SlideShare a Scribd company logo
1 of 8
Download to read offline
REVIEW ARTICLE
26 nature materials | VOL 1 | SEPTEMBER 2002 | www.nature.com/naturematerials
BRADLEY FERGUSON1,2
AND
XI-CHENG ZHANG*1
1
CenterforTerahertzResearch,RensselaerPolytechnicInstitute,
1108th
StreetTroy,NewYork,12180-3590,USA
2
CentreforBiomedicalEngineeringandDepartmentofElectrical
andElectronicEngineering,TheUniversityofAdelaide,South
Australia5005,Australia
*e-mail:zhangxc@rpi.edu
Recentyearshaveseenaplethoraof significantadvances
inmaterialsdiagnosticsbyterahertzsystems,ashigher-
powersourcesandmoresensitivedetectorsopenupa
rangeof potentialuses.Applicationsincluding
semiconductorandhigh-temperaturesuperconductor
characterization,tomographicimaging,label-free
geneticanalysis,cellularlevelimagingandchemicaland
biologicalsensinghavethrustterahertzresearchfrom
relativeobscurityintothelimelight.
Theterahertz(THz)regionof theelectromagnetic
spectrumhasproventobeoneof themostelusive.
Terahertzradiationislooselydefinedbythefrequency
rangeof 0.1to10 THz(1012
cyclespersecond).
Beingsituatedbetweeninfraredlightandmicrowave
radiation(seeFig. 1),THzradiationisresistanttothe
techniquescommonlyemployedinthesewell-
establishedneighbouringbands.Highatmospheric
absorptionconstrainedearlyinterestandfundingfor
THzscience.Historically,themajoruseof THz
spectroscopyhasbeenbychemistsandastronomersin
thespectralcharacterizationof therotationaland
vibrationalresonancesandthermal-emissionlinesof
simplemolecules.Thepast20yearshaveseena
revolutioninTHzsystems,asadvancedmaterials
researchprovidednewandhigher-powersources,and
thepotentialof THzforadvancedphysicsresearchand
commercialapplicationswasdemonstrated.Terahertz
technologyisanextremelyattractiveresearchfield,with
interestfromsectorsasdiverseasthesemiconductor,
medical,manufacturing,spaceanddefenceindustries.
Severalrecentmajortechnicaladvanceshavegreatly
extendedthepotentialandprofileof THzsystems.
Theseadvancesincludethedevelopmentof aquantum
cascadeTHzlaser1
,thedemonstrationof THzdetection
of singlebase-pairdifferencesinfemtomolar
concentrationsof DNA2
andtheinvestigationof the
evolutionof multiparticlechargeinteractionswithTHz
spectroscopy3
.Thisarticleprovidesanoverviewof these
andmanyotherimportantrecentdevelopments.
THZ SPECTROSCOPY SYSTEMS
Terahertzspectroscopyallowsamaterial’sfar-infrared
opticalpropertiestobedeterminedasafunctionof
frequency.Thisinformationcanyieldinsightinto
materialcharacteristicsforawiderangeof applications.
ManydifferentmethodsexistforperformingTHz
spectroscopy.Fouriertransformspectroscopy(FTS)is
perhapsthemostcommontechniqueusedforstudying
molecularresonances.Ithastheadvantageof an
extremelywidebandwidth,enablingmaterial
characterizationfromTHzfrequenciestowellintothe
infrared.InFTSthesampleisilluminatedwitha
broadbandthermalsourcesuchasanarclamporaSiC
globar.Thesampleisplacedinanopticalinterferometer
systemandthepathlengthof oneof theinterferometer
armsisscanned.Adirectdetectorsuchasahelium-
cooledbolometerisusedtodetecttheinterference
signal.TheFouriertransformof thesignalthenyields
thepowerspectraldensityof thesample.
Onedisadvantageof FTSisitslimitedspectral
Materials for terahertz science and
technology
Terahertz spectroscopy systems use far-infrared radiation to extract molecular spectral information in an
otherwise inaccessible portion of the electromagnetic spectrum. Materials research is an essential
component of modern terahertz systems: novel, higher-power terahertz sources rely heavily on new
materials such as quantum cascade structures. At the same time, terahertz spectroscopy and imaging
provide a powerful tool for the characterization of a broad range of materials, including semiconductors
and biomolecules.
103 106 109 1012 1015 1018 1021 1024
100
Microwaves Visible
kilo mega giga tera peta exa zetta yotta
X-ray γ-ray
THz
Electronics Photonics
Hz
Radar ???
Frequency (Hz)
Example
industries:
Radio
communications
MF, HF, VHF, UHF, SHF, EHF
Optical
communications
Medical
imaging
Astrophysics
Figure 1Theelectromagnetic
spectrum.Thedevelopmentof
efficientemittersanddetectors
withineachofthespectral
regimeshasresultedinthebirth
ofnumerousindustries.
Thesearchforpotential
applicationsofTHzradiationis
steadilyintensifyingasmaterials
researchprovidesimproved
sourcesanddetectors.
© 2002 Nature Publishing Group
REVIEW ARTICLE
nature materials | VOL 1 | SEPTEMBER 2002 | www.nature.com/naturematerials 27
resolution.Spectralmeasurementshavingamuch
higherresolutionmaybemadeusinganarrowband
systemwithatunableTHzsourceordetector.Inthese
systems,thesourceordetectoristunedacrossthe
desiredbandwidthandthesample’sspectralresponseis
measureddirectly.BothFTSandnarrowband
spectroscopyarealsowidelyusedinpassivesystemsfor
monitoringthermal-emissionlinesof molecules,
particularlyinastronomyapplications.
Athird,morerecenttechniqueistermedTHztime-
domainspectroscopy(THz-TDS).THz-TDSusesshort
pulsesof broadbandTHzradiation,whicharetypically
generatedusingultrafastlaserpulses.Thistechnique
grewfromworkinthe1980satAT&TBellLabsandthe
IBMT.J.WatsonResearchCenter4,5
.Althoughthe
spectralresolutionof THz-TDSismuchcoarserthan
narrowbandtechniques,anditsspectralrange
significantlylessthanthatof FTS,ithasanumberof
advantagesthathavegivenrisetosomeimportantrecent
applications.ThetransmittedTHzelectricfieldis
measuredcoherently,whichprovidesbothhigh
sensitivityandtime-resolvedphaseinformation.Itis
alsoamenabletoimplementationwithinanimaging
systemtoyieldrichspectroscopicimages.ATHz-TDS
systemisdescribedinFig. 2.TypicalTHz-TDSsystems
haveafrequencybandwidthbetween2and5 THz,a
spectralresolutionof 50 GHz,anacquisitiontimeunder
oneminuteandadynamicrangeof 1 × 105
inelectric
field.Signal-processingalgorithmsmaybeusedto
improvethesignal-to-noiseratioof themeasured
signalsbyalmost30%(ref.6).
THZ SOURCES
Thelackofahigh-power,low-cost,portableroom-
temperatureTHzsourceisthemostsignificantlimitation
ofmodernTHzsystems.However,thereisavastarrayof
potentialsourceseachwithrelativeadvantages,and
advancesinhigh-speedelectronics,laserandmaterials
researchcontinuetoprovidenewcandidates.Sources
maybebroadlyclassifiedaseitherincoherentthermal
sources,broadbandpulsed(‘T-ray’)techniquesor
narrowbandcontinuous-wavemethods.
BROADBAND THZ SOURCES
MostbroadbandpulsedTHzsourcesarebasedonthe
excitationof differentmaterialswithultrashortlaser
pulses.Anumberof differentmechanismshavebeen
exploitedtogenerateTHzradiation,including
photocarrieraccelerationinphotoconductingantennas,
second-ordernon-lineareffectsinelectro-opticcrystals,
plasmaoscillations7
andelectronicnon-linear
transmissionlines8
.Currently,conversionefficienciesin
allof thesesourcesareverylow,andconsequently,
averageTHzbeampowerstendtobeinthenano-to
microwattrange,whereastheaveragepowerof the
femtosecondopticalsourceisintheregionof 1 W.
Photoconductionandopticalrectificationaretwo
of themostcommonapproachesforgenerating
broadbandpulsedTHzbeams.Thephotoconductive
approachuseshigh-speedphotoconductorsas
transientcurrentsourcesforradiatingantennas9
.
Typicalphotoconductorsincludehigh-resistivity
GaAs,InPandradiation-damagedsiliconwafers.
Metallicelectrodesareusedtobiasthe
photoconductivegapandformanantenna.
ThephysicalmechanismforTHzbeamgeneration
inphotoconductiveantennasbeginswithanultrafast
laserpulse(withaphotonenergylargerthanthe
bandgapof thematerialhν ≥ Eg
),whichcreates
electron–holepairsinthephotoconductor.Thefree
carriersthenaccelerateinthestaticbiasfieldtoforma
transientphotocurrent,andthefast,time-varying
currentradiateselectromagneticwaves.Several
materialparametersaffecttheintensityandthe
bandwidthof theresultantTHzradiation.
ForefficientTHzradiation,itisdesirabletohaverapid
photocurrentriseanddecaytimes.Thussemiconductors
withsmalleffectiveelectronmassessuchasInAsand
InPareattractive.Themaximumdriftvelocityisalso
animportantmaterialparameter,butitisgenerally
limitedbytheintrabandscatteringrateorby
intervalleyscatteringindirectsemiconductorssuchas
GaAs10–12
.Becausetheradiatingenergymainlycomes
fromstoredsurfaceenergyintheformof thestaticbias
field,theTHzradiationenergyscalesupwiththebias
andopticalfluency13
.Thebreakdownfieldof the
materialisanotherimportantparameterbecausethis
determinesthemaximumbiasthatmaybeapplied.
Photoconductiveemittersarecapableof relativelylarge
averageTHzpowersinexcessof 40 µW(ref.14)and
bandwidthsashighas4 THz(ref.15).
Opticalrectificationisanalternativemechanismfor
pulsedTHzgeneration,andisbasedontheinverse
processof theelectro-opticeffect16
.Again,femtosecond
laserpulsesarerequired,butincontrastto
photoconductingelementswheretheopticalbeam
functionsasatrigger,theenergyof theTHzradiationin
opticalrectificationcomesdirectlyfromtheexciting
laserpulse.Theconversionefficiencyinoptical
rectificationdependsprimarilyonthematerial’snon-
linearcoefficientandthephase-matchingconditions.
Thistechniquewasfirstdemonstratedfor
generatingfar-infraredradiationusingLiNbO3
(ref.17).MuchresearchhasfocusedonoptimizingTHz
generationthroughinvestigatingtheelectro-optic
propertiesof differentmaterials,includingtraditional
semiconductorssuchasGaAsandZnTe,andorganic
crystalssuchastheionicsalt4-dimethylamino-N-
methylstilbazoliumtosylate(DAST)amongmany
others18–20
.Becauseopticalrectificationrelieson
couplingof theincidentopticalpowertoTHz
frequenciesatrelativelylowefficiency,itusually
providesloweroutputpowersthanphotoconductive
Sample
THz
detector
Beam
Delay stage
THz
emitter
Femtosecond
pulses
Pump beam
Probe beam
Parabolic
Figure 2IllustrationofaTHz-
TDSpumpprobesystem.
Theultrafastlaserbeamissplit
intopumpandprobebeams.
Thepumpbeamisincidenton
theTHzemittertogenerateTHz
pulses,andtheTHzpulsesare
collimatedandfocusedonthe
targetusingparabolicmirrors.
Aftertransmissionthroughthe
target,theTHzpulseis
collimatedandre-focusedon
theTHzdetector.Theoptical
probebeamisusedtogatethe
detectorandmeasurethe
instantaneousTHzelectricfield.
Adelaystageisusedtooffset
thepumpandprobebeamsand
allowtheTHztemporalprofileto
beiterativelysampled.
© 2002 Nature Publishing Group
REVIEW ARTICLE
28 nature materials | VOL 1 | SEPTEMBER 2002 | www.nature.com/naturematerials
antennas,butithastheadvantageof providingvery
highbandwidths,upto50 THz(ref.21).Phase-
matchedopticalrectificationinGaSeallows
ultrabroadbandTHzpulsestobegeneratedwitha
tunablecentrewavelength.Tuninguptoafrequencyof
41 THzisaccomplishedbytiltingthecrystalaboutthe
horizontalaxisperpendiculartothepumpbeamto
modifythephase-matchingconditions22,23
.
NARROWBAND THZ SOURCES
NarrowbandTHzsourcesarecrucialforhigh-resolution
spectroscopyapplications.Theyalsohavebroad
potentialapplicationsintelecommunications,andare
particularlyattractiveforextremelyhighbandwidth
intersatellitelinks.Forthesereasonstherehasbeen
significantresearchinterestinthedevelopmentof
narrowbandsourcesoverthepastcentury24
.Amultitude
of techniquesareunderdevelopment,including
upconversionof electronicradio-frequencysources,
downconversionof opticalsources,lasersandbackward-
wavetubes.Severalcomprehensivereviewsof thisfield
areavailable25
.
Thetechniquemostusedforgeneratinglow-power
(<100 µW)continuous-waveTHzradiationisthrough
upconversionof lower-frequencymicrowaveoscillators,
suchasvoltage-controlledoscillatorsanddielectric-
resonatoroscillators.Upconversionistypicallyachieved
usingachainof planarGaAsSchottky-diodemultipliers.
Usingthesemethods,frequenciesashighas2.7 THz
havebeendemonstrated26
.Researchalsocontinuesto
increasethefrequencyof GunnandIMPATTdiodesto
thelowerreachesof theterahertzregionusingalternate
semiconductingstructuresandimprovedfabrication
techniques27
.GaslasersareanothercommonTHz
source.Inthesesources,acarbondioxidelaserpumpsa
low-pressuregascavity,whichlasesatthegasmolecule’s
emission-linefrequencies.Thesesourcesarenot
continuouslytunable,andtypicallyrequirelargecavities
andkilowattpowersupplies,howevertheycanprovide
highoutputpowersupto30 mW.Methanoland
hydrogencyanidelasersarethemostpopular,and
theyareincommonuseforspectroscopyand
heterodynereceivers.
Extremelyhigh-powerTHzemissionshaverecently
beendemonstratedusingfree-electronlaserswith
energy-recoveringlinearaccelerators28
.Free-electron
lasersuseabeamofhigh-velocitybunchesofelectrons
propagatinginavacuumthroughastrong,spatially
varyingmagneticfield.Themagneticfieldcausesthe
electronbunchestooscillateandemitphotons.
Mirrorsareusedtoconfinethephotonstotheelectron
beamline,whichformsthegainmediumforthelaser.
Suchsystemsimposeprohibitivecostandsize
constraintsandtypicallyrequireadedicatedfacility.
However,theymaygeneratecontinuousorpulsedwaves,
andprovideanaveragebrightnessofmorethansix
ordersofmagnitudehigherthantypical
photoconductiveantennaemitters.Free-electronlasers
havesignificantpotentialinapplicationswhere
improvedsignal-to-noiseratioisessential,orinthe
investigationofnon-linearTHzspectroscopy.Bench-top
variationsonthesametheme,termedbackward-wave
tubesorcarcinotrons,arealsocapableofproviding
milliwattoutputpowersatTHzfrequencies,andare
commerciallyavailable.
Anumberof opticaltechniqueshavealsobeen
pursuedforgeneratingnarrowbandTHzradiation.
Originaleffortsbeganinthe1970susingnon-linear
photomixingof twolasersources,butstruggledwith
lowconversionefficiencies29
.Inthistechnique,two
continuous-wavelaserswithslightlydifferingcentre
frequenciesarecombinedinamaterialexhibitinga
highsecond-orderopticalnon-linearitysuchasDAST.
Thetwolaserfrequenciesmutuallyinterfereinthe
2
Injector
Active region
1
Injection barrier
Energy
Distance
104.9 mm
Figure 3Simplifiedconduction
bandstructureoftheTHz
quantumcascadelaser
demonstratedbyKohleretal.
(afterref.1).Electronsare
injectedthroughthe4.3-nm
AlGaAsinjectionbarrierintothe
level2energystateoftheactive
region.Theactivetransitionfrom
level2tolevel1resultsinthe
emissionof4.4-THzphotons.
Theelectronsthenescapetothe
subsequentinjectorband.Atotal
of104repeatsofthebasic7well
structurewasusedinthelaser.
Eachquantumwellconsistsofa
thinlayer(10–20 nm)ofGaAs
betweentwopotentialbarriersof
AlGaAs(0.6–4.3 nmthick).
Thelayerthicknessesandthe
appliedelectricfieldwere
