); in cylindrical polar coordinates φ = φ(ρ,ϕ, z); in spherical polar coordinates φ = φ(r,θ,ϕ); in cases with radial symmetry φ = φ(r). A is a vector function whose components are scalar functions of the position coordinates: in Cartesian coordinates A = iAx + jAy + kAz, where Ax, Ay, Az are independent functions of x, y, z. In Cartesian coordinates ∇ (‘del’) ≡ i ∂ ∂x + j ∂ ∂y + k ∂ ∂z ≡          ∂ ∂x ∂ ∂y ∂ ∂z          gradφ = ∇φ, div A = ∇ · A, curl A = ∇ × A Identities grad(φ1 + φ2) ≡ gradφ1 + gradφ2 div(A1 + A2) ≡ div A1 + div A2 grad(φ1φ2) ≡ φ1 gradφ2 + φ2 gradφ1 curl(A + A) ≡ curl A1 + curl A2 div(φA) ≡ φ div A + (gradφ) · A, curl(φA) ≡ φ curl A + (gradφ) × A div(A1 × A2) ≡ A2 · curl A1 − A1 · curl A2 curl(A1 × A2) ≡ A1 div A2 − A2 div A1 + (A2 · grad)A1 − (A1 · grad)A2 div(curl A) ≡ 0, curl(gradφ) ≡ 0 curl(curl A) ≡ grad(div A) − div(grad A) ≡ grad(div A) − ∇2 A grad(A1 · A2) ≡ A1 × (curl A2) + (A1 · grad)A2 + A2 × (curl A1) + (A2 · grad)A1 Vector Calculus Page 5 of 24
  • 7. Grad, Div, Curl and the Laplacian Cartesian Coordinates Cylindrical Coordinates Spherical Coordinates Conversion to Cartesian Coordinates x = ρ cosϕ y = ρ sinϕ z = z x = r cosϕ sinθ y = r sinϕ sinθ z = r cosθ Vector A Axi + Ay j + Azk Aρb ρ + Aϕ b ϕ + Azb z Arb r + Aθ b θ + Aϕ b ϕ Gradient ∇φ ∂φ ∂x i + ∂φ ∂y j + ∂φ ∂z k ∂φ ∂ρ b ρ + 1 ρ ∂φ ∂ϕ b ϕ + ∂φ ∂z b z ∂φ ∂r b r + 1 r ∂φ ∂θ b θ + 1 r sinθ ∂φ ∂ϕ b ϕ Divergence ∇ · A ∂Ax ∂x + ∂Ay ∂y + ∂Az ∂z 1 ρ ∂(ρAρ) ∂ρ + 1 ρ ∂Aϕ ∂ϕ + ∂Az ∂z 1 r2 ∂(r2 Ar) ∂r + 1 r sinθ ∂Aθ sinθ ∂θ + 1 r sinθ ∂Aϕ ∂ϕ Curl ∇ × A i j k ∂ ∂x ∂ ∂y ∂ ∂z Ax Ay Az 1 ρ b ρ b ϕ 1 ρ b z ∂ ∂ρ ∂ ∂ϕ ∂ ∂z Aρ ρAϕ Az 1 r2 sinθ b r 1 r sinθ b θ 1 r b ϕ ∂ ∂r ∂ ∂θ ∂ ∂ϕ Ar rAθ rAϕ sinθ Laplacian ∇2 φ ∂2 φ ∂x2 + ∂2 φ ∂y2 + ∂2 φ ∂z2 1 ρ ∂ ∂ρ ρ ∂φ ∂ρ + 1 ρ2 ∂2 φ ∂ϕ2 + ∂2 φ ∂z2 1 r2 ∂ ∂r r2 ∂φ ∂r + 1 r2 sinθ ∂ ∂θ sinθ ∂φ ∂θ + 1 r2 sin2 θ ∂2 φ ∂ϕ2 Transformation of integrals L = the distance along some curve ‘C’ in space and is measured from some fixed point. S = a surface area τ = a volume contained by a specified surface b t = the unit tangent to C at the point P b n = the unit outward pointing normal A = some vector function dL = the vector element of curve (= b t dL) dS = the vector element of surface (= b n dS) Then Z C A · b t dL = Z C A · dL and when A = ∇φ Z C (∇φ) · dL = Z C dφ Gauss’s Theorem (Divergence Theorem) When S defines a closed region having a volume τ Z τ (∇ · A) dτ = Z S (A · b n) dS = Z S A · dS also Z τ (∇φ) dτ = Z S φ dS Z τ (∇ × A) dτ = Z S (b n × A) dS Page 6 of 24
  • 8. Stokes’s Theorem When C is closed and bounds the open surface S, Z S (∇ × A) · dS = Z C A · dL also Z S (b n × ∇φ) dS = Z C φ dL Green’s Theorem Z S ψ∇φ · dS = Z τ ∇ · (ψ∇φ) dτ = Z τ ψ∇2 φ + (∇ψ) · (∇φ) dτ Green’s Second Theorem Z τ (ψ∇2 φ − φ∇2 ψ) dτ = Z S [ψ(∇φ) − φ(∇ψ)] · dS Complex numbers The complex number z = x + iy = r(cosθ + i sinθ) = r ei(θ+2nπ) , where i2 = −1 and n is an arbitrary integer. The real quantity r is the modulus of z and the angle θ is the argument of z. The complex conjugate of z is z∗ = x − iy = r(cosθ − i sinθ) = r e−iθ ; zz∗ = |z|2 = x2 + y2 De Moivre’s theorem (cosθ + i sinθ)n = einθ = cos nθ + i sin nθ Power series for complex variables. ez = 1 + z + z2 2! + · · · + zn n! + · · · convergent for all finite z sin z = z − z3 3! + z5 5! − · · · convergent for all finite z cos z = 1 − z2 2! + z4 4! − · · · convergent for all finite z ln(1 + z) = z − z2 2 + z3 3 − · · · principal value of ln(1 + z) This last series converges both on and within the circle |z| = 1 except at the point z = −1. tan−1 z = z − z3 3 + z5 5 − · · · This last series converges both on and within the circle |z| = 1 except at the points z = ±i. (1 + z)n = 1 + nz + n(n − 1) 2! z2 + n(n − 1)(n − 2) 3! z3 + · · · This last series converges both on and within the circle |z| = 1 except at the point z = −1. Page 7 of 24 Complex Variables
  • 9. cos2 A + sin2 A = 1 sec2 A − tan2 A = 1 cosec2 A − cot2 A = 1 sin 2A = 2 sin A cos A cos 2A = cos2 A − sin2 A tan 2A = 2 tan A 1 − tan2 A . sin(A ± B) = sin A cos B ± cos A sin B cos A cos B = cos(A + B) + cos(A − B) 2 cos(A ± B) = cos A cos B ∓ sin A sin B sin A sin B = cos(A − B) − cos(A + B) 2 tan(A ± B) = tan A ± tan B 1 ∓ tan A tan B sin A cos B = sin(A + B) + sin(A − B) 2 sin A + sin B = 2 sin A + B 2 cos A − B 2 sin A − sin B = 2 cos A + B 2 sin A − B 2 cos A + cos B = 2 cos A + B 2 cos A − B 2 cos A − cos B = −2 sin A + B 2 sin A − B 2 cos2 A = 1 + cos 2A 2 sin2 A = 1 − cos 2A 2 cos3 A = 3 cos A + cos 3A 4 sin3 A = 3 sin A − sin 3A 4 Relations between sides and angles of any plane triangle In a plane triangle with angles A, B, and C and sides opposite a, b, and c respectively, a sin A = b sin B = c sin C = diameter of circumscribed circle. a2 = b2 + c2 − 2bc cos A a = b cos C + c cos B cos A = b2 + c2 − a2 2bc tan A − B 2 = a − b a + b cot C 2 area = 1 2 ab sin C = 1 2 bc sin A = 1 2 ca sin B = q s(s − a)(s − b)(s − c), where s = 1 2 (a + b + c) Relations between sides and angles of any spherical triangle In a spherical triangle with angles A, B, and C and sides opposite a, b, and c respectively, sin a sin A = sin b sin B = sin c sin C cos a = cos b cos c + sin b sin c cos A cos A = − cos B cos C + sin B sin C cos a Page 8 of 24 Trigonometric Formulae
  • 10. cosh x = 1 2 ( ex + e−x ) = 1 + x2 2! + x4 4! + · · · valid for all x sinh x = 1 2 ( ex − e−x ) = x + x3 3! + x5 5! + · · · valid for all x cosh ix = cos x cos ix = cosh x sinh ix = i sin x sin ix = i sinh x tanh x = sinh x cosh x sech x = 1 cosh x coth x = cosh x sinh x cosech x = 1 sinh x cosh2 x − sinh2 x = 1 For large positive x: cosh x ≈ sinh x → ex 2 tanh x → 1 For large negative x: cosh x ≈ − sinh x → e−x 2 tanh x → −1 Relations of the functions sinh x = − sinh(−x) sech x = sech(−x) cosh x = cosh(−x) cosech x = − cosech(−x) tanh x = − tanh(−x) coth x = − coth(−x) sinh x = 2 tanh (x/2) 1 − tanh2 (x/2) = tanh x q 1 − tanh2 x cosh x = 1 + tanh2 (x/2) 1 − tanh2 (x/2) = 1 q 1 − tanh2 x tanh x = q 1 − sech2 x sech x = q 1 − tanh2 x coth x = q cosech2 x + 1 cosech x = q coth2 x − 1 sinh(x/2) = r cosh x − 1 2 cosh(x/2) = r cosh x + 1 2 tanh(x/2) = cosh x − 1 sinh x = sinh x cosh x + 1 sinh(2x) = 2 sinh x cosh x tanh(2x) = 2 tanh x 1 + tanh2 x cosh(2x) = cosh2 x + sinh2 x = 2 cosh2 x − 1 = 1 + 2 sinh2 x sinh(3x) = 3 sinh x + 4 sinh3 x cosh 3x = 4 cosh3 x − 3 cosh x tanh(3x) = 3 tanh x + tanh3 x 1 + 3 tanh2 x Page 9 of 24 Hyperbolic Functions
