SlideShare a Scribd company logo
Mathematical Techniques for Diffusion MRI

           Evgeniya Balmashnova



             10 September 2009
Diffusion Tensor Imaging
Diffusion MRI
Diffusion Tensor Imaging




                                                    1      2 D −1
                           P(r, t) =      1
                                       (4πDt)3/2
                                                 e− 4t r

                           t Diffusion time
                           D Diffusion coefficient
                           P Probability of travel to point r
                           in time t
Diffusion Tensor Imaging




                                                      1 T −1
                           P(r, t) =       1
                                       (4π|D|t)3/2
                                                   e− 4t r D r
                                                     
                                Dxx        Dxy    Dxz
                           D=  Dyx        Dyy    Dyz 
                                Dzx        Dzy    Dzz
Diffusion Tensor Imaging: Application
DTI Scale Space




                                             1               −1       −1       −1
  x ρ+
  ¨           Γρ x µ x ν = 0
               µν ˙ ˙          with   Γλ =
                                       ρν            Dλµ ∂ν Dρµ + ∂ρ Dµν − ∂µ Dνρ
         µν
                                             2   µ
DTI Scale Space




                                             1               −1       −1       −1
  x ρ+
  ¨           Γρ x µ x ν = 0
               µν ˙ ˙          with   Γλ =
                                       ρν            Dλµ ∂ν Dρµ + ∂ρ Dµν − ∂µ Dνρ
         µν
                                             2   µ
DTI Scale Space




                                             1               −1       −1       −1
  x ρ+
  ¨           Γρ x µ x ν = 0
               µν ˙ ˙          with   Γλ =
                                       ρν            Dλµ ∂ν Dρµ + ∂ρ Dµν − ∂µ Dνρ
         µν
                                             2   µ
DTI Scale Space




                                             1               −1       −1       −1
  x ρ+
  ¨           Γρ x µ x ν = 0
               µν ˙ ˙          with   Γλ =
                                       ρν            Dλµ ∂ν Dρµ + ∂ρ Dµν − ∂µ Dνρ
         µν
                                             2   µ
DTI Scale Space




                                             1               −1       −1       −1
  x ρ+
  ¨           Γρ x µ x ν = 0
               µν ˙ ˙          with   Γλ =
                                       ρν            Dλµ ∂ν Dρµ + ∂ρ Dµν − ∂µ Dνρ
         µν
                                             2   µ
Diffusion Tensor Imaging
Diffusion Tensor Imaging
DTI Scale Space


                           inv
      Dσ = exp (ln D ∗ φσ ) − − → Dσ = exp ln D −1 ∗ φσ
                            −−     −1

            exp
                                          exp
                                          
           ln D ∗ φσ             ln D −1 ∗ φσ = − ln D ∗ φσ
            ∗φσ 
                                             ∗φ
                                               σ
              ln D                   ln D −1 = − ln D
                                            
             ln                              ln
                           inv
              D           −−→
                          −−               D −1
DTI Scale Space


                           inv
      Dσ = exp (ln D ∗ φσ ) − − → Dσ = exp ln D −1 ∗ φσ
                            −−     −1

            exp
                                          exp
                                          
           ln D ∗ φσ             ln D −1 ∗ φσ = − ln D ∗ φσ
            ∗φσ 
                                             ∗φ
                                               σ
              ln D                   ln D −1 = − ln D
                                            
             ln                              ln
                           inv
              D           −−→
                          −−               D −1
DTI Scale Space


                           inv
      Dσ = exp (ln D ∗ φσ ) − − → Dσ = exp ln D −1 ∗ φσ
                            −−     −1

            exp
                                          exp
                                          
           ln D ∗ φσ             ln D −1 ∗ φσ = − ln D ∗ φσ
            ∗φσ 
                                             ∗φ
                                               σ
              ln D                   ln D −1 = − ln D
                                            
             ln                              ln
                           inv
              D           −−→
                          −−               D −1
DTI Scale Space


                           inv
      Dσ = exp (ln D ∗ φσ ) − − → Dσ = exp ln D −1 ∗ φσ
                            −−     −1

            exp
                                          exp
                                          
           ln D ∗ φσ             ln D −1 ∗ φσ = − ln D ∗ φσ
            ∗φσ 
                                             ∗φ
                                               σ
              ln D                   ln D −1 = − ln D
                                            
             ln                              ln
                           inv
              D           −−→
                          −−               D −1
DTI Scale Space


                           inv
      Dσ = exp (ln D ∗ φσ ) − − → Dσ = exp ln D −1 ∗ φσ
                            −−     −1

            exp
                                          exp
                                          
           ln D ∗ φσ             ln D −1 ∗ φσ = − ln D ∗ φσ
            ∗φσ 
                                             ∗φ
                                               σ
              ln D                   ln D −1 = − ln D
                                            
             ln                              ln
                           inv
              D           −−→
                          −−               D −1
DTI Scale Space


                           inv
      Dσ = exp (ln D ∗ φσ ) − − → Dσ = exp ln D −1 ∗ φσ
                            −−     −1

            exp
                                          exp
                                          
           ln D ∗ φσ             ln D −1 ∗ φσ = − ln D ∗ φσ
            ∗φσ 
                                             ∗φ
                                               σ
              ln D                   ln D −1 = − ln D
                                            
             ln                              ln
                           inv
              D           −−→
                          −−               D −1
DTI Scale Space


