SlideShare a Scribd company logo
1 of 9
Download to read offline
 
  
  
  
  
  
  
The  Role  Antibiotics  Play  in  Gut  Dysbiosis  and  the  Emergence  of  
Antibiotic-­Resistant  Bacteria    
Meghan  McGillin  
December  14,  2016  
  
     
  
Introduction  
Early  History  of  Antibiotics    
The  introduction  of  antibiotics  for  the  treatment  of  disease  has  advanced  humanity  into  
the  era  of  modern  medicine.  Prior  to  Alexander  Fleming’s  discovery  of  penicillin  in  1923,  the  
leading  cause  of  human  mortality  was  infectious  disease  [12].  Fleming  set  the  precedent  for  
mass  screening  of  potential  antimicrobial  species  by  measuring  the  inhibition  zones  in  lawns  of  
pathogenic  bacteria  on  the  surface  of  agar  plates.  This  innovative  method  required  significantly  
less  resources  than  the  traditional  animal  disease  models,  and  set  up  the  paradigm  for  future  
pharmaceutical  research  [12].  Since  the  “golden  era  of  discovery  of  novel  antibiotic  classes”,  
which  was  from  the  1950s  through  to  the  1970s,  no  new  classes  have  been  discovered.  Since  
that  explosive  period  of  research  and  development,  methods  for  circumventing  the  emergence  
of  antibiotic  resistant  bacteria  have  relied  heavily  on  the  modification  of  the  already  existing  
antibiotic  classes  [12].    
Current  Antibiotic  Use  
Agricultural  Use  
Antibiotics  are  not  just  used  to  prevent  and  treat  infections,  but  are  also  used  in  
low-­doses  as  growth  promoters  in  livestock  in  the  agricultural  industry.  For  over  sixty  years,  
antibiotics  have  been  administered  to  livestock  to  promote  weight  gain,  in  fact,  most  of  the  
antibiotics  used  in  the  United  States  are  used  on  animals,  as  much  as  70%  according  to  The  
Union  of  Concerned  Scientists  [5]  [9].  This  practice  has  ensued  colossal  increases  in  food  
animal  production  in  the  agricultural  sector.    
Medical  Use    
In  terms  of  human  health,  prescription  antibiotics  have  made  historically  unparalleled  
advances  in  modern  medicine  [9].  Since  their  discovery,  millions  of  lives  have  been  saved.  
However,  now  is  a  pivotal  moment  in  the  continuous  battle  against  pathogenic  bacteria,  and  
unfortunately,  the  current  practices  have  produced  a  landscape  that  has  allowed  drug-­resistant  
bacteria  to  thrive.  A  serious  issue  associated  with  this  looming  crisis  is  brought  on  by  the  
1  
crossover  use  of  antibiotic  agents  in  the  agricultural  sector  as  well  as  in  disease  treatment  and  
prevention.  By  undermining  the  microbial  community’s  ability  to  adapt  and  survive  against  our  
most  aggressive  antibiotic  drugs  is  the  exact  reason  why  at  least  2  million  people  in  the  U.S.  
become  infected  and  at  least  23,000  die  from  antibiotic-­resistant  bacteria  [14].    
Antibiotic  Resistance    
Resistance  occurs  after  exposure  to  the  antibiotic  drug  pressures  the  bacteria  to  develop  
or  improve  their  natural  defense  mechanism  against  the  bactericidal  agent.  This  resistance  
hinders  the  drug’s  effectiveness,  allowing  infections  to  persist,  which  introduces  the  risk  of  
dissemination  of  the  drug-­resistant  gene  into  the  environment  [12].  Bacteria  can  develop  
resistance  through  genetic  mutations  or  by  acquiring  new  genes  through  lateral  transfer,  which  
protects  them  from  the  drug  and  results  in  a  reduction  or,  sometimes,  an  elimination  of  the  
antimicrobial  effect  [16].  This  resistant  gene  is  not  always  limited  to  one  drug,  there  are  strains  
of  bacteria,  termed  “super-­bugs”,  that  have  developed  resistance  to  multiple  antibiotics  and  are  
a  serious  threat  to  treatment  of  preventable  infections  and  diseases.    Without  effective  
antibiotics,  we  lose  a  concerning  amount  of  treatment  options  for  infections  and  illness  brought  
on  by  pathogenic  bacteria.  This  is  evident  in  the  63,000  deaths  of  hospital  acquired  bacterial  
infections  that  take  place  in  the  United  States,  alone.  In  the  European  Union  (EU),  which  has  
banned  antibiotic  use  as  growth  promoters  in  animal  feed  for  the  past  decade,  still  has  25,000  
human  fatalities  resulting  from  an  infection  with  the  selected  multidrug  resistant  bacteria  each  
year  [13][16].    
The  agricultural  industry  and  medical  industry  argue  over  who  is  more  responsible  for  
the  concerning  rise  of  antibiotic  resistant  bacteria.  The  food  industry  likes  to  place  the  blame  on  
the  medical  providers,  arguing  misdiagnosis  on  the  doctor’s  part  and  misuse  by  the  patient  are  
the  driving  forces  behind  this  problem.  Their  claims  are  not  entirely  false,  in  fact,  there  is  some  
strong  evidence  in  their  favor.  The  CDC  reports  as  much  as  half  of  antibiotics  prescribed  are  
used  inappropriately.  This  could  be  through  unnecessary  use  (such  as  with  viral  infections),  as  
well  as  inappropriate  drug  selection  or  incorrect  doses.  They  also  found  that  at  least  30%  of  
antibiotics  prescribed  in  an  outpatient  setting  were  unnecessary  [15].  Those  defending  the  
medical  practitioners  do  not  need  to  look  far  to  divert  the  blame  on  the  agricultural  sector,  
claiming  the  crux  of  the  problem  is  the  widespread  and  prolonged  use  of  low-­dose  antibiotics  to  
promote  growth  in  food  animals  [9].  One  study  discovered  extremely  high  levels  of  antibiotic  
2  
resistance  bacteria  in  Albanian  poultry  farms.  Out  of  the  172  samples  collected  in  this  study,  91  
of  the  bacterial  isolates  were  of  the  Escherichia  coli,  Salmonella  species  or  other  
Enterobacteriaceae,  and  had  demonstrated  resistance  to  11  different  antibiotics  [7].  The  
effectiveness  of  antibiotic  drugs  enhances  their  allure,  which  leads  to  their  overuse  in  both  the  
medical  and  agricultural  industries.  Another  major  contributing  factor  to  the  rise  of  resistant  
pathogens  is  the  use  of  broad-­spectrum  antibiotics.  Broad-­spectrum  antibiotics  kill  
indiscriminately,  resulting  in  the  elimination  both  the  pathogenic  and  commensal  bacteria,  as  
well.  It  is  theorized  that  many  of  the  rising  diseases  and  ailments  may  be  linked  to  the  current  
use  of  antibiotics,  and  its  disruption  of  the  human  gut  microbiota.    
The  Human  Microbiome  
The  human  microbiome  is  this  highly  dynamic  and  essential  organ  that  is  composed  of  
all  the  microorganisms  who  reside  coherently  in  the  gut,  skin,  mouth,  and  other  biological  niches  
found  on  and  within  the  human  host.  The  gut  microbiota  is  acquired  at  birth,  and  over  time  
develops  into  a  stable  microbiota  following  the  succession  of  key  organisms  [8].    
The  microbial  community  is  essential  for  numerous  biological  of  the  host,  such  as  aiding  
in  digestion  and  some    immune  functions,  as  well  as  facilitating  nutrient  absorptions  [5].  The  
commensal  microbes  have  co-­evolved    with  their  human  host,  resulting  in  a  unique  and  highly  
dynamic  synergistic  relationship  [5].  This  is  evident  in  their  ability  to  ferment  non-­digestible  
components  in  the  host’s  diet,  as  well  as  their  ability  to  synthesize  essential  nutrients  like  
vitamins,  and  their  mystifying  role  in  host  defense  against  pathogens  [5].  The  microbiota  ability  
to  degrade  complex  polysaccharides  is  one  of  its  most  notable  features  relating  to  host  health.  
