SlideShare a Scribd company logo
1 of 18
Download to read offline
Rapid formation of large dust grains in the luminous
supernova SN 2010jl
Christa Gall1,2,3
, Jens Hjorth2
, Darach Watson2
, Eli Dwek3
, Justyn R. Maund4,2
, Ori Fox5
, Giorgos
Leloudas6,2
, Daniele Malesani2
& Avril C. Day-Jones7
1
Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus
C, Denmark
2
Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30,
DK-2100 Copenhagen Ø, Denmark
3
Observational Cosmology Lab, Code 665, NASA Goddard Space Flight Center, Greenbelt, MD
20771, USA
4
Astrophysics Research Centre School of Mathematics and Physics Queen’s University Belfast
Belfast BT7 1NN, UK
5
Department of Astronomy, University of California, Berkeley, CA 94720-3411, USA
6
The Oskar Klein Centre, Department of Physics, Stockholm University, Albanova University
Centre, 10691, Stockholm, Sweden
7
Departamento de Astronomia, Universidad de Chile, Camino del Observatorio 1515, Santiago,
Chile
The origin of dust in galaxies is still a mystery (1, 2, 3, 4). The majority of the refractory ele-
ments are produced in supernova explosions but it is unclear how and where dust grains con-
dense and grow, and how they avoid destruction in the harsh environments of star-forming
1
galaxies. The recent detection of 0.1–0.5 solar masses of dust in nearby supernova remnants
(5, 6, 7) suggests in situ dust formation, while other observations reveal very little dust in
supernovae the first few years after explosion (1, 8, 9, 10). Observations of the bright SN
2010jl have been interpreted as pre-existing dust (11), dust formation (12, 13) or no dust at
all (14). Here we report the rapid (40–240 days) formation of dust in its dense circumstellar
medium. The wavelength dependent extinction of this dust reveals the presence of very large
(> 1 µm) grains, which are resistant to destructive processes (15). At later times (500–900
days), the near-IR thermal emission shows an accelerated growth in dust mass, marking the
transition of the supernova from a circumstellar- to an ejecta-dominated source of dust. This
provides the link between the early and late dust mass evolution in supernovae with dense
circumstellar media.
We observed the bright (V ∼ 14) and luminous (MV ∼ −20) Type IIn SN 2010jl (16) with
the VLT/X-shooter spectrograph covering the wide wavelength range 0.3–2.5 µm. Peak brightness
occurred on 2010 Oct 18.6 UT, and observations were made at 9 early epochs and at one late epoch,
26–239 and 868 days past peak, respectively (Methods, Extended Data Table 1, Extended Data
Figures 1–5). Figure 1 shows the intermediate-width components of the hydrogen emission lines of
Hγ at λ4340.472 and Pβ at λ12818.072 and of the oxygen ejecta emission lines [O i] λλ6300.304,
6363.776 (rest frame). The emission profiles change with time, exhibiting a substantial depression
of the red wings and a corresponding blueshift of the centroids of the lines (Extended Data Figure
6) due to preferential extinction of the emission from the receding material on the far side of
the supernova (12, 17, 18). The effect is less pronounced at longer wavelengths, as expected
2
if the attenuation of the lines is due to dust extinction, and rules out that the blueshifts are due
to electron scattering (14) (Supplementary Information). The early epoch hydrogen lines have a
Lorentzian half width at half maximum (HWHM) in the range 1,000–2,000 km s −1
. The middle
and right panels of Figure 1 show that the line profiles at the late epoch are narrower (HWHM
∼ 800 ± 100 km s−1
) and also exhibit blueshifts of the oxygen lines, which indicates that ejecta
material is involved in the dust formation at this stage.
Figure 2 shows the temporal evolution of the inferred extinction, Aλ, as derived from the
attenuation of emission lines in the early spectra. The extinction has been calculated from the
ratios of the integrated line profiles at each epoch. We assume that the first epoch at 26 days past
peak is nearly unextinguished and use it as a reference. The monotonic increase of the extinction as
a function of time indicates continuous formation of dust. The extinction at 239 days is AV ∼ 0.6
mag. Interestingly, the shape of the normalized extinction curve shows no substantial variation
with time. Scaling and combining the data from the eight individual early epochs allows us to
produce the first directly measured, robust extinction curve for a supernova. The extinction curve
is shallow, with RV = AV/E(B − V) ≈ 6.4, and can be represented by a mix of grey-extinction dust
grains (Aλ = constant) and either standard Small Magellanic Cloud (SMC) or Milky Way (MW)
extinction grains (19). The extinction contribution of the grey dust is 40 % in the V band. We
fit several dust models to the extinction curve using amorphous carbon dust characterized by a
power-law grain size distribution (20) with slope α, and minimum and maximum grain radii (amin
< amax) in the interval [0.001, 5.0] µm.
3
Figure 3 shows the resulting confidence interval for the two parameters amax and α around
the best fit values of amin = 0.001 µm, amax = 4.2 µm and α = 3.6. It is evident that only size dis-
tributions extending to grain radii that are significantly larger than that of MW interstellar medium
(21, 22) dust ( 0.25 µm) can reproduce the supernova extinction curve (Figure 2). The 2 σ lower
limit on the maximum grain size is amax > 0.7 µm. We cannot perform a similar analysis of the
late epoch because the intrinsic line profile at this epoch is unknown and likely highly affected
by extinction (13). However, we note that the blueshift velocities change only marginally with
wavelength (Extended Data Figure 6), suggestive of large grains also at this epoch.
Figure 4 illustrates the continuous build-up of dust as a function of time. The increasing
attenuation of the lines is accompanied by increasing emission in the near-infrared (NIR) spectra,
from a slight excess over a supernova blackbody fit at early times to total dominance at the late
epoch. We fitted the spectra with black bodies which for the NIR excess yield a constant black-
body radius of (1.0 ± 0.2) × 1016
cm at the early epochs, and a temperature that declines from ∼
2,300 K to ∼ 1,600 K from day 26 onwards. At the late epoch, we obtain a black-body radius of
(5.7 ± 0.2) × 1016
cm and a temperature of ∼ 1,100 K. The high temperatures detected at the early
epochs suggest that the NIR excess is due to thermal emission from carbonaceous dust, rather than
silicate dust, which has a lower condensation temperature of ∼ 1, 500 K (1). The high temperatures
rule out suggestions that the NIR emission is due to pre-existing dust or a dust echo (11) (Extended
Data Figures 7, 8, Supplementary Information). Fitting the NIR excess with a modified black body,
assuming the grain composition found in our analysis of the extinction curve (Figure 3), gives a
dust temperature similar to the black-body temperature, which is at all epochs (and considered dust
4
compositions) larger than 1,000 K. The dust masses inferred from the extinction and NIR emission
agree very well. The inferred amount of dust at the late epoch (868 days) is ∼ 2.5 × 10−3
M⊙ if
composed of carbon, but could be up to an order of magnitude larger for silicates (Methods). Our
results indicate accelerated dust formation after several hundred days. SN 2010jl will contain a
dust mass of ∼ 0.5 M⊙ similar to that observed in SN 1987A (5, 6), by day ∼ 8000, if the dust
production continues to follow the trend depicted in Figure 4.
The most obvious location for early dust formation is in a cool, dense shell behind the su-
pernova shock (18, 23), which sweeps up material as it propagates through the dense circumstellar
shell surrounding SN 2010jl (24) (Supplementary Information). Dust formation in the ejecta is
impossible at this stage because the temperature is too high. The postshock gas cools and gets
compressed to the low temperatures and high densities necessary for dust formation and gives rise
to the observed intermediate width emission lines. By the time of our first observation 26 days
past peak, the supernova blast wave encounters the dense circumstellar shell at a radius of ∼ 2.0
× 1016
cm for a blast wave velocity of ∼ 3.5 × 104
km s−1
. As indicated by the blueshifts of the
ejecta metal lines (Figure 1), the accelerated dust formation occurring at later times (Figure 4) and
at larger radius is possibly facilitated by the bulk ejecta material, which travels on average at a
velocity of ∼ 7, 500 km s−1
at early epochs (Extended Data Figure 4).
Our detection of large grains soon after the supernova explosion suggests a remarkably rapid
and efficient mechanism for dust nucleation and growth. The underlying physics is poorly under-
stood but may involve a two-stage process governed by early dust formation in a cool, dense shell,
5
followed by accelerated dust formation involving ejecta material. For Type IIP supernovae, the
growth of dust grains can be sustained up to 5 years past explosion (25). The dense CSM around
Type IIn supernovae may provide conditions to facilitate dust growth beyond that. The process
appears generic, in that other Type IIn supernovae like SN 1995N, SN 1998S, SN 2005ip, and SN
2006jd exhibited similar observed NIR properties (8, 10, 26, 27) and growing dust masses, consis-
tent with the trend revealed here for SN 2010jl (Figure 4). Moreover, it establishes a link between
the early small dust masses inferred in supernovae (1, 8, 10) and the large dust masses found in a
few supernova remnants (1, 5, 7). Large grains (0.1 ≤ amax 4.0 µm), provide an effective way to
counter destructive processes in the interstellar medium (28). Indeed, large grains from the inter-
stellar medium have been detected in the Solar System (29). Simulations indicate that grains larger
than ∼ 0.1 µm will survive reverse shock interactions with only a low fraction being sputtered to
smaller radii (15). For a grain size distribution of amin= 0.001 µm, amax = 4.2 µm and α = 3.6
(Figures 2 and 3), the mass fraction of grains above 0.1 µm is ∼ 80 %, i.e., the majority of the
produced dust mass can be retained.
6
Methods summary
We obtained optical and near-infrared medium-resolution spectroscopy with the ESO VLT/X-
shooter instrument of the bright Type IIn supernova SN 2010jl at 9 epochs between 2010 November
13.4 UT and 2011 June 15.0 UT. The continuum emission of the spectra was fit with a combination
of black-body, modified black-body and host galaxy models, allowing us to quantify the tempo-
ral progression of the temperature and radius of the photosphere as well as the temperature and
characteristics of the forming dust, which causes conspicuous excess near-infrared emission. We
analysed the profiles of the most prominent hydrogen, helium and oxygen emission lines. From
Lorentzian profile fits, which are good representations of the emission lines, we measured the
blueshifts of the peaks and the half widths at half maximum of the lines, and derived the wave-
length dependent attenuation properties of the forming dust at each epoch. The uncertainties were