  • 11. sinh(x ± y) = sinh x cosh y ± cosh x sinh y cosh(x ± y) = cosh x cosh y ± sinh x sinh y tanh(x ± y) = tanh x ± tanh y 1 ± tanh x tanh y sinh x + sinh y = 2 sinh 1 2 (x + y) cosh 1 2 (x − y) cosh x + cosh y = 2 cosh 1 2 (x + y) cosh 1 2 (x − y) sinh x − sinh y = 2 cosh 1 2 (x + y) sinh 1 2 (x − y) cosh x − cosh y = 2 sinh 1 2 (x + y) sinh 1 2 (x − y) sinh x ± cosh x = 1 ± tanh (x/2) 1 ∓ tanh(x/2) = e±x tanh x ± tanh y = sinh(x ± y) cosh x cosh y coth x ± coth y = ± sinh(x ± y) sinh x sinh y Inverse functions sinh−1 x a = ln x + p x2 + a2 a ! for −∞ x ∞ cosh−1 x a = ln x + p x2 − a2 a ! for x ≥ a tanh−1 x a = 1 2 ln a + x a − x for x2 a2 coth−1 x a = 1 2 ln x + a x − a for x2 a2 sech−1 x a = ln   a x + s a2 x2 − 1   for 0 x ≤ a cosech−1 x a = ln   a x + s a2 x2 + 1   for x 6= 0 nc xn → 0 as n → ∞ if |x| 1 (any fixed c) xn /n! → 0 as n → ∞ (any fixed x) (1 + x/n)n → ex as n → ∞, x ln x → 0 as x → 0 If f (a) = g(a) = 0 then lim x→a f (x) g(x) = f 0 (a) g0 (a) (l’Hôpital’s rule) 12 Page 10 of 24 Limits
  • 12. (uv)0 = u0 v + uv0 , u v 0 = u0 v − uv0 v2 (uv)(n) = u(n) v + nu(n−1) v(1) + · · · + n Cru(n−r) v(r) + · · · + uv(n) Leibniz Theorem where n Cr ≡ n r = n! r!(n − r)! d dx (sin x) = cos x d dx (sinh x) = cosh x d dx (cos x) = − sin x d dx (cosh x) = sinh x d dx (tan x) = sec2 x d dx (tanh x) = sech2 x d dx (sec x) = sec x tan x d dx (sech x) = − sech x tanh x d dx (cot x) = − cosec2 x d dx (coth x) = − cosech2 x d dx (cosec x) = − cosec x cot x d dx (cosech x) = − cosech x coth x Standard forms Z xn dx = xn+1 n + 1 + c for n 6= −1 Z 1 x dx = ln x + c Z ln x dx = x(ln x − 1) + c Z eax dx = 1 a eax + c Z x eax dx = eax x a − 1 a2 + c Z x ln x dx = x2 2 ln x − 1 2 + c Z 1 a2 + x2 dx = 1 a tan−1 x a + c Z 1 a2 − x2 dx = 1 a tanh−1 x a + c = 1 2a ln a + x a − x + c for x2 a2 Z 1 x2 − a2 dx = − 1 a coth−1 x a + c = 1 2a ln x − a x + a + c for x2 a2 Z x (x2 ± a2 )n dx = −1 2(n − 1) 1 (x2 ± a2 )n−1 + c for n 6= 1 Z x x2 ± a2 dx = 1 2 ln(x2 ± a2 ) + c Z 1 p a2 − x2 dx = sin−1 x a + c Z 1 p x2 ± a2 dx = ln x + p x2 ± a2 + c Z x p x2 ± a2 dx = p x2 ± a2 + c Z p a2 − x2 dx = 1 2 h x p a2 − x2 + a2 sin−1 x a i + c Page 11 of 24 Differentiation Integration
  • 13. Z ∞ 0 1 (1 + x)xp dx = π cosec pπ for p 1 Z ∞ 0 cos(x2 ) dx = Z ∞ 0 sin(x2 ) dx = 1 2 r π 2 Z ∞ −∞ exp(−x2 /2σ2 ) dx = σ √ 2π Z ∞ −∞ xn exp(−x2 /2σ2 ) dx =    1 × 3 × 5 × · · · (n − 1)σn+1 √ 2π 0 for n ≥ 2 and even for n ≥ 1 and odd Z sin x dx = − cos x + c Z sinh x dx = cosh x + c Z cos x dx = sin x + c Z cosh x dx = sinh x + c Z tan x dx = − ln(cos x) + c Z tanh x dx = ln(cosh x) + c Z cosec x dx = ln(cosec x − cot x) + c Z cosech x dx = ln [tanh(x/2)] + c Z sec x dx = ln(sec x + tan x) + c Z sech x dx = 2 tan−1 ( ex ) + c Z cot x dx = ln(sin x) + c Z coth x dx = ln(sinh x) + c Z sin mx sin nx dx = sin(m − n)x 2(m − n) − sin(m + n)x 2(m + n) + c if m2 6= n2 Z cos mx cos nx dx = sin(m − n)x 2(m − n) + sin(m + n)x 