They  are  able  to  convert  nondigestible  carbohydrates  into  short-­chain  fatty  acids  (SCFA),  
specifically  acetate,  propionate,  and  butyrate  [5].    
Microbial  Diversity  
Microbial  diversity  is  a  major  factor  in  determining  the  functionality  of  an  individual’s  gut  
microbiota.  Considering  that  the  human  gastrointestinal  (GI)  tract  houses  approximately  
800–1000  different  bacterial  species  and  more  than  7000  different  strains,  it  can  seem  like  there  
are  infinite  variations  for  the  configuration  of  an  individual’s  gut  microbiota.  The  magnitude  of  
this  diversity  contributes  to  the  challenge  of  developing  a  complete  understanding  of  the  
microbiota’s  dynamic  role  in  the  host’s  health  and  wellbeing  [4].    
3  
Despite  the  incredible  amount  of  bacterial  diversity  and  variation,  there  are  observable  
differences  in  the  gut  microbiota  composition  between  obese  and  lean  individuals.  One  study  
compared  the  microbiomes  of  obese  mice  to  lean  mice  and  reported  differences  in  energy  
harvesting  capabilities  between  the  two  phenotypes.  It  was  also  reported  that  the  microbiota  of  
the  obese  mice  was  responsible  for  the  increased  capacity  for  weight  gain  that  was  absent  in  
the  lean  subjects  [10].  It  is  believed  that  these  discrepancies  in  microbial  diversity  materialize  in  
the  form  of  different  functional  genes,  which  in  turn,  initiate  different  metabolic  activities,  
resulting  in  the  expression  of  the  two  different  phenotypes  [5].  Overall,  these  findings  support  
the  significance  in  the  composition  of  the  gut  microbiota  in  regards  to  energy  harvest,  and  
demonstrate  the  significance  of  the  composition  of  the  gut  microbiota  [10].     
Dysbiosis  and  the  GM    
Dysbiosis  is  defined  as  an  imbalance  in  the  composition  of  the  gut  microbiota  and  have  
been  associated  with  immune  disorders,  susceptibility  to  infections,  and  metabolic  diseases  
such  as  cardiovascular  diseases,  obesity,  and  diabetes  [5].  Considering  the  role  the  gut  
microbiota  plays  in  the  development  of  obesity,  one  would  expect  perturbations  within  the  
microbiota  brought  on  by  antibiotics  to  have  an  impact  on  one’s  risk  of  obesity.  It  is  evident  that  
antibiotics  disrupt  the  composition  of  the  microbiota,  and  despite  the  rapid  recovery  observed  
with  short  term  antibiotic  treatment,  the  accumulated  effect  over  a  long  period  of  time  is  
pervasive  and  potentially  detrimental  to  human  health  in  unprecedented  ways.    
Dysbiosis,  Obesity,  and  Antibiotics    
As  discussed  earlier,  obesity  is  associated  with  dysbiosis,  antibiotics  is  now  believed  to  
accentuate  this  vulnerability  brought  on  by  their  disruption  of  the  gut  biome  ecology  [3].  One  
longitudinal  birth  cohort  study  found  that  early-­life  exposure  to  antibiotics  was  linked  to  weight  
gain  [8].  Antibiotic  increased  the  risk  of  being  overweight  by  the  age  of  12  by  34.0%.  In  this  
study,  gender  played  a  significant  role  in  the  weight  gain  observed,  finding  that  the  increased  
risk  of  becoming  overweight  was  only  of  significance  among  boys  but  not  girls  [8].    
Another  study  demonstrated  the  repercussions  of  the  agricultural  sector’s  use  of  
low-­dose  antibiotic  on  host  metabolism.  They  found  that  treatment  of  low-­dose  penicillin  
delivered  at  birth  accentuated  the  ill-­effects  of  the  high-­fat  diet  and  the  development  of  obesity  
[8].  Their  findings  supported  the  idea  that  dysbiosis  brought  on  by  low-­level  antibiotics  can  
4  
initiate  the  proliferation  of  specific  populations  within  the  microbiota  that  can  promote  weight  
gain  and  obesity  [6].    
The  consequences  of  antibiotic-­induced  dysbiosis  are  not  just  limited  to  disruption  of  
host  metabolism,  but  can  also  lead  to  the  emergence  of  antibiotic-­resistant  strains.  Antibiotics  
exert  a  certain  kind  of  selective  pressure  on  the  microbial  community.  This  leads  to  an  across  
the  board  reduction  in  the  residential  bacterial  population,  which  lessens  the  competition  for  
resources  for  those  microbes  that  are  resistant.  The  resistance  is  often  acquired  through  
horizontal  gene  transfer  or  genetic  mutation.  Regardless  of  the  mechanism  behind  the  acquired  
resistance,  the  reduction  in  the  gut  microbial  community  creates  an  ideal  landscape  for  harmful  
and  resistant  pathogens  to  thrive  [4].  Perhaps  the  greatest  cause  of  concern  from  this  is  the  
continuous  flow  of  genetic  information  that  occurs  between  different  ecological  compartments.  
Once  the  resistome  enters  into  the  microbiome,  antibiotic  selection  results  in  the  amplification  
and  dissemination  of  these  genes,  which  demonstrates  the  basis  behind  the  concern  of  
antibiotic  crossover  between  both  health  and  agricultural  sectors  [12].  
Conclusion  
Since  the  “golden  era  of  antibiotics”,  nearly  half  a  century  ago,  a  lot  has  changed  in  the  
way  disease  and  infection  is  researched  and  understood.  Antibiotic  resistance  is  no  longer  an  
issue  limited  to  clinical  research.  It  is  a  complex  problem  that  requires  the  collaborated  efforts  of  
microbiologists,  ecologists,  health  care  specialists,  teachers,  policy  makers,  legislative  bodies,  
as  well  as  the  agricultural  and  pharmaceutical  industry  in  order  to  effectively  address  this  
serious  problem  [12].  The  agricultural  industry  needs  to  stop  using  low-­dose  antibiotic  to  
promote  livestock  growth.  They  need  to  abstain  from  using  antibiotics  outside  veterinary  
supervision,  and  use  alternatives  to  antibiotics  (i.e.  vaccines)  when  appropriate.  This,  in  
addition,  to  improved  hygienic  conditions  and  overall  improved  animal  welfare  will  reduce  
incidences  of  infection  and  help  curb  antibiotic  dependency.  Healthcare  professionals  and  
medical  providers  need  to  practice  greater  discernment  for  their  dispersal  of  antibiotic  
prescriptions;;  additionally,  they  need  to  inform  their  patients  about  proper  use  and  effectively  
communicate  the  consequences  of  antibiotic  misuse.  It  is  the  scientific  community’s  
responsibility  to  invest  in  researching  new  antibiotics  and  better  alternatives,  as  well  as,  develop  
better  diagnostic  tools  and  alternative  methods  towards  preventing  and  treating  infection.  Policy  
makers  can  contribute  by  implementing  a  thorough  and  explicit  national  action  plan  to  combat  
5  
antibiotic  resistance.  They  need  to  call  for  improved  surveillance  methods  of  antibiotic-­resistant  
infections  and  tighter  regulation  the  proper  use  of  antimicrobial  medicines.  Most  importantly,  
there  is  a  dire  need  for  educators  and  teachers  to  inform  the  general  public  on  the  impact  of  
antibiotic  resistance.    
The  full  extent  of  the  long-­term  consequences  of  the  United  States  explosive  and  
haphazard  practice  of  antibiotics  remains  unknown,  but  what  has  been  made  evident  is  the  
interminable  adaptive  capabilities  of  bacteria,  and  their  hardiness  proves  that  they  are  not  to  be  
underestimated.  At  this  point,  it  seems  inevitable  that  the  US  will  follow  in  the  EU’s  footsteps  
with  the  banning  of  growth-­promoting  antibiotic  use  in  livestock.  This  will  require  new  measures  
to  limit  the  occurrence  and  distribution  of  antibiotic  resistance  from  agricultural  sources.    
  