                           inv
      Dσ = exp (ln D ∗ φσ ) − − → Dσ = exp ln D −1 ∗ φσ
                            −−     −1

            exp
                                          exp
                                          
           ln D ∗ φσ             ln D −1 ∗ φσ = − ln D ∗ φσ
            ∗φσ 
                                             ∗φ
                                               σ
              ln D                   ln D −1 = − ln D
                                            
             ln                              ln
                           inv
              D           −−→
                          −−               D −1
DTI Scale Space


                           inv
      Dσ = exp (ln D ∗ φσ ) − − → Dσ = exp ln D −1 ∗ φσ
                            −−     −1

            exp
                                          exp
                                          
           ln D ∗ φσ             ln D −1 ∗ φσ = − ln D ∗ φσ
            ∗φσ 
                                             ∗φ
                                               σ
              ln D                   ln D −1 = − ln D
                                            
             ln                              ln
                           inv
              D           −−→
                          −−               D −1
DTI Scale Space


                           inv
      Dσ = exp (ln D ∗ φσ ) − − → Dσ = exp ln D −1 ∗ φσ
                            −−     −1

            exp
                                          exp
                                          
           ln D ∗ φσ             ln D −1 ∗ φσ = − ln D ∗ φσ
            ∗φσ 
                                             ∗φ
                                               σ
              ln D                   ln D −1 = − ln D
                                            
             ln                              ln
                           inv
              D           −−→
                          −−               D −1
DTI Scale Space


                           inv
      Dσ = exp (ln D ∗ φσ ) − − → Dσ = exp ln D −1 ∗ φσ
                            −−     −1

            exp
                                          exp
                                          
           ln D ∗ φσ             ln D −1 ∗ φσ = − ln D ∗ φσ
            ∗φσ 
                                             ∗φ
                                               σ
              ln D                   ln D −1 = − ln D
                                            
             ln                              ln
                           inv
              D           −−→
                          −−               D −1
Diffusion Tensor Imaging: Application
Diffusion Tensor Imaging: Application
Diffusion Tensor Imaging: Application
Diffusion Tensor Imaging: Application
Diffusion Tensor Imaging: Application
Diffusion Tensor Imaging: Application
Diffusion Tensor Imaging: Application
Diffusion Tensor Imaging: Application
Diffusion Tensor Imaging: Application
Diffusion Tensor Imaging: Application
Diffusion Tensor Imaging: Application
Diffusion Tensor Imaging: Application
MRI and Diffusion Tensor Imaging
MRI and Diffusion Tensor Imaging
MRI and Diffusion Tensor Imaging
MRI and Diffusion Tensor Imaging
MRI and Diffusion Tensor Imaging
High Angular Resolution Diffusion Imaging
HARDI

  Stejskal & Tanner Equation

              S(g) = S0 e−bD(g)   (Stejskal & Tanner, 1965)
HARDI

  Stejskal & Tanner Equation

              S(g) = S0 e−bD(g)   (Stejskal & Tanner, 1965)
Diffusion Orientation Distribution Function
Diffusion Orientation Distribution Function
Diffusion Orientation Distribution Function
Diffusion Orientation Distribution Function
Alternative Decompositions

  Spherical harmonics
                           N
         DN (g) =                         c m Y m (g)
                           =0 m=−



  High order tensors
                  3              3
                                          i ...iN
    DN (g) =              ...            D1         gi . . . gi
                                                     1            N
                 i1 =1          iN =1



  Hierarchial tensors
             N        3              3
                                           i ...i
  DN (g) =                 ...           D1          gi . . . gi      (Florack & Balmashnova, 2008)
                                                       1
             =0 i1 =1            iN =1
Alternative Decompositions

  Spherical harmonics
                           N
         DN (g) =                         c m Y m (g)
                           =0 m=−



  High order tensors
                  3              3
                                          i ...iN
    DN (g) =              ...            D1         gi . . . gi
                                                     1            N
                 i1 =1          iN =1



  Hierarchial tensors
             N        3              3
                                           i ...i
  DN (g) =                 ...           D1          gi . . . gi      (Florack & Balmashnova, 2008)
                                                       1
             =0 i1 =1            iN =1
Alternative Decompositions

  Spherical harmonics
                           N
         DN (g) =                         c m Y m (g)
                           =0 m=−



  High order tensors
                  3              3
                                          i ...iN
    DN (g) =              ...            D1         gi . . . gi
                                                     1            N
                 i1 =1          iN =1



  Hierarchial tensors
             N        3              3
                                           i ...i
  DN (g) =                 ...           D1          gi . . . gi      (Florack & Balmashnova, 2008)
                                                       1
             =0 i1 =1            iN =1
Alternative Decompositions

  Spherical harmonics
                           N
         DN (g) =                         c m Y m (g)
                           =0 m=−



  High order tensors
                  3              3
                                          i ...iN
    DN (g) =              ...            D1         gi . . . gi
                                                     1            N
                 i1 =1          iN =1