obtained using Monte Carlo calculations by varying the Lorentzian profile parameters. We gen-
erated synthetic UBVRIJHK lighcurves and calculated the energy output of the supernova. This,
together with calculated dust vaporization radii, temperatures of the dust grains at different dis-
tances from the supernova, and the radius evolution of the forward shock, were used to constrain
the location of the forming dust. Different dust models, characterised by either single grain sizes or
a power-law grain size distribution function and either amorphous carbon or silicates, were fitted
to the extinction curves and the near-infrared excess emission. From these fits, we derived the
temporal progression of the dust mass of the forming dust at each observed epoch.
7
1. Gall, C., Hjorth, J. & Andersen, A. C. Production of dust by massive stars at high redshift.
Astron. Astrophys. Rev. 19, 43 (2011). 1108.0403.
2. Matsuura, M. et al. The global gas and dust budget of the Large Magellanic Cloud: AGB stars
and supernovae, and the impact on the ISM evolution. Mon. Not. R. Astron. Soc. 396, 918–934
(2009). 0903.1123.
3. Draine, B. T. Interstellar Dust Models and Evolutionary Implications. In Henning, T., Gr¨un,
E. & Steinacker, J. (eds.) Cosmic Dust - Near and Far, vol. 414 of Astronomical Society of the
Pacific Conference Series, 453 (2009). 0903.1658.
4. Dunne, L. et al. Herschel-ATLAS: rapid evolution of dust in galaxies over the last 5 billion
years. Mon. Not. R. Astron. Soc. 417, 1510–1533 (2011). 1012.5186.
5. Matsuura, M. et al. Herschel Detects a Massive Dust Reservoir in Supernova 1987A. Science
333, 1258– (2011). 1107.1477.
6. Indebetouw, R. et al. Dust Production and Particle Acceleration in Supernova 1987A Revealed
with ALMA. Astrophys. J. Lett. 782, L2 (2014). 1312.4086.
7. Gomez, H. L. et al. A Cool Dust Factory in the Crab Nebula: A Herschel Study of the
Filaments. Astrophys. J. 760, 96 (2012). 1209.5677.
8. Pozzo, M. et al. On the source of the late-time infrared luminosity of SN 1998S and other
Type II supernovae. Mon. Not. R. Astron. Soc. 352, 457–477 (2004). astro-ph/0404533.
8
9. Otsuka, M. et al. Late-time Light Curves of Type II Supernovae: Physical Properties of
Supernovae and Their Environment. Astrophys. J. 744, 26 (2012). 1111.5041.
10. Stritzinger, M. et al. Multi-wavelength Observations of the Enduring Type IIn Supernovae
2005ip and 2006jd. Astrophys. J. 756, 173 (2012). 1206.5575.
11. Andrews, J. E. et al. Evidence for Pre-existing Dust in the Bright Type IIn SN 2010jl. Astron.
J. 142, 45 (2011). 1106.0537.
12. Smith, N. et al. Systematic Blueshift of Line Profiles in the Type IIn Supernova 2010jl:
Evidence for Post-shock Dust Formation? Astron. J. 143, 17 (2012). 1108.2869.
13. Maeda, K. et al. Properties of Newly Formed Dust Grains in the Luminous Type IIn Supernova
2010jl. Astrophys. J. 776, 5 (2013). 1308.0406.
14. Zhang, T. et al. Type IIn Supernova SN 2010jl: Optical Observations for over 500 Days after
Explosion. Astron. J. 144, 131 (2012). 1208.6078.
15. Silvia, D. W., Smith, B. D. & Shull, J. M. Numerical Simulations of Supernova Dust Destruc-
tion. I. Cloud-crushing and Post-processed Grain Sputtering. Astrophys. J. 715, 1575–1590
(2010). 1001.4793.
16. Newton, J. & Puckett, T. Possible Supernova in UGC 5189A. Central Bureau Electronic
Telegrams 2532, 1 (2010).
17. Lucy, L. B., Danziger, I. J., Gouiffes, C. & Bouchet, P. Dust Condensation in the Ejecta of SN
1987 A. In Tenorio-Tagle, G., Moles, M. & Melnick, J. (eds.) IAU Colloq. 120: Structure and
9
Dynamics of the Interstellar Medium, vol. 350 of Lecture Notes in Physics, Berlin Springer
Verlag, 164 (1989).
18. Smith, N., Foley, R. J. & Filippenko, A. V. Dust Formation and He II λ4686 Emission in the
Dense Shell of the Peculiar Type Ib Supernova 2006jc. Astrophys. J. 680, 568–579 (2008).
0704.2249.
19. Gordon, K. D., Clayton, G. C., Misselt, K. A., Landolt, A. U. & Wolff, M. J. A Quan-
titative Comparison of the Small Magellanic Cloud, Large Magellanic Cloud, and Milky
Way Ultraviolet to Near-Infrared Extinction Curves. Astrophys. J. 594, 279–293 (2003).
astro-ph/0305257.
20. Mathis, J. S., Rumpl, W. & Nordsieck, K. H. The size distribution of interstellar grains.
Astrophys. J. 217, 425–433 (1977).
21. Zubko, V., Dwek, E. & Arendt, R. G. Interstellar Dust Models Consistent with Extinc-
tion, Emission, and Abundance Constraints. Astrophys. J. Suppl. 152, 211–249 (2004).
astro-ph/0312641.
22. Brandt, T. D. & Draine, B. T. The Spectrum of the Diffuse Galactic Light: The Milky Way in
Scattered Light. Astrophys. J. 744, 129 (2012). 1109.4175.
23. Fox, O. et al. Near-Infrared Photometry of the Type IIn SN 2005ip: The Case for Dust
Condensation. Astrophys. J. 691, 650–660 (2009). 0807.3555.
24. Ofek, E. O. et al. SN 2010jl: Optical to Hard X-Ray Observations Reveal an Explosion
Embedded in a Ten Solar Mass Cocoon. Astrophys. J. 781, 42 (2014). 1307.2247.
10
25. Sarangi, A. & Cherchneff, I. The Chemically Controlled Synthesis of Dust in Type II-P Su-
pernovae. Astrophys. J. 776, 107 (2013). 1309.5887.
26. Mauerhan, J. & Smith, N. Supernova 1998S at 14 years postmortem: continuing circumstellar
interaction and dust formation. Mon. Not. R. Astron. Soc. 424, 2659–2666 (2012). 1204.1610.
27. Van Dyk, S. D. Late-time Dust Emission from the Type IIn Supernova 1995N. Astron. J. 145,
118 (2013). 1305.0028.
28. Jones, A. P. & Nuth, J. A. Dust destruction in the ISM: a re-evaluation of dust lifetimes.
Astron. Astrophys. 530, A44 (2011).
29. Frisch, P. C. et al. Dust in the Local Interstellar Wind. Astrophys. J. 525, 492–516 (1999).
astro-ph/9905108.
30. Gallagher, J. S. et al. Optical and Infrared Analysis of Type II SN 2006bc. Astrophys. J. 753,
109 (2012). 1205.5517.
Supplementary Information
Is available in the online version of the paper.
Acknowledgments
We thank Lise Christensen and Teddy Frederiksen for advice on data reduction with the X-shooter
pipeline and Maximilian Stritzinger and Rick Arendt for discussions. This investigation is based on
11
observations made with ESO Telescopes at the La Silla Paranal Observatory under programme IDs
084.C-0315(D) and 087.C-0456(A). C.G. was supported from the NASA Postdoctoral Program
(NPP) and acknowledges funding provided by the Danish Agency for Science and Technology
and Innovation. G.L. is supported by the Swedish Research Council through grant No. 623-2011-
7117. A.C.D.J. is supported by the Proyecto Basal PB06 (CATA), and partially supported by the
Joint Committee ESO-Government Chile. The Dark Cosmology Centre is funded by the Danish
National Research Foundation.
Author contributions
C.G. and J.H. conducted the observational campaign, reduced and analysed the data and wrote the
manuscript. D.W. was the P.I. of the observing programs and assisted in writing the manuscript.
E.D. performed calculations of vaporization radii and assisted in writing the manuscript. O.F. and
G.L. assisted in data analysis. J.R.M. helped with the interpretation of the spectra and line profiles.
D.M. and D.W. assisted with observations. A.C.D.J. conducted the observation of the epoch 2
spectrum. All authors were engaged in discussions and provided comments on the manuscript.
Author information
Reprints and permissions information is available at www.nature.com/reprints. The authors declare
no competing financial interests. Readers are welcome to comment on the online version of the
paper. Correspondence and requests for materials should be addressed to C.G. (cgall@phys.au.dk).
12
Figure 1 | Evolution of the hydrogen and oxygen line profiles in the spectrum of SN 2010jl.
Line profiles for a, Hγ λ4340.472 and b, Pβ λ12818.072 for epochs from 26 to 239 days and c, Hγ
and Pβ at 868 days. d, The [O i] λλ6300.304, 6363.776 doublet (zero velocity set at λ6300.304),
and e, the [O i] λ11297.68 line. The dashed-dotted lines in all panels denote zero velocity, at red-
shift z = 0.01058, as determined from narrow emission lines in the spectrum.
Figure 2 | Supernova dust extinction curves. a, The evolution of the extinction, Aλ, of the
hydrogen lines (open circles with standard deviations; Methods). The solid lines represent the (lin-
early interpolated) extinction curves. b, The grey-shaded area represents the range of extinction
curves relative to AV (filled triangles with error bars). Grey curves are the SMC and MW extinc-
tion curves, while the red curves include a grey component (Methods). c, Fits to the optical depth
within the 1, 2 and 3 σ (68.3, 95.4 and 99.7 %) confidence interval (Methods). Dashed and solid
curves are models with ‘best fitting’ and MW parameters, respectively.
Figure 3 | Maximum grain size and slope of the grain size distribution. Confidence contours,
as constrained by the normalized optical depth τ(λ) (see Figure 2). The most favorable power-
law models lie within a parameter range for α between ∼ 3.4 and 3.7 and require large grains of
amax 1.3 µm (1σ). The confidence limits are as in Figure 2. Even at the 3σ confidence limit
the maximum grain size is larger (amax 0.5 µm) than MW maximum grain sizes for a power law
model (amax ≈ 0.25 µm) (20) or more sophisticated models (21, 22).
13
Figure 4 | Temporal evolution of the dust mass. Carbon dust masses and standard deviation
derived from the extinction (green band) and the NIR emission (red bars and band; Methods) in-
cluding a literature data point at 553 days (13). The light grey shaded area illustrates the evolution
of the early (Md ∝ t0.8
at t < 250 days) and late (Md ∝ t2.4
at t > 250 days) stages of dust formation
when SN 2010jl switches from circumstellar to ejecta dust formation. The grey and blue symbols
correspond to literature data for SN 2005ip (triangles), SN 2006jd (dots), and other supernovae
(bars) (1, 5, 6, 9, 10, 27, 30). The length of the symbols for SN 1995N and SN1987A correspond
to the quoted dust mass range. For other supernova the standard deviation is either smaller than
the size of the symbols or have not been reported.
14
Fλ(v)(arbitraryunits)
Hγ
0.43 µm
a
-4 -2 0 2 4
26 d
44 d
66 d
104 d
121 d
140 d
158 d
196 d
239 d
Pβ
1.28 µm
b
Doppler velocity (103
km s-1
)
-4 -2 0 2 4
c
Pβ, 868 d
Hγ, 868 d
d
[O Ι]
0.63 µm
-4 -2 0 2 4
e
[O Ι]
1.13 µm
868 d
15
0.5 1.0 1.5 2.0 2.5
1 / λ (µm-1
)
0.0
0.2
0.4
0.6
0.8
1.0
1.2
Aλ(mag)
a
HδHγHβPβBrγ
44 d
66 d
104 d
121 d
140 d
158 d
196 d
239 d
0.5 1.0 1.5 2.0 2.5
1 / λ (µm-1
)
0.0
0.5
1.0
1.5
Aλ/AV
b
Grey + Milky Way dust
Grey + SMC dust
Milky Way
SMC
0.5 1.0 1.5 2.0 2.5
1 / λ (µm-1
)
0.0
0.5
1.0
1.5
τλ/τV
c
Confidence
68.3%
95.4%
99.7%
Milky Way model
Best fit
16
0.1 0.2 0.5 1.0 2.0 3.0 4.5
Maximum grain size amax (µm)
2.8
3.0
3.2
3.4
3.6
3.8
4.0
α
Milky Way
Confidence
99.7%
95.4%
68.3%
17
50 100 150 239 500 868 1638 5000 9000
Time since peak (days)
10-5
10-4
10-3
10-2
10-1
100
Md(MO•)
SN2005af
SN2003gd
SN1998S
SN2005ip
SN2006jc
SN2004et
SN1999em
SN2004et
SN2006jd
SN2003gd
SN2006bc
SN1987A
SN1987A
SN1995N
SN 2010jl (extinction)
SN 2010jl (NIR emission)
50 100 150 239 500 868 1638 5000 9000
Time since peak (days)
10-5
10-4
10-3
10-2
10-1
100
Md(MO•)
18