  
     
6  
References  
1.   Lewis,  James  D.,  et  al.  "Inflammation,  antibiotics,  and  diet  as  environmental  stressors  of  
the  gut  microbiome  in  pediatric  Crohn’s  disease."  Cell  host  &  microbe  18.4  (2015):  489-­500.  
  
2.   Langdon,  Amy,  Nathan  Crook,  and  Gautam  Dantas.  "The  effects  of  antibiotics  on  the  
microbiome  throughout  development  and  alternative  approaches  for  therapeutic  modulation."  
Genome  medicine  8.1  (2016):  1.  
  
3.   Azad,  M.  B.,  et  al.  "Infant  antibiotic  exposure  and  the  development  of  childhood  overweight  
and  central  adiposity."  International  Journal  of  Obesity  38.10  (2014):  1290-­1298.  
  
4.   Jernberg,  Cecilia,  et  al.  "Long-­term  impacts  of  antibiotic  exposure  on  the  human  intestinal  
microbiota."  Microbiology  156.11  (2010):  3216-­3223.  
  
5.   Gérard,  Philippe.  "Gut  microbiota  and  obesity."​Cellular  and  Molecular  Life  Sciences  73.1  
(2016):  147-­162.  
  
6.   Cox,  Laura  M.,  and  Martin  J.  Blaser.  "Antibiotics  in  early  life  and  obesity."  Nature  Reviews  
Endocrinology  11.3  (2015):  182-­190.  
  
7.   Alcaine,  S.  D.,  et  al.  "Results  of  a  pilot  antibiotic  resistance  survey  of  Albanian  poultry  
farms."  Journal  of  Global  Antimicrobial  Resistance  4  (2016):  60-­64.  
  
8.   Cox,  Laura  M.,  et  al.  "Altering  the  intestinal  microbiota  during  a  critical  developmental  
window  has  lasting  metabolic  consequences."  Cell  158.4  (2014):  705-­721.  
  
9.   Hume,  M.  E.  "Historic  perspective:  prebiotics,  probiotics,  and  other  alternatives  to  
antibiotics."  Poultry  science  90.11  (2011):  2663-­2669.  
  
10.   Khan,  Muhammad  Jaffar,  et  al.  "Role  of  Gut  Microbiota  in  the  Aetiology  of  Obesity:  
Proposed  Mechanisms  and  Review  of  the  Literature."  Journal  of  Obesity  2016  (2016).  
  
11.   Podolsky,  Scott  H..  The  Antibiotic  Era  :  Reform,  Resistance,  and  the  Pursuit  of  a  Rational  
Therapeutics.  Johns  Hopkins  University  Press,  Baltimore,  MD:  2014.    
  
12.   Aminov,  Rustam  I.  "A  brief  history  of  the  antibiotic  era:  lessons  learned  and  challenges  for  
the  future."  Frontiers  in  microbiology  1  (2010):  134.    
  
13.   Castanon,  J.  I.  R.  "History  of  the  use  of  antibiotic  as  growth  promoters  in  European  poultry  
feeds."  Poultry  science  86.11  (2007):  2466-­2471.  
7  
14.   NIH,  National  Institute  of  General  Medical  Sciences  (NIGMS).  "The  irresistible  resistome:  
How  infant  diapers  might  help  combat  antibiotic  resistance  (sort  of)."  ScienceDaily.  ScienceDaily,  8  
December  2016.  <​www.sciencedaily.com/releases/2016/12/161208141516.htm​>.  
  
15.   United  States.  Dept.  of  Health  and  Human  Services.  Centers  for  Disease  Control  and  
Prevention.  ​Measuring  Outpatient  Antibiotic  Prescribing.  National  Center  for  Emerging  and  
Zoonotic  Infectious  Diseases  (NCEZID),  December  2016.    
  
16.   United  States,  Executive  Branch,  Advisors  on  Science  and  Technology  (PCAST).  ​The  
National  Action  Plan  for  Combating  Antibiotic-­resistant  Bacteria.  Government  Printing  Office,  
2015.    
  
17.   Rhodes,  Rosamond,  Nada  Gligorov,  and  Abraham  Paul  Schwab,  eds.  ​The  human  
microbiome:  ethical,  legal  and  social  concerns.  Oxford  University  Press,  London,  UK:  2013.    
  
18.   Gallagher,  Jason  C.,  and  Conan  MacDougall.  Antibiotics  Simplified.  1st  ed.  Burlington,  MA:  
Jones  &  Bartlett  Learning,  2014.    
    