  Hierarchial tensors
             N        3              3
                                           i ...i
  DN (g) =                 ...           D1          gi . . . gi      (Florack & Balmashnova, 2008)
                                                       1
             =0 i1 =1            iN =1
Spherical Harmonics          High Order Tensors
    Regularization               No straightforward
                                 regularization
    Simple formula for ODF       No straightforward ODF
                                 formulas
    Requires bookkeeping         Simple bookkeeping
    No maxima detection          Maxima detection
                                 algorithms
Spherical Harmonics          High Order Tensors
    Regularization               No straightforward
                                 regularization
    Simple formula for ODF       No straightforward ODF
                                 formulas
    Requires bookkeeping         Simple bookkeeping
    No maxima detection          Maxima detection
                                 algorithms
Spherical Harmonics          High Order Tensors
    Regularization               No straightforward
                                 regularization
    Simple formula for ODF       No straightforward ODF
                                 formulas
    Requires bookkeeping         Simple bookkeeping
    No maxima detection          Maxima detection
                                 algorithms
Spherical Harmonics          High Order Tensors
    Regularization               No straightforward
                                 regularization
    Simple formula for ODF       No straightforward ODF
                                 formulas
    Requires bookkeeping         Simple bookkeeping
    No maxima detection          Maxima detection
                                 algorithms
Orientation Distribution Function




                         N         3           3
               DN (g)=    =0       i1 =1 ...   iN =1   D i1 ...i gi1 ...gi


                       N       3           3
            ODF (g)=    =0     i1 =1 ...   iN =1   2πPl (0)D i1 ...i gi1 ...gi
Regularization




                            N      3            3
                 DN (g)=     =0    i1 =1 ...    iN =1   D i1 ...i gi1 ...gi


                                  N      3              3
          Dt (g)=et   g D(g)=
                                   =0    i1 =1 ...      iN =1   D i1 ...i (t) gi1 ...gi



                       D i1 ...i (t) = e−tl(l+1) D i1 ...i
Regularization




                            N      3            3
                 DN (g)=     =0    i1 =1 ...    iN =1   D i1 ...i gi1 ...gi


                                  N      3              3
          Dt (g)=et   g D(g)=
                                   =0    i1 =1 ...      iN =1   D i1 ...i (t) gi1 ...gi



                       D i1 ...i (t) = e−tl(l+1) D i1 ...i
Regularization




                            N      3            3
                 DN (g)=     =0    i1 =1 ...    iN =1   D i1 ...i gi1 ...gi


                                  N      3              3
          Dt (g)=et   g D(g)=
                                   =0    i1 =1 ...      iN =1   D i1 ...i (t) gi1 ...gi



                       D i1 ...i (t) = e−tl(l+1) D i1 ...i
Regularization




                            N      3            3
                 DN (g)=     =0    i1 =1 ...    iN =1   D i1 ...i gi1 ...gi


                                  N      3              3
          Dt (g)=et   g D(g)=
                                   =0    i1 =1 ...      iN =1   D i1 ...i (t) gi1 ...gi



                       D i1 ...i (t) = e−tl(l+1) D i1 ...i
MRI and Diffusion Tensor Imaging
MRI and Diffusion Tensor Imaging
MRI and Diffusion Tensor Imaging
MRI and Diffusion Tensor Imaging
MRI and Diffusion Tensor Imaging
MRI and Diffusion Tensor Imaging
MRI and Diffusion Tensor Imaging
MRI and Diffusion Tensor Imaging
MRI and Diffusion Tensor Imaging
MRI and Diffusion Tensor Imaging
MRI and Diffusion Tensor Imaging
MRI and Diffusion Tensor Imaging
MRI and Diffusion Tensor Imaging
MRI and Diffusion Tensor Imaging
Tracking




   Riemannian metric ⇒ Finsler metric.
Finsler Metric




   Riemannian metric ⇒ Finsler metric.
Finsler Metric
DTI streamlines
HARDI streamlines
Open Questions




     Voxel classification
     Scales selection
     Reality check
Open Questions




     Voxel classification
     Scales selection
     Reality check
Open Questions




     Voxel classification
     Scales selection
     Reality check

More Related Content

Similar to Evgeniya Balmashnova

The derivatives module03
The derivatives module03The derivatives module03
The derivatives module03
REYEMMANUELILUMBA
 
Proj Stat
Proj StatProj Stat
Proj Stat
guestab507
 
Mathematical models of evolution
Mathematical models of evolutionMathematical models of evolution
Mathematical models of evolution
Fernando Reche
 
Lesson 6: Continuity II, Infinite Limits
Lesson 6: Continuity II, Infinite LimitsLesson 6: Continuity II, Infinite Limits
Lesson 6: Continuity II, Infinite Limits
Matthew Leingang
 
Lesson 4: Limits Involving Infinity
Lesson 4: Limits Involving InfinityLesson 4: Limits Involving Infinity
Lesson 4: Limits Involving Infinity
Matthew Leingang
 
Basic Nanoindentation Of Viscoelastic Solids
Basic Nanoindentation Of Viscoelastic SolidsBasic Nanoindentation Of Viscoelastic Solids
Basic Nanoindentation Of Viscoelastic Solids
erikgherbert
 