More Related Content

What's hot

Too much pasta_for_pulsars_to_spin_down
Too much pasta_for_pulsars_to_spin_downToo much pasta_for_pulsars_to_spin_down
Too much pasta_for_pulsars_to_spin_downSérgio Sacani
 
First identification of_direct_collapse_black_holes_candidates_in_the_early_u...
First identification of_direct_collapse_black_holes_candidates_in_the_early_u...First identification of_direct_collapse_black_holes_candidates_in_the_early_u...
First identification of_direct_collapse_black_holes_candidates_in_the_early_u...Sérgio Sacani
 
The open cluster_ngc6520_and_the_nearby_dark_molecular_cloud_barnard_86
The open cluster_ngc6520_and_the_nearby_dark_molecular_cloud_barnard_86The open cluster_ngc6520_and_the_nearby_dark_molecular_cloud_barnard_86
The open cluster_ngc6520_and_the_nearby_dark_molecular_cloud_barnard_86Sérgio Sacani
 
Distances luminosities and_temperatures_of_the_coldest_known_substelar_objects
Distances luminosities and_temperatures_of_the_coldest_known_substelar_objectsDistances luminosities and_temperatures_of_the_coldest_known_substelar_objects
Distances luminosities and_temperatures_of_the_coldest_known_substelar_objectsSérgio Sacani
 
Dust in the_polar_region_as_a_major_contributor_to_the_infrared_emission_of_a...
Dust in the_polar_region_as_a_major_contributor_to_the_infrared_emission_of_a...Dust in the_polar_region_as_a_major_contributor_to_the_infrared_emission_of_a...
Dust in the_polar_region_as_a_major_contributor_to_the_infrared_emission_of_a...Sérgio Sacani
 
The Internal Structure of Asteroid (25143) Itokawa as Revealed by Detection o...
The Internal Structure of Asteroid (25143) Itokawa as Revealed by Detection o...The Internal Structure of Asteroid (25143) Itokawa as Revealed by Detection o...
The Internal Structure of Asteroid (25143) Itokawa as Revealed by Detection o...WellingtonRodrigues2014
 
Propagation of highly_efficient_star_formation_in_ngc7000
Propagation of highly_efficient_star_formation_in_ngc7000Propagation of highly_efficient_star_formation_in_ngc7000
Propagation of highly_efficient_star_formation_in_ngc7000Sérgio Sacani
 
The ASTRODEEP Frontier Fields catalogues II. Photometric redshifts and rest f...
The ASTRODEEP Frontier Fields catalogues II. Photometric redshifts and rest f...The ASTRODEEP Frontier Fields catalogues II. Photometric redshifts and rest f...
The ASTRODEEP Frontier Fields catalogues II. Photometric redshifts and rest f...Sérgio Sacani
 
X raying the ejecta of supernova 1987 a
X raying the ejecta of supernova 1987 aX raying the ejecta of supernova 1987 a
X raying the ejecta of supernova 1987 aSérgio Sacani
 
The canarias einstein_ring_a_newly_discovered_optical_einstein_ring
The canarias einstein_ring_a_newly_discovered_optical_einstein_ringThe canarias einstein_ring_a_newly_discovered_optical_einstein_ring
The canarias einstein_ring_a_newly_discovered_optical_einstein_ringSérgio Sacani
 
Radioastron observations of_the_quasar_3_c273_a_challenge_to_the_brightness_t...
Radioastron observations of_the_quasar_3_c273_a_challenge_to_the_brightness_t...Radioastron observations of_the_quasar_3_c273_a_challenge_to_the_brightness_t...
Radioastron observations of_the_quasar_3_c273_a_challenge_to_the_brightness_t...Sérgio Sacani
 
Красное пятно на полюсе Харона
Красное пятно на полюсе ХаронаКрасное пятно на полюсе Харона
Красное пятно на полюсе ХаронаAnatol Alizar
 
Detection of solar_like_oscillations_in_relies_of_the_milk_way_asteroseismolo...
Detection of solar_like_oscillations_in_relies_of_the_milk_way_asteroseismolo...Detection of solar_like_oscillations_in_relies_of_the_milk_way_asteroseismolo...
Detection of solar_like_oscillations_in_relies_of_the_milk_way_asteroseismolo...Sérgio Sacani
 
PROBING FOR EVIDENCE OF PLUMES ON EUROPA WITH HST/STIS
PROBING FOR EVIDENCE OF PLUMES ON EUROPA WITH HST/STISPROBING FOR EVIDENCE OF PLUMES ON EUROPA WITH HST/STIS
PROBING FOR EVIDENCE OF PLUMES ON EUROPA WITH HST/STISSérgio Sacani
 
Galaxy dynamics and the mass density of the universe
Galaxy dynamics and the mass density of the universeGalaxy dynamics and the mass density of the universe
Galaxy dynamics and the mass density of the universeSérgio Sacani
 
Multiwavelength observations of_na_st1_(wr122)_equatorial_mass_loss_and_x_ray...
Multiwavelength observations of_na_st1_(wr122)_equatorial_mass_loss_and_x_ray...Multiwavelength observations of_na_st1_(wr122)_equatorial_mass_loss_and_x_ray...
Multiwavelength observations of_na_st1_(wr122)_equatorial_mass_loss_and_x_ray...Sérgio Sacani
 
Dense m agnetized_plasma_associated_with_afast_radio_burst
Dense m agnetized_plasma_associated_with_afast_radio_burstDense m agnetized_plasma_associated_with_afast_radio_burst
Dense m agnetized_plasma_associated_with_afast_radio_burstSérgio Sacani
 
A giant galaxy in the young Universe with a massive ring
A giant galaxy in the young Universe with a massive ringA giant galaxy in the young Universe with a massive ring
A giant galaxy in the young Universe with a massive ringSérgio Sacani
 
A possible carbonrich_interior_in_superearth_55_cancrie
A possible carbonrich_interior_in_superearth_55_cancrieA possible carbonrich_interior_in_superearth_55_cancrie
A possible carbonrich_interior_in_superearth_55_cancrieSérgio Sacani
 

What's hot (20)

Too much pasta_for_pulsars_to_spin_down
Too much pasta_for_pulsars_to_spin_downToo much pasta_for_pulsars_to_spin_down
Too much pasta_for_pulsars_to_spin_down
 
First identification of_direct_collapse_black_holes_candidates_in_the_early_u...
First identification of_direct_collapse_black_holes_candidates_in_the_early_u...First identification of_direct_collapse_black_holes_candidates_in_the_early_u...
First identification of_direct_collapse_black_holes_candidates_in_the_early_u...
 