  
8  

More Related Content

What's hot

Alternatives to Antibiotic Use in Food Animal Production
Alternatives to Antibiotic Use in Food Animal ProductionAlternatives to Antibiotic Use in Food Animal Production
Alternatives to Antibiotic Use in Food Animal ProductionPewEnvironment
 
Dr. Cyril Gay - Alternatives to Antibiotics
Dr. Cyril Gay - Alternatives to AntibioticsDr. Cyril Gay - Alternatives to Antibiotics
Dr. Cyril Gay - Alternatives to AntibioticsJohn Blue
 
Antimicrobial Resistance and Roles of Different Stakeholders_Prof saidur rahman
Antimicrobial Resistance and Roles of Different Stakeholders_Prof saidur rahmanAntimicrobial Resistance and Roles of Different Stakeholders_Prof saidur rahman
Antimicrobial Resistance and Roles of Different Stakeholders_Prof saidur rahmanUdderHealthBD
 
Host-pathogen Interactions, Molecular Basis and Host Defense: Pathogen Detect...
Host-pathogen Interactions, Molecular Basis and Host Defense: Pathogen Detect...Host-pathogen Interactions, Molecular Basis and Host Defense: Pathogen Detect...
Host-pathogen Interactions, Molecular Basis and Host Defense: Pathogen Detect...QIAGEN
 
BACTERIOPHAGE THERAPY IN AQUACULTURE – FRIEND OR FOE
BACTERIOPHAGE THERAPY IN AQUACULTURE – FRIEND OR FOEBACTERIOPHAGE THERAPY IN AQUACULTURE – FRIEND OR FOE
BACTERIOPHAGE THERAPY IN AQUACULTURE – FRIEND OR FOEAusPhage
 
Antibiotics in Livestock feed: how it effects us
Antibiotics in Livestock feed: how it effects usAntibiotics in Livestock feed: how it effects us
Antibiotics in Livestock feed: how it effects usAdriannaJordan1
 
Antimicrobial Resistance (AMR): A global and Multisectoral issue of concern t...
Antimicrobial Resistance (AMR): A global and Multisectoral issue of concern t...Antimicrobial Resistance (AMR): A global and Multisectoral issue of concern t...
Antimicrobial Resistance (AMR): A global and Multisectoral issue of concern t...FAO
 
Antimicrobial resistance (AMR) in N. gonorrhoeae (GC) - global problem but v...
Antimicrobial resistance (AMR) in N. gonorrhoeae (GC) - global problem but v...Antimicrobial resistance (AMR) in N. gonorrhoeae (GC) - global problem but v...
Antimicrobial resistance (AMR) in N. gonorrhoeae (GC) - global problem but v...Игорь Шадеркин
 
Antimicrobial resistance and Biofilm
Antimicrobial resistance and Biofilm Antimicrobial resistance and Biofilm
Antimicrobial resistance and Biofilm Nawfal Aldujaily
 
Prevalence and Antibiogram of Bacteria Associated with Food Vending in Awka-S...
Prevalence and Antibiogram of Bacteria Associated with Food Vending in Awka-S...Prevalence and Antibiogram of Bacteria Associated with Food Vending in Awka-S...
Prevalence and Antibiogram of Bacteria Associated with Food Vending in Awka-S...ijtsrd
 
Antimicrobial resistance mechanisms
Antimicrobial resistance mechanismsAntimicrobial resistance mechanisms
Antimicrobial resistance mechanismsIshita Patel
 
Human microbiome in health and disease
Human microbiome in health and diseaseHuman microbiome in health and disease
Human microbiome in health and diseaseShivanshu Bajaj
 
Antimicrobial Resistance - AMR
Antimicrobial Resistance - AMR Antimicrobial Resistance - AMR
Antimicrobial Resistance - AMR Muneeb Tahir
 

What's hot (19)

Alternatives to Antibiotic Use in Food Animal Production
Alternatives to Antibiotic Use in Food Animal ProductionAlternatives to Antibiotic Use in Food Animal Production
Alternatives to Antibiotic Use in Food Animal Production
 
Dr. Cyril Gay - Alternatives to Antibiotics
Dr. Cyril Gay - Alternatives to AntibioticsDr. Cyril Gay - Alternatives to Antibiotics
Dr. Cyril Gay - Alternatives to Antibiotics
 
Lary nel b. abao antibiotics resistance report
Lary nel b. abao antibiotics resistance reportLary nel b. abao antibiotics resistance report
Lary nel b. abao antibiotics resistance report
 
Antimicrobial Resistance and Roles of Different Stakeholders_Prof saidur rahman
Antimicrobial Resistance and Roles of Different Stakeholders_Prof saidur rahmanAntimicrobial Resistance and Roles of Different Stakeholders_Prof saidur rahman
Antimicrobial Resistance and Roles of Different Stakeholders_Prof saidur rahman
 
Host-pathogen Interactions, Molecular Basis and Host Defense: Pathogen Detect...
Host-pathogen Interactions, Molecular Basis and Host Defense: Pathogen Detect...Host-pathogen Interactions, Molecular Basis and Host Defense: Pathogen Detect...
Host-pathogen Interactions, Molecular Basis and Host Defense: Pathogen Detect...
 
Antimicrobial resistance
Antimicrobial resistanceAntimicrobial resistance
Antimicrobial resistance
 
BACTERIOPHAGE THERAPY IN AQUACULTURE – FRIEND OR FOE
BACTERIOPHAGE THERAPY IN AQUACULTURE – FRIEND OR FOEBACTERIOPHAGE THERAPY IN AQUACULTURE – FRIEND OR FOE
BACTERIOPHAGE THERAPY IN AQUACULTURE – FRIEND OR FOE
 
Antibiotics in Livestock feed: how it effects us
Antibiotics in Livestock feed: how it effects usAntibiotics in Livestock feed: how it effects us
Antibiotics in Livestock feed: how it effects us
 
Antimicrobial Resistance (AMR): A global and Multisectoral issue of concern t...
Antimicrobial Resistance (AMR): A global and Multisectoral issue of concern t...Antimicrobial Resistance (AMR): A global and Multisectoral issue of concern t...
Antimicrobial Resistance (AMR): A global and Multisectoral issue of concern t...
 
Human microbiome
Human microbiomeHuman microbiome
Human microbiome
 
Antimicrobial resistance (AMR) in N. gonorrhoeae (GC) - global problem but v...
Antimicrobial resistance (AMR) in N. gonorrhoeae (GC) - global problem but v...Antimicrobial resistance (AMR) in N. gonorrhoeae (GC) - global problem but v...
Antimicrobial resistance (AMR) in N. gonorrhoeae (GC) - global problem but v...
 