Math 8 Lesson 3 - 1st Quarter
Math 8 Lesson 3 - 1st QuarterMath 8 Lesson 3 - 1st Quarter
Math 8 Lesson 3 - 1st Quarter
alicelagajino
 
Calculation of transmission coefficient using Propagation Matrix Method
Calculation of transmission coefficient using Propagation Matrix MethodCalculation of transmission coefficient using Propagation Matrix Method
Calculation of transmission coefficient using Propagation Matrix Method
RCC Institute of Information Technology
 
Lesson32 Second Order Difference Equations Slides
Lesson32   Second Order Difference Equations SlidesLesson32   Second Order Difference Equations Slides
Lesson32 Second Order Difference Equations Slides
Matthew Leingang
 
04 unit 04
04 unit 0404 unit 04
04 unit 04
chorthip
 
Som formulas pdf
Som formulas pdfSom formulas pdf
Som formulas pdf
AnujSingh543
 

Similar to Evgeniya Balmashnova (11)

The derivatives module03
The derivatives module03The derivatives module03
The derivatives module03
 
Proj Stat
Proj StatProj Stat
Proj Stat
 
Mathematical models of evolution
Mathematical models of evolutionMathematical models of evolution
Mathematical models of evolution
 
Lesson 6: Continuity II, Infinite Limits
Lesson 6: Continuity II, Infinite LimitsLesson 6: Continuity II, Infinite Limits
Lesson 6: Continuity II, Infinite Limits
 
Lesson 4: Limits Involving Infinity
Lesson 4: Limits Involving InfinityLesson 4: Limits Involving Infinity
Lesson 4: Limits Involving Infinity
 
Basic Nanoindentation Of Viscoelastic Solids
Basic Nanoindentation Of Viscoelastic SolidsBasic Nanoindentation Of Viscoelastic Solids
Basic Nanoindentation Of Viscoelastic Solids
 
Math 8 Lesson 3 - 1st Quarter
Math 8 Lesson 3 - 1st QuarterMath 8 Lesson 3 - 1st Quarter
Math 8 Lesson 3 - 1st Quarter
 
Calculation of transmission coefficient using Propagation Matrix Method
Calculation of transmission coefficient using Propagation Matrix MethodCalculation of transmission coefficient using Propagation Matrix Method
Calculation of transmission coefficient using Propagation Matrix Method
 
Lesson32 Second Order Difference Equations Slides
Lesson32   Second Order Difference Equations SlidesLesson32   Second Order Difference Equations Slides
Lesson32 Second Order Difference Equations Slides
 
04 unit 04
04 unit 0404 unit 04
04 unit 04
 
Som formulas pdf
Som formulas pdfSom formulas pdf
Som formulas pdf
 

Recently uploaded

Crafting Excellence: A Comprehensive Guide to iOS Mobile App Development Serv...
Crafting Excellence: A Comprehensive Guide to iOS Mobile App Development Serv...Crafting Excellence: A Comprehensive Guide to iOS Mobile App Development Serv...
Crafting Excellence: A Comprehensive Guide to iOS Mobile App Development Serv...
Pitangent Analytics & Technology Solutions Pvt. Ltd
 
Driving Business Innovation: Latest Generative AI Advancements & Success Story
Driving Business Innovation: Latest Generative AI Advancements & Success StoryDriving Business Innovation: Latest Generative AI Advancements & Success Story
Driving Business Innovation: Latest Generative AI Advancements & Success Story
Safe Software
 
GraphRAG for LifeSciences Hands-On with the Clinical Knowledge Graph
GraphRAG for LifeSciences Hands-On with the Clinical Knowledge GraphGraphRAG for LifeSciences Hands-On with the Clinical Knowledge Graph
GraphRAG for LifeSciences Hands-On with the Clinical Knowledge Graph
Neo4j
 
"Choosing proper type of scaling", Olena Syrota
"Choosing proper type of scaling", Olena Syrota"Choosing proper type of scaling", Olena Syrota
"Choosing proper type of scaling", Olena Syrota
Fwdays
 
Main news related to the CCS TSI 2023 (2023/1695)
Main news related to the CCS TSI 2023 (2023/1695)Main news related to the CCS TSI 2023 (2023/1695)
Main news related to the CCS TSI 2023 (2023/1695)
Jakub Marek
 
Overcoming the PLG Trap: Lessons from Canva's Head of Sales & Head of EMEA Da...
Overcoming the PLG Trap: Lessons from Canva's Head of Sales & Head of EMEA Da...Overcoming the PLG Trap: Lessons from Canva's Head of Sales & Head of EMEA Da...
Overcoming the PLG Trap: Lessons from Canva's Head of Sales & Head of EMEA Da...
saastr
 
Harnessing the Power of NLP and Knowledge Graphs for Opioid Research
Harnessing the Power of NLP and Knowledge Graphs for Opioid ResearchHarnessing the Power of NLP and Knowledge Graphs for Opioid Research
Harnessing the Power of NLP and Knowledge Graphs for Opioid Research
Neo4j
 
9 CEO's who hit $100m ARR Share Their Top Growth Tactics Nathan Latka, Founde...
9 CEO's who hit $100m ARR Share Their Top Growth Tactics Nathan Latka, Founde...9 CEO's who hit $100m ARR Share Their Top Growth Tactics Nathan Latka, Founde...
9 CEO's who hit $100m ARR Share Their Top Growth Tactics Nathan Latka, Founde...
saastr
 
Astute Business Solutions | Oracle Cloud Partner |
Astute Business Solutions | Oracle Cloud Partner |Astute Business Solutions | Oracle Cloud Partner |
Astute Business Solutions | Oracle Cloud Partner |
AstuteBusiness
 
Mutation Testing for Task-Oriented Chatbots
Mutation Testing for Task-Oriented ChatbotsMutation Testing for Task-Oriented Chatbots
Mutation Testing for Task-Oriented Chatbots
Pablo Gómez Abajo
 
5th LF Energy Power Grid Model Meet-up Slides
5th LF Energy Power Grid Model Meet-up Slides5th LF Energy Power Grid Model Meet-up Slides
5th LF Energy Power Grid Model Meet-up Slides
DanBrown980551
 
Nordic Marketo Engage User Group_June 13_ 2024.pptx
Nordic Marketo Engage User Group_June 13_ 2024.pptxNordic Marketo Engage User Group_June 13_ 2024.pptx
Nordic Marketo Engage User Group_June 13_ 2024.pptx
MichaelKnudsen27
 
Biomedical Knowledge Graphs for Data Scientists and Bioinformaticians
Biomedical Knowledge Graphs for Data Scientists and BioinformaticiansBiomedical Knowledge Graphs for Data Scientists and Bioinformaticians
Biomedical Knowledge Graphs for Data Scientists and Bioinformaticians
Neo4j
 
HCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAU
HCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAUHCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAU
HCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAU
panagenda
 
Deep Dive: AI-Powered Marketing to Get More Leads and Customers with HyperGro...
Deep Dive: AI-Powered Marketing to Get More Leads and Customers with HyperGro...Deep Dive: AI-Powered Marketing to Get More Leads and Customers with HyperGro...
Deep Dive: AI-Powered Marketing to Get More Leads and Customers with HyperGro...
saastr
 
How to Interpret Trends in the Kalyan Rajdhani Mix Chart.pdf
How to Interpret Trends in the Kalyan Rajdhani Mix Chart.pdfHow to Interpret Trends in the Kalyan Rajdhani Mix Chart.pdf
How to Interpret Trends in the Kalyan Rajdhani Mix Chart.pdf
Chart Kalyan
 
Dandelion Hashtable: beyond billion requests per second on a commodity server
Dandelion Hashtable: beyond billion requests per second on a commodity serverDandelion Hashtable: beyond billion requests per second on a commodity server
Dandelion Hashtable: beyond billion requests per second on a commodity server
Antonios Katsarakis
 
Freshworks Rethinks NoSQL for Rapid Scaling & Cost-Efficiency
Freshworks Rethinks NoSQL for Rapid Scaling & Cost-EfficiencyFreshworks Rethinks NoSQL for Rapid Scaling & Cost-Efficiency
Freshworks Rethinks NoSQL for Rapid Scaling & Cost-Efficiency
ScyllaDB
 
zkStudyClub - LatticeFold: A Lattice-based Folding Scheme and its Application...
zkStudyClub - LatticeFold: A Lattice-based Folding Scheme and its Application...zkStudyClub - LatticeFold: A Lattice-based Folding Scheme and its Application...
zkStudyClub - LatticeFold: A Lattice-based Folding Scheme and its Application...
Alex Pruden
 

Recently uploaded (20)

Artificial Intelligence and Electronic Warfare
Artificial Intelligence and Electronic WarfareArtificial Intelligence and Electronic Warfare
Artificial Intelligence and Electronic Warfare
 
Crafting Excellence: A Comprehensive Guide to iOS Mobile App Development Serv...
Crafting Excellence: A Comprehensive Guide to iOS Mobile App Development Serv...Crafting Excellence: A Comprehensive Guide to iOS Mobile App Development Serv...
Crafting Excellence: A Comprehensive Guide to iOS Mobile App Development Serv...
 
Driving Business Innovation: Latest Generative AI Advancements & Success Story
Driving Business Innovation: Latest Generative AI Advancements & Success StoryDriving Business Innovation: Latest Generative AI Advancements & Success Story
Driving Business Innovation: Latest Generative AI Advancements & Success Story
 
GraphRAG for LifeSciences Hands-On with the Clinical Knowledge Graph
GraphRAG for LifeSciences Hands-On with the Clinical Knowledge GraphGraphRAG for LifeSciences Hands-On with the Clinical Knowledge Graph
GraphRAG for LifeSciences Hands-On with the Clinical Knowledge Graph
 
"Choosing proper type of scaling", Olena Syrota
"Choosing proper type of scaling", Olena Syrota"Choosing proper type of scaling", Olena Syrota
"Choosing proper type of scaling", Olena Syrota
 
Main news related to the CCS TSI 2023 (2023/1695)
Main news related to the CCS TSI 2023 (2023/1695)Main news related to the CCS TSI 2023 (2023/1695)
Main news related to the CCS TSI 2023 (2023/1695)
 
Overcoming the PLG Trap: Lessons from Canva's Head of Sales & Head of EMEA Da...
Overcoming the PLG Trap: Lessons from Canva's Head of Sales & Head of EMEA Da...Overcoming the PLG Trap: Lessons from Canva's Head of Sales & Head of EMEA Da...
Overcoming the PLG Trap: Lessons from Canva's Head of Sales & Head of EMEA Da...
 