The open cluster_ngc6520_and_the_nearby_dark_molecular_cloud_barnard_86
The open cluster_ngc6520_and_the_nearby_dark_molecular_cloud_barnard_86The open cluster_ngc6520_and_the_nearby_dark_molecular_cloud_barnard_86
The open cluster_ngc6520_and_the_nearby_dark_molecular_cloud_barnard_86
 
Nature12888
Nature12888Nature12888
Nature12888
 
Distances luminosities and_temperatures_of_the_coldest_known_substelar_objects
Distances luminosities and_temperatures_of_the_coldest_known_substelar_objectsDistances luminosities and_temperatures_of_the_coldest_known_substelar_objects
Distances luminosities and_temperatures_of_the_coldest_known_substelar_objects
 
Dust in the_polar_region_as_a_major_contributor_to_the_infrared_emission_of_a...
Dust in the_polar_region_as_a_major_contributor_to_the_infrared_emission_of_a...Dust in the_polar_region_as_a_major_contributor_to_the_infrared_emission_of_a...
Dust in the_polar_region_as_a_major_contributor_to_the_infrared_emission_of_a...
 
The Internal Structure of Asteroid (25143) Itokawa as Revealed by Detection o...
The Internal Structure of Asteroid (25143) Itokawa as Revealed by Detection o...The Internal Structure of Asteroid (25143) Itokawa as Revealed by Detection o...
The Internal Structure of Asteroid (25143) Itokawa as Revealed by Detection o...
 
Propagation of highly_efficient_star_formation_in_ngc7000
Propagation of highly_efficient_star_formation_in_ngc7000Propagation of highly_efficient_star_formation_in_ngc7000
Propagation of highly_efficient_star_formation_in_ngc7000
 
The ASTRODEEP Frontier Fields catalogues II. Photometric redshifts and rest f...
The ASTRODEEP Frontier Fields catalogues II. Photometric redshifts and rest f...The ASTRODEEP Frontier Fields catalogues II. Photometric redshifts and rest f...
The ASTRODEEP Frontier Fields catalogues II. Photometric redshifts and rest f...
 
X raying the ejecta of supernova 1987 a
X raying the ejecta of supernova 1987 aX raying the ejecta of supernova 1987 a
X raying the ejecta of supernova 1987 a
 
The canarias einstein_ring_a_newly_discovered_optical_einstein_ring
The canarias einstein_ring_a_newly_discovered_optical_einstein_ringThe canarias einstein_ring_a_newly_discovered_optical_einstein_ring
The canarias einstein_ring_a_newly_discovered_optical_einstein_ring
 
Radioastron observations of_the_quasar_3_c273_a_challenge_to_the_brightness_t...
Radioastron observations of_the_quasar_3_c273_a_challenge_to_the_brightness_t...Radioastron observations of_the_quasar_3_c273_a_challenge_to_the_brightness_t...
Radioastron observations of_the_quasar_3_c273_a_challenge_to_the_brightness_t...
 
Красное пятно на полюсе Харона
Красное пятно на полюсе ХаронаКрасное пятно на полюсе Харона
Красное пятно на полюсе Харона
 
Detection of solar_like_oscillations_in_relies_of_the_milk_way_asteroseismolo...
Detection of solar_like_oscillations_in_relies_of_the_milk_way_asteroseismolo...Detection of solar_like_oscillations_in_relies_of_the_milk_way_asteroseismolo...
Detection of solar_like_oscillations_in_relies_of_the_milk_way_asteroseismolo...
 
PROBING FOR EVIDENCE OF PLUMES ON EUROPA WITH HST/STIS
PROBING FOR EVIDENCE OF PLUMES ON EUROPA WITH HST/STISPROBING FOR EVIDENCE OF PLUMES ON EUROPA WITH HST/STIS
PROBING FOR EVIDENCE OF PLUMES ON EUROPA WITH HST/STIS
 
Galaxy dynamics and the mass density of the universe
Galaxy dynamics and the mass density of the universeGalaxy dynamics and the mass density of the universe
Galaxy dynamics and the mass density of the universe
 
Multiwavelength observations of_na_st1_(wr122)_equatorial_mass_loss_and_x_ray...
Multiwavelength observations of_na_st1_(wr122)_equatorial_mass_loss_and_x_ray...Multiwavelength observations of_na_st1_(wr122)_equatorial_mass_loss_and_x_ray...
Multiwavelength observations of_na_st1_(wr122)_equatorial_mass_loss_and_x_ray...
 
Dense m agnetized_plasma_associated_with_afast_radio_burst
Dense m agnetized_plasma_associated_with_afast_radio_burstDense m agnetized_plasma_associated_with_afast_radio_burst
Dense m agnetized_plasma_associated_with_afast_radio_burst
 
A giant galaxy in the young Universe with a massive ring
A giant galaxy in the young Universe with a massive ringA giant galaxy in the young Universe with a massive ring
A giant galaxy in the young Universe with a massive ring
 
A possible carbonrich_interior_in_superearth_55_cancrie
A possible carbonrich_interior_in_superearth_55_cancrieA possible carbonrich_interior_in_superearth_55_cancrie
A possible carbonrich_interior_in_superearth_55_cancrie
 

Viewers also liked

презентация третейский суд( вариант 2) 2
презентация третейский суд( вариант 2) 2презентация третейский суд( вариант 2) 2
презентация третейский суд( вариант 2) 2ирина осипян
 
Through Theatre to Cinema
Through Theatre to CinemaThrough Theatre to Cinema
Through Theatre to CinemaDanielle Morris
 
TP O'Neill - Arabic
TP O'Neill - ArabicTP O'Neill - Arabic
TP O'Neill - ArabicAhmad Beetar
 
Two gamma ray bursts from dusty regions with little molecular gas
Two gamma ray bursts from dusty regions with little molecular gasTwo gamma ray bursts from dusty regions with little molecular gas
Two gamma ray bursts from dusty regions with little molecular gasGOASA
 
Detection of an_unidentified_emission_line_in_the_stacked_xray_spectrum_of_ga...
Detection of an_unidentified_emission_line_in_the_stacked_xray_spectrum_of_ga...Detection of an_unidentified_emission_line_in_the_stacked_xray_spectrum_of_ga...
Detection of an_unidentified_emission_line_in_the_stacked_xray_spectrum_of_ga...GOASA
 
TP CrystalBall - Arabic
TP CrystalBall - ArabicTP CrystalBall - Arabic
TP CrystalBall - ArabicAhmad Beetar
 
Presentacion imagenes boyaca
Presentacion imagenes boyacaPresentacion imagenes boyaca
Presentacion imagenes boyacaAna Diaz
 
TP Hustvedt - Arabic
TP Hustvedt - ArabicTP Hustvedt - Arabic
TP Hustvedt - ArabicAhmad Beetar
 
Cold Molecular Gas in Merger Remnants. I. Formation of Molecular Gas Discs
Cold Molecular Gas in Merger Remnants. I. Formation of Molecular Gas DiscsCold Molecular Gas in Merger Remnants. I. Formation of Molecular Gas Discs
Cold Molecular Gas in Merger Remnants. I. Formation of Molecular Gas DiscsGOASA
 
Eso1426a
Eso1426aEso1426a
Eso1426aGOASA
 
The yellow hypergiant HR 5171 A: Resolving a massive interacting binary in th...
The yellow hypergiant HR 5171 A: Resolving a massive interacting binary in th...The yellow hypergiant HR 5171 A: Resolving a massive interacting binary in th...
The yellow hypergiant HR 5171 A: Resolving a massive interacting binary in th...GOASA
 
Telescópio Espacial Kepler descobre primeiro exoplaneta do tamanho da Terra n...
Telescópio Espacial Kepler descobre primeiro exoplaneta do tamanho da Terra n...Telescópio Espacial Kepler descobre primeiro exoplaneta do tamanho da Terra n...
Telescópio Espacial Kepler descobre primeiro exoplaneta do tamanho da Terra n...GOASA
 
презентация третейский суд( вариант 2)
презентация третейский суд( вариант 2)презентация третейский суд( вариант 2)
презентация третейский суд( вариант 2)ирина осипян
 
An excess of dusty starbursts related to the Spiderweb galaxy
An excess of dusty starbursts related to the Spiderweb galaxyAn excess of dusty starbursts related to the Spiderweb galaxy
An excess of dusty starbursts related to the Spiderweb galaxyGOASA
 

Viewers also liked (15)

презентация третейский суд( вариант 2) 2
презентация третейский суд( вариант 2) 2презентация третейский суд( вариант 2) 2
презентация третейский суд( вариант 2) 2
 
Through Theatre to Cinema
Through Theatre to CinemaThrough Theatre to Cinema
Through Theatre to Cinema
 
TP O'Neill - Arabic
TP O'Neill - ArabicTP O'Neill - Arabic
TP O'Neill - Arabic
 
Two gamma ray bursts from dusty regions with little molecular gas
Two gamma ray bursts from dusty regions with little molecular gasTwo gamma ray bursts from dusty regions with little molecular gas
Two gamma ray bursts from dusty regions with little molecular gas
 
Detection of an_unidentified_emission_line_in_the_stacked_xray_spectrum_of_ga...
Detection of an_unidentified_emission_line_in_the_stacked_xray_spectrum_of_ga...Detection of an_unidentified_emission_line_in_the_stacked_xray_spectrum_of_ga...
Detection of an_unidentified_emission_line_in_the_stacked_xray_spectrum_of_ga...
 