Microbiome
MicrobiomeMicrobiome
Microbiome
 
Antimicrobial resistance and Biofilm
Antimicrobial resistance and Biofilm Antimicrobial resistance and Biofilm
Antimicrobial resistance and Biofilm
 
Antimicrobial Resistance: An Animal Ag Perspective
Antimicrobial Resistance: An Animal Ag Perspective Antimicrobial Resistance: An Animal Ag Perspective
Antimicrobial Resistance: An Animal Ag Perspective
 
Veekshith02
Veekshith02Veekshith02
Veekshith02
 
Prevalence and Antibiogram of Bacteria Associated with Food Vending in Awka-S...
Prevalence and Antibiogram of Bacteria Associated with Food Vending in Awka-S...Prevalence and Antibiogram of Bacteria Associated with Food Vending in Awka-S...
Prevalence and Antibiogram of Bacteria Associated with Food Vending in Awka-S...
 
Antimicrobial resistance mechanisms
Antimicrobial resistance mechanismsAntimicrobial resistance mechanisms
Antimicrobial resistance mechanisms
 
Human microbiome in health and disease
Human microbiome in health and diseaseHuman microbiome in health and disease
Human microbiome in health and disease
 
Antimicrobial Resistance - AMR
Antimicrobial Resistance - AMR Antimicrobial Resistance - AMR
Antimicrobial Resistance - AMR
 

Similar to final

Antimicrobial Resistance: A Major Cause for Concern and a Collective Responsi...
Antimicrobial Resistance: A Major Cause for Concern and a Collective Responsi...Antimicrobial Resistance: A Major Cause for Concern and a Collective Responsi...
Antimicrobial Resistance: A Major Cause for Concern and a Collective Responsi...Theresa Lowry-Lehnen
 
Antibiotic Resistant Bacteria
Antibiotic Resistant BacteriaAntibiotic Resistant Bacteria
Antibiotic Resistant BacteriaKevin B Hugins
 
idr-11-2018.pdf
idr-11-2018.pdfidr-11-2018.pdf
idr-11-2018.pdfnoor86150
 
AMR in Animal Origin Products A Challenge
AMR in Animal Origin Products A ChallengeAMR in Animal Origin Products A Challenge
AMR in Animal Origin Products A ChallengeSarzamin Khan
 
Ccm prebiotics probiotics synbiotics.pptx
Ccm prebiotics probiotics synbiotics.pptxCcm prebiotics probiotics synbiotics.pptx
Ccm prebiotics probiotics synbiotics.pptxAshishSharma907946
 
Group-4 Antibiotics uses in Livestock and Poultry Health issues.pptx
Group-4 Antibiotics uses in Livestock and Poultry Health issues.pptxGroup-4 Antibiotics uses in Livestock and Poultry Health issues.pptx
Group-4 Antibiotics uses in Livestock and Poultry Health issues.pptxssuser7ed574
 
Antibiotic misuse 111 new
Antibiotic misuse 111 newAntibiotic misuse 111 new
Antibiotic misuse 111 newAmr Eldakroury
 
LATHERSVETERINARY MEDICINE IN PUBLIC HEALTHCOMMENTARY COMMENTA.docx
LATHERSVETERINARY MEDICINE IN PUBLIC HEALTHCOMMENTARY COMMENTA.docxLATHERSVETERINARY MEDICINE IN PUBLIC HEALTHCOMMENTARY COMMENTA.docx
LATHERSVETERINARY MEDICINE IN PUBLIC HEALTHCOMMENTARY COMMENTA.docxcroysierkathey
 
ANTIBIOTIC RESISTANCE: A RISING THREAT
ANTIBIOTIC RESISTANCE: A RISING THREATANTIBIOTIC RESISTANCE: A RISING THREAT
ANTIBIOTIC RESISTANCE: A RISING THREATIJRISE Journal
 
Food Microbiology
Food MicrobiologyFood Microbiology
Food Microbiologyijtsrd
 
Antimicrobial resistance new
Antimicrobial resistance newAntimicrobial resistance new
Antimicrobial resistance newpgims,rohtak
 
Project amr by Arghya & Arnab
Project amr by Arghya & ArnabProject amr by Arghya & Arnab
Project amr by Arghya & ArnabArghya Chowdhury
 

Similar to final (19)

Antibiotic Resistance Scenario in India
Antibiotic Resistance Scenario in IndiaAntibiotic Resistance Scenario in India
Antibiotic Resistance Scenario in India
 
Antimicrobial Resistance: A Major Cause for Concern and a Collective Responsi...
Antimicrobial Resistance: A Major Cause for Concern and a Collective Responsi...Antimicrobial Resistance: A Major Cause for Concern and a Collective Responsi...
Antimicrobial Resistance: A Major Cause for Concern and a Collective Responsi...
 
ARE INTENSIVE CARE UNITS (ICU’s) A THREAT TO LIFE?
ARE INTENSIVE CARE UNITS (ICU’s) A THREAT TO LIFE? ARE INTENSIVE CARE UNITS (ICU’s) A THREAT TO LIFE?
ARE INTENSIVE CARE UNITS (ICU’s) A THREAT TO LIFE?
 
Antibiotic Resistant Bacteria
Antibiotic Resistant BacteriaAntibiotic Resistant Bacteria
Antibiotic Resistant Bacteria
 
idr-11-2018.pdf
idr-11-2018.pdfidr-11-2018.pdf
idr-11-2018.pdf
 
Antimicrobial stewardship
Antimicrobial stewardshipAntimicrobial stewardship
Antimicrobial stewardship
 
AMR in Animal Origin Products A Challenge
AMR in Animal Origin Products A ChallengeAMR in Animal Origin Products A Challenge
AMR in Animal Origin Products A Challenge
 
POPH Antibotics
POPH AntiboticsPOPH Antibotics
POPH Antibotics
 
Ccm prebiotics probiotics synbiotics.pptx
Ccm prebiotics probiotics synbiotics.pptxCcm prebiotics probiotics synbiotics.pptx
Ccm prebiotics probiotics synbiotics.pptx
 
Group-4 Antibiotics uses in Livestock and Poultry Health issues.pptx
Group-4 Antibiotics uses in Livestock and Poultry Health issues.pptxGroup-4 Antibiotics uses in Livestock and Poultry Health issues.pptx
Group-4 Antibiotics uses in Livestock and Poultry Health issues.pptx
 
Antibiotic misuse 111 new
Antibiotic misuse 111 newAntibiotic misuse 111 new
Antibiotic misuse 111 new
 
LATHERSVETERINARY MEDICINE IN PUBLIC HEALTHCOMMENTARY COMMENTA.docx
LATHERSVETERINARY MEDICINE IN PUBLIC HEALTHCOMMENTARY COMMENTA.docxLATHERSVETERINARY MEDICINE IN PUBLIC HEALTHCOMMENTARY COMMENTA.docx
LATHERSVETERINARY MEDICINE IN PUBLIC HEALTHCOMMENTARY COMMENTA.docx
 
ANTIBIOTIC RESISTANCE: A RISING THREAT
ANTIBIOTIC RESISTANCE: A RISING THREATANTIBIOTIC RESISTANCE: A RISING THREAT
ANTIBIOTIC RESISTANCE: A RISING THREAT
 