2(m + n) + c if m2 6= n2 Standard substitutions If the integrand is a function of: substitute: (a2 − x2 ) or p a2 − x2 x = a sinθ or x = a cosθ (x2 + a2 ) or p x2 + a2 x = a tanθ or x = a sinhθ (x2 − a2 ) or p x2 − a2 x = a secθ or x = a coshθ If the integrand is a rational function of sin x or cos x or both, substitute t = tan(x/2) and use the results: sin x = 2t 1 + t2 cos x = 1 − t2 1 + t2 dx = 2 dt 1 + t2 . If the integrand is of the form: substitute: Z dx (ax + b) p px + q px + q = u2 Z dx (ax + b) q px2 + qx + r ax + b = 1 u . Page 12 of 24
  • 14. Integration by parts Z b a u dv = uv b a − Z b a v du Differentiation of an integral If f (x,α) is a function of x containing a parameter α and the limits of integration a and b are functions of α then d dα Z b(α) a(α) f (x,α) dx = f (b,α) db dα − f (a,α) da dα + Z b(α) a(α) ∂ ∂α f (x,α) dx. Special case, d dx Z x a f (y) dy = f (x). Dirac δ-‘function’ δ(t − τ) = 1 2π Z ∞ −∞ exp[iω(t − τ)] dω. If f (t) is an arbitrary function of t then Z ∞ −∞ δ(t − τ) f (t) dt = f (τ). δ(t) = 0 if t 6= 0, also Z ∞ −∞ δ(t) dt = 1 Reduction formulae Factorials n! = n(n − 1)(n − 2) . . . 1, 0! = 1. Stirling’s formula for large n: ln(n!) ≈ n ln n − n. For any p −1, Z ∞ 0 xp e−x dx = p Z ∞ 0 xp−1 e−x dx = p!. (−1/2)! = √ π, (1/2)! = √ π/2, etc. For any p, q −1, Z 1 0 xp (1 − x)q dx = p!q! (p + q + 1)! . Trigonometrical If m, n are integers, Z π/2 0 sinm θ cosn θ dθ = m − 1 m + n Z π/2 0 sinm−2 θ cosn θ dθ = n − 1 m + n Z π/2 0 sinm θ cosn−2 θ dθ and can therefore be reduced eventually to one of the following integrals Z π/2 0 sinθ cosθ dθ = 1 2 , Z π/2 0 sinθ dθ = 1, Z π/2 0 cosθ dθ = 1, Z π/2 0 dθ = π 2 . Other If In = Z ∞ 0 xn exp(−αx2 ) dx then In = (n − 1) 2α In−2, I0 = 1 2 r π α , I1 = 1 2α . Page 13 of 24
  • 15. Diffusion (conduction) equation ∂ψ ∂t = κ∇2 ψ Wave equation ∇2 ψ = 1 c2 ∂2 ψ ∂t2 Legendre’s equation (1 − x2 ) d2 y dx2 − 2x dy dx + l(l + 1)y = 0, solutions of which are Legendre polynomials Pl(x), where Pl(x) = 1 2l l! d dx l x2 − 1 l , Rodrigues’ formula so P0(x) = 1, P1(x) = x, P2(x) = 1 2 (3x2 − 1) etc. Recursion relation Pl(x) = 1 l [(2l − 1)xPl−1(x) − (l − 1)Pl−2(x)] Orthogonality Z 1 −1 Pl(x)Pl0 (x) dx = 2 2l + 1 δll0 Bessel’s equation x2 d2 y dx2 + x dy dx + (x2 − m2 )y = 0, solutions of which are Bessel functions Jm(x) of order m. Series form of Bessel functions of the first kind Jm(x) = ∞ ∑ k=0 (−1)k (x/2)m+2k k!(m + k)! (integer m). The same general form holds for non-integer m 0. Page 14 of 24 Differential Equations
  • 16. Laplace’s equation ∇2 u = 0 If expressed in two-dimensional polar coordinates (see section 4), a solution is u(ρ,ϕ) = Aρn + Bρ−n C exp(inϕ) + D exp(−inϕ) where A, B, C, D are constants and n is a real integer. If expressed in three-dimensional polar coordinates (see section 4) a solution is u(r,θ,ϕ) = Arl + Br−(l+1) Pm l C sin mϕ + D cos mϕ where l and m are integers with l ≥ |m| ≥ 0; A, B, C, D are constants; Pm l (cosθ) = sin|m| θ d d(cosθ) |m| Pl(cosθ) is the associated Legendre polynomial. P0 l (1) = 1. If expressed in cylindrical polar coordinates (see section 4), a solution