TP CrystalBall - Arabic
TP CrystalBall - ArabicTP CrystalBall - Arabic
TP CrystalBall - Arabic
 
Presentacion imagenes boyaca
Presentacion imagenes boyacaPresentacion imagenes boyaca
Presentacion imagenes boyaca
 
TP Hustvedt - Arabic
TP Hustvedt - ArabicTP Hustvedt - Arabic
TP Hustvedt - Arabic
 
Cold Molecular Gas in Merger Remnants. I. Formation of Molecular Gas Discs
Cold Molecular Gas in Merger Remnants. I. Formation of Molecular Gas DiscsCold Molecular Gas in Merger Remnants. I. Formation of Molecular Gas Discs
Cold Molecular Gas in Merger Remnants. I. Formation of Molecular Gas Discs
 
Eso1426a
Eso1426aEso1426a
Eso1426a
 
The yellow hypergiant HR 5171 A: Resolving a massive interacting binary in th...
The yellow hypergiant HR 5171 A: Resolving a massive interacting binary in th...The yellow hypergiant HR 5171 A: Resolving a massive interacting binary in th...
The yellow hypergiant HR 5171 A: Resolving a massive interacting binary in th...
 
Telescópio Espacial Kepler descobre primeiro exoplaneta do tamanho da Terra n...
Telescópio Espacial Kepler descobre primeiro exoplaneta do tamanho da Terra n...Telescópio Espacial Kepler descobre primeiro exoplaneta do tamanho da Terra n...
Telescópio Espacial Kepler descobre primeiro exoplaneta do tamanho da Terra n...
 
презентация третейский суд( вариант 2)
презентация третейский суд( вариант 2)презентация третейский суд( вариант 2)
презентация третейский суд( вариант 2)
 
TP Blair - Arabic
TP Blair - ArabicTP Blair - Arabic
TP Blair - Arabic
 
An excess of dusty starbursts related to the Spiderweb galaxy
An excess of dusty starbursts related to the Spiderweb galaxyAn excess of dusty starbursts related to the Spiderweb galaxy
An excess of dusty starbursts related to the Spiderweb galaxy
 

Similar to Rapid formation of large dust grains in the luminous supernova SN 2010jl

Eso1437a
Eso1437aEso1437a
Eso1437aGOASA
 
MUSE sneaks a peek at extreme ram-pressure stripping events. I. A kinematic s...
MUSE sneaks a peek at extreme ram-pressure stripping events. I. A kinematic s...MUSE sneaks a peek at extreme ram-pressure stripping events. I. A kinematic s...
MUSE sneaks a peek at extreme ram-pressure stripping events. I. A kinematic s...Sérgio Sacani
 
Lord of the_rings_a_kinematic_distance_to_circinus_x1_from_a_giant_x_ray_ligh...
Lord of the_rings_a_kinematic_distance_to_circinus_x1_from_a_giant_x_ray_ligh...Lord of the_rings_a_kinematic_distance_to_circinus_x1_from_a_giant_x_ray_ligh...
Lord of the_rings_a_kinematic_distance_to_circinus_x1_from_a_giant_x_ray_ligh...Sérgio Sacani
 
Molecular gas clumps_from_the_destruction_of_icy_bodies_in_beta_pictoris_debr...
Molecular gas clumps_from_the_destruction_of_icy_bodies_in_beta_pictoris_debr...Molecular gas clumps_from_the_destruction_of_icy_bodies_in_beta_pictoris_debr...
Molecular gas clumps_from_the_destruction_of_icy_bodies_in_beta_pictoris_debr...Sérgio Sacani
 
Molecular Gas Clumps from the Destruction of Icy Bodies in the β Pictoris Deb...
Molecular Gas Clumps from the Destruction of Icy Bodies in the β Pictoris Deb...Molecular Gas Clumps from the Destruction of Icy Bodies in the β Pictoris Deb...
Molecular Gas Clumps from the Destruction of Icy Bodies in the β Pictoris Deb...GOASA
 
Titan’s aerosol and stratospheric ice opacities between 18 and 500 μm vertic...
Titan’s aerosol and stratospheric ice opacities between 18 and 500 μm  vertic...Titan’s aerosol and stratospheric ice opacities between 18 and 500 μm  vertic...
Titan’s aerosol and stratospheric ice opacities between 18 and 500 μm vertic...Sérgio Sacani
 
Magnetic fields and relativistic electrons fill entire galaxy cluster
Magnetic fields and relativistic electrons fill entire galaxy clusterMagnetic fields and relativistic electrons fill entire galaxy cluster
Magnetic fields and relativistic electrons fill entire galaxy clusterSérgio Sacani
 
The close circumstellar environment of betelgeuse
The close circumstellar environment of betelgeuseThe close circumstellar environment of betelgeuse
The close circumstellar environment of betelgeuseSérgio Sacani
 
Spectroscopy and thermal modelling of the first interstellar object 1I/2017 U...
Spectroscopy and thermal modelling of the first interstellar object 1I/2017 U...Spectroscopy and thermal modelling of the first interstellar object 1I/2017 U...
Spectroscopy and thermal modelling of the first interstellar object 1I/2017 U...Sérgio Sacani
 
What determines the_density_structure_of_molecular_clouds
What determines the_density_structure_of_molecular_cloudsWhat determines the_density_structure_of_molecular_clouds
What determines the_density_structure_of_molecular_cloudsSérgio Sacani
 
Long-lasting,deepeffectof Saturn’s giantstorms
Long-lasting,deepeffectof Saturn’s giantstormsLong-lasting,deepeffectof Saturn’s giantstorms
Long-lasting,deepeffectof Saturn’s giantstormsSérgio Sacani
 
ALMA Observations of the Extraordinary Carina Pillars: A Complementary Sample
ALMA Observations of the Extraordinary Carina Pillars: A Complementary SampleALMA Observations of the Extraordinary Carina Pillars: A Complementary Sample
ALMA Observations of the Extraordinary Carina Pillars: A Complementary SampleSérgio Sacani
 
Dust production and_particle_acceleration_in_supernova_1987_a_revealed_with_alma
Dust production and_particle_acceleration_in_supernova_1987_a_revealed_with_almaDust production and_particle_acceleration_in_supernova_1987_a_revealed_with_alma
Dust production and_particle_acceleration_in_supernova_1987_a_revealed_with_almaSérgio Sacani
 
A massive protocluster of galaxies at a redshift of z&lt;5.3
A massive protocluster of galaxies at a redshift of z&lt;5.3A massive protocluster of galaxies at a redshift of z&lt;5.3
A massive protocluster of galaxies at a redshift of z&lt;5.3Sérgio Sacani
 
Eso1432a
Eso1432aEso1432a
Eso1432aGOASA
 
Two families of_exocomets_in_the_beta_pictoris_system
Two families of_exocomets_in_the_beta_pictoris_systemTwo families of_exocomets_in_the_beta_pictoris_system
Two families of_exocomets_in_the_beta_pictoris_systemSérgio Sacani
 
Discovery of powerful gamma ray flares from the crab nebula
Discovery of powerful gamma ray flares from the crab nebulaDiscovery of powerful gamma ray flares from the crab nebula
Discovery of powerful gamma ray flares from the crab nebulaSérgio Sacani
 
Haze heats Pluto’s atmosphere yet explains its cold temperature
Haze heats Pluto’s atmosphere yet explains its cold temperatureHaze heats Pluto’s atmosphere yet explains its cold temperature
Haze heats Pluto’s atmosphere yet explains its cold temperatureSérgio Sacani
 
Fleeting Small-scale Surface Magnetic Fields Build the Quiet-Sun Corona
Fleeting Small-scale Surface Magnetic Fields Build the Quiet-Sun CoronaFleeting Small-scale Surface Magnetic Fields Build the Quiet-Sun Corona
Fleeting Small-scale Surface Magnetic Fields Build the Quiet-Sun CoronaSérgio Sacani
 

Similar to Rapid formation of large dust grains in the luminous supernova SN 2010jl (20)

Eso1437a
Eso1437aEso1437a
Eso1437a
 
MUSE sneaks a peek at extreme ram-pressure stripping events. I. A kinematic s...
MUSE sneaks a peek at extreme ram-pressure stripping events. I. A kinematic s...MUSE sneaks a peek at extreme ram-pressure stripping events. I. A kinematic s...
MUSE sneaks a peek at extreme ram-pressure stripping events. I. A kinematic s...
 