Harnessing the Power of NLP and Knowledge Graphs for Opioid Research
Harnessing the Power of NLP and Knowledge Graphs for Opioid ResearchHarnessing the Power of NLP and Knowledge Graphs for Opioid Research
Harnessing the Power of NLP and Knowledge Graphs for Opioid Research
 
9 CEO's who hit $100m ARR Share Their Top Growth Tactics Nathan Latka, Founde...
9 CEO's who hit $100m ARR Share Their Top Growth Tactics Nathan Latka, Founde...9 CEO's who hit $100m ARR Share Their Top Growth Tactics Nathan Latka, Founde...
9 CEO's who hit $100m ARR Share Their Top Growth Tactics Nathan Latka, Founde...
 
Astute Business Solutions | Oracle Cloud Partner |
Astute Business Solutions | Oracle Cloud Partner |Astute Business Solutions | Oracle Cloud Partner |
Astute Business Solutions | Oracle Cloud Partner |
 
Mutation Testing for Task-Oriented Chatbots
Mutation Testing for Task-Oriented ChatbotsMutation Testing for Task-Oriented Chatbots
Mutation Testing for Task-Oriented Chatbots
 
5th LF Energy Power Grid Model Meet-up Slides
5th LF Energy Power Grid Model Meet-up Slides5th LF Energy Power Grid Model Meet-up Slides
5th LF Energy Power Grid Model Meet-up Slides
 
Nordic Marketo Engage User Group_June 13_ 2024.pptx
Nordic Marketo Engage User Group_June 13_ 2024.pptxNordic Marketo Engage User Group_June 13_ 2024.pptx
Nordic Marketo Engage User Group_June 13_ 2024.pptx
 
Biomedical Knowledge Graphs for Data Scientists and Bioinformaticians
Biomedical Knowledge Graphs for Data Scientists and BioinformaticiansBiomedical Knowledge Graphs for Data Scientists and Bioinformaticians
Biomedical Knowledge Graphs for Data Scientists and Bioinformaticians
 
HCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAU
HCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAUHCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAU
HCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAU
 
Deep Dive: AI-Powered Marketing to Get More Leads and Customers with HyperGro...
Deep Dive: AI-Powered Marketing to Get More Leads and Customers with HyperGro...Deep Dive: AI-Powered Marketing to Get More Leads and Customers with HyperGro...
Deep Dive: AI-Powered Marketing to Get More Leads and Customers with HyperGro...
 
How to Interpret Trends in the Kalyan Rajdhani Mix Chart.pdf
How to Interpret Trends in the Kalyan Rajdhani Mix Chart.pdfHow to Interpret Trends in the Kalyan Rajdhani Mix Chart.pdf
How to Interpret Trends in the Kalyan Rajdhani Mix Chart.pdf
 
Dandelion Hashtable: beyond billion requests per second on a commodity server
Dandelion Hashtable: beyond billion requests per second on a commodity serverDandelion Hashtable: beyond billion requests per second on a commodity server
Dandelion Hashtable: beyond billion requests per second on a commodity server
 
Freshworks Rethinks NoSQL for Rapid Scaling & Cost-Efficiency
Freshworks Rethinks NoSQL for Rapid Scaling & Cost-EfficiencyFreshworks Rethinks NoSQL for Rapid Scaling & Cost-Efficiency
Freshworks Rethinks NoSQL for Rapid Scaling & Cost-Efficiency
 
zkStudyClub - LatticeFold: A Lattice-based Folding Scheme and its Application...
zkStudyClub - LatticeFold: A Lattice-based Folding Scheme and its Application...zkStudyClub - LatticeFold: A Lattice-based Folding Scheme and its Application...
zkStudyClub - LatticeFold: A Lattice-based Folding Scheme and its Application...
 

Evgeniya Balmashnova

  • 1. Mathematical Techniques for Diffusion MRI Evgeniya Balmashnova 10 September 2009
  • 4. Diffusion Tensor Imaging 1 2 D −1 P(r, t) = 1 (4πDt)3/2 e− 4t r t Diffusion time D Diffusion coefficient P Probability of travel to point r in time t
  • 5. Diffusion Tensor Imaging 1 T −1 P(r, t) = 1 (4π|D|t)3/2 e− 4t r D r   Dxx Dxy Dxz D=  Dyx Dyy Dyz  Dzx Dzy Dzz
  • 7. DTI Scale Space 1 −1 −1 −1 x ρ+ ¨ Γρ x µ x ν = 0 µν ˙ ˙ with Γλ = ρν Dλµ ∂ν Dρµ + ∂ρ Dµν − ∂µ Dνρ µν 2 µ
  • 8. DTI Scale Space 1 −1 −1 −1 x ρ+ ¨ Γρ x µ x ν = 0 µν ˙ ˙ with Γλ = ρν Dλµ ∂ν Dρµ + ∂ρ Dµν − ∂µ Dνρ µν 2 µ
  • 9. DTI Scale Space 1 −1 −1 −1 x ρ+ ¨ Γρ x µ x ν = 0 µν ˙ ˙ with Γλ = ρν Dλµ ∂ν Dρµ + ∂ρ Dµν − ∂µ Dνρ µν 2 µ
  • 10. DTI Scale Space 1 −1 −1 −1 x ρ+ ¨ Γρ x µ x ν = 0 µν ˙ ˙ with Γλ = ρν Dλµ ∂ν Dρµ + ∂ρ Dµν − ∂µ Dνρ µν 2 µ
  • 11. DTI Scale Space 1 −1 −1 −1 x ρ+ ¨ Γρ x µ x ν = 0 µν ˙ ˙ with Γλ = ρν Dλµ ∂ν Dρµ + ∂ρ Dµν − ∂µ Dνρ µν 2 µ
  • 14. DTI Scale Space inv Dσ = exp (ln D ∗ φσ ) − − → Dσ = exp ln D −1 ∗ φσ −− −1 exp   exp  ln D ∗ φσ ln D −1 ∗ φσ = − ln D ∗ φσ ∗φσ   ∗φ  σ ln D ln D −1 = − ln D   ln  ln inv D −−→ −− D −1
  • 15. DTI Scale Space inv Dσ = exp (ln D ∗ φσ ) − − → Dσ = exp ln D −1 ∗ φσ −− −1 exp   exp  ln D ∗ φσ ln D −1 ∗ φσ = − ln D ∗ φσ ∗φσ   ∗φ  σ ln D ln D −1 = − ln D   ln  ln inv D −−→ −− D −1
  • 16. DTI Scale Space inv Dσ = exp (ln D ∗ φσ ) − − → Dσ = exp ln D −1 ∗ φσ −− −1 exp   exp  ln D ∗ φσ ln D −1 ∗ φσ = − ln D ∗ φσ ∗φσ   ∗φ  σ ln D ln D −1 = − ln D   ln  ln inv D −−→ −− D −1
  • 17. DTI Scale Space inv Dσ = exp (ln D ∗ φσ ) − − → Dσ = exp ln D −1 ∗ φσ −− −1 exp   exp  ln D ∗ φσ ln D −1 ∗ φσ = − ln D ∗ φσ ∗φσ   ∗φ  σ ln D ln D −1 = − ln D   ln  ln inv D −−→ −− D −1
  • 18. DTI Scale Space inv Dσ = exp (ln D ∗ φσ ) − − → Dσ = exp ln D −1 ∗ φσ −− −1 exp   exp  ln D ∗ φσ ln D −1 ∗ φσ = − ln D ∗ φσ ∗φσ   ∗φ  σ ln D ln D −1 = − ln D   ln  ln inv D −−→ −− D −1
  • 19. DTI Scale Space inv Dσ = exp (ln D ∗ φσ ) − − → Dσ = exp ln D −1 ∗ φσ −− −1 exp   exp  ln D ∗ φσ ln D −1 ∗ φσ = − ln D ∗ φσ ∗φσ   ∗φ  σ ln D ln D −1 = − ln D   ln  ln inv D −−→ −− D −1
  • 20. DTI Scale Space inv Dσ = exp (ln D ∗ φσ ) − − → Dσ = exp ln D −1 ∗ φσ −− −1 exp   exp  ln D ∗ φσ ln D −1 ∗ φσ = − ln D ∗ φσ ∗φσ   ∗φ  σ ln D ln D −1 = − ln D   ln  ln inv D −−→ −− D −1
  • 21. DTI Scale Space inv Dσ = exp (ln D ∗ φσ ) − − → Dσ = exp ln D −1 ∗ φσ −− −1 exp   exp  ln D ∗ φσ ln D −1 ∗ φσ = − ln D ∗ φσ ∗φσ   ∗φ  σ ln D ln D −1 = − ln D   ln  ln inv D −−→ −− D −1
  • 22. DTI Scale Space inv Dσ = exp (ln D ∗ φσ ) − − → Dσ = exp ln D −1 ∗ φσ −− −1 exp   exp  ln D ∗ φσ ln D −1 ∗ φσ = − ln D ∗ φσ ∗φσ   ∗φ  σ ln D ln D −1 = − ln D   ln  ln inv D −−→ −− D −1
  • 23. DTI Scale Space inv Dσ = exp (ln D ∗ φσ ) − − → Dσ = exp ln D −1 ∗ φσ −− −1 exp   exp  ln D ∗ φσ ln D −1 ∗ φσ = − ln D ∗ φσ ∗φσ   ∗φ  σ ln D ln D −1 = − ln D   ln  ln inv D −−→ −− D −1
  • 36. MRI and Diffusion Tensor Imaging
  • 37. MRI and Diffusion Tensor Imaging
  • 38. MRI and Diffusion Tensor Imaging
  • 39. MRI and Diffusion Tensor Imaging
  • 40. MRI and Diffusion Tensor Imaging
  • 41. High Angular Resolution Diffusion Imaging
  • 42. HARDI Stejskal & Tanner Equation S(g) = S0 e−bD(g) (Stejskal & Tanner, 1965)
  • 43. HARDI Stejskal & Tanner Equation S(g) = S0 e−bD(g) (Stejskal & Tanner, 1965)
  • 48. Alternative Decompositions Spherical harmonics N DN (g) = c m Y m (g) =0 m=− High order tensors 3 3 i ...iN DN (g) = ... D1 gi . . . gi 1 N i1 =1 iN =1 Hierarchial tensors N 3 3 i ...i DN (g) = ... D1 gi . . . gi (Florack & Balmashnova, 2008) 1 =0 i1 =1 iN =1