is u(ρ,ϕ, z) = Jm(nρ) A cos mϕ + B sin mϕ C exp(nz) + D exp(−nz) where m and n are integers; A, B, C, D are constants. Spherical harmonics The normalized solutions Ym l (θ,ϕ) of the equation 1 sinθ ∂ ∂θ sinθ ∂ ∂θ + 1 sin2 θ ∂2 ∂ϕ2 Ym l + l(l + 1)Ym l = 0 are called spherical harmonics, and have values given by Ym l (θ,ϕ) = s 2l + 1 4π (l − |m|)! (l + |m|)! Pm l (cosθ) eimϕ × (−1)m for m ≥ 0 1 for m 0 i.e., Y0 0 = r 1 4π , Y0 1 = r 3 4π cosθ, Y±1 1 = ∓ r 3 8π sinθ e±iϕ , etc. Orthogonality Z 4π Y∗m l Ym0 l0 dΩ = δll0δmm0 The condition for I = Z b a F(y, y0 , x) dx to have a stationary value is ∂F ∂y = d dx ∂F ∂y0 , where y0 = dy dx . This is the Euler–Lagrange equation. Page 15 of 24 Calculus of Variations
  • 17. If φ = f (x, y, z, . . .) then ∂φ ∂x implies differentiation with respect to x keeping y, z, . . . constant. dφ = ∂φ ∂x dx + ∂φ ∂y dy + ∂φ ∂z dz + · · · and δφ ≈ ∂φ ∂x δx + ∂φ ∂y δy + ∂φ ∂z δz + · · · where x, y, z, . . . are independent variables. ∂φ ∂x is also written as ∂φ ∂x y,... or ∂φ ∂x y,... when the variables kept constant need to be stated explicitly. If φ is a well-behaved function then ∂2 φ ∂x ∂y = ∂2 φ ∂y ∂x etc. If φ = f (x, y), ∂φ ∂x y = 1 ∂x ∂φ y , ∂φ ∂x y ∂x ∂y φ ∂y ∂φ x = −1. Taylor series for two variables If φ(x, y) is well-behaved in the vicinity of x = a, y = b then it has a Taylor series φ(x, y) = φ(a + u, b + v) = φ(a, b) + u ∂φ ∂x + v ∂φ ∂y + 1 2! u2 ∂2 φ ∂x2 + 2uv ∂2 φ ∂x ∂y + v2 ∂2 φ ∂y2 + · · · where x = a + u, y = b + v and the differential coefficients are evaluated at x = a, y = b Stationary points A function φ = f (x, y) has a stationary point when ∂φ ∂x = ∂φ ∂y = 0. Unless ∂2 φ ∂x2 = ∂2 φ ∂y2 = ∂2 φ ∂x ∂y = 0, the following conditions determine whether it is a minimum, a maximum or a saddle point. Minimum: ∂2 φ ∂x2 0, or ∂2 φ ∂y2 0, Maximum: ∂2 φ ∂x2 0, or ∂2 φ ∂y2 0,          and ∂2 φ ∂x2 ∂2 φ ∂y2 ∂2 φ ∂x ∂y 2 Saddle point: ∂2 φ ∂x2 ∂2 φ ∂y2 ∂2 φ ∂x ∂y 2 If ∂2 φ ∂x2 = ∂2 φ ∂y2 = ∂2 φ ∂x ∂y = 0 the character of the turning point is determined by the next higher derivative. Changing variables: the chain rule If φ = f (x, y, . . .) and the variables x, y, . . . are functions of independent variables u, v, . . . then ∂φ ∂u = ∂φ ∂x ∂x ∂u + ∂φ ∂y ∂y ∂u + · · · ∂φ ∂v = ∂φ ∂x ∂x ∂v + ∂φ ∂y ∂y ∂v + · · · etc. Page 16 of 24 Functions of Several Variables
  • 18. Changing variables in surface and volume integrals – Jacobians If an area A in the x, y plane maps into an area A0 in the u, v plane then Z A f (x, y) dx dy = Z A0 f (u, v)J du dv where J = ∂x ∂u ∂x ∂v ∂y ∂u ∂y ∂v The Jacobian J is also written as ∂(x, y) ∂(u, v) . The corresponding formula for volume integrals is Z V f (x, y, z) dx dy dz = Z V0 f (u, v, w)J du dv dw where now J = ∂x ∂u ∂x ∂v ∂x ∂w ∂y ∂u ∂y ∂v ∂y ∂w ∂z ∂u ∂z ∂v ∂z ∂w Fourier series If y(x) is a function defined in the range −π ≤ x ≤ π then y(x) ≈ c0 + M ∑ m=1 cm cos mx + M0 ∑ m=1 sm sin mx where the coefficients are c0 = 1 2π Z π −π y(x) dx cm = 1 π Z π −π y(x) cos mx dx (m = 1, . . . , M) sm = 1 π Z π −π y(x) sin mx dx (m = 1, . . . , M0 ) with convergence to y(x) as M, M0 → ∞ for all points where y(x) is continuous. Fourier series for other ranges Variable t, range 0 ≤ t ≤ T, (i.e., a periodic function of time with period T, frequency ω = 2π/T). y(t) ≈ c0 + ∑cm cos mωt + ∑sm sin mωt where c0 = ω 2π Z T 0 y(t) dt, cm = ω π Z T 0 y(t) cos mωt dt, sm = ω π Z T 0 y(t) sin mωt dt. Variable x, range 0 ≤ x ≤ L, y(x) ≈ c0 + ∑cm cos 2mπx L + ∑sm sin 2mπx L where c0 = 1 L Z L 0 y(x) dx, cm = 2 L Z L 0 y(x) cos 2mπx L dx, sm = 2 L Z L 0 y(x) sin 2mπx L dx. Page 17 of 24 Fourier Series and Transforms
  • 19. Fourier series for odd and even functions If y(x) is an odd (anti-symmetric) function [i.e., y(−x) = −y(x)] defined in the range −π ≤ x ≤ π, then only sines are required in the Fourier series and sm = 2 π Z π 0 y(x) sin mx dx. If, in addition, y(x) is symmetric about x = π/2, then the coefficients sm are given by sm = 0 (for m even), sm = 4 π Z π/2 0 y(x) sin mx dx (for m odd). If y(x) is an even (symmetric) function [i.e., y(−x) = y(x)] defined in the range −π ≤ x ≤ π, then only constant and cosine terms are required in the Fourier series and c0 = 1 π Z π 0 y(x) dx, cm = 2 π Z π 0 y(x) cos mx dx. If, in addition, y(x) is anti-symmetric about x = π 2 , then c0 = 0 and the coefficients cm are given by cm = 0 (for m even), cm = 4 π Z π/2 0 y(x) cos mx dx (for m odd). [These results also apply to Fourier series with more general ranges provided appropriate changes are made to the limits of integration.] Complex form of Fourier series If y(x) is a function defined in the range −π ≤ x ≤ π then y(x) ≈ M ∑ −M Cm eimx , Cm = 1 2π Z π −π y(x) e−imx dx with m taking all integer values in the range ±M. This approximation converges to y(x) as M → ∞ under the same conditions as the real form. For other ranges the formulae are: Variable t, range 0 ≤ t ≤ T, frequency ω = 2π/T, y(t) = ∞ ∑ −∞ Cm eimωt , Cm = ω 2π Z T 0 y(t) e−imωt dt. Variable x0 , range 0 ≤ x0 ≤ L, y(x0 ) = ∞ ∑ −∞ Cm ei2mπx0/L , Cm = 1 L Z L 0 y(x0 ) e−i2mπx0/L dx0 . Discrete Fourier series If y(x) is a function defined in the range −π ≤ x ≤ π which is sampled in the 2N equally spaced points xn = nx/N [n = −(N − 1) . . . N], then y(xn) = c0 + c1 cos xn + c2 cos 2xn + · · · + cN−1 cos(N − 1)xn + cN cos Nxn + s1 sin xn + s2 sin 2xn + · · · + sN−1 sin(N − 1)xn + sN sin Nxn where the coefficients are c0 = 1 2N ∑ y(xn) cm = 1 N ∑ y(xn) cos mxn (m = 1, . . . , N − 1) cN = 1 2N ∑ y(xn) cos Nxn sm = 1 N ∑ y(xn) sin mxn (m = 1, . . . , N − 1) sN = 1 2N ∑ y(xn) sin Nxn each summation being over the 2N sampling points xn. Page 18 of 24
  • 20. Fourier transforms If y(x) is a function defined in the range −∞ ≤ x ≤ ∞ then the Fourier transform b y(ω) is defined by the equations y(t) = 1 2π Z ∞ −∞ b y(ω) eiωt dω, b y(ω) = Z ∞ −∞ y(t) e−iωt dt. If ω is replaced by 2πf, where f is the frequency, this relationship becomes y(t) = Z ∞ −∞ b y( f ) ei2π f t d f , b y( f ) = Z ∞ −∞ y(t) e−i2π f t dt. If y(t) is symmetric about t = 0 then y(t) = 1 π Z ∞ 0 b y(ω) cosωt dω, b y(ω) = 2 Z ∞ 0 y(t) cosωt dt. If y(t) is anti-symmetric about t = 0 then y(t) = 1 π Z ∞ 0 b y(ω) sinωt dω, b y(ω) = 2 Z ∞ 0 y(t) sinωt dt. Specific cases y(t) = a, |t| ≤ τ = 0, |t| τ (‘Top Hat’), b y(ω) = 2a sinωτ ω ≡ 2aτ sinc(ωτ) where sinc(x) = sin(x) x y(t) = a(1 − |t|/τ), |t| ≤ τ = 0, |t| τ (‘Saw-tooth’), b y(ω) = 2a ω2 τ (1 − cosωτ) = aτ sinc2 ωτ 2 y(t) = exp(−t2 /t2 0) (Gaussian), b y(ω) = t0 √ π exp −ω2 t2 0/4 y(t) = f (t) eiω0t (modulated function), b y(ω) = b f (ω − ω0) y(t) = ∞ ∑ m=−∞ δ(t − mτ) (sampling function) b y(ω) = ∞ ∑ n=−∞ δ(ω − 2πn/τ) Page 19 of 24
  • 21. Convolution theorem If z(t) = Z ∞ −∞ x(τ)y(t − τ) dτ = Z ∞ −∞ x(t − τ)y(τ) dτ ≡ x(t) ∗ y(t) then b z(ω) = b x(ω) b y(ω). Conversely, c xy = b x ∗ b y. Parseval’s theorem Z ∞ −∞ y∗ (t) y(t) dt = 1 2π Z ∞ −∞ b y∗ (ω) b y(ω) dω (if b y is normalised as on page 21) Fourier transforms in two dimensions b V(k) = Z V(r) e−ik·r d2 r = Z ∞ 0 2πrV(r)J0(kr) dr if azimuthally symmetric Fourier transforms in three dimensions Examples V(r) b V(k) 1 4πr 1 k2 e−λr 4πr 1 k2 + λ2 ∇V(r) ikb V(k) ∇2 V(r) −k2 b V(k) b V(k) = Z V(r) e−ik·r d3 r = 4π k Z ∞ 0 V(r) r sin kr dr if spherically symmetric V(r) = 1 (2π)3 Z b V(k) eik·r d3 k Page 20 of 24
  • 22. If y(t) is a function defined for t ≥ 0, the Laplace transform y(s) is defined by the equation y(s) = L{y(t)} = Z ∞ 0 e−st y(t) dt Function y(t) (t 0) Transform y(s) δ(t) 1 Delta function θ(t) 1 s Unit step function tn n! sn+1 t 1/ 2 1 2 r π s3 t−1 / 2 r π s e−at 1 (s + a) sinωt ω (s2 + ω2 cosωt s (s2 + ω2) sinh ωt ω (s2 − ω2) coshωt s (s2 − ω2) e−at y(t) y(s + a) y(t − τ) θ(t − τ) e−sτ y(s) ty(t) − dy ds dy dt sy(s) − y(0) dn y dtn sn y(s) − sn−1 y(0) − sn−2 dy dt 0 · · · − dn−1 y dtn−1 0 Z t 0 y(τ) dτ y(s) s Z t 0 x(τ) y(t − τ) dτ Z t 0 x(t − τ) y(τ) dτ          x(s) y(s) Convolution theorem [Note that if y(t) = 0 for t 0 then the Fourier transform of y(t) is b y(ω) = y(iω).] Page 21 of 24 Laplace Transforms
  • 23. Finding the zeros of equations If the equation is y = f (x) and xn is an approximation to the root then either xn+1 = xn − f (xn) f 0 (xn) . (Newton) or, xn+1 = xn − xn − xn−1 f (xn) − f (xn−1) f (xn) (Linear interpolation) are, in general, better approximations. Numerical integration of differential equations If dy dx = f (x, y) then yn+1 = yn + h f (xn, yn) where h = xn+1 − xn (Euler method) Putting y∗ n+1 = yn + h f (xn, yn) (improved Euler method) then yn+1 = yn + h[ f (xn, yn) + f (xn+1, y∗ n+1)] 2 Central difference notation If y(x) is tabulated at equal intervals of x, where h is the interval, then δyn+1/2 = yn+1 − yn and δ2 yn = δyn+1/2 − δyn−1/2 Approximating to derivatives dy dx n ≈ yn+1 − yn h ≈ yn − yn−1 h ≈ δyn+1 / 2 + δyn−1 / 2 2h where h = xn+1 − xn d2 y dx2 n ≈ yn+1 − 2yn + yn−1 h2 = δ2 yn h2 Interpolation: Everett’s formula y(x) = y(x0 + θh) ≈ θy0 + θy1 + 1 3! θ(θ 2 − 1)δ2 y0 + 1 3! θ(θ2 − 1)δ2 y1 + · · · where θ is the fraction of the interval h (= xn+1 − xn) between the sampling points and θ = 1 − θ. The first two terms represent linear interpolation. Numerical evaluation of definite integrals Trapezoidal rule The interval of integration is divided into n equal sub-intervals, each of width h; then Z b a f (x) dx ≈ h c 1 2 f (a) + f (x1) + · · · + f (xj) + · · · + 1 2 f (b) where h = (b − a)/n and xj = a + jh. Simpson’s rule The interval of integration is divided into an even number (say 2n) of equal sub-intervals, each of width h = (b − a)/2n; then Z b a f (x) dx ≈ h 3 f (a) + 4 f (x1) + 2 f (x2) + 4 f (x3) + · · · + 2 f (x2n−2) + 4 f (x2n−1) + f (b) Page 22 of 24 Numerical Analysis
  • 24. Gauss’s integration formulae These have the general form Z 1 −1 y(x) dx ≈ n ∑ 1 ci y(xi) For n = 2 : xi = ±0·5773; ci = 1, 1 (exact for any cubic). For n = 3 : xi = −0·7746, 0·0, 0·7746; ci = 0·555, 0·888, 0·555 (exact for any quintic). Sample mean x = 1 n (x1 + x2 + · · · xn) Residual: d = x − x Standard deviation of sample: s = 1 √ n (d2 1 + d2 2 + · · · d2 n)1/2 Standard deviation of distribution: σ ≈ 1 √ n − 1 (d2 1 + d2 2 + · · · d2 n)1/2 Standard deviation of mean: σm = σ √ n = 1 q n(n − 1) (d2 1 + d2 2 + · · · d2 n)1/2 = 1 q n(n − 1) ∑x2 i − 1 n ∑xi 2 1/2 Result of n measurements is quoted as x ± σm. Range method A quick but crude method of estimating σ is to find the range r of a set of n readings, i.e., the difference between the largest and smallest values, then σ ≈ r √ n . This is usually adequate for n less than about 12. Combination of errors If Z = Z(A, B, . . .) (with A, B, etc. independent) then (σZ)2 = ∂Z ∂A σA 2 + ∂Z ∂B σB 2 + · · · So if (i) Z = A ± B ± C, (σZ)2 = (σA)2 + (σB)2 + (σC)2 (ii) Z = AB or A/B, σZ Z 2 = σA A 2 + σB B 2 (iii) Z = Am , σZ Z = m σA A (iv) Z = ln A, σZ = σA A (v) Z = exp A, σZ Z = σA Page 23 of 24 Treatment of Random Errors
  • 25. Mean and Variance A random variable X has a distribution over some subset x of the real numbers. When the distribution of X is discrete, the probability that X = xi is Pi. When the distribution is continuous, the probability that X lies in an interval δx is f (x)δx, where f (x) is the probability density function. Mean µ = E(X) = ∑Pixi or Z x f (x) dx. Variance σ2 = V(X) = E[(X − µ)2 ] = ∑Pi(xi − µ)2 or Z (x − µ)2 f (x) dx. Probability distributions Error function: erf(x) = 2 √ π Z x 0 e−y2 dy Binomial: f (x) = n x px qn−x where q = (1 − p), µ = np, σ2 = npq, p 1. Poisson: f (x) = µx x! e−µ , and σ2 = µ Normal: f (x) = 1 σ √ 2π exp − (x − µ)2 2σ2 Weighted sums of random variables If W = aX + bY then E(W) = aE(X) + bE(Y). If X and Y are independent then V(W) = a2 V(X) + b2 V(Y). Statistics of a data sample x1, . . . , xn Sample mean x = 1 n ∑xi Sample variance s2 = 1 n ∑(xi − x)2 = 1 n ∑x2 i − x2 = E(x2 ) − [E(x)]2 Regression (least squares fitting) To fit a straight line by least squares to n pairs of points (xi, yi), model the observations by yi = α + β(xi − x) + i, where the i are independent samples of a random variable with zero mean and variance σ2 . Sample statistics: s2 x = 1 n ∑(xi − x)2 , s2 y = 1 n ∑(yi − y)2 , s2 xy = 1 n ∑(xi − x)(yi − y). Estimators: b α = y, b β = s2 xy s2 x ; E(Y at x) = b α + b β(x − x); b σ2 = n n − 2 (residual variance), where residual variance = 1 n ∑{yi − b α − b β(xi − x)}2 = s2 y − s4 xy s2 x . Estimates for the variances of b α and b β are b σ2 n and b σ2 ns2 x . Correlation coefficient: b ρ = r = s2 xy sxsy . Page 24 of 24 Statistics