tunedtoprovidetherequired
tunnellingcharacteristics.
-4
-2
0
2
4
3
2
1
0
Time (ps)
a b
Electro-optic
signal
(nA)
Transmission
0.1
1
10
60
50
40
30
20
10
0
THz
Figure 4AbroadbandTHzpulse
withafrequencyspectrum
extendingintotheinfrared.a,
TemporalwaveformofaTHz
pulsegeneratedusingoptical
rectificationina27-µmZnTe
emitter,andmeasuredusing
freespaceelectro-opticsampling
ina30-µmZnTesensor.b,
FrequencyspectrumoftheTHz
field.Theabsorptionresonance
at5.3THzisduetophonon
modesintheZnTecrystals.
© 2002 Nature Publishing Group
REVIEW ARTICLE
nature materials | VOL 1 | SEPTEMBER 2002 | www.nature.com/naturematerials 29
material,resultinginoutputoscillationsatthesumand
differenceof thelaserfrequencies.Suchsystemscanbe
designedsuchthatthedifferencetermisintheTHz
range.Tunablecontinuous-waveTHzradiationhas
beendemonstratedbymixingtwofrequency-offset
lasersinGaAsgrownatlowtemperature30
andby
mixingtwofrequencymodesfromasinglemultimode
laser.Furthertechniquesuseopticalparametric
generatorsandoscillatorswhereaQ-switchNd:YAG
(neodymium:yttrium-aluminium-garnet)laserpump
beamgeneratesasecondidlerbeaminanon-linear
crystal,andthepumpandidlersignalbeattoemitTHz
radiation31,32
.Opticaltechniquesprovidebroadly
tunableTHzradiationandarerelativelycompact
owingtotheavailabilityof solid-statelasersources.
Outputpowersinexcessof 100 mW(pulsed)have
beendemonstrated33
.Opticaldownconversionisarich
areaformaterialsresearchbecausemolecularbeam
epitaxyandothermaterialsadvancesallowsthe
generationof engineeredmaterialswithimproved
photomixingproperties34
.
Semiconductorlasersareafurthertechniquewith
extremepromisefornarrowbandTHzgeneration.
Thefirstsuchlaserwasdemonstratedover20yearsago
inlightlydopedp-typegermaniumasaresultof hole
populationinversioninducedbycrossedelectricand
magneticfields35
.Theselasersaretunablebyadjusting
themagneticfieldorexternalstress.Terahertzlasingin
germaniumhasalsobeendemonstratedbyapplyinga
stronguniaxialstresstothecrystaltoinducethehole
populationinversion36
.Suchlasershavemanyinherent
limitationsincludinglowefficiency,lowoutputpower
andtheneedforcryogeniccoolingtomaintainlasing
conditions.Recently,semiconductordeposition
techniqueshaveadvancedtoalevelwherethe
constructionof multiplequantum-wellsemiconductor
structuresforlaseremissionisfeasible.Quantum
cascadelaserswerefirstdemonstratedin1994basedona
seriesof coupledquantumwellsconstructedusing
molecularbeamepitaxy37
.Aquantumcascadelaser
consistsof coupledquantumwells(nanometre-thick
layersof GaAssandwichedbetweenpotentialbarriersof
AlGaAs).Thequantumcascadeconsistsof arepeating
structureinwhicheachrepeatunitismadeupof an
injectorandanactiveregion.Intheactiveregiona
populationinversionexistsandelectrontransitiontoa
lowerenergyleveloccurs,emittingphotonsataspecific
wavelength.Theelectronsthentunnelbetween
quantumwellsandtheinjectorregioncouplesthemto
thehigherenergylevelintheactiveregionof the
subsequentrepeatunit.
Quantumcascadelasershavebeendemonstrated
withintheinfraredspectrum,butuntilveryrecently
severalsignificantproblemshadpreventedTHz
quantumcascadelasersfrombeingrealized.
Theprincipalproblemsarecausedbythelong
wavelengthof THzradiation.Thisresultsinalarge
opticalmode,whichresultsinpoorcouplingbetween
thesmallgainmediumandtheopticalfield,andinhigh
opticallossesowingtofreeelectronsinthematerial
(theselossesscaleasthesquareof thewavelength).
Kohleretal.1
addressedtheseandotherproblemsin
theirrecentinnovativedesignof aTHzquantum
cascadelaseroperatingat4.4 THz.Thelaserconsisted
of 104repetitionsof thebasicunit(showninFig. 3)and
atotalof over700quantumwells.Thissystem
demonstratedpulsedoperationatatemperatureof
10 K;however,optimizedfabricationpromisestolead
tocontinuous-waveoperationatliquidnitrogen
temperatures(of theorderof 70 K).
THZ DETECTORS
Thedetectionof THz-frequencysignalsisanotherarea
of importantactiveresearch.Thelowoutputpowerof
THzsourcescoupledwiththerelativelyhighlevelsof
thermalbackgroundradiationinthisspectralrangehas
necessitatedhighlysensitivedetectionmethods.
Forbroadbanddetection,directdetectorsbasedon
thermalabsorptionarecommonlyused.Mostof these
requirecoolingtoreducethermalbackground.The
mostcommonsystemsarehelium-cooledsilicon,
germaniumandInSbbolometers.Pyroelectricinfrared
detectorsmayalsobeusedatTHzfrequencies.
Superconductorresearchhasyieldedextremely
sensitivebolometersbasedonthechangeof stateof a
superconductorsuchasniobium.Interferometric
techniquesmaybeusedtoextractspectralinformation
usingdirectdetectors.AsinglephotondetectorforTHz
photonshasrecentlybeendemonstrated38
.
Thisdetectorusesasingle-electrontransistorconsisting
of aquantumdotinahighmagneticfield,tooffer
unparalleledsensitivity.Althoughdetectionspeedsare
currentlylimitedto1 ms,high-speeddesignsare
proposedandthishasthepotentialtorevolutionizethe
fieldof THzdetection.
a b c
40
40
30
30
20
20
10
10
0
0
mm
mm
Refractive
index
1.5
1.4
1.3
1.2
1.1
1
Figure 5T-raycomputed
tomographyimageoftwoplastic
cylinders(afterref.57).
a,Anopticalimageofthetest
structure.b,Thetargetwas
imagedusingthetomography
system,andtherefractiveindex
ofeachcross-sectionalslice
wasreconstructed.Thecentral
sliceisshown.Thegreyscale
intensityindicatestherefractive
indexofthetwodifferenttypes
ofplastic.c,Thecross-sectional
slicesarecombinedtoforma3D
image.Asurface-rendered
imageisshown.
© 2002 Nature Publishing Group
REVIEW ARTICLE
30 nature materials | VOL 1 | SEPTEMBER 2002 | www.nature.com/naturematerials
Inapplicationsrequiringveryhighspectral
resolutionofthesensor,heterodynesensorsarepreferred.
Inthesesystems,alocaloscillatorsourceattheTHz
frequencyofinterestismixedwiththereceivedsignal.
Thedownshiftedsignalisthenamplifiedandmeasured.
Atroomtemperaturesemiconductorstructuresmaybe
used.AplanarSchottky-diodemixerhasbeenoperated
successfullyat2.5 THzforsensingapplicationsinspace39
.
Cryogeniccoolingisusedforhighersensitivity
inheterodynesuperconductordetectors.Several
superconductorstructureshavebeenusedforover
20years.Themostwidelyusedisthesuperconductor-
insulator-superconductortunneljunctionmixer40
.
High-temperaturesuperconductorssuchasYBCO
(yttrium–barium–copperoxide)aretoutedfortheir
potentialforhigherbandwidthoperation.Anumberof
generalreviewsofnarrowbandTHzreceiversare
available41
.Alternativenarrowbanddetectors,suchas
electronicresonantdetectors,basedonthefundamental
frequencyofplasmawavesinfield-effecttransistorshave
beendemonstratedupto600 GHz42
.
ForpulsedTHzdetectioninTHz-TDSsystems,
coherentdetectorsarerequired.Thetwomostcommon
methodsarebasedonphotoconductivesamplingand
free-spaceelectro-opticsampling,bothof whichagain
relyonultrafastlasersources.Fundamentally,the
electro-opticeffectisacouplingbetweenalow-
frequencyelectricfield(THzpulse)andalaserbeam
(opticalpulse)inthesensorcrystal.Simpletensor
analysisindicatesthatusinga<110>-oriented
zincblendecrystalasasensorprovidesthehighest
sensitivity.TheTHzelectricfieldmodulatesthe
birefringenceof thesensorcrystal;thisinturnmodulates
thepolarizationellipticityof theopticalprobebeam
passingthroughthecrystal.Theellipticitymodulation
of theopticalbeamcanthenbeanalysedtoprovide
informationonboththeamplitudeandphaseof the
appliedelectricfield43,44
.
Theuseof anextremelyshortlaserpulse(<15 fs)
andathinsensorcrystal(<30 µm)allowelectro-optic
detectionof signalsintothemid-infraredrange.
Figure 4ashowsatypicalmid-infraredpulsedTHz
waveform.TheFouriertransformof theTHzpulseis
showninFig. 4b;thehighestfrequencyresponse
reachesover30 THz.Theresonantabsorptionat
5.3 THziscausedbythephononmodesof theZnTe
crystals.Whenthinsensorsareused,extremelyhigh
detectionbandwidths,inexcessof 100 THz,have
beendemonstrated45
.
Photoconductiveantennasarewidelyusedfor
pulsedTHzdetection.Anidenticalstructuretothe
photoconductiveantennaemittermaybeused.
Ratherthanapplyingabiasvoltagetotheelectrodesof
theantenna,acurrentamplifierandmeterareusedto
measureatransientcurrent.Ultrahighbandwidth
detectionhasbeendemonstratedusing
photoconductiveantennadetectorswithdetectable
frequenciesinexcessof 60 THz(ref.46).
THZ APPLICATIONS
Oneof theprimarymotivationsforthedevelopmentof
THzsourcesandspectroscopysystemsisthepotentialto
extractmaterialcharacteristicsthatareunavailablewhen
usingotherfrequencybands.Astronomyandspace
researchhasbeenoneof thestrongestdriversforTHz
researchbecauseof thevastamountof information
availableconcerningthepresenceof abundant
moleculessuchasoxygen,waterandcarbonmonoxide
instellardustclouds,cometsandplanets47
.Inrecent
years,THzspectroscopysystemshavebeenappliedtoa
hugevarietyof materialsbothtoaidthebasic
understandingof thematerialproperties,andto
demonstratepotentialapplicationsinsensingand
diagnostics.Wereviewseveralof themorerecently
demonstratedapplications.
MATERIAL CHARACTERIZATION
Oneof themajorapplicationsof THzspectroscopy
systemsisinmaterialcharacterization,particularlyof
lightweightmoleculesandsemiconductors.Terahertz
spectroscopyhasbeenusedtodeterminethecarrier
concentrationandmobilityof dopedsemiconductors
suchasGaAsandsiliconwafers48–50
.TheDrudemodel
maythenbeusedtolinkthefrequency-dependent
dielectricresponsetothematerialfree-carrierdynamic
properties,includingtheplasmaangularfrequencyand
thedampingrate.Animportantfocusisonthe
measurementof thedielectricconstantof thinfilms51
.
High-temperaturesuperconductor
characterizationisanotherimportantapplicationof
THzspectroscopy.Severalsuperconductingthinfilms
havebeenanalysedtodeterminematerialparameters
includingthemagneticpenetrationdepthandthe
superconductingenergygap.THz-TDShasrecently
beenusedtostudyMgB2
,thematerialnewlydiscovered
tobesuperconducting.Thismaterialexhibitsan
extremelyhightransitiontemperatureof 39 Kandis
currentlynotwellunderstood.THz-TDSwasusedto
determinethesuperconducting-gapenergythreshold
of approximately5 meV.Thiscorrespondstoonlyhalf
thevaluepredictedbycurrenttheoryandpointstothe
existenceof complexmaterialinteractions52
.
Experiments with optical-pump THz-probe
systems can reveal additional information about
1.6 mm
Figure 6THzimageofanonion
cellmembrane(afterref.60).
ATHzimagingsystembasedon
opticalrectificationandfree-
spaceelectro-opticsamplingin
ZnTecrystals30 µmthickwas
usedwithabandwidthupto40
THz.Thisallowedaspatial
resolutionoflessthan50 µmto
beachieved.Thecellular
structureofthetissuemembrane
isclearlyvisible.
© 2002 Nature Publishing Group
REVIEW ARTICLE
nature materials | VOL 1 | SEPTEMBER 2002 | www.nature.com/naturematerials 31
materials.In these experiments,the material is excited
using an ultrafast optical pulse,and a THz pulse is
used to probe the dynamic far-infrared optical
properties of the excited material.Leitenstorfer et al.
used an optical-pump THz-probe system to identify
the time evolution of charge–charge interactions in an
electron–hole plasma excited in GaAs using ultrafast
optical pulses.This study added experimental
evidence to quantum-kinetic theoretical predictions
regarding charge build-up or dressed quasi-particles3
.
THZ IMAGING AND TOMOGRAPHY
PulsedTHz-waveimaging,or‘T-rayimaging’,wasfirst
demonstratedbyHuandNuss53
in1995,andsincethen
hasbeenusedforimagingawidevarietyof targets
includingsemiconductors54
,canceroustissue55
and
flames56
.Theattractionof THzimagingislargelydueto
theavailabilityof phase-sensitivespectroscopicimages,
whichholdsthepotentialformaterialidentificationor
‘functionalimaging’.
THzsystemsareidealforimagingdrydielectric
substancesincludingpaper,plasticsandceramics.
Thesematerialsarerelativelynon-absorbinginthis
frequencyrange,yetdifferentmaterialsmaybeeasily
discriminatedonthebasisof theirrefractiveindex,
whichisextractedfromtheTHzphaseinformation.
Manysuchmaterialsareopaqueatopticalfrequencies,
andprovideverylowcontrastforX-rays.THzimaging
systemsmaythereforefindimportantnicheapplications
insecurityscreeningandmanufacturingqualitycontrol.
Animportantgoalinthiscontextisthedevelopmentof
three-dimensional(3D)tomographicT-rayimaging
systems57
.Figure 5illustratesareconstructedcross
sectionand3D-renderedimageof twoplasticcylinders
withdifferingrefractiveindex.Thesystemisbasedon
thesameprinciplesasX-raycomputedtomography,but
providesawealthof informationaboutthematerial’s
frequency-dependentopticalpropertiesthrough
broadband,phase-sensitiveTHzdetection58
.
InterestinusingTHzimagingtostudycellular
structureisalsoincreasing.Afundamentallimitationin
thiscontextistheresolutionof currentsystems.
TheRayleighcriterionlimitsthefar-fieldresolutionof
animagingsystemtotheorderof thewavelength
(0.3 mmat1 THz).Forthisreason,researchersare
relyingonimaginginthenear-fieldtoachieveimproved
spatialresolution.Usingnear-fieldtechniques,similarto
thoseusedinnear-fieldopticalmicroscopy,resolutions
of 7 µmhavebeendemonstratedusingradiationwitha
centrewavelengthof 600 µm(ref.59).Analternative
methodtoimprovetheresolutionistousehigher-
frequencyTHzpulses.Figure 6showsaTHzimageof a
membraneof onioncells.Theresolutionof
approximately50 µmisachievedbyusingvery
broadbandTHzpulsesextendingintothemid-infrared.
Thecontrastintheimageisattributedprimarilyto
differencesinthewatercontentof thecellsandthe
intercellularregions60
.
BIOMATERIAL THZ APPLICATIONS
THzsystemshavebroadapplicabilityinabiomedical
context.Activefieldsof researchrangefromcancer
detection61
togeneticanalysis.Biomedicalapplications
of THzspectroscopyarefacilitatedbythefactthatthe
collectivevibrationalmodesof manyproteinsandDNA
moleculesarepredictedtooccurintheTHzrange.THz
spectroscopyhasalsobeenheraldedforitspotential
abilitytoinferinformationonabiomolecule’s
conformationalstate.Thecomplexrefractiveindexof
pressedpelletsconsistingof DNAandother
biomoleculeshasbeendeterminedandshows
absorptionconsistentwithalargedensityof low-
frequencyinfrared-activemodes62,63
.
DNAanalysersareusedtoidentifypolynucleotide
basesequencesforavarietyof geneticapplications.
Productionof genechipsisanincreasinglypopular
techniquewhereunknownDNAmoleculesarebound
tofluorescentlylabelledpolynucleotideswithknown
basesequences.Fluorescentlabellingcanaffect
diagnosticaccuracyandincreasesthecostand
preparationtimeof genechips.Asaresult,several‘label-
free’methodsarebeingresearched.THzimaging
appearstohavepromiseinthiscontext.THz
spectroscopyhasshownthecapabilityof differentiating
THz
Biotin-avidin
Pure avidin
Delay time (ps)
THz
electric
field
(au)
1.0
0.5
0.0
0 10 20 30 40 50 60
–0.5
–1.0
a
b
c
Figure 7Abiotin-avidinT-ray
biosensor(afterref.65).
a,Thetestslideconsistingofa
biotinthin-film,halfcoatedwith
anavidinsolution.b,Illustration
ofthemeasurementprocedure
wheretheslideismountedona
galvanometricshakerand
translatedbackandforthinthe
THzbeamtoallowthedifferential
signaltobemeasured.c,TheTHz
pulsemeasuredafter
transmissionthroughthebiotin-
avidinsensorwith(dashedline)
andwithout(solidline)exposure
to0.3 ng cm–2
ofavidin
moleculeschemicallyboundto
agarosebeadsinsolution.
© 2002 Nature Publishing Group
REVIEW ARTICLE
32 nature materials | VOL 1 | SEPTEMBER 2002 | www.nature.com/naturematerials
betweensingle-anddouble-strandedDNAowingto
associatedchangesinrefractiveindex64
.Recentlythe
samegrouphasdemonstratedaTHzsensingsystem
capableof detectingDNAmutationsof asinglebase
pairwithfemtomolesensitivity2
.
Afurtherbiomedicalapplicationof THzsystemsis
theT-raybiosensor65
.Asimplebiosensorhasbeen
demonstratedfordetectingtheglycoproteinavidinafter
bindingwithvitaminH(biotin).Afilmof biotinis
depositedonasolidsubstrate(Fig. 7a),andhalf of the
biosensorslideisexposedtotheenvironmentorsolution
of interest.Avidinhasaverystrongaffinityforbiotinand
bindstoanybiotin-containingmolecules.Themodified
far-infraredopticalpropertiesof theboundbiotinfilm
canthenbedetectedusingthetechniqueof differential
THz-TDS66
.Theslideismountedonagalvanometric
shakerandtheTHzbeamisalternatelyfocusedthrough
theavidinandcontrolportionof theslide(Fig. 7b).
Acomparisonof thesignalmeasuredusingaslide
treatedwith0.3 ng cm–2
avidinsolutionandaplain
biotinsliderevealedadetectabledifference(Fig. 7c).
Thisdetectablelimitissignificantlyenhancedby
chemicallybindingtheavidinmoleculestoagarose
beadstoprovideincreasedcontrastof refractiveindex67
.
Suchtechniquesmayfindbroadapplicationsintracegas
sensingandproteomics.
OUTLOOK
THzspectroscopysystemshaveundergonedramatic
changesoverthepastdecade.Improvedsourceand
detectorperformancecontinuetoexpandapplication
areasandfacilitatethetransitionof THzsystemsfrom
thelaboratorytocommercialindustry.Biomedical
imagingandgeneticdiagnosticsaretwoof themost
obviouspotentialapplicationsof thistechnology,but
equallypromisingistheabilitytoinvestigatematerial
characteristics,probedistantgalaxiesandstudy
quantuminteractions.THzradiationhasfurther
potentialforrevolutionarynewuses,suchasinthe
manipulationof boundatoms,whichholdspotentialfor
futurequantumcomputers68
.Severalkeyresearchareas
promisesignificantcontinuingadvancesinTHz
technology.Centralamongthesearecurrentefforts
towardshigher-powerTHzsources—whichwillgiverise
tonon-linearTHzspectroscopy,withthepotentialto
extractadditionalmaterialcharacteristics—higher-
sensitivityreceiversandimprovedunderstandingof the
interactionbetweenTHzradiationandmaterialssuchas
quantumstructuresandbiomaterials.
References
1. Kohler, R. et al. Terahertz semiconductor-heterostructure laser. Nature 417,
156–159 (2002).
2. Nagel, M., Haring Bolivar, P., Brucherseifer, M. & Kurz, H. Integrated THz
technology for label-free genetic diagnostics. Appl. Phys. Lett. 80, 154–156
(2002).
3. Huber, R. et al. How many-particle interactions develop after ultrafast excitation
of an electron-hole plasma. Nature 414, 286–289 (2001).
4. Auston, D. H., Cheung, K. P.,Valdmanis, J. A. & Kleinman, D. A. Cherenkov
radiation from femtosecond optical pulses in electro-optic media. Phys. Rev.
Lett. 53, 1555–1558 (1984).
5. Fattinger, Ch. & Grischkowsky, D. Point source terahertz optics. Appl. Phys. Lett.
53, 1480–1482 (1988).
6. Ferguson, B. & Abbott, D. De-noising techniques for terahertz responses of
biological samples. Microelectron. J. 32, 943–953 (2001).
7. Hashimshony, D., Zigler,A. & Papadopoulos, D. Conversion of electrostatic to
electromagnetic waves by superluminous ionization fronts. Phys. Rev. Lett. 86,
2806–2809 (2001).
8. van der Weide, D. W., Murakowski, J. & Keilmann, F. Gas-absorption
spectroscopy with electronic terahertz techniques. IEEE Trans. Microwave
Theory Tech. 48, 740–743 (2000).
9. Mourou, G. A., Stancampiano, C. V.,Antonetti,A. & Orszag,A. Picosecond
microwave pulses generated with a subpicosecond laser driven semiconductor
switch. Appl. Phys. Lett. 39, 295–296 (1981).
10. Gornik, E. & Kersting, R. in Semiconductors and Semimetals (ed. Tsen, K. T.)
(Academic, San Diego, 2001).
11. Leitenstorfer,A., Hunsche, S., Shah, J., Nuss, M. C. & Knox,W. H. Femtosecond
charge transport in polar semiconductors. Phys. Rev. Lett. 82, 5140–5142
(1999).
12. Leitenstorfer,A., Hunsche, S., Shah, J., Nuss, M. C. & Knox,W. H. Femtosecond
high-field transport in compound semiconductors. Phys. Rev. B. 61,
16642–16652 (1999).
13. Darrow, J. T., Zhang, X.-C.,Auston, D. H. & Morse, J. D. Saturation properties
of large-aperture photoconductor antennas. IEEE J. Quantum Electron. 28,
1607–1616 (1992).
14. Zhao, G., Schouten, R. N., van derValk, N.,Wenckebach,W. T. & Planken, P. C.
M. Design and performance of a THz emission and detection setup based on a
semi-insulating GaAs emitter. Rev. Sci. Instrum. 73, 1715–1719 (2002).
15. Katzenellenbogen, N. & Grischkowsky, D. Efficient generation of 380 fs pulses
of THz radiation by ultrafast laser pulse excitation of a biased metal-
semiconductor interface.Appl. Phys. Lett. 58, 222–224 (1991).
16. Bass, M., Franken, P. A.,Ward, J. F. & Weinreich, G. Optical rectification. Phys.
Rev. Lett. 9, 446–448 (1962).
17. Yang, K. H., Richards, P. L. & Shen,Y. R. Generation of far-infrared radiation
by picosecond light pulses in LiNbO3
. Appl. Phys. Lett. 19, 320–323 (1971).
18. Zhang, X.-C., Jin,Y.,Yang, K. & Schowalter, L. J. Resonsant nonlinear
susceptibility near the GaAs band gap. Phys. Rev. Lett. 69, 2303–2306 (1992).
19. Rice,A. et al. Terahertz optical rectification from <110> zinc-blende crystals.
Appl. Phys. Lett. 64, 1324–1326 (1994).
20. Zhang, X.-C. et al. Terahertz optical rectification from a nonlinear organic
crystal. Appl. Phys. Lett. 61, 3080–3082 (1992).
21. Bonvalet,A., Joffre, M., Martin, J.-L. & Migus,A. Generation of ultrabroadband
femtosecond pulses in the mid-infrared by optical rectification of 15 fs light
pulses at 100 MHz repetition rate. Appl. Phys. Lett. 67, 2907–2909 (1995).
22. Kaindl, R. A., Eickemeyer, F.,Woerner, M. & Elsaesser, T. Broadband phase-
matched difference frequency mixing of femtoseconds pulses in GaSe:
Experiment and theory. Appl. Phys. Lett. 75, 1060–1062 (1999).
23. Huber, R., Brodschelm,A., Tauser, F. & Leitenstorfer,A. Generation and fields-
resolved detection of femtoseconds electromagnetic pulses tunable up to 41
THz. Appl. Phys. Lett. 76, 3191–3193 (2000).
24. Wiltse, J. C. History of millimeter and submillimeter waves. IEEE Trans.
Microwave Theory Technol. 32, 1118–1127, (1984).
25. Siegel, P. H. Terahertz technology. IEEE Trans. Microwave Theory Technol. 50,
910–928 (2002).
26. Maiwald, F. et al. in IEEE Microwave Theory and Techniques Society
International Symposium Digest (ed. Sigmon, B.)Vol. 3 1637–1640 (IEEE,
Piscataway, New Jersey, 2001).
27. Ryzhii,V., Khmyrova, I. & Shur, M. S. Terahertz photomixing in quantum well
structures using resonant excitation of plasma oscillations. J. Appl. Phys. 91,
1875–1881 (2002).
28. Williams, G. P. Far-IR/THz radiation from the Jefferson Laboratory, energy
recovered linac, free electron laser. Rev. Sci. Instrum. 73, 1461–1463 (2002).
29. Morris, R. & Shen,Y. R. Theory of far-infrared generation by optical mixing.
Phys. Rev. A, 15, 1143–1156 (1977).
30. Brown, E. R., McIntosh, K. A., Nichols, K. B. & Dennis, C. L. Photomixing up
to 3.8 THz in low-temperature-grown GaAs. Appl. Phys. Lett. 66, 285–287
(1995).
31. Kawase, K., Sato, M., Taniuchi, T. & Ito, H. Coherent tunable THz-wave
generation from LiNbO3 with monolithic grating coupler. Appl. Phys. Lett. 68
2483–2485 (1996).
32. Shikata, J., Kawase, K., Sato, M., Taniuchi, T. & Ito, H. Enhancement of THz-
wave output from LiNbO3
optical parametric oscillators by cryogenic cooling,
Opt. Lett. 24, 202–204 (1999).
33. Kawase, K., Shikata, J., Imai, K. & Ito, H. Transform-limited, narrow-linewidth,
terahertz-wave parametric generator. Appl. Phys. Lett. 78, 2819–2821 (2001).
34. Kadow, C., Jackson,A. W., Gossard,A. C., Matsuura, S. & Blake, G. A. Self-
assembled ErAs islands in GaAs for optical-heterodyne terahertz generation.
Appl. Phys. Lett. 76, 3510–3512 (2000).
35. Komiyama, S. Far-infrared emission from population-inverted hot-carrier
system in p-Ge. Phys. Rev. Lett. 48, 271 (1982).
36. Gousev,Yu. P. et al. Widely tunable continuous wave THz laser. Appl. Phys. Lett.
75, 757–759 (1999).
37. Faist, J. et al. Quantum cascade laser. Science 264, 553–556 (1994).
38. Komiyama, S.,Astaflev, O.,Antonov,V., Kutsuwa, T. & Hirai, H.A single-
photon detector in the far-infrared range.Nature 403, 405–407 (2000).
39. Gaidis, M. C. et al. A 2.5 THz receiver front-end for spaceborne applications.
IEEE Trans. Microwave Theory Technol. 48, 733–739 (2000).
© 2002 Nature Publishing Group
REVIEW ARTICLE
nature materials | VOL 1 | SEPTEMBER 2002 | www.nature.com/naturematerials 33
40. Dolan, G. J., Phillips, T. G. & Woody, D. P. Low noise 115 GHz mixing in
superconductor oxide barrier tunnel junctions. Appl. Phys. Lett. 34,
347–349 (1979).
41. Carlstrom, J. E. & Zmuidzinas, J. in Reviews of Radio Science (ed. Stone,W. R.)
1193–1995 (Oxford Univ. Press, Oxford, UK, 1996).
42. Knap,W. et al. Resonant detection of sub-terahertz radiation by plasma waves
in the submicron field effect transistor. Appl. Phys. Lett. 80, 3433–3435 (2002).
43. Valdmanis, J. A., Mourou, G. A. & Gabel, C. W. Subpicosecond electrical
sampling. IEEE J. of Quantum Electron. 19, 664–667 (1983).
44. Wu, Q. & Zhang, X.-C. Free-space electro-optic sampling of terahertz beams.
Appl. Phys. Lett. 67, 3523–3525 (1995).
45. Brodschelm,A., Tauser, F., Huber, R., Sohn, J. Y. & Leitenstorfer,A. in Ultrafast
Phenomena XII (eds. Elsaesser, T., Mukhamel, S., Murnane, M. M. & Scherer, N.
F.) (Springer, Berlin, 2000).
46. Kono, S., Tani, M., Gu P. & Sakai, K. Detection of up to 20 THz with a low-
temperature-grown GaAs photoconductive antenna gated with 15 fs light
pulses. Appl. Phys. Lett. 77, 4104–4106 (2001).
47. Holland,W. S. et al. Submillimeter images of dusty debris around nearby stars.
Nature 392, 788–791 (1998).
48.van Exter, M., Fattinger, C. & Grischkowsky, D. Terahertz time-domain
spectroscopy of water vapor. Opt. Lett. 14, 1128–1130 (1989).
49.van Exter, M. & Grischkowsky, D. Characterization of an optoelectronic
terahertz beam system. IEEE Trans. Microwave Theory Tech. 38, 1684–1691
(1990).
50.Grischkowsky, D., Keiding, S., van Exter, M. & Fattinger, C. Far-infrared time-
domain spectroscopy with terahertz beams of dielectrics and semiconductors. J.
Opt. Safety Am. B 7, 2006–2015 (1990).
51.Jiang, Z., Li, M. & Zhang, X.-C. Dielectric constant measurement of thin films
by differential time-domain spectroscopy. Appl. Phys. Lett. 76, 3221–3223
(2000).
52. Kaindl, R. A. et al. Far-infrared optical conductivity gap in superconducting
MgB2
films. Phys. Rev. Lett. 88, 027003 (2002).
53.Hu, B. B. & Nuss, M. C. Imaging with terahertz waves. Opt. Lett. 20, 1716–1718
(1995).
54.Mittleman, D. M., Jacobsen, R. H. & Nuss, M. C. T-ray imaging. IEEE J. Sel. Top.
Quantum Electron. 2, 689–692 (1996).
55. Loffler, T. et al. Terahertz dark-field imaging of biomedical tissue. Optics Express
9, 616–621 (2001).
56.Cheville, R. A. & Grischkowsky, D. Far-infrared terahertz time-domain
spectroscopy of flames. Opt. Lett. 20, 1646–1648 (1995).
57. Ferguson, B.,Wang, S., Gray, D.,Abbott, D. & Zhang, X.-C. T-ray computed
tomography. Opt. Lett. 27, 1312–1314 (2002).
58. Ferguson, B.,Wang, S., Gray, D.,Abbott, D. & Zhang, X.-C. Towards functional
3D THz imaging. Phys. Med. Biol. (in the press).
59. Mitrofanov, O. et al. Collection-mode near-field imaging with 0.5-THz pulses.
IEEE J. Sel. Top. Quantum. Electron. 7, 600–607 (2001).
60. Han, P. Y., Cho, G. C. & Zhang, X.-C. Time-domain transillumination of
biological tissues with terahertz pulses. Opt. Lett. 25, 242–245 (2000).
61. Woodward, R. M. et al. in OSA Trends in Optics and Photonics (TOPS),Vol 56,
Conference on Lasers and Electro-optics. (OSA,Washington DC, 2001).
62. Markelz,A. G., Roitberg,A. & Heilweil, E. J. Pulsed terahertz spectroscopy of
DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz. Chem.
Phys. Lett. 320, 42–48 (2000).
63. Walther, M., Fischer, B., Schall, M., Helm H. & Uhd Jepsen, P. Far-infrared
vibrational spectra of all-trans, 9-cis and 13-cis retinal measured by THz time-
domain spectroscopy. Chem. Phys. Lett. 332, 389–395 (2000).
64. Brucherseifer, M. et al. Label-free probing of the binding state of DNA by time-
domain terahertz sensing. Appl. Phys. Lett. 77, 4049 –4051 (2000).
65. Mickan, S. P. et al. Label-free bioaffinity detection using Terahertz technology.
Phys. Med. Biol. (in the press).
66. Mickan, S. P.,Abbott, D. Munch, J. & Zhang, X.-C. Noise reduction in Terahertz
thin film measurements using a double modulated differential technique. Fluct.
Noise Lett. 2, 13–28 (2002).
67. Menikh,A., MacColl, R., Mannella, C. A. & Zhang, X.-C. Terahertz biosensing
technology: Frontiers and progress. Chem. Phys. Chem. (in the press).
68. Cole, B. E.,Williams, J. B., King, B. T., Sherwin, M. S. & Stanley, C. R. Coherent
manipulation of semiconductor quantum bits with terahertz radiation. Nature
410, 60–65 (2001).
Acknowledgements
This work was supported in part by the US Army Research Office, the National
Science Foundation, the Australian Research Council and the Cooperative Research
Centre for Sensor, Signal and Information Processing. The authors thank D.
Abbott, D. Gray,A. Menikh, S. P. Mickan and the Australian-American Fulbright
Commission.
Correspondence and requests for materials should be addressed to X.C.Z.
© 2002 Nature Publishing Group

More Related Content

What's hot

nanothiland2016
nanothiland2016nanothiland2016
nanothiland2016KL Woon
 
10.0000@www.researchgate.net@11315284
10.0000@www.researchgate.net@1131528410.0000@www.researchgate.net@11315284
10.0000@www.researchgate.net@11315284Marium Bano
 
Targeted Band Structure Design and Thermoelectric Materials Discovery Using H...
Targeted Band Structure Design and Thermoelectric Materials Discovery Using H...Targeted Band Structure Design and Thermoelectric Materials Discovery Using H...
Targeted Band Structure Design and Thermoelectric Materials Discovery Using H...Anubhav Jain
 
Application of the Materials Project database and data mining towards the des...
Application of the Materials Project database and data mining towards the des...Application of the Materials Project database and data mining towards the des...
Application of the Materials Project database and data mining towards the des...Anubhav Jain
 
Functional Materials Lab Research Introduction
Functional Materials Lab Research IntroductionFunctional Materials Lab Research Introduction
Functional Materials Lab Research Introductiondirac198269
 

What's hot (6)

nanothiland2016
nanothiland2016nanothiland2016
nanothiland2016
 
10.0000@www.researchgate.net@11315284
10.0000@www.researchgate.net@1131528410.0000@www.researchgate.net@11315284
10.0000@www.researchgate.net@11315284
 
Targeted Band Structure Design and Thermoelectric Materials Discovery Using H...
Targeted Band Structure Design and Thermoelectric Materials Discovery Using H...Targeted Band Structure Design and Thermoelectric Materials Discovery Using H...
Targeted Band Structure Design and Thermoelectric Materials Discovery Using H...
 
Application of the Materials Project database and data mining towards the des...
Application of the Materials Project database and data mining towards the des...Application of the Materials Project database and data mining towards the des...
Application of the Materials Project database and data mining towards the des...
 
Abdel-Aleam CV 29 - 11-2016
Abdel-Aleam CV 29 - 11-2016Abdel-Aleam CV 29 - 11-2016
Abdel-Aleam CV 29 - 11-2016
 
Functional Materials Lab Research Introduction
Functional Materials Lab Research IntroductionFunctional Materials Lab Research Introduction
Functional Materials Lab Research Introduction
 

Similar to Ferguson2002

Visualization of the Electrical Field in the Vicinity of a THz Pulse Exposed ...
Visualization of the Electrical Field in the Vicinity of a THz Pulse Exposed ...Visualization of the Electrical Field in the Vicinity of a THz Pulse Exposed ...
Visualization of the Electrical Field in the Vicinity of a THz Pulse Exposed ...kagikenco
 
Lattice Energy LLC-Synopses of Selected WLT Technical Papers-Jan 30 2012
Lattice Energy LLC-Synopses of Selected WLT Technical Papers-Jan 30 2012Lattice Energy LLC-Synopses of Selected WLT Technical Papers-Jan 30 2012
Lattice Energy LLC-Synopses of Selected WLT Technical Papers-Jan 30 2012Lewis Larsen
 
Poster Superconductivity
Poster SuperconductivityPoster Superconductivity
Poster SuperconductivityJohn Guss
 
high Dielectric material
high Dielectric materialhigh Dielectric material
high Dielectric materialParisa29
 
Investigation of the Piezoelectric Effect as a Means to Generate X-Rays
Investigation of the Piezoelectric Effect as a Means to Generate X-RaysInvestigation of the Piezoelectric Effect as a Means to Generate X-Rays
Investigation of the Piezoelectric Effect as a Means to Generate X-RaysCarlos Bella
 
Electrical characterization of non conducting materials using reflection based
Electrical characterization of non conducting materials using reflection basedElectrical characterization of non conducting materials using reflection based
Electrical characterization of non conducting materials using reflection basedPallavi Malame
 
A Study of electromechanical behavior of Piezo ceramic Smart materials and ap...
A Study of electromechanical behavior of Piezo ceramic Smart materials and ap...A Study of electromechanical behavior of Piezo ceramic Smart materials and ap...
A Study of electromechanical behavior of Piezo ceramic Smart materials and ap...Dheepan Thangavelu
 
Waveguide Fixture Based Permittivity Determination of Non-Conducting Materials
Waveguide Fixture Based Permittivity Determination of Non-Conducting MaterialsWaveguide Fixture Based Permittivity Determination of Non-Conducting Materials
Waveguide Fixture Based Permittivity Determination of Non-Conducting MaterialsPallavi Malame
 
Fundamentals of ENAA for nuclear engineering.ppt
Fundamentals of ENAA for nuclear engineering.pptFundamentals of ENAA for nuclear engineering.ppt
Fundamentals of ENAA for nuclear engineering.pptMSafiurRahman
 
Atmospheric Non-Thermal Plasma Sources
Atmospheric Non-Thermal Plasma SourcesAtmospheric Non-Thermal Plasma Sources
Atmospheric Non-Thermal Plasma SourcesCSCJournals
 
Combining density functional theory calculations, supercomputing, and data-dr...
Combining density functional theory calculations, supercomputing, and data-dr...Combining density functional theory calculations, supercomputing, and data-dr...
Combining density functional theory calculations, supercomputing, and data-dr...Anubhav Jain
 
2019-06-07 Characterization and research of semiconductors with an FTIR spect...
2019-06-07 Characterization and research of semiconductors with an FTIR spect...2019-06-07 Characterization and research of semiconductors with an FTIR spect...
2019-06-07 Characterization and research of semiconductors with an FTIR spect...LeonidBovkun
 
Cis Vs. Trans: Squaraine Molecules as Potential Sensitizers for Dye Sensitize...
Cis Vs. Trans: Squaraine Molecules as Potential Sensitizers for Dye Sensitize...Cis Vs. Trans: Squaraine Molecules as Potential Sensitizers for Dye Sensitize...
Cis Vs. Trans: Squaraine Molecules as Potential Sensitizers for Dye Sensitize...danielmorales91
 
Vol. 1 (3), 2014, 65‒70
Vol. 1 (3), 2014, 65‒70Vol. 1 (3), 2014, 65‒70
Vol. 1 (3), 2014, 65‒70Said Benramache
 

Similar to Ferguson2002 (20)

Visualization of the Electrical Field in the Vicinity of a THz Pulse Exposed ...
Visualization of the Electrical Field in the Vicinity of a THz Pulse Exposed ...Visualization of the Electrical Field in the Vicinity of a THz Pulse Exposed ...
Visualization of the Electrical Field in the Vicinity of a THz Pulse Exposed ...
 
Jddr 189
Jddr 189Jddr 189
Jddr 189
 
Lattice Energy LLC-Synopses of Selected WLT Technical Papers-Jan 30 2012
Lattice Energy LLC-Synopses of Selected WLT Technical Papers-Jan 30 2012Lattice Energy LLC-Synopses of Selected WLT Technical Papers-Jan 30 2012
Lattice Energy LLC-Synopses of Selected WLT Technical Papers-Jan 30 2012
 
Poster Superconductivity
Poster SuperconductivityPoster Superconductivity
Poster Superconductivity
 
Final Abstract
Final AbstractFinal Abstract
Final Abstract
 
high Dielectric material
high Dielectric materialhigh Dielectric material
high Dielectric material
 
Investigation of the Piezoelectric Effect as a Means to Generate X-Rays
Investigation of the Piezoelectric Effect as a Means to Generate X-RaysInvestigation of the Piezoelectric Effect as a Means to Generate X-Rays
Investigation of the Piezoelectric Effect as a Means to Generate X-Rays
 
Business World
Business WorldBusiness World
Business World
 
ptsb22.ppt
ptsb22.pptptsb22.ppt
ptsb22.ppt
 
Electrical characterization of non conducting materials using reflection based
Electrical characterization of non conducting materials using reflection basedElectrical characterization of non conducting materials using reflection based
Electrical characterization of non conducting materials using reflection based
 
A Study of electromechanical behavior of Piezo ceramic Smart materials and ap...
A Study of electromechanical behavior of Piezo ceramic Smart materials and ap...A Study of electromechanical behavior of Piezo ceramic Smart materials and ap...
A Study of electromechanical behavior of Piezo ceramic Smart materials and ap...
 
Apt thomas kelly
Apt thomas kellyApt thomas kelly
Apt thomas kelly
 
Waveguide Fixture Based Permittivity Determination of Non-Conducting Materials
Waveguide Fixture Based Permittivity Determination of Non-Conducting MaterialsWaveguide Fixture Based Permittivity Determination of Non-Conducting Materials
Waveguide Fixture Based Permittivity Determination of Non-Conducting Materials
 
Fundamentals of ENAA for nuclear engineering.ppt
Fundamentals of ENAA for nuclear engineering.pptFundamentals of ENAA for nuclear engineering.ppt
Fundamentals of ENAA for nuclear engineering.ppt
 
Scientific_Publication
Scientific_PublicationScientific_Publication
Scientific_Publication
 
Atmospheric Non-Thermal Plasma Sources
Atmospheric Non-Thermal Plasma SourcesAtmospheric Non-Thermal Plasma Sources
Atmospheric Non-Thermal Plasma Sources
 
Combining density functional theory calculations, supercomputing, and data-dr...
Combining density functional theory calculations, supercomputing, and data-dr...Combining density functional theory calculations, supercomputing, and data-dr...
Combining density functional theory calculations, supercomputing, and data-dr...
 
2019-06-07 Characterization and research of semiconductors with an FTIR spect...
2019-06-07 Characterization and research of semiconductors with an FTIR spect...2019-06-07 Characterization and research of semiconductors with an FTIR spect...
2019-06-07 Characterization and research of semiconductors with an FTIR spect...
 
Cis Vs. Trans: Squaraine Molecules as Potential Sensitizers for Dye Sensitize...
Cis Vs. Trans: Squaraine Molecules as Potential Sensitizers for Dye Sensitize...Cis Vs. Trans: Squaraine Molecules as Potential Sensitizers for Dye Sensitize...
Cis Vs. Trans: Squaraine Molecules as Potential Sensitizers for Dye Sensitize...
 
Vol. 1 (3), 2014, 65‒70
Vol. 1 (3), 2014, 65‒70Vol. 1 (3), 2014, 65‒70
Vol. 1 (3), 2014, 65‒70
 

Recently uploaded

Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Patryk Bandurski
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonetsnaman860154
 
Azure Monitor & Application Insight to monitor Infrastructure & Application
Azure Monitor & Application Insight to monitor Infrastructure & ApplicationAzure Monitor & Application Insight to monitor Infrastructure & Application
Azure Monitor & Application Insight to monitor Infrastructure & ApplicationAndikSusilo4
 
SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024Scott Keck-Warren
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountPuma Security, LLC
 
AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsMemoori
 
Understanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitectureUnderstanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitecturePixlogix Infotech
 
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024BookNet Canada
 
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptxMaking_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptxnull - The Open Security Community
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxMalak Abu Hammad
 
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Alan Dix
 
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...shyamraj55
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking MenDelhi Call girls
 
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersEnhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersThousandEyes
 
Maximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxMaximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxOnBoard
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsEnterprise Knowledge
 
Hyderabad Call Girls Khairatabad ✨ 7001305949 ✨ Cheap Price Your Budget
Hyderabad Call Girls Khairatabad ✨ 7001305949 ✨ Cheap Price Your BudgetHyderabad Call Girls Khairatabad ✨ 7001305949 ✨ Cheap Price Your Budget
Hyderabad Call Girls Khairatabad ✨ 7001305949 ✨ Cheap Price Your BudgetEnjoy Anytime
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slidespraypatel2
 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesSinan KOZAK
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking MenDelhi Call girls
 

Recently uploaded (20)

Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonets
 
Azure Monitor & Application Insight to monitor Infrastructure & Application
Azure Monitor & Application Insight to monitor Infrastructure & ApplicationAzure Monitor & Application Insight to monitor Infrastructure & Application
Azure Monitor & Application Insight to monitor Infrastructure & Application
 
SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path Mount
 
AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial Buildings
 
Understanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitectureUnderstanding the Laravel MVC Architecture
Understanding the Laravel MVC Architecture
 
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
 
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptxMaking_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptx
 
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
 
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
 
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersEnhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
 
Maximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxMaximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptx
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI Solutions
 
Hyderabad Call Girls Khairatabad ✨ 7001305949 ✨ Cheap Price Your Budget
Hyderabad Call Girls Khairatabad ✨ 7001305949 ✨ Cheap Price Your BudgetHyderabad Call Girls Khairatabad ✨ 7001305949 ✨ Cheap Price Your Budget
Hyderabad Call Girls Khairatabad ✨ 7001305949 ✨ Cheap Price Your Budget
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slides
 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen Frames
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men
 

Ferguson2002

  • 1. REVIEW ARTICLE 26 nature materials | VOL 1 | SEPTEMBER 2002 | www.nature.com/naturematerials BRADLEY FERGUSON1,2 AND XI-CHENG ZHANG*1 1 CenterforTerahertzResearch,RensselaerPolytechnicInstitute, 1108th StreetTroy,NewYork,12180-3590,USA 2 CentreforBiomedicalEngineeringandDepartmentofElectrical andElectronicEngineering,TheUniversityofAdelaide,South Australia5005,Australia *e-mail:zhangxc@rpi.edu Recentyearshaveseenaplethoraof significantadvances inmaterialsdiagnosticsbyterahertzsystems,ashigher- powersourcesandmoresensitivedetectorsopenupa rangeof potentialuses.Applicationsincluding semiconductorandhigh-temperaturesuperconductor characterization,tomographicimaging,label-free geneticanalysis,cellularlevelimagingandchemicaland biologicalsensinghavethrustterahertzresearchfrom relativeobscurityintothelimelight. Theterahertz(THz)regionof theelectromagnetic spectrumhasproventobeoneof themostelusive. Terahertzradiationislooselydefinedbythefrequency rangeof 0.1to10 THz(1012 cyclespersecond). Beingsituatedbetweeninfraredlightandmicrowave radiation(seeFig. 1),THzradiationisresistanttothe techniquescommonlyemployedinthesewell- establishedneighbouringbands.Highatmospheric absorptionconstrainedearlyinterestandfundingfor THzscience.Historically,themajoruseof THz spectroscopyhasbeenbychemistsandastronomersin thespectralcharacterizationof therotationaland vibrationalresonancesandthermal-emissionlinesof simplemolecules.Thepast20yearshaveseena revolutioninTHzsystems,asadvancedmaterials researchprovidednewandhigher-powersources,and thepotentialof THzforadvancedphysicsresearchand commercialapplicationswasdemonstrated.Terahertz technologyisanextremelyattractiveresearchfield,with interestfromsectorsasdiverseasthesemiconductor, medical,manufacturing,spaceanddefenceindustries. Severalrecentmajortechnicaladvanceshavegreatly extendedthepotentialandprofileof THzsystems. Theseadvancesincludethedevelopmentof aquantum cascadeTHzlaser1 ,thedemonstrationof THzdetection of singlebase-pairdifferencesinfemtomolar concentrationsof DNA2 andtheinvestigationof the evolutionof multiparticlechargeinteractionswithTHz spectroscopy3 .Thisarticleprovidesanoverviewof these andmanyotherimportantrecentdevelopments. THZ SPECTROSCOPY SYSTEMS Terahertzspectroscopyallowsamaterial’sfar-infrared opticalpropertiestobedeterminedasafunctionof frequency.Thisinformationcanyieldinsightinto materialcharacteristicsforawiderangeof applications. ManydifferentmethodsexistforperformingTHz spectroscopy.Fouriertransformspectroscopy(FTS)is perhapsthemostcommontechniqueusedforstudying molecularresonances.Ithastheadvantageof an extremelywidebandwidth,enablingmaterial characterizationfromTHzfrequenciestowellintothe infrared.InFTSthesampleisilluminatedwitha broadbandthermalsourcesuchasanarclamporaSiC globar.Thesampleisplacedinanopticalinterferometer systemandthepathlengthof oneof theinterferometer armsisscanned.Adirectdetectorsuchasahelium- cooledbolometerisusedtodetecttheinterference signal.TheFouriertransformof thesignalthenyields thepowerspectraldensityof thesample. Onedisadvantageof FTSisitslimitedspectral Materials for terahertz science and technology Terahertz spectroscopy systems use far-infrared radiation to extract molecular spectral information in an otherwise inaccessible portion of the electromagnetic spectrum. Materials research is an essential component of modern terahertz systems: novel, higher-power terahertz sources rely heavily on new materials such as quantum cascade structures. At the same time, terahertz spectroscopy and imaging provide a powerful tool for the characterization of a broad range of materials, including semiconductors and biomolecules. 103 106 109 1012 1015 1018 1021 1024 100 Microwaves Visible kilo mega giga tera peta exa zetta yotta X-ray γ-ray THz Electronics Photonics Hz Radar ??? Frequency (Hz) Example industries: Radio communications MF, HF, VHF, UHF, SHF, EHF Optical communications Medical imaging Astrophysics Figure 1Theelectromagnetic spectrum.Thedevelopmentof efficientemittersanddetectors withineachofthespectral regimeshasresultedinthebirth ofnumerousindustries. Thesearchforpotential applicationsofTHzradiationis steadilyintensifyingasmaterials researchprovidesimproved sourcesanddetectors. © 2002 Nature Publishing Group
  • 2. REVIEW ARTICLE nature materials | VOL 1 | SEPTEMBER 2002 | www.nature.com/naturematerials 27 resolution.Spectralmeasurementshavingamuch higherresolutionmaybemadeusinganarrowband systemwithatunableTHzsourceordetector.Inthese systems,thesourceordetectoristunedacrossthe desiredbandwidthandthesample’sspectralresponseis measureddirectly.BothFTSandnarrowband spectroscopyarealsowidelyusedinpassivesystemsfor monitoringthermal-emissionlinesof molecules, particularlyinastronomyapplications. Athird,morerecenttechniqueistermedTHztime- domainspectroscopy(THz-TDS).THz-TDSusesshort pulsesof broadbandTHzradiation,whicharetypically generatedusingultrafastlaserpulses.Thistechnique grewfromworkinthe1980satAT&TBellLabsandthe IBMT.J.WatsonResearchCenter4,5 .Althoughthe spectralresolutionof THz-TDSismuchcoarserthan narrowbandtechniques,anditsspectralrange significantlylessthanthatof FTS,ithasanumberof advantagesthathavegivenrisetosomeimportantrecent applications.ThetransmittedTHzelectricfieldis measuredcoherently,whichprovidesbothhigh sensitivityandtime-resolvedphaseinformation.Itis alsoamenabletoimplementationwithinanimaging systemtoyieldrichspectroscopicimages.ATHz-TDS systemisdescribedinFig. 2.TypicalTHz-TDSsystems haveafrequencybandwidthbetween2and5 THz,a spectralresolutionof 50 GHz,anacquisitiontimeunder oneminuteandadynamicrangeof 1 × 105 inelectric field.Signal-processingalgorithmsmaybeusedto improvethesignal-to-noiseratioof themeasured signalsbyalmost30%(ref.6). THZ SOURCES Thelackofahigh-power,low-cost,portableroom- temperatureTHzsourceisthemostsignificantlimitation ofmodernTHzsystems.However,thereisavastarrayof potentialsourceseachwithrelativeadvantages,and advancesinhigh-speedelectronics,laserandmaterials researchcontinuetoprovidenewcandidates.Sources maybebroadlyclassifiedaseitherincoherentthermal sources,broadbandpulsed(‘T-ray’)techniquesor narrowbandcontinuous-wavemethods. BROADBAND THZ SOURCES MostbroadbandpulsedTHzsourcesarebasedonthe excitationof differentmaterialswithultrashortlaser pulses.Anumberof differentmechanismshavebeen exploitedtogenerateTHzradiation,including photocarrieraccelerationinphotoconductingantennas, second-ordernon-lineareffectsinelectro-opticcrystals, plasmaoscillations7 andelectronicnon-linear transmissionlines8 .Currently,conversionefficienciesin allof thesesourcesareverylow,andconsequently, averageTHzbeampowerstendtobeinthenano-to microwattrange,whereastheaveragepowerof the femtosecondopticalsourceisintheregionof 1 W. Photoconductionandopticalrectificationaretwo of themostcommonapproachesforgenerating broadbandpulsedTHzbeams.Thephotoconductive approachuseshigh-speedphotoconductorsas transientcurrentsourcesforradiatingantennas9 . Typicalphotoconductorsincludehigh-resistivity GaAs,InPandradiation-damagedsiliconwafers. Metallicelectrodesareusedtobiasthe photoconductivegapandformanantenna. ThephysicalmechanismforTHzbeamgeneration inphotoconductiveantennasbeginswithanultrafast laserpulse(withaphotonenergylargerthanthe bandgapof thematerialhν ≥ Eg ),whichcreates electron–holepairsinthephotoconductor.Thefree carriersthenaccelerateinthestaticbiasfieldtoforma transientphotocurrent,andthefast,time-varying currentradiateselectromagneticwaves.Several materialparametersaffecttheintensityandthe bandwidthof theresultantTHzradiation. ForefficientTHzradiation,itisdesirabletohaverapid photocurrentriseanddecaytimes.Thussemiconductors withsmalleffectiveelectronmassessuchasInAsand InPareattractive.Themaximumdriftvelocityisalso animportantmaterialparameter,butitisgenerally limitedbytheintrabandscatteringrateorby intervalleyscatteringindirectsemiconductorssuchas GaAs10–12 .Becausetheradiatingenergymainlycomes fromstoredsurfaceenergyintheformof thestaticbias field,theTHzradiationenergyscalesupwiththebias andopticalfluency13 .Thebreakdownfieldof the materialisanotherimportantparameterbecausethis determinesthemaximumbiasthatmaybeapplied. Photoconductiveemittersarecapableof relativelylarge averageTHzpowersinexcessof 40 µW(ref.14)and bandwidthsashighas4 THz(ref.15). Opticalrectificationisanalternativemechanismfor pulsedTHzgeneration,andisbasedontheinverse processof theelectro-opticeffect16 .Again,femtosecond laserpulsesarerequired,butincontrastto photoconductingelementswheretheopticalbeam functionsasatrigger,theenergyof theTHzradiationin opticalrectificationcomesdirectlyfromtheexciting laserpulse.Theconversionefficiencyinoptical rectificationdependsprimarilyonthematerial’snon- linearcoefficientandthephase-matchingconditions. Thistechniquewasfirstdemonstratedfor generatingfar-infraredradiationusingLiNbO3 (ref.17).MuchresearchhasfocusedonoptimizingTHz generationthroughinvestigatingtheelectro-optic propertiesof differentmaterials,includingtraditional semiconductorssuchasGaAsandZnTe,andorganic crystalssuchastheionicsalt4-dimethylamino-N- methylstilbazoliumtosylate(DAST)amongmany others18–20 .Becauseopticalrectificationrelieson couplingof theincidentopticalpowertoTHz frequenciesatrelativelylowefficiency,itusually providesloweroutputpowersthanphotoconductive Sample THz detector Beam Delay stage THz emitter Femtosecond pulses Pump beam Probe beam Parabolic Figure 2IllustrationofaTHz- TDSpumpprobesystem. Theultrafastlaserbeamissplit intopumpandprobebeams. Thepumpbeamisincidenton theTHzemittertogenerateTHz pulses,andtheTHzpulsesare collimatedandfocusedonthe targetusingparabolicmirrors. Aftertransmissionthroughthe target,theTHzpulseis collimatedandre-focusedon theTHzdetector.Theoptical probebeamisusedtogatethe detectorandmeasurethe instantaneousTHzelectricfield. Adelaystageisusedtooffset thepumpandprobebeamsand allowtheTHztemporalprofileto beiterativelysampled. © 2002 Nature Publishing Group
  • 3. REVIEW ARTICLE 28 nature materials | VOL 1 | SEPTEMBER 2002 | www.nature.com/naturematerials antennas,butithastheadvantageof providingvery highbandwidths,upto50 THz(ref.21).Phase- matchedopticalrectificationinGaSeallows ultrabroadbandTHzpulsestobegeneratedwitha tunablecentrewavelength.Tuninguptoafrequencyof 41 THzisaccomplishedbytiltingthecrystalaboutthe horizontalaxisperpendiculartothepumpbeamto modifythephase-matchingconditions22,23 . NARROWBAND THZ SOURCES NarrowbandTHzsourcesarecrucialforhigh-resolution spectroscopyapplications.Theyalsohavebroad potentialapplicationsintelecommunications,andare particularlyattractiveforextremelyhighbandwidth intersatellitelinks.Forthesereasonstherehasbeen significantresearchinterestinthedevelopmentof narrowbandsourcesoverthepastcentury24 .Amultitude of techniquesareunderdevelopment,including upconversionof electronicradio-frequencysources, downconversionof opticalsources,lasersandbackward- wavetubes.Severalcomprehensivereviewsof thisfield areavailable25 . Thetechniquemostusedforgeneratinglow-power (<100 µW)continuous-waveTHzradiationisthrough upconversionof lower-frequencymicrowaveoscillators, suchasvoltage-controlledoscillatorsanddielectric- resonatoroscillators.Upconversionistypicallyachieved usingachainof planarGaAsSchottky-diodemultipliers. Usingthesemethods,frequenciesashighas2.7 THz havebeendemonstrated26 .Researchalsocontinuesto increasethefrequencyof GunnandIMPATTdiodesto thelowerreachesof theterahertzregionusingalternate semiconductingstructuresandimprovedfabrication techniques27 .GaslasersareanothercommonTHz source.Inthesesources,acarbondioxidelaserpumpsa low-pressuregascavity,whichlasesatthegasmolecule’s emission-linefrequencies.Thesesourcesarenot continuouslytunable,andtypicallyrequirelargecavities andkilowattpowersupplies,howevertheycanprovide highoutputpowersupto30 mW.Methanoland hydrogencyanidelasersarethemostpopular,and theyareincommonuseforspectroscopyand heterodynereceivers. Extremelyhigh-powerTHzemissionshaverecently beendemonstratedusingfree-electronlaserswith energy-recoveringlinearaccelerators28 .Free-electron lasersuseabeamofhigh-velocitybunchesofelectrons propagatinginavacuumthroughastrong,spatially varyingmagneticfield.Themagneticfieldcausesthe electronbunchestooscillateandemitphotons. Mirrorsareusedtoconfinethephotonstotheelectron beamline,whichformsthegainmediumforthelaser. Suchsystemsimposeprohibitivecostandsize constraintsandtypicallyrequireadedicatedfacility. However,theymaygeneratecontinuousorpulsedwaves, andprovideanaveragebrightnessofmorethansix ordersofmagnitudehigherthantypical photoconductiveantennaemitters.Free-electronlasers havesignificantpotentialinapplicationswhere improvedsignal-to-noiseratioisessential,orinthe investigationofnon-linearTHzspectroscopy.Bench-top variationsonthesametheme,termedbackward-wave tubesorcarcinotrons,arealsocapableofproviding milliwattoutputpowersatTHzfrequencies,andare commerciallyavailable. Anumberof opticaltechniqueshavealsobeen pursuedforgeneratingnarrowbandTHzradiation. Originaleffortsbeganinthe1970susingnon-linear photomixingof twolasersources,butstruggledwith lowconversionefficiencies29 .Inthistechnique,two continuous-wavelaserswithslightlydifferingcentre frequenciesarecombinedinamaterialexhibitinga highsecond-orderopticalnon-linearitysuchasDAST. Thetwolaserfrequenciesmutuallyinterfereinthe 2 Injector Active region 1 Injection barrier Energy Distance 104.9 mm Figure 3Simplifiedconduction bandstructureoftheTHz quantumcascadelaser demonstratedbyKohleretal. (afterref.1).Electronsare injectedthroughthe4.3-nm AlGaAsinjectionbarrierintothe level2energystateoftheactive region.Theactivetransitionfrom level2tolevel1resultsinthe emissionof4.4-THzphotons. Theelectronsthenescapetothe subsequentinjectorband.Atotal of104repeatsofthebasic7well structurewasusedinthelaser. Eachquantumwellconsistsofa thinlayer(10–20 nm)ofGaAs betweentwopotentialbarriersof AlGaAs(0.6–4.3 nmthick). Thelayerthicknessesandthe appliedelectricfieldwere tunedtoprovidetherequired tunnellingcharacteristics. -4 -2 0 2 4 3 2 1 0 Time (ps) a b Electro-optic signal (nA) Transmission 0.1 1 10 60 50 40 30 20 10 0 THz Figure 4AbroadbandTHzpulse withafrequencyspectrum extendingintotheinfrared.a, TemporalwaveformofaTHz pulsegeneratedusingoptical rectificationina27-µmZnTe emitter,andmeasuredusing freespaceelectro-opticsampling ina30-µmZnTesensor.b, FrequencyspectrumoftheTHz field.Theabsorptionresonance at5.3THzisduetophonon modesintheZnTecrystals. © 2002 Nature Publishing Group
  • 4. REVIEW ARTICLE nature materials | VOL 1 | SEPTEMBER 2002 | www.nature.com/naturematerials 29 material,resultinginoutputoscillationsatthesumand differenceof thelaserfrequencies.Suchsystemscanbe designedsuchthatthedifferencetermisintheTHz range.Tunablecontinuous-waveTHzradiationhas beendemonstratedbymixingtwofrequency-offset lasersinGaAsgrownatlowtemperature30 andby mixingtwofrequencymodesfromasinglemultimode laser.Furthertechniquesuseopticalparametric generatorsandoscillatorswhereaQ-switchNd:YAG (neodymium:yttrium-aluminium-garnet)laserpump beamgeneratesasecondidlerbeaminanon-linear crystal,andthepumpandidlersignalbeattoemitTHz radiation31,32 .Opticaltechniquesprovidebroadly tunableTHzradiationandarerelativelycompact owingtotheavailabilityof solid-statelasersources. Outputpowersinexcessof 100 mW(pulsed)have beendemonstrated33 .Opticaldownconversionisarich areaformaterialsresearchbecausemolecularbeam epitaxyandothermaterialsadvancesallowsthe generationof engineeredmaterialswithimproved photomixingproperties34 . Semiconductorlasersareafurthertechniquewith extremepromisefornarrowbandTHzgeneration. Thefirstsuchlaserwasdemonstratedover20yearsago inlightlydopedp-typegermaniumasaresultof hole populationinversioninducedbycrossedelectricand magneticfields35 .Theselasersaretunablebyadjusting themagneticfieldorexternalstress.Terahertzlasingin germaniumhasalsobeendemonstratedbyapplyinga stronguniaxialstresstothecrystaltoinducethehole populationinversion36 .Suchlasershavemanyinherent limitationsincludinglowefficiency,lowoutputpower andtheneedforcryogeniccoolingtomaintainlasing conditions.Recently,semiconductordeposition techniqueshaveadvancedtoalevelwherethe constructionof multiplequantum-wellsemiconductor structuresforlaseremissionisfeasible.Quantum cascadelaserswerefirstdemonstratedin1994basedona seriesof coupledquantumwellsconstructedusing molecularbeamepitaxy37 .Aquantumcascadelaser consistsof coupledquantumwells(nanometre-thick layersof GaAssandwichedbetweenpotentialbarriersof AlGaAs).Thequantumcascadeconsistsof arepeating structureinwhicheachrepeatunitismadeupof an injectorandanactiveregion.Intheactiveregiona populationinversionexistsandelectrontransitiontoa lowerenergyleveloccurs,emittingphotonsataspecific wavelength.Theelectronsthentunnelbetween quantumwellsandtheinjectorregioncouplesthemto thehigherenergylevelintheactiveregionof the subsequentrepeatunit. Quantumcascadelasershavebeendemonstrated withintheinfraredspectrum,butuntilveryrecently severalsignificantproblemshadpreventedTHz quantumcascadelasersfrombeingrealized. Theprincipalproblemsarecausedbythelong wavelengthof THzradiation.Thisresultsinalarge opticalmode,whichresultsinpoorcouplingbetween thesmallgainmediumandtheopticalfield,andinhigh opticallossesowingtofreeelectronsinthematerial (theselossesscaleasthesquareof thewavelength). Kohleretal.1 addressedtheseandotherproblemsin theirrecentinnovativedesignof aTHzquantum cascadelaseroperatingat4.4 THz.Thelaserconsisted of 104repetitionsof thebasicunit(showninFig. 3)and atotalof over700quantumwells.Thissystem demonstratedpulsedoperationatatemperatureof 10 K;however,optimizedfabricationpromisestolead tocontinuous-waveoperationatliquidnitrogen temperatures(of theorderof 70 K). THZ DETECTORS Thedetectionof THz-frequencysignalsisanotherarea of importantactiveresearch.Thelowoutputpowerof THzsourcescoupledwiththerelativelyhighlevelsof thermalbackgroundradiationinthisspectralrangehas necessitatedhighlysensitivedetectionmethods. Forbroadbanddetection,directdetectorsbasedon thermalabsorptionarecommonlyused.Mostof these requirecoolingtoreducethermalbackground.The mostcommonsystemsarehelium-cooledsilicon, germaniumandInSbbolometers.Pyroelectricinfrared detectorsmayalsobeusedatTHzfrequencies. Superconductorresearchhasyieldedextremely sensitivebolometersbasedonthechangeof stateof a superconductorsuchasniobium.Interferometric techniquesmaybeusedtoextractspectralinformation usingdirectdetectors.AsinglephotondetectorforTHz photonshasrecentlybeendemonstrated38 . Thisdetectorusesasingle-electrontransistorconsisting of aquantumdotinahighmagneticfield,tooffer unparalleledsensitivity.Althoughdetectionspeedsare currentlylimitedto1 ms,high-speeddesignsare proposedandthishasthepotentialtorevolutionizethe fieldof THzdetection. a b c 40 40 30 30 20 20 10 10 0 0 mm mm Refractive index 1.5 1.4 1.3 1.2 1.1 1 Figure 5T-raycomputed tomographyimageoftwoplastic cylinders(afterref.57). a,Anopticalimageofthetest structure.b,Thetargetwas imagedusingthetomography system,andtherefractiveindex ofeachcross-sectionalslice wasreconstructed.Thecentral sliceisshown.Thegreyscale intensityindicatestherefractive indexofthetwodifferenttypes ofplastic.c,Thecross-sectional slicesarecombinedtoforma3D image.Asurface-rendered imageisshown. © 2002 Nature Publishing Group
  • 5. REVIEW ARTICLE 30 nature materials | VOL 1 | SEPTEMBER 2002 | www.nature.com/naturematerials Inapplicationsrequiringveryhighspectral resolutionofthesensor,heterodynesensorsarepreferred. Inthesesystems,alocaloscillatorsourceattheTHz frequencyofinterestismixedwiththereceivedsignal. Thedownshiftedsignalisthenamplifiedandmeasured. Atroomtemperaturesemiconductorstructuresmaybe used.AplanarSchottky-diodemixerhasbeenoperated successfullyat2.5 THzforsensingapplicationsinspace39 . Cryogeniccoolingisusedforhighersensitivity inheterodynesuperconductordetectors.Several superconductorstructureshavebeenusedforover 20years.Themostwidelyusedisthesuperconductor- insulator-superconductortunneljunctionmixer40 . High-temperaturesuperconductorssuchasYBCO (yttrium–barium–copperoxide)aretoutedfortheir potentialforhigherbandwidthoperation.Anumberof generalreviewsofnarrowbandTHzreceiversare available41 .Alternativenarrowbanddetectors,suchas electronicresonantdetectors,basedonthefundamental frequencyofplasmawavesinfield-effecttransistorshave beendemonstratedupto600 GHz42 . ForpulsedTHzdetectioninTHz-TDSsystems, coherentdetectorsarerequired.Thetwomostcommon methodsarebasedonphotoconductivesamplingand free-spaceelectro-opticsampling,bothof whichagain relyonultrafastlasersources.Fundamentally,the electro-opticeffectisacouplingbetweenalow- frequencyelectricfield(THzpulse)andalaserbeam (opticalpulse)inthesensorcrystal.Simpletensor analysisindicatesthatusinga<110>-oriented zincblendecrystalasasensorprovidesthehighest sensitivity.TheTHzelectricfieldmodulatesthe birefringenceof thesensorcrystal;thisinturnmodulates thepolarizationellipticityof theopticalprobebeam passingthroughthecrystal.Theellipticitymodulation of theopticalbeamcanthenbeanalysedtoprovide informationonboththeamplitudeandphaseof the appliedelectricfield43,44 . Theuseof anextremelyshortlaserpulse(<15 fs) andathinsensorcrystal(<30 µm)allowelectro-optic detectionof signalsintothemid-infraredrange. Figure 4ashowsatypicalmid-infraredpulsedTHz waveform.TheFouriertransformof theTHzpulseis showninFig. 4b;thehighestfrequencyresponse reachesover30 THz.Theresonantabsorptionat 5.3 THziscausedbythephononmodesof theZnTe crystals.Whenthinsensorsareused,extremelyhigh detectionbandwidths,inexcessof 100 THz,have beendemonstrated45 . Photoconductiveantennasarewidelyusedfor pulsedTHzdetection.Anidenticalstructuretothe photoconductiveantennaemittermaybeused. Ratherthanapplyingabiasvoltagetotheelectrodesof theantenna,acurrentamplifierandmeterareusedto measureatransientcurrent.Ultrahighbandwidth detectionhasbeendemonstratedusing photoconductiveantennadetectorswithdetectable frequenciesinexcessof 60 THz(ref.46). THZ APPLICATIONS Oneof theprimarymotivationsforthedevelopmentof THzsourcesandspectroscopysystemsisthepotentialto extractmaterialcharacteristicsthatareunavailablewhen usingotherfrequencybands.Astronomyandspace researchhasbeenoneof thestrongestdriversforTHz researchbecauseof thevastamountof information availableconcerningthepresenceof abundant moleculessuchasoxygen,waterandcarbonmonoxide instellardustclouds,cometsandplanets47 .Inrecent years,THzspectroscopysystemshavebeenappliedtoa hugevarietyof materialsbothtoaidthebasic understandingof thematerialproperties,andto demonstratepotentialapplicationsinsensingand diagnostics.Wereviewseveralof themorerecently demonstratedapplications. MATERIAL CHARACTERIZATION Oneof themajorapplicationsof THzspectroscopy systemsisinmaterialcharacterization,particularlyof lightweightmoleculesandsemiconductors.Terahertz spectroscopyhasbeenusedtodeterminethecarrier concentrationandmobilityof dopedsemiconductors suchasGaAsandsiliconwafers48–50 .TheDrudemodel maythenbeusedtolinkthefrequency-dependent dielectricresponsetothematerialfree-carrierdynamic properties,includingtheplasmaangularfrequencyand thedampingrate.Animportantfocusisonthe measurementof thedielectricconstantof thinfilms51 . High-temperaturesuperconductor characterizationisanotherimportantapplicationof THzspectroscopy.Severalsuperconductingthinfilms havebeenanalysedtodeterminematerialparameters includingthemagneticpenetrationdepthandthe superconductingenergygap.THz-TDShasrecently beenusedtostudyMgB2 ,thematerialnewlydiscovered tobesuperconducting.Thismaterialexhibitsan extremelyhightransitiontemperatureof 39 Kandis currentlynotwellunderstood.THz-TDSwasusedto determinethesuperconducting-gapenergythreshold of approximately5 meV.Thiscorrespondstoonlyhalf thevaluepredictedbycurrenttheoryandpointstothe existenceof complexmaterialinteractions52 . Experiments with optical-pump THz-probe systems can reveal additional information about 1.6 mm Figure 6THzimageofanonion cellmembrane(afterref.60). ATHzimagingsystembasedon opticalrectificationandfree- spaceelectro-opticsamplingin ZnTecrystals30 µmthickwas usedwithabandwidthupto40 THz.Thisallowedaspatial resolutionoflessthan50 µmto beachieved.Thecellular structureofthetissuemembrane isclearlyvisible. © 2002 Nature Publishing Group
  • 6. REVIEW ARTICLE nature materials | VOL 1 | SEPTEMBER 2002 | www.nature.com/naturematerials 31 materials.In these experiments,the material is excited using an ultrafast optical pulse,and a THz pulse is used to probe the dynamic far-infrared optical properties of the excited material.Leitenstorfer et al. used an optical-pump THz-probe system to identify the time evolution of charge–charge interactions in an electron–hole plasma excited in GaAs using ultrafast optical pulses.This study added experimental evidence to quantum-kinetic theoretical predictions regarding charge build-up or dressed quasi-particles3 . THZ IMAGING AND TOMOGRAPHY PulsedTHz-waveimaging,or‘T-rayimaging’,wasfirst demonstratedbyHuandNuss53 in1995,andsincethen hasbeenusedforimagingawidevarietyof targets includingsemiconductors54 ,canceroustissue55 and flames56 .Theattractionof THzimagingislargelydueto theavailabilityof phase-sensitivespectroscopicimages, whichholdsthepotentialformaterialidentificationor ‘functionalimaging’. THzsystemsareidealforimagingdrydielectric substancesincludingpaper,plasticsandceramics. Thesematerialsarerelativelynon-absorbinginthis frequencyrange,yetdifferentmaterialsmaybeeasily discriminatedonthebasisof theirrefractiveindex, whichisextractedfromtheTHzphaseinformation. Manysuchmaterialsareopaqueatopticalfrequencies, andprovideverylowcontrastforX-rays.THzimaging systemsmaythereforefindimportantnicheapplications insecurityscreeningandmanufacturingqualitycontrol. Animportantgoalinthiscontextisthedevelopmentof three-dimensional(3D)tomographicT-rayimaging systems57 .Figure 5illustratesareconstructedcross sectionand3D-renderedimageof twoplasticcylinders withdifferingrefractiveindex.Thesystemisbasedon thesameprinciplesasX-raycomputedtomography,but providesawealthof informationaboutthematerial’s frequency-dependentopticalpropertiesthrough broadband,phase-sensitiveTHzdetection58 . InterestinusingTHzimagingtostudycellular structureisalsoincreasing.Afundamentallimitationin thiscontextistheresolutionof currentsystems. TheRayleighcriterionlimitsthefar-fieldresolutionof animagingsystemtotheorderof thewavelength (0.3 mmat1 THz).Forthisreason,researchersare relyingonimaginginthenear-fieldtoachieveimproved spatialresolution.Usingnear-fieldtechniques,similarto thoseusedinnear-fieldopticalmicroscopy,resolutions of 7 µmhavebeendemonstratedusingradiationwitha centrewavelengthof 600 µm(ref.59).Analternative methodtoimprovetheresolutionistousehigher- frequencyTHzpulses.Figure 6showsaTHzimageof a membraneof onioncells.Theresolutionof approximately50 µmisachievedbyusingvery broadbandTHzpulsesextendingintothemid-infrared. Thecontrastintheimageisattributedprimarilyto differencesinthewatercontentof thecellsandthe intercellularregions60 . BIOMATERIAL THZ APPLICATIONS THzsystemshavebroadapplicabilityinabiomedical context.Activefieldsof researchrangefromcancer detection61 togeneticanalysis.Biomedicalapplications of THzspectroscopyarefacilitatedbythefactthatthe collectivevibrationalmodesof manyproteinsandDNA moleculesarepredictedtooccurintheTHzrange.THz spectroscopyhasalsobeenheraldedforitspotential abilitytoinferinformationonabiomolecule’s conformationalstate.Thecomplexrefractiveindexof pressedpelletsconsistingof DNAandother biomoleculeshasbeendeterminedandshows absorptionconsistentwithalargedensityof low- frequencyinfrared-activemodes62,63 . DNAanalysersareusedtoidentifypolynucleotide basesequencesforavarietyof geneticapplications. Productionof genechipsisanincreasinglypopular techniquewhereunknownDNAmoleculesarebound tofluorescentlylabelledpolynucleotideswithknown basesequences.Fluorescentlabellingcanaffect diagnosticaccuracyandincreasesthecostand preparationtimeof genechips.Asaresult,several‘label- free’methodsarebeingresearched.THzimaging appearstohavepromiseinthiscontext.THz spectroscopyhasshownthecapabilityof differentiating THz Biotin-avidin Pure avidin Delay time (ps) THz electric field (au) 1.0 0.5 0.0 0 10 20 30 40 50 60 –0.5 –1.0 a b c Figure 7Abiotin-avidinT-ray biosensor(afterref.65). a,Thetestslideconsistingofa biotinthin-film,halfcoatedwith anavidinsolution.b,Illustration ofthemeasurementprocedure wheretheslideismountedona galvanometricshakerand translatedbackandforthinthe THzbeamtoallowthedifferential signaltobemeasured.c,TheTHz pulsemeasuredafter transmissionthroughthebiotin- avidinsensorwith(dashedline) andwithout(solidline)exposure to0.3 ng cm–2 ofavidin moleculeschemicallyboundto agarosebeadsinsolution. © 2002 Nature Publishing Group
  • 7. REVIEW ARTICLE 32 nature materials | VOL 1 | SEPTEMBER 2002 | www.nature.com/naturematerials betweensingle-anddouble-strandedDNAowingto associatedchangesinrefractiveindex64 .Recentlythe samegrouphasdemonstratedaTHzsensingsystem capableof detectingDNAmutationsof asinglebase pairwithfemtomolesensitivity2 . Afurtherbiomedicalapplicationof THzsystemsis theT-raybiosensor65 .Asimplebiosensorhasbeen demonstratedfordetectingtheglycoproteinavidinafter bindingwithvitaminH(biotin).Afilmof biotinis depositedonasolidsubstrate(Fig. 7a),andhalf of the biosensorslideisexposedtotheenvironmentorsolution of interest.Avidinhasaverystrongaffinityforbiotinand bindstoanybiotin-containingmolecules.Themodified far-infraredopticalpropertiesof theboundbiotinfilm canthenbedetectedusingthetechniqueof differential THz-TDS66 .Theslideismountedonagalvanometric shakerandtheTHzbeamisalternatelyfocusedthrough theavidinandcontrolportionof theslide(Fig. 7b). Acomparisonof thesignalmeasuredusingaslide treatedwith0.3 ng cm–2 avidinsolutionandaplain biotinsliderevealedadetectabledifference(Fig. 7c). Thisdetectablelimitissignificantlyenhancedby chemicallybindingtheavidinmoleculestoagarose beadstoprovideincreasedcontrastof refractiveindex67 . Suchtechniquesmayfindbroadapplicationsintracegas sensingandproteomics. OUTLOOK THzspectroscopysystemshaveundergonedramatic changesoverthepastdecade.Improvedsourceand detectorperformancecontinuetoexpandapplication areasandfacilitatethetransitionof THzsystemsfrom thelaboratorytocommercialindustry.Biomedical imagingandgeneticdiagnosticsaretwoof themost obviouspotentialapplicationsof thistechnology,but equallypromisingistheabilitytoinvestigatematerial characteristics,probedistantgalaxiesandstudy quantuminteractions.THzradiationhasfurther potentialforrevolutionarynewuses,suchasinthe manipulationof boundatoms,whichholdspotentialfor futurequantumcomputers68 .Severalkeyresearchareas promisesignificantcontinuingadvancesinTHz technology.Centralamongthesearecurrentefforts towardshigher-powerTHzsources—whichwillgiverise tonon-linearTHzspectroscopy,withthepotentialto extractadditionalmaterialcharacteristics—higher- sensitivityreceiversandimprovedunderstandingof the interactionbetweenTHzradiationandmaterialssuchas quantumstructuresandbiomaterials. References 1. Kohler, R. et al. Terahertz semiconductor-heterostructure laser. Nature 417, 156–159 (2002). 2. Nagel, M., Haring Bolivar, P., Brucherseifer, M. & Kurz, H. Integrated THz technology for label-free genetic diagnostics. Appl. Phys. Lett. 80, 154–156 (2002). 3. Huber, R. et al. How many-particle interactions develop after ultrafast excitation of an electron-hole plasma. Nature 414, 286–289 (2001). 4. Auston, D. H., Cheung, K. P.,Valdmanis, J. A. & Kleinman, D. A. Cherenkov radiation from femtosecond optical pulses in electro-optic media. Phys. Rev. Lett. 53, 1555–1558 (1984). 5. Fattinger, Ch. & Grischkowsky, D. Point source terahertz optics. Appl. Phys. Lett. 53, 1480–1482 (1988). 6. Ferguson, B. & Abbott, D. De-noising techniques for terahertz responses of biological samples. Microelectron. J. 32, 943–953 (2001). 7. Hashimshony, D., Zigler,A. & Papadopoulos, D. Conversion of electrostatic to electromagnetic waves by superluminous ionization fronts. Phys. Rev. Lett. 86, 2806–2809 (2001). 8. van der Weide, D. W., Murakowski, J. & Keilmann, F. Gas-absorption spectroscopy with electronic terahertz techniques. IEEE Trans. Microwave Theory Tech. 48, 740–743 (2000). 9. Mourou, G. A., Stancampiano, C. V.,Antonetti,A. & Orszag,A. Picosecond microwave pulses generated with a subpicosecond laser driven semiconductor switch. Appl. Phys. Lett. 39, 295–296 (1981). 10. Gornik, E. & Kersting, R. in Semiconductors and Semimetals (ed. Tsen, K. T.) (Academic, San Diego, 2001). 11. Leitenstorfer,A., Hunsche, S., Shah, J., Nuss, M. C. & Knox,W. H. Femtosecond charge transport in polar semiconductors. Phys. Rev. Lett. 82, 5140–5142 (1999). 12. Leitenstorfer,A., Hunsche, S., Shah, J., Nuss, M. C. & Knox,W. H. Femtosecond high-field transport in compound semiconductors. Phys. Rev. B. 61, 16642–16652 (1999). 13. Darrow, J. T., Zhang, X.-C.,Auston, D. H. & Morse, J. D. Saturation properties of large-aperture photoconductor antennas. IEEE J. Quantum Electron. 28, 1607–1616 (1992). 14. Zhao, G., Schouten, R. N., van derValk, N.,Wenckebach,W. T. & Planken, P. C. M. Design and performance of a THz emission and detection setup based on a semi-insulating GaAs emitter. Rev. Sci. Instrum. 73, 1715–1719 (2002). 15. Katzenellenbogen, N. & Grischkowsky, D. Efficient generation of 380 fs pulses of THz radiation by ultrafast laser pulse excitation of a biased metal- semiconductor interface.Appl. Phys. Lett. 58, 222–224 (1991). 16. Bass, M., Franken, P. A.,Ward, J. F. & Weinreich, G. Optical rectification. Phys. Rev. Lett. 9, 446–448 (1962). 17. Yang, K. H., Richards, P. L. & Shen,Y. R. Generation of far-infrared radiation by picosecond light pulses in LiNbO3 . Appl. Phys. Lett. 19, 320–323 (1971). 18. Zhang, X.-C., Jin,Y.,Yang, K. & Schowalter, L. J. Resonsant nonlinear susceptibility near the GaAs band gap. Phys. Rev. Lett. 69, 2303–2306 (1992). 19. Rice,A. et al. Terahertz optical rectification from <110> zinc-blende crystals. Appl. Phys. Lett. 64, 1324–1326 (1994). 20. Zhang, X.-C. et al. Terahertz optical rectification from a nonlinear organic crystal. Appl. Phys. Lett. 61, 3080–3082 (1992). 21. Bonvalet,A., Joffre, M., Martin, J.-L. & Migus,A. Generation of ultrabroadband femtosecond pulses in the mid-infrared by optical rectification of 15 fs light pulses at 100 MHz repetition rate. Appl. Phys. Lett. 67, 2907–2909 (1995). 22. Kaindl, R. A., Eickemeyer, F.,Woerner, M. & Elsaesser, T. Broadband phase- matched difference frequency mixing of femtoseconds pulses in GaSe: Experiment and theory. Appl. Phys. Lett. 75, 1060–1062 (1999). 23. Huber, R., Brodschelm,A., Tauser, F. & Leitenstorfer,A. Generation and fields- resolved detection of femtoseconds electromagnetic pulses tunable up to 41 THz. Appl. Phys. Lett. 76, 3191–3193 (2000). 24. Wiltse, J. C. History of millimeter and submillimeter waves. IEEE Trans. Microwave Theory Technol. 32, 1118–1127, (1984). 25. Siegel, P. H. Terahertz technology. IEEE Trans. Microwave Theory Technol. 50, 910–928 (2002). 26. Maiwald, F. et al. in IEEE Microwave Theory and Techniques Society International Symposium Digest (ed. Sigmon, B.)Vol. 3 1637–1640 (IEEE, Piscataway, New Jersey, 2001). 27. Ryzhii,V., Khmyrova, I. & Shur, M. S. Terahertz photomixing in quantum well structures using resonant excitation of plasma oscillations. J. Appl. Phys. 91, 1875–1881 (2002). 28. Williams, G. P. Far-IR/THz radiation from the Jefferson Laboratory, energy recovered linac, free electron laser. Rev. Sci. Instrum. 73, 1461–1463 (2002). 29. Morris, R. & Shen,Y. R. Theory of far-infrared generation by optical mixing. Phys. Rev. A, 15, 1143–1156 (1977). 30. Brown, E. R., McIntosh, K. A., Nichols, K. B. & Dennis, C. L. Photomixing up to 3.8 THz in low-temperature-grown GaAs. Appl. Phys. Lett. 66, 285–287 (1995). 31. Kawase, K., Sato, M., Taniuchi, T. & Ito, H. Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler. Appl. Phys. Lett. 68 2483–2485 (1996). 32. Shikata, J., Kawase, K., Sato, M., Taniuchi, T. & Ito, H. Enhancement of THz- wave output from LiNbO3 optical parametric oscillators by cryogenic cooling, Opt. Lett. 24, 202–204 (1999). 33. Kawase, K., Shikata, J., Imai, K. & Ito, H. Transform-limited, narrow-linewidth, terahertz-wave parametric generator. Appl. Phys. Lett. 78, 2819–2821 (2001). 34. Kadow, C., Jackson,A. W., Gossard,A. C., Matsuura, S. & Blake, G. A. Self- assembled ErAs islands in GaAs for optical-heterodyne terahertz generation. Appl. Phys. Lett. 76, 3510–3512 (2000). 35. Komiyama, S. Far-infrared emission from population-inverted hot-carrier system in p-Ge. Phys. Rev. Lett. 48, 271 (1982). 36. Gousev,Yu. P. et al. Widely tunable continuous wave THz laser. Appl. Phys. Lett. 75, 757–759 (1999). 37. Faist, J. et al. Quantum cascade laser. Science 264, 553–556 (1994). 38. Komiyama, S.,Astaflev, O.,Antonov,V., Kutsuwa, T. & Hirai, H.A single- photon detector in the far-infrared range.Nature 403, 405–407 (2000). 39. Gaidis, M. C. et al. A 2.5 THz receiver front-end for spaceborne applications. IEEE Trans. Microwave Theory Technol. 48, 733–739 (2000). © 2002 Nature Publishing Group
  • 8. REVIEW ARTICLE nature materials | VOL 1 | SEPTEMBER 2002 | www.nature.com/naturematerials 33 40. Dolan, G. J., Phillips, T. G. & Woody, D. P. Low noise 115 GHz mixing in superconductor oxide barrier tunnel junctions. Appl. Phys. Lett. 34, 347–349 (1979). 41. Carlstrom, J. E. & Zmuidzinas, J. in Reviews of Radio Science (ed. Stone,W. R.) 1193–1995 (Oxford Univ. Press, Oxford, UK, 1996). 42. Knap,W. et al. Resonant detection of sub-terahertz radiation by plasma waves in the submicron field effect transistor. Appl. Phys. Lett. 80, 3433–3435 (2002). 43. Valdmanis, J. A., Mourou, G. A. & Gabel, C. W. Subpicosecond electrical sampling. IEEE J. of Quantum Electron. 19, 664–667 (1983). 44. Wu, Q. & Zhang, X.-C. Free-space electro-optic sampling of terahertz beams. Appl. Phys. Lett. 67, 3523–3525 (1995). 45. Brodschelm,A., Tauser, F., Huber, R., Sohn, J. Y. & Leitenstorfer,A. in Ultrafast Phenomena XII (eds. Elsaesser, T., Mukhamel, S., Murnane, M. M. & Scherer, N. F.) (Springer, Berlin, 2000). 46. Kono, S., Tani, M., Gu P. & Sakai, K. Detection of up to 20 THz with a low- temperature-grown GaAs photoconductive antenna gated with 15 fs light pulses. Appl. Phys. Lett. 77, 4104–4106 (2001). 47. Holland,W. S. et al. Submillimeter images of dusty debris around nearby stars. Nature 392, 788–791 (1998). 48.van Exter, M., Fattinger, C. & Grischkowsky, D. Terahertz time-domain spectroscopy of water vapor. Opt. Lett. 14, 1128–1130 (1989). 49.van Exter, M. & Grischkowsky, D. Characterization of an optoelectronic terahertz beam system. IEEE Trans. Microwave Theory Tech. 38, 1684–1691 (1990). 50.Grischkowsky, D., Keiding, S., van Exter, M. & Fattinger, C. Far-infrared time- domain spectroscopy with terahertz beams of dielectrics and semiconductors. J. Opt. Safety Am. B 7, 2006–2015 (1990). 51.Jiang, Z., Li, M. & Zhang, X.-C. Dielectric constant measurement of thin films by differential time-domain spectroscopy. Appl. Phys. Lett. 76, 3221–3223 (2000). 52. Kaindl, R. A. et al. Far-infrared optical conductivity gap in superconducting MgB2 films. Phys. Rev. Lett. 88, 027003 (2002). 53.Hu, B. B. & Nuss, M. C. Imaging with terahertz waves. Opt. Lett. 20, 1716–1718 (1995). 54.Mittleman, D. M., Jacobsen, R. H. & Nuss, M. C. T-ray imaging. IEEE J. Sel. Top. Quantum Electron. 2, 689–692 (1996). 55. Loffler, T. et al. Terahertz dark-field imaging of biomedical tissue. Optics Express 9, 616–621 (2001). 56.Cheville, R. A. & Grischkowsky, D. Far-infrared terahertz time-domain spectroscopy of flames. Opt. Lett. 20, 1646–1648 (1995). 57. Ferguson, B.,Wang, S., Gray, D.,Abbott, D. & Zhang, X.-C. T-ray computed tomography. Opt. Lett. 27, 1312–1314 (2002). 58. Ferguson, B.,Wang, S., Gray, D.,Abbott, D. & Zhang, X.-C. Towards functional 3D THz imaging. Phys. Med. Biol. (in the press). 59. Mitrofanov, O. et al. Collection-mode near-field imaging with 0.5-THz pulses. IEEE J. Sel. Top. Quantum. Electron. 7, 600–607 (2001). 60. Han, P. Y., Cho, G. C. & Zhang, X.-C. Time-domain transillumination of biological tissues with terahertz pulses. Opt. Lett. 25, 242–245 (2000). 61. Woodward, R. M. et al. in OSA Trends in Optics and Photonics (TOPS),Vol 56, Conference on Lasers and Electro-optics. (OSA,Washington DC, 2001). 62. Markelz,A. G., Roitberg,A. & Heilweil, E. J. Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz. Chem. Phys. Lett. 320, 42–48 (2000). 63. Walther, M., Fischer, B., Schall, M., Helm H. & Uhd Jepsen, P. Far-infrared vibrational spectra of all-trans, 9-cis and 13-cis retinal measured by THz time- domain spectroscopy. Chem. Phys. Lett. 332, 389–395 (2000). 64. Brucherseifer, M. et al. Label-free probing of the binding state of DNA by time- domain terahertz sensing. Appl. Phys. Lett. 77, 4049 –4051 (2000). 65. Mickan, S. P. et al. Label-free bioaffinity detection using Terahertz technology. Phys. Med. Biol. (in the press). 66. Mickan, S. P.,Abbott, D. Munch, J. & Zhang, X.-C. Noise reduction in Terahertz thin film measurements using a double modulated differential technique. Fluct. Noise Lett. 2, 13–28 (2002). 67. Menikh,A., MacColl, R., Mannella, C. A. & Zhang, X.-C. Terahertz biosensing technology: Frontiers and progress. Chem. Phys. Chem. (in the press). 68. Cole, B. E.,Williams, J. B., King, B. T., Sherwin, M. S. & Stanley, C. R. Coherent manipulation of semiconductor quantum bits with terahertz radiation. Nature 410, 60–65 (2001). Acknowledgements This work was supported in part by the US Army Research Office, the National Science Foundation, the Australian Research Council and the Cooperative Research Centre for Sensor, Signal and Information Processing. The authors thank D. Abbott, D. Gray,A. Menikh, S. P. Mickan and the Australian-American Fulbright Commission. Correspondence and requests for materials should be addressed to X.C.Z. © 2002 Nature Publishing Group