Diagnostic microbiology in Antibiotic policy
Diagnostic microbiology in Antibiotic policyDiagnostic microbiology in Antibiotic policy
Diagnostic microbiology in Antibiotic policy
 
Food Microbiology
Food MicrobiologyFood Microbiology
Food Microbiology
 
Nature10213
Nature10213Nature10213
Nature10213
 
Antimicrobial resistance new
Antimicrobial resistance newAntimicrobial resistance new
Antimicrobial resistance new
 
Project amr by Arghya & Arnab
Project amr by Arghya & ArnabProject amr by Arghya & Arnab
Project amr by Arghya & Arnab
 
3. G V Narasimha final.pdf
3. G V Narasimha final.pdf3. G V Narasimha final.pdf
3. G V Narasimha final.pdf
 

final

  • 1.               The  Role  Antibiotics  Play  in  Gut  Dysbiosis  and  the  Emergence  of   Antibiotic-­Resistant  Bacteria     Meghan  McGillin   December  14,  2016          
  • 2. Introduction   Early  History  of  Antibiotics     The  introduction  of  antibiotics  for  the  treatment  of  disease  has  advanced  humanity  into   the  era  of  modern  medicine.  Prior  to  Alexander  Fleming’s  discovery  of  penicillin  in  1923,  the   leading  cause  of  human  mortality  was  infectious  disease  [12].  Fleming  set  the  precedent  for   mass  screening  of  potential  antimicrobial  species  by  measuring  the  inhibition  zones  in  lawns  of   pathogenic  bacteria  on  the  surface  of  agar  plates.  This  innovative  method  required  significantly   less  resources  than  the  traditional  animal  disease  models,  and  set  up  the  paradigm  for  future   pharmaceutical  research  [12].  Since  the  “golden  era  of  discovery  of  novel  antibiotic  classes”,   which  was  from  the  1950s  through  to  the  1970s,  no  new  classes  have  been  discovered.  Since   that  explosive  period  of  research  and  development,  methods  for  circumventing  the  emergence   of  antibiotic  resistant  bacteria  have  relied  heavily  on  the  modification  of  the  already  existing   antibiotic  classes  [12].     Current  Antibiotic  Use   Agricultural  Use   Antibiotics  are  not  just  used  to  prevent  and  treat  infections,  but  are  also  used  in   low-­doses  as  growth  promoters  in  livestock  in  the  agricultural  industry.  For  over  sixty  years,   antibiotics  have  been  administered  to  livestock  to  promote  weight  gain,  in  fact,  most  of  the   antibiotics  used  in  the  United  States  are  used  on  animals,  as  much  as  70%  according  to  The   Union  of  Concerned  Scientists  [5]  [9].  This  practice  has  ensued  colossal  increases  in  food   animal  production  in  the  agricultural  sector.     Medical  Use     In  terms  of  human  health,  prescription  antibiotics  have  made  historically  unparalleled   advances  in  modern  medicine  [9].  Since  their  discovery,  millions  of  lives  have  been  saved.   However,  now  is  a  pivotal  moment  in  the  continuous  battle  against  pathogenic  bacteria,  and   unfortunately,  the  current  practices  have  produced  a  landscape  that  has  allowed  drug-­resistant   bacteria  to  thrive.  A  serious  issue  associated  with  this  looming  crisis  is  brought  on  by  the   1  
  • 3. crossover  use  of  antibiotic  agents  in  the  agricultural  sector  as  well  as  in  disease  treatment  and   prevention.  By  undermining  the  microbial  community’s  ability  to  adapt  and  survive  against  our   most  aggressive  antibiotic  drugs  is  the  exact  reason  why  at  least  2  million  people  in  the  U.S.   become  infected  and  at  least  23,000  die  from  antibiotic-­resistant  bacteria  [14].     Antibiotic  Resistance     Resistance  occurs  after  exposure  to  the  antibiotic  drug  pressures  the  bacteria  to  develop   or  improve  their  natural  defense  mechanism  against  the  bactericidal  agent.  This  resistance   hinders  the  drug’s  effectiveness,  allowing  infections  to  persist,  which  introduces  the  risk  of   dissemination  of  the  drug-­resistant  gene  into  the  environment  [12].  Bacteria  can  develop   resistance  through  genetic  mutations  or  by  acquiring  new  genes  through  lateral  transfer,  which   protects  them  from  the  drug  and  results  in  a  reduction  or,  sometimes,  an  elimination  of  the   antimicrobial  effect  [16].  This  resistant  gene  is  not  always  limited  to  one  drug,  there  are  strains   of  bacteria,  termed  “super-­bugs”,  that  have  developed  resistance  to  multiple  antibiotics  and  are   a  serious  threat  to  treatment  of  preventable  infections  and  diseases.    Without  effective   antibiotics,  we  lose  a  concerning  amount  of  treatment  options  for  infections  and  illness  brought   on  by  pathogenic  bacteria.  This  is  evident  in  the  63,000  deaths  of  hospital  acquired  bacterial   infections  that  take  place  in  the  United  States,  alone.  In  the  European  Union  (EU),  which  has   banned  antibiotic  use  as  growth  promoters  in  animal  feed  for  the  past  decade,  still  has  25,000   human  fatalities  resulting  from  an  infection  with  the  selected  multidrug  resistant  bacteria  each   year  [13][16].     The  agricultural  industry  and  medical  industry  argue  over  who  is  more  responsible  for   the  concerning  rise  of  antibiotic  resistant  bacteria.  The  food  industry  likes  to  place  the  blame  on   the  medical  providers,  arguing  misdiagnosis  on  the  doctor’s  part  and  misuse  by  the  patient  are   the  driving  forces  behind  this  problem.  Their  claims  are  not  entirely  false,  in  fact,  there  is  some   strong  evidence  in  their  favor.  The  CDC  reports  as  much  as  half  of  antibiotics  prescribed  are   used  inappropriately.  This  could  be  through  unnecessary  use  (such  as  with  viral  infections),  as   well  as  inappropriate  drug  selection  or  incorrect  doses.  They  also  found  that  at  least  30%  of   antibiotics  prescribed  in  an  outpatient  setting  were  unnecessary  [15].  Those  defending  the   medical  practitioners  do  not  need  to  look  far  to  divert  the  blame  on  the  agricultural  sector,   claiming  the  crux  of  the  problem  is  the  widespread  and  prolonged  use  of  low-­dose  antibiotics  to   promote  growth  in  food  animals  [9].  One  study  discovered  extremely  high  levels  of  antibiotic   2  
  • 4. resistance  bacteria  in  Albanian  poultry  farms.  Out  of  the  172  samples  collected  in  this  study,  91   of  the  bacterial  isolates  were  of  the  Escherichia  coli,  Salmonella  species  or  other   Enterobacteriaceae,  and  had  demonstrated  resistance  to  11  different  antibiotics  [7].  The   effectiveness  of  antibiotic  drugs  enhances  their  allure,  which  leads  to  their  overuse  in  both  the   medical  and  agricultural  industries.  Another  major  contributing  factor  to  the  rise  of  resistant   pathogens  is  the  use  of  broad-­spectrum  antibiotics.  Broad-­spectrum  antibiotics  kill   indiscriminately,  resulting  in  the  elimination  both  the  pathogenic  and  commensal  bacteria,  as   well.  It  is  theorized  that  many  of  the  rising  diseases  and  ailments  may  be  linked  to  the  current   use  of  antibiotics,  and  its  disruption  of  the  human  gut  microbiota.     The  Human  Microbiome   The  human  microbiome  is  this  highly  dynamic  and  essential  organ  that  is  composed  of   all  the  microorganisms  who  reside  coherently  in  the  gut,  skin,  mouth,  and  other  biological  niches   found  on  and  within  the  human  host.  The  gut  microbiota  is  acquired  at  birth,  and  over  time   develops  into  a  stable  microbiota  following  the  succession  of  key  organisms  [8].     The  microbial  community  is  essential  for  numerous  biological  of  the  host,  such  as  aiding   in  digestion  and  some    immune  functions,  as  well  as  facilitating  nutrient  absorptions  [5].  The   commensal  microbes  have  co-­evolved    with  their  human  host,  resulting  in  a  unique  and  highly   dynamic  synergistic  relationship  [5].  This  is  evident  in  their  ability  to  ferment  non-­digestible   components  in  the  host’s  diet,  as  well  as  their  ability  to  synthesize  essential  nutrients  like   vitamins,  and  their  mystifying  role  in  host  defense  against  pathogens  [5].  The  microbiota  ability   to  degrade  complex  polysaccharides  is  one  of  its  most  notable  features  relating  to  host  health.   They  are  able  to  convert  nondigestible  carbohydrates  into  short-­chain  fatty  acids  (SCFA),   specifically  acetate,  propionate,  and  butyrate  [5].     Microbial  Diversity   Microbial  diversity  is  a  major  factor  in  determining  the  functionality  of  an  individual’s  gut   microbiota.  Considering  that  the  human  gastrointestinal  (GI)  tract  houses  approximately   800–1000  different  bacterial  species  and  more  than  7000  different  strains,  it  can  seem  like  there   are  infinite  variations  for  the  configuration  of  an  individual’s  gut  microbiota.  The  magnitude  of   this  diversity  contributes  to  the  challenge  of  developing  a  complete  understanding  of  the   microbiota’s  dynamic  role  in  the  host’s  health  and  wellbeing  [4].     3  
  • 5. Despite  the  incredible  amount  of  bacterial  diversity  and  variation,  there  are  observable   differences  in  the  gut  microbiota  composition  between  obese  and  lean  individuals.  One  study   compared  the  microbiomes  of  obese  mice  to  lean  mice  and  reported  differences  in  energy   harvesting  capabilities  between  the  two  phenotypes.  It  was  also  reported  that  the  microbiota  of   the  obese  mice  was  responsible  for  the  increased  capacity  for  weight  gain  that  was  absent  in   the  lean  subjects  [10].  It  is  believed  that  these  discrepancies  in  microbial  diversity  materialize  in   the  form  of  different  functional  genes,  which  in  turn,  initiate  different  metabolic  activities,   resulting  in  the  expression  of  the  two  different  phenotypes  [5].  Overall,  these  findings  support   the  significance  in  the  composition  of  the  gut  microbiota  in  regards  to  energy  harvest,  and   demonstrate  the  significance  of  the  composition  of  the  gut  microbiota  [10].     Dysbiosis  and  the  GM     Dysbiosis  is  defined  as  an  imbalance  in  the  composition  of  the  gut  microbiota  and  have   been  associated  with  immune  disorders,  susceptibility  to  infections,  and  metabolic  diseases   such  as  cardiovascular  diseases,  obesity,  and  diabetes  [5].  Considering  the  role  the  gut   microbiota  plays  in  the  development  of  obesity,  one  would  expect  perturbations  within  the   microbiota  brought  on  by  antibiotics  to  have  an  impact  on  one’s  risk  of  obesity.  It  is  evident  that   antibiotics  disrupt  the  composition  of  the  microbiota,  and  despite  the  rapid  recovery  observed   with  short  term  antibiotic  treatment,  the  accumulated  effect  over  a  long  period  of  time  is   pervasive  and  potentially  detrimental  to  human  health  in  unprecedented  ways.     Dysbiosis,  Obesity,  and  Antibiotics     As  discussed  earlier,  obesity  is  associated  with  dysbiosis,  antibiotics  is  now  believed  to   accentuate  this  vulnerability  brought  on  by  their  disruption  of  the  gut  biome  ecology  [3].  One   longitudinal  birth  cohort  study  found  that  early-­life  exposure  to  antibiotics  was  linked  to  weight   gain  [8].  Antibiotic  increased  the  risk  of  being  overweight  by  the  age  of  12  by  34.0%.  In  this   study,  gender  played  a  significant  role  in  the  weight  gain  observed,  finding  that  the  increased   risk  of  becoming  overweight  was  only  of  significance  among  boys  but  not  girls  [8].     Another  study  demonstrated  the  repercussions  of  the  agricultural  sector’s  use  of   low-­dose  antibiotic  on  host  metabolism.  They  found  that  treatment  of  low-­dose  penicillin   delivered  at  birth  accentuated  the  ill-­effects  of  the  high-­fat  diet  and  the  development  of  obesity   [8].  Their  findings  supported  the  idea  that  dysbiosis  brought  on  by  low-­level  antibiotics  can   4  
  • 6. initiate  the  proliferation  of  specific  populations  within  the  microbiota  that  can  promote  weight   gain  and  obesity  [6].     The  consequences  of  antibiotic-­induced  dysbiosis  are  not  just  limited  to  disruption  of   host  metabolism,  but  can  also  lead  to  the  emergence  of  antibiotic-­resistant  strains.  Antibiotics   exert  a  certain  kind  of  selective  pressure  on  the  microbial  community.  This  leads  to  an  across   the  board  reduction  in  the  residential  bacterial  population,  which  lessens  the  competition  for   resources  for  those  microbes  that  are  resistant.  The  resistance  is  often  acquired  through   horizontal  gene  transfer  or  genetic  mutation.  Regardless  of  the  mechanism  behind  the  acquired   resistance,  the  reduction  in  the  gut  microbial  community  creates  an  ideal  landscape  for  harmful   and  resistant  pathogens  to  thrive  [4].  Perhaps  the  greatest  cause  of  concern  from  this  is  the   continuous  flow  of  genetic  information  that  occurs  between  different  ecological  compartments.   Once  the  resistome  enters  into  the  microbiome,  antibiotic  selection  results  in  the  amplification   and  dissemination  of  these  genes,  which  demonstrates  the  basis  behind  the  concern  of   antibiotic  crossover  between  both  health  and  agricultural  sectors  [12].   Conclusion   Since  the  “golden  era  of  antibiotics”,  nearly  half  a  century  ago,  a  lot  has  changed  in  the   way  disease  and  infection  is  researched  and  understood.  Antibiotic  resistance  is  no  longer  an   issue  limited  to  clinical  research.  It  is  a  complex  problem  that  requires  the  collaborated  efforts  of   microbiologists,  ecologists,  health  care  specialists,  teachers,  policy  makers,  legislative  bodies,   as  well  as  the  agricultural  and  pharmaceutical  industry  in  order  to  effectively  address  this   serious  problem  [12].  The  agricultural  industry  needs  to  stop  using  low-­dose  antibiotic  to   promote  livestock  growth.  They  need  to  abstain  from  using  antibiotics  outside  veterinary   supervision,  and  use  alternatives  to  antibiotics  (i.e.  vaccines)  when  appropriate.  This,  in   addition,  to  improved  hygienic  conditions  and  overall  improved  animal  welfare  will  reduce   incidences  of  infection  and  help  curb  antibiotic  dependency.  Healthcare  professionals  and   medical  providers  need  to  practice  greater  discernment  for  their  dispersal  of  antibiotic   prescriptions;;  additionally,  they  need  to  inform  their  patients  about  proper  use  and  effectively   communicate  the  consequences  of  antibiotic  misuse.  It  is  the  scientific  community’s   responsibility  to  invest  in  researching  new  antibiotics  and  better  alternatives,  as  well  as,  develop   better  diagnostic  tools  and  alternative  methods  towards  preventing  and  treating  infection.  Policy   makers  can  contribute  by  implementing  a  thorough  and  explicit  national  action  plan  to  combat   5  
  • 7. antibiotic  resistance.  They  need  to  call  for  improved  surveillance  methods  of  antibiotic-­resistant   infections  and  tighter  regulation  the  proper  use  of  antimicrobial  medicines.  Most  importantly,   there  is  a  dire  need  for  educators  and  teachers  to  inform  the  general  public  on  the  impact  of   antibiotic  resistance.     The  full  extent  of  the  long-­term  consequences  of  the  United  States  explosive  and   haphazard  practice  of  antibiotics  remains  unknown,  but  what  has  been  made  evident  is  the   interminable  adaptive  capabilities  of  bacteria,  and  their  hardiness  proves  that  they  are  not  to  be   underestimated.  At  this  point,  it  seems  inevitable  that  the  US  will  follow  in  the  EU’s  footsteps   with  the  banning  of  growth-­promoting  antibiotic  use  in  livestock.  This  will  require  new  measures   to  limit  the  occurrence  and  distribution  of  antibiotic  resistance  from  agricultural  sources.             6  
  • 8. References   1.   Lewis,  James  D.,  et  al.  "Inflammation,  antibiotics,  and  diet  as  environmental  stressors  of   the  gut  microbiome  in  pediatric  Crohn’s  disease."  Cell  host  &  microbe  18.4  (2015):  489-­500.     2.   Langdon,  Amy,  Nathan  Crook,  and  Gautam  Dantas.  "The  effects  of  antibiotics  on  the   microbiome  throughout  development  and  alternative  approaches  for  therapeutic  modulation."   Genome  medicine  8.1  (2016):  1.     3.   Azad,  M.  B.,  et  al.  "Infant  antibiotic  exposure  and  the  development  of  childhood  overweight   and  central  adiposity."  International  Journal  of  Obesity  38.10  (2014):  1290-­1298.     4.   Jernberg,  Cecilia,  et  al.  "Long-­term  impacts  of  antibiotic  exposure  on  the  human  intestinal   microbiota."  Microbiology  156.11  (2010):  3216-­3223.     5.   Gérard,  Philippe.  "Gut  microbiota  and  obesity."​Cellular  and  Molecular  Life  Sciences  73.1   (2016):  147-­162.     6.   Cox,  Laura  M.,  and  Martin  J.  Blaser.  "Antibiotics  in  early  life  and  obesity."  Nature  Reviews   Endocrinology  11.3  (2015):  182-­190.     7.   Alcaine,  S.  D.,  et  al.  "Results  of  a  pilot  antibiotic  resistance  survey  of  Albanian  poultry   farms."  Journal  of  Global  Antimicrobial  Resistance  4  (2016):  60-­64.     8.   Cox,  Laura  M.,  et  al.  "Altering  the  intestinal  microbiota  during  a  critical  developmental   window  has  lasting  metabolic  consequences."  Cell  158.4  (2014):  705-­721.     9.   Hume,  M.  E.  "Historic  perspective:  prebiotics,  probiotics,  and  other  alternatives  to   antibiotics."  Poultry  science  90.11  (2011):  2663-­2669.     10.   Khan,  Muhammad  Jaffar,  et  al.  "Role  of  Gut  Microbiota  in  the  Aetiology  of  Obesity:   Proposed  Mechanisms  and  Review  of  the  Literature."  Journal  of  Obesity  2016  (2016).     11.   Podolsky,  Scott  H..  The  Antibiotic  Era  :  Reform,  Resistance,  and  the  Pursuit  of  a  Rational   Therapeutics.  Johns  Hopkins  University  Press,  Baltimore,  MD:  2014.       12.   Aminov,  Rustam  I.  "A  brief  history  of  the  antibiotic  era:  lessons  learned  and  challenges  for   the  future."  Frontiers  in  microbiology  1  (2010):  134.       13.   Castanon,  J.  I.  R.  "History  of  the  use  of  antibiotic  as  growth  promoters  in  European  poultry   feeds."  Poultry  science  86.11  (2007):  2466-­2471.   7  
  • 9. 14.   NIH,  National  Institute  of  General  Medical  Sciences  (NIGMS).  "The  irresistible  resistome:   How  infant  diapers  might  help  combat  antibiotic  resistance  (sort  of)."  ScienceDaily.  ScienceDaily,  8   December  2016.  <​www.sciencedaily.com/releases/2016/12/161208141516.htm​>.     15.   United  States.  Dept.  of  Health  and  Human  Services.  Centers  for  Disease  Control  and   Prevention.  ​Measuring  Outpatient  Antibiotic  Prescribing.  National  Center  for  Emerging  and   Zoonotic  Infectious  Diseases  (NCEZID),  December  2016.       16.   United  States,  Executive  Branch,  Advisors  on  Science  and  Technology  (PCAST).  ​The   National  Action  Plan  for  Combating  Antibiotic-­resistant  Bacteria.  Government  Printing  Office,   2015.       17.   Rhodes,  Rosamond,  Nada  Gligorov,  and  Abraham  Paul  Schwab,  eds.  ​The  human   microbiome:  ethical,  legal  and  social  concerns.  Oxford  University  Press,  London,  UK:  2013.       18.   Gallagher,  Jason  C.,  and  Conan  MacDougall.  Antibiotics  Simplified.  1st  ed.  Burlington,  MA:   Jones  &  Bartlett  Learning,  2014.           8