  • 49. Alternative Decompositions Spherical harmonics N DN (g) = c m Y m (g) =0 m=− High order tensors 3 3 i ...iN DN (g) = ... D1 gi . . . gi 1 N i1 =1 iN =1 Hierarchial tensors N 3 3 i ...i DN (g) = ... D1 gi . . . gi (Florack & Balmashnova, 2008) 1 =0 i1 =1 iN =1
  • 50. Alternative Decompositions Spherical harmonics N DN (g) = c m Y m (g) =0 m=− High order tensors 3 3 i ...iN DN (g) = ... D1 gi . . . gi 1 N i1 =1 iN =1 Hierarchial tensors N 3 3 i ...i DN (g) = ... D1 gi . . . gi (Florack & Balmashnova, 2008) 1 =0 i1 =1 iN =1
  • 51. Alternative Decompositions Spherical harmonics N DN (g) = c m Y m (g) =0 m=− High order tensors 3 3 i ...iN DN (g) = ... D1 gi . . . gi 1 N i1 =1 iN =1 Hierarchial tensors N 3 3 i ...i DN (g) = ... D1 gi . . . gi (Florack & Balmashnova, 2008) 1 =0 i1 =1 iN =1
  • 52. Spherical Harmonics High Order Tensors Regularization No straightforward regularization Simple formula for ODF No straightforward ODF formulas Requires bookkeeping Simple bookkeeping No maxima detection Maxima detection algorithms
  • 53. Spherical Harmonics High Order Tensors Regularization No straightforward regularization Simple formula for ODF No straightforward ODF formulas Requires bookkeeping Simple bookkeeping No maxima detection Maxima detection algorithms
  • 54. Spherical Harmonics High Order Tensors Regularization No straightforward regularization Simple formula for ODF No straightforward ODF formulas Requires bookkeeping Simple bookkeeping No maxima detection Maxima detection algorithms
  • 55. Spherical Harmonics High Order Tensors Regularization No straightforward regularization Simple formula for ODF No straightforward ODF formulas Requires bookkeeping Simple bookkeeping No maxima detection Maxima detection algorithms
  • 56. Orientation Distribution Function N 3 3 DN (g)= =0 i1 =1 ... iN =1 D i1 ...i gi1 ...gi N 3 3 ODF (g)= =0 i1 =1 ... iN =1 2πPl (0)D i1 ...i gi1 ...gi
  • 57. Regularization N 3 3 DN (g)= =0 i1 =1 ... iN =1 D i1 ...i gi1 ...gi N 3 3 Dt (g)=et g D(g)= =0 i1 =1 ... iN =1 D i1 ...i (t) gi1 ...gi D i1 ...i (t) = e−tl(l+1) D i1 ...i
  • 58. Regularization N 3 3 DN (g)= =0 i1 =1 ... iN =1 D i1 ...i gi1 ...gi N 3 3 Dt (g)=et g D(g)= =0 i1 =1 ... iN =1 D i1 ...i (t) gi1 ...gi D i1 ...i (t) = e−tl(l+1) D i1 ...i
  • 59. Regularization N 3 3 DN (g)= =0 i1 =1 ... iN =1 D i1 ...i gi1 ...gi N 3 3 Dt (g)=et g D(g)= =0 i1 =1 ... iN =1 D i1 ...i (t) gi1 ...gi D i1 ...i (t) = e−tl(l+1) D i1 ...i
  • 60. Regularization N 3 3 DN (g)= =0 i1 =1 ... iN =1 D i1 ...i gi1 ...gi N 3 3 Dt (g)=et g D(g)= =0 i1 =1 ... iN =1 D i1 ...i (t) gi1 ...gi D i1 ...i (t) = e−tl(l+1) D i1 ...i
  • 61. MRI and Diffusion Tensor Imaging
  • 62. MRI and Diffusion Tensor Imaging
  • 63. MRI and Diffusion Tensor Imaging
  • 64. MRI and Diffusion Tensor Imaging
  • 65. MRI and Diffusion Tensor Imaging
  • 66. MRI and Diffusion Tensor Imaging
  • 67. MRI and Diffusion Tensor Imaging
  • 68. MRI and Diffusion Tensor Imaging
  • 69. MRI and Diffusion Tensor Imaging
  • 70. MRI and Diffusion Tensor Imaging
  • 71. MRI and Diffusion Tensor Imaging
  • 72. MRI and Diffusion Tensor Imaging
  • 73. MRI and Diffusion Tensor Imaging
  • 74. MRI and Diffusion Tensor Imaging
  • 75. Tracking Riemannian metric ⇒ Finsler metric.
  • 76. Finsler Metric Riemannian metric ⇒ Finsler metric.
  • 80. Open Questions Voxel classification Scales selection Reality check
  • 81. Open Questions Voxel classification Scales selection Reality check
  • 82. Open Questions Voxel classification Scales selection Reality check