Herschel detect dust
Herschel detect dustHerschel detect dust
Herschel detect dust
 
Lord of the_rings_a_kinematic_distance_to_circinus_x1_from_a_giant_x_ray_ligh...
Lord of the_rings_a_kinematic_distance_to_circinus_x1_from_a_giant_x_ray_ligh...Lord of the_rings_a_kinematic_distance_to_circinus_x1_from_a_giant_x_ray_ligh...
Lord of the_rings_a_kinematic_distance_to_circinus_x1_from_a_giant_x_ray_ligh...
 
Molecular gas clumps_from_the_destruction_of_icy_bodies_in_beta_pictoris_debr...
Molecular gas clumps_from_the_destruction_of_icy_bodies_in_beta_pictoris_debr...Molecular gas clumps_from_the_destruction_of_icy_bodies_in_beta_pictoris_debr...
Molecular gas clumps_from_the_destruction_of_icy_bodies_in_beta_pictoris_debr...
 
Molecular Gas Clumps from the Destruction of Icy Bodies in the β Pictoris Deb...
Molecular Gas Clumps from the Destruction of Icy Bodies in the β Pictoris Deb...Molecular Gas Clumps from the Destruction of Icy Bodies in the β Pictoris Deb...
Molecular Gas Clumps from the Destruction of Icy Bodies in the β Pictoris Deb...
 
Titan’s aerosol and stratospheric ice opacities between 18 and 500 μm vertic...
Titan’s aerosol and stratospheric ice opacities between 18 and 500 μm  vertic...Titan’s aerosol and stratospheric ice opacities between 18 and 500 μm  vertic...
Titan’s aerosol and stratospheric ice opacities between 18 and 500 μm vertic...
 
Magnetic fields and relativistic electrons fill entire galaxy cluster
Magnetic fields and relativistic electrons fill entire galaxy clusterMagnetic fields and relativistic electrons fill entire galaxy cluster
Magnetic fields and relativistic electrons fill entire galaxy cluster
 
The close circumstellar environment of betelgeuse
The close circumstellar environment of betelgeuseThe close circumstellar environment of betelgeuse
The close circumstellar environment of betelgeuse
 
Spectroscopy and thermal modelling of the first interstellar object 1I/2017 U...
Spectroscopy and thermal modelling of the first interstellar object 1I/2017 U...Spectroscopy and thermal modelling of the first interstellar object 1I/2017 U...
Spectroscopy and thermal modelling of the first interstellar object 1I/2017 U...
 
What determines the_density_structure_of_molecular_clouds
What determines the_density_structure_of_molecular_cloudsWhat determines the_density_structure_of_molecular_clouds
What determines the_density_structure_of_molecular_clouds
 
Long-lasting,deepeffectof Saturn’s giantstorms
Long-lasting,deepeffectof Saturn’s giantstormsLong-lasting,deepeffectof Saturn’s giantstorms
Long-lasting,deepeffectof Saturn’s giantstorms
 
ALMA Observations of the Extraordinary Carina Pillars: A Complementary Sample
ALMA Observations of the Extraordinary Carina Pillars: A Complementary SampleALMA Observations of the Extraordinary Carina Pillars: A Complementary Sample
ALMA Observations of the Extraordinary Carina Pillars: A Complementary Sample
 
Dust production and_particle_acceleration_in_supernova_1987_a_revealed_with_alma
Dust production and_particle_acceleration_in_supernova_1987_a_revealed_with_almaDust production and_particle_acceleration_in_supernova_1987_a_revealed_with_alma
Dust production and_particle_acceleration_in_supernova_1987_a_revealed_with_alma
 
A massive protocluster of galaxies at a redshift of z&lt;5.3
A massive protocluster of galaxies at a redshift of z&lt;5.3A massive protocluster of galaxies at a redshift of z&lt;5.3
A massive protocluster of galaxies at a redshift of z&lt;5.3
 
Eso1432a
Eso1432aEso1432a
Eso1432a
 
Two families of_exocomets_in_the_beta_pictoris_system
Two families of_exocomets_in_the_beta_pictoris_systemTwo families of_exocomets_in_the_beta_pictoris_system
Two families of_exocomets_in_the_beta_pictoris_system
 
Discovery of powerful gamma ray flares from the crab nebula
Discovery of powerful gamma ray flares from the crab nebulaDiscovery of powerful gamma ray flares from the crab nebula
Discovery of powerful gamma ray flares from the crab nebula
 
Haze heats Pluto’s atmosphere yet explains its cold temperature
Haze heats Pluto’s atmosphere yet explains its cold temperatureHaze heats Pluto’s atmosphere yet explains its cold temperature
Haze heats Pluto’s atmosphere yet explains its cold temperature
 
Fleeting Small-scale Surface Magnetic Fields Build the Quiet-Sun Corona
Fleeting Small-scale Surface Magnetic Fields Build the Quiet-Sun CoronaFleeting Small-scale Surface Magnetic Fields Build the Quiet-Sun Corona
Fleeting Small-scale Surface Magnetic Fields Build the Quiet-Sun Corona
 

More from GOASA

Eso1438a
Eso1438aEso1438a
Eso1438aGOASA
 
Eso1435a
Eso1435aEso1435a
Eso1435aGOASA
 
Planet formation in the young, low-mass multiple stellar system GG Tau-A
Planet formation in the young, low-mass multiple stellar system GG Tau-APlanet formation in the young, low-mass multiple stellar system GG Tau-A
Planet formation in the young, low-mass multiple stellar system GG Tau-AGOASA
 
Science Express Paper by: Kevin B. Stevenson et al.
Science Express Paper by: Kevin B. Stevenson et al.Science Express Paper by: Kevin B. Stevenson et al.
Science Express Paper by: Kevin B. Stevenson et al.GOASA
 
Water vapour absorption in the clear atmosphere of a Neptune-sized exoplanet
Water vapour absorption in the clear atmosphere of a Neptune-sized exoplanetWater vapour absorption in the clear atmosphere of a Neptune-sized exoplanet
Water vapour absorption in the clear atmosphere of a Neptune-sized exoplanetGOASA
 
Using the Milky Way satellites to study interactions between cold dark matter...
Using the Milky Way satellites to study interactions between cold dark matter...Using the Milky Way satellites to study interactions between cold dark matter...
Using the Milky Way satellites to study interactions between cold dark matter...GOASA
 
WASP-18: NASA's Chandra X-ray Observatory Finds Planet That Makes Star Act De...
WASP-18: NASA's Chandra X-ray Observatory Finds Planet That Makes Star Act De...WASP-18: NASA's Chandra X-ray Observatory Finds Planet That Makes Star Act De...
WASP-18: NASA's Chandra X-ray Observatory Finds Planet That Makes Star Act De...GOASA
 
Eso1428a
Eso1428aEso1428a
Eso1428aGOASA
 
Misaligned Protoplanetary Disks in a Young Binary Star System
Misaligned Protoplanetary Disks in a Young Binary Star SystemMisaligned Protoplanetary Disks in a Young Binary Star System
Misaligned Protoplanetary Disks in a Young Binary Star SystemGOASA
 
A Neutron Star with a Massive Progenitor in Westerlund 1
A Neutron Star with a Massive Progenitor in Westerlund 1A Neutron Star with a Massive Progenitor in Westerlund 1
A Neutron Star with a Massive Progenitor in Westerlund 1GOASA
 
Fast spin of a young extrasolar planet
Fast spin of a young extrasolar planetFast spin of a young extrasolar planet
Fast spin of a young extrasolar planetGOASA
 
The gravity fieldandinteriorstructureofenceladus
The gravity fieldandinteriorstructureofenceladusThe gravity fieldandinteriorstructureofenceladus
The gravity fieldandinteriorstructureofenceladusGOASA
 
“A ring system detected around the Centaur (10199) Chariklo”
“A ring system detected around the Centaur (10199) Chariklo”“A ring system detected around the Centaur (10199) Chariklo”
“A ring system detected around the Centaur (10199) Chariklo”GOASA
 
Shrinking wrinkling Mercury
Shrinking wrinkling MercuryShrinking wrinkling Mercury
Shrinking wrinkling MercuryGOASA
 

More from GOASA (14)

Eso1438a
Eso1438aEso1438a
Eso1438a
 
Eso1435a
Eso1435aEso1435a
Eso1435a
 
Planet formation in the young, low-mass multiple stellar system GG Tau-A
Planet formation in the young, low-mass multiple stellar system GG Tau-APlanet formation in the young, low-mass multiple stellar system GG Tau-A
Planet formation in the young, low-mass multiple stellar system GG Tau-A
 
Science Express Paper by: Kevin B. Stevenson et al.
Science Express Paper by: Kevin B. Stevenson et al.Science Express Paper by: Kevin B. Stevenson et al.
Science Express Paper by: Kevin B. Stevenson et al.
 
Water vapour absorption in the clear atmosphere of a Neptune-sized exoplanet
Water vapour absorption in the clear atmosphere of a Neptune-sized exoplanetWater vapour absorption in the clear atmosphere of a Neptune-sized exoplanet
Water vapour absorption in the clear atmosphere of a Neptune-sized exoplanet
 
Using the Milky Way satellites to study interactions between cold dark matter...
Using the Milky Way satellites to study interactions between cold dark matter...Using the Milky Way satellites to study interactions between cold dark matter...
Using the Milky Way satellites to study interactions between cold dark matter...
 
WASP-18: NASA's Chandra X-ray Observatory Finds Planet That Makes Star Act De...
WASP-18: NASA's Chandra X-ray Observatory Finds Planet That Makes Star Act De...WASP-18: NASA's Chandra X-ray Observatory Finds Planet That Makes Star Act De...
WASP-18: NASA's Chandra X-ray Observatory Finds Planet That Makes Star Act De...
 
Eso1428a
Eso1428aEso1428a
Eso1428a
 
Misaligned Protoplanetary Disks in a Young Binary Star System
Misaligned Protoplanetary Disks in a Young Binary Star SystemMisaligned Protoplanetary Disks in a Young Binary Star System
Misaligned Protoplanetary Disks in a Young Binary Star System
 
A Neutron Star with a Massive Progenitor in Westerlund 1
A Neutron Star with a Massive Progenitor in Westerlund 1A Neutron Star with a Massive Progenitor in Westerlund 1
A Neutron Star with a Massive Progenitor in Westerlund 1
 
Fast spin of a young extrasolar planet
Fast spin of a young extrasolar planetFast spin of a young extrasolar planet
Fast spin of a young extrasolar planet
 
The gravity fieldandinteriorstructureofenceladus
The gravity fieldandinteriorstructureofenceladusThe gravity fieldandinteriorstructureofenceladus
The gravity fieldandinteriorstructureofenceladus
 
“A ring system detected around the Centaur (10199) Chariklo”
“A ring system detected around the Centaur (10199) Chariklo”“A ring system detected around the Centaur (10199) Chariklo”
“A ring system detected around the Centaur (10199) Chariklo”
 
Shrinking wrinkling Mercury
Shrinking wrinkling MercuryShrinking wrinkling Mercury
Shrinking wrinkling Mercury
 

Recently uploaded

IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsEnterprise Knowledge
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking MenDelhi Call girls
 
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Patryk Bandurski
 
AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsMemoori
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountPuma Security, LLC
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxMalak Abu Hammad
 
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphSIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphNeo4j
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):comworks
 
Hyderabad Call Girls Khairatabad ✨ 7001305949 ✨ Cheap Price Your Budget
Hyderabad Call Girls Khairatabad ✨ 7001305949 ✨ Cheap Price Your BudgetHyderabad Call Girls Khairatabad ✨ 7001305949 ✨ Cheap Price Your Budget
Hyderabad Call Girls Khairatabad ✨ 7001305949 ✨ Cheap Price Your BudgetEnjoy Anytime
 
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...HostedbyConfluent
 
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonetsnaman860154
 
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersEnhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersThousandEyes
 
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationBeyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationSafe Software
 
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsKotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticscarlostorres15106
 
Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machinePadma Pradeep
 
Pigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions
 
Pigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions
 

Recently uploaded (20)

IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI Solutions
 
The transition to renewables in India.pdf
The transition to renewables in India.pdfThe transition to renewables in India.pdf
The transition to renewables in India.pdf
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
 
Vulnerability_Management_GRC_by Sohang Sengupta.pptx
Vulnerability_Management_GRC_by Sohang Sengupta.pptxVulnerability_Management_GRC_by Sohang Sengupta.pptx
Vulnerability_Management_GRC_by Sohang Sengupta.pptx
 
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
 
AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial Buildings
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path Mount
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptx
 
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphSIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):
 
Hyderabad Call Girls Khairatabad ✨ 7001305949 ✨ Cheap Price Your Budget
Hyderabad Call Girls Khairatabad ✨ 7001305949 ✨ Cheap Price Your BudgetHyderabad Call Girls Khairatabad ✨ 7001305949 ✨ Cheap Price Your Budget
Hyderabad Call Girls Khairatabad ✨ 7001305949 ✨ Cheap Price Your Budget
 
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
 
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonets
 
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersEnhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
 
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationBeyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
 
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsKotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
 
Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machine
 
Pigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping Elbows
 
Pigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food Manufacturing
 

Rapid formation of large dust grains in the luminous supernova SN 2010jl

  • 1. Rapid formation of large dust grains in the luminous supernova SN 2010jl Christa Gall1,2,3 , Jens Hjorth2 , Darach Watson2 , Eli Dwek3 , Justyn R. Maund4,2 , Ori Fox5 , Giorgos Leloudas6,2 , Daniele Malesani2 & Avril C. Day-Jones7 1 Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark 2 Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen Ø, Denmark 3 Observational Cosmology Lab, Code 665, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA 4 Astrophysics Research Centre School of Mathematics and Physics Queen’s University Belfast Belfast BT7 1NN, UK 5 Department of Astronomy, University of California, Berkeley, CA 94720-3411, USA 6 The Oskar Klein Centre, Department of Physics, Stockholm University, Albanova University Centre, 10691, Stockholm, Sweden 7 Departamento de Astronomia, Universidad de Chile, Camino del Observatorio 1515, Santiago, Chile The origin of dust in galaxies is still a mystery (1, 2, 3, 4). The majority of the refractory ele- ments are produced in supernova explosions but it is unclear how and where dust grains con- dense and grow, and how they avoid destruction in the harsh environments of star-forming 1
  • 2. galaxies. The recent detection of 0.1–0.5 solar masses of dust in nearby supernova remnants (5, 6, 7) suggests in situ dust formation, while other observations reveal very little dust in supernovae the first few years after explosion (1, 8, 9, 10). Observations of the bright SN 2010jl have been interpreted as pre-existing dust (11), dust formation (12, 13) or no dust at all (14). Here we report the rapid (40–240 days) formation of dust in its dense circumstellar medium. The wavelength dependent extinction of this dust reveals the presence of very large (> 1 µm) grains, which are resistant to destructive processes (15). At later times (500–900 days), the near-IR thermal emission shows an accelerated growth in dust mass, marking the transition of the supernova from a circumstellar- to an ejecta-dominated source of dust. This provides the link between the early and late dust mass evolution in supernovae with dense circumstellar media. We observed the bright (V ∼ 14) and luminous (MV ∼ −20) Type IIn SN 2010jl (16) with the VLT/X-shooter spectrograph covering the wide wavelength range 0.3–2.5 µm. Peak brightness occurred on 2010 Oct 18.6 UT, and observations were made at 9 early epochs and at one late epoch, 26–239 and 868 days past peak, respectively (Methods, Extended Data Table 1, Extended Data Figures 1–5). Figure 1 shows the intermediate-width components of the hydrogen emission lines of Hγ at λ4340.472 and Pβ at λ12818.072 and of the oxygen ejecta emission lines [O i] λλ6300.304, 6363.776 (rest frame). The emission profiles change with time, exhibiting a substantial depression of the red wings and a corresponding blueshift of the centroids of the lines (Extended Data Figure 6) due to preferential extinction of the emission from the receding material on the far side of the supernova (12, 17, 18). The effect is less pronounced at longer wavelengths, as expected 2
  • 3. if the attenuation of the lines is due to dust extinction, and rules out that the blueshifts are due to electron scattering (14) (Supplementary Information). The early epoch hydrogen lines have a Lorentzian half width at half maximum (HWHM) in the range 1,000–2,000 km s −1 . The middle and right panels of Figure 1 show that the line profiles at the late epoch are narrower (HWHM ∼ 800 ± 100 km s−1 ) and also exhibit blueshifts of the oxygen lines, which indicates that ejecta material is involved in the dust formation at this stage. Figure 2 shows the temporal evolution of the inferred extinction, Aλ, as derived from the attenuation of emission lines in the early spectra. The extinction has been calculated from the ratios of the integrated line profiles at each epoch. We assume that the first epoch at 26 days past peak is nearly unextinguished and use it as a reference. The monotonic increase of the extinction as a function of time indicates continuous formation of dust. The extinction at 239 days is AV ∼ 0.6 mag. Interestingly, the shape of the normalized extinction curve shows no substantial variation with time. Scaling and combining the data from the eight individual early epochs allows us to produce the first directly measured, robust extinction curve for a supernova. The extinction curve is shallow, with RV = AV/E(B − V) ≈ 6.4, and can be represented by a mix of grey-extinction dust grains (Aλ = constant) and either standard Small Magellanic Cloud (SMC) or Milky Way (MW) extinction grains (19). The extinction contribution of the grey dust is 40 % in the V band. We fit several dust models to the extinction curve using amorphous carbon dust characterized by a power-law grain size distribution (20) with slope α, and minimum and maximum grain radii (amin < amax) in the interval [0.001, 5.0] µm. 3
  • 4. Figure 3 shows the resulting confidence interval for the two parameters amax and α around the best fit values of amin = 0.001 µm, amax = 4.2 µm and α = 3.6. It is evident that only size dis- tributions extending to grain radii that are significantly larger than that of MW interstellar medium (21, 22) dust ( 0.25 µm) can reproduce the supernova extinction curve (Figure 2). The 2 σ lower limit on the maximum grain size is amax > 0.7 µm. We cannot perform a similar analysis of the late epoch because the intrinsic line profile at this epoch is unknown and likely highly affected by extinction (13). However, we note that the blueshift velocities change only marginally with wavelength (Extended Data Figure 6), suggestive of large grains also at this epoch. Figure 4 illustrates the continuous build-up of dust as a function of time. The increasing attenuation of the lines is accompanied by increasing emission in the near-infrared (NIR) spectra, from a slight excess over a supernova blackbody fit at early times to total dominance at the late epoch. We fitted the spectra with black bodies which for the NIR excess yield a constant black- body radius of (1.0 ± 0.2) × 1016 cm at the early epochs, and a temperature that declines from ∼ 2,300 K to ∼ 1,600 K from day 26 onwards. At the late epoch, we obtain a black-body radius of (5.7 ± 0.2) × 1016 cm and a temperature of ∼ 1,100 K. The high temperatures detected at the early epochs suggest that the NIR excess is due to thermal emission from carbonaceous dust, rather than silicate dust, which has a lower condensation temperature of ∼ 1, 500 K (1). The high temperatures rule out suggestions that the NIR emission is due to pre-existing dust or a dust echo (11) (Extended Data Figures 7, 8, Supplementary Information). Fitting the NIR excess with a modified black body, assuming the grain composition found in our analysis of the extinction curve (Figure 3), gives a dust temperature similar to the black-body temperature, which is at all epochs (and considered dust 4
  • 5. compositions) larger than 1,000 K. The dust masses inferred from the extinction and NIR emission agree very well. The inferred amount of dust at the late epoch (868 days) is ∼ 2.5 × 10−3 M⊙ if composed of carbon, but could be up to an order of magnitude larger for silicates (Methods). Our results indicate accelerated dust formation after several hundred days. SN 2010jl will contain a dust mass of ∼ 0.5 M⊙ similar to that observed in SN 1987A (5, 6), by day ∼ 8000, if the dust production continues to follow the trend depicted in Figure 4. The most obvious location for early dust formation is in a cool, dense shell behind the su- pernova shock (18, 23), which sweeps up material as it propagates through the dense circumstellar shell surrounding SN 2010jl (24) (Supplementary Information). Dust formation in the ejecta is impossible at this stage because the temperature is too high. The postshock gas cools and gets compressed to the low temperatures and high densities necessary for dust formation and gives rise to the observed intermediate width emission lines. By the time of our first observation 26 days past peak, the supernova blast wave encounters the dense circumstellar shell at a radius of ∼ 2.0 × 1016 cm for a blast wave velocity of ∼ 3.5 × 104 km s−1 . As indicated by the blueshifts of the ejecta metal lines (Figure 1), the accelerated dust formation occurring at later times (Figure 4) and at larger radius is possibly facilitated by the bulk ejecta material, which travels on average at a velocity of ∼ 7, 500 km s−1 at early epochs (Extended Data Figure 4). Our detection of large grains soon after the supernova explosion suggests a remarkably rapid and efficient mechanism for dust nucleation and growth. The underlying physics is poorly under- stood but may involve a two-stage process governed by early dust formation in a cool, dense shell, 5
  • 6. followed by accelerated dust formation involving ejecta material. For Type IIP supernovae, the growth of dust grains can be sustained up to 5 years past explosion (25). The dense CSM around Type IIn supernovae may provide conditions to facilitate dust growth beyond that. The process appears generic, in that other Type IIn supernovae like SN 1995N, SN 1998S, SN 2005ip, and SN 2006jd exhibited similar observed NIR properties (8, 10, 26, 27) and growing dust masses, consis- tent with the trend revealed here for SN 2010jl (Figure 4). Moreover, it establishes a link between the early small dust masses inferred in supernovae (1, 8, 10) and the large dust masses found in a few supernova remnants (1, 5, 7). Large grains (0.1 ≤ amax 4.0 µm), provide an effective way to counter destructive processes in the interstellar medium (28). Indeed, large grains from the inter- stellar medium have been detected in the Solar System (29). Simulations indicate that grains larger than ∼ 0.1 µm will survive reverse shock interactions with only a low fraction being sputtered to smaller radii (15). For a grain size distribution of amin= 0.001 µm, amax = 4.2 µm and α = 3.6 (Figures 2 and 3), the mass fraction of grains above 0.1 µm is ∼ 80 %, i.e., the majority of the produced dust mass can be retained. 6
  • 7. Methods summary We obtained optical and near-infrared medium-resolution spectroscopy with the ESO VLT/X- shooter instrument of the bright Type IIn supernova SN 2010jl at 9 epochs between 2010 November 13.4 UT and 2011 June 15.0 UT. The continuum emission of the spectra was fit with a combination of black-body, modified black-body and host galaxy models, allowing us to quantify the tempo- ral progression of the temperature and radius of the photosphere as well as the temperature and characteristics of the forming dust, which causes conspicuous excess near-infrared emission. We analysed the profiles of the most prominent hydrogen, helium and oxygen emission lines. From Lorentzian profile fits, which are good representations of the emission lines, we measured the blueshifts of the peaks and the half widths at half maximum of the lines, and derived the wave- length dependent attenuation properties of the forming dust at each epoch. The uncertainties were obtained using Monte Carlo calculations by varying the Lorentzian profile parameters. We gen- erated synthetic UBVRIJHK lighcurves and calculated the energy output of the supernova. This, together with calculated dust vaporization radii, temperatures of the dust grains at different dis- tances from the supernova, and the radius evolution of the forward shock, were used to constrain the location of the forming dust. Different dust models, characterised by either single grain sizes or a power-law grain size distribution function and either amorphous carbon or silicates, were fitted to the extinction curves and the near-infrared excess emission. From these fits, we derived the temporal progression of the dust mass of the forming dust at each observed epoch. 7
  • 8. 1. Gall, C., Hjorth, J. & Andersen, A. C. Production of dust by massive stars at high redshift. Astron. Astrophys. Rev. 19, 43 (2011). 1108.0403. 2. Matsuura, M. et al. The global gas and dust budget of the Large Magellanic Cloud: AGB stars and supernovae, and the impact on the ISM evolution. Mon. Not. R. Astron. Soc. 396, 918–934 (2009). 0903.1123. 3. Draine, B. T. Interstellar Dust Models and Evolutionary Implications. In Henning, T., Gr¨un, E. & Steinacker, J. (eds.) Cosmic Dust - Near and Far, vol. 414 of Astronomical Society of the Pacific Conference Series, 453 (2009). 0903.1658. 4. Dunne, L. et al. Herschel-ATLAS: rapid evolution of dust in galaxies over the last 5 billion years. Mon. Not. R. Astron. Soc. 417, 1510–1533 (2011). 1012.5186. 5. Matsuura, M. et al. Herschel Detects a Massive Dust Reservoir in Supernova 1987A. Science 333, 1258– (2011). 1107.1477. 6. Indebetouw, R. et al. Dust Production and Particle Acceleration in Supernova 1987A Revealed with ALMA. Astrophys. J. Lett. 782, L2 (2014). 1312.4086. 7. Gomez, H. L. et al. A Cool Dust Factory in the Crab Nebula: A Herschel Study of the Filaments. Astrophys. J. 760, 96 (2012). 1209.5677. 8. Pozzo, M. et al. On the source of the late-time infrared luminosity of SN 1998S and other Type II supernovae. Mon. Not. R. Astron. Soc. 352, 457–477 (2004). astro-ph/0404533. 8
  • 9. 9. Otsuka, M. et al. Late-time Light Curves of Type II Supernovae: Physical Properties of Supernovae and Their Environment. Astrophys. J. 744, 26 (2012). 1111.5041. 10. Stritzinger, M. et al. Multi-wavelength Observations of the Enduring Type IIn Supernovae 2005ip and 2006jd. Astrophys. J. 756, 173 (2012). 1206.5575. 11. Andrews, J. E. et al. Evidence for Pre-existing Dust in the Bright Type IIn SN 2010jl. Astron. J. 142, 45 (2011). 1106.0537. 12. Smith, N. et al. Systematic Blueshift of Line Profiles in the Type IIn Supernova 2010jl: Evidence for Post-shock Dust Formation? Astron. J. 143, 17 (2012). 1108.2869. 13. Maeda, K. et al. Properties of Newly Formed Dust Grains in the Luminous Type IIn Supernova 2010jl. Astrophys. J. 776, 5 (2013). 1308.0406. 14. Zhang, T. et al. Type IIn Supernova SN 2010jl: Optical Observations for over 500 Days after Explosion. Astron. J. 144, 131 (2012). 1208.6078. 15. Silvia, D. W., Smith, B. D. & Shull, J. M. Numerical Simulations of Supernova Dust Destruc- tion. I. Cloud-crushing and Post-processed Grain Sputtering. Astrophys. J. 715, 1575–1590 (2010). 1001.4793. 16. Newton, J. & Puckett, T. Possible Supernova in UGC 5189A. Central Bureau Electronic Telegrams 2532, 1 (2010). 17. Lucy, L. B., Danziger, I. J., Gouiffes, C. & Bouchet, P. Dust Condensation in the Ejecta of SN 1987 A. In Tenorio-Tagle, G., Moles, M. & Melnick, J. (eds.) IAU Colloq. 120: Structure and 9
  • 10. Dynamics of the Interstellar Medium, vol. 350 of Lecture Notes in Physics, Berlin Springer Verlag, 164 (1989). 18. Smith, N., Foley, R. J. & Filippenko, A. V. Dust Formation and He II λ4686 Emission in the Dense Shell of the Peculiar Type Ib Supernova 2006jc. Astrophys. J. 680, 568–579 (2008). 0704.2249. 19. Gordon, K. D., Clayton, G. C., Misselt, K. A., Landolt, A. U. & Wolff, M. J. A Quan- titative Comparison of the Small Magellanic Cloud, Large Magellanic Cloud, and Milky Way Ultraviolet to Near-Infrared Extinction Curves. Astrophys. J. 594, 279–293 (2003). astro-ph/0305257. 20. Mathis, J. S., Rumpl, W. & Nordsieck, K. H. The size distribution of interstellar grains. Astrophys. J. 217, 425–433 (1977). 21. Zubko, V., Dwek, E. & Arendt, R. G. Interstellar Dust Models Consistent with Extinc- tion, Emission, and Abundance Constraints. Astrophys. J. Suppl. 152, 211–249 (2004). astro-ph/0312641. 22. Brandt, T. D. & Draine, B. T. The Spectrum of the Diffuse Galactic Light: The Milky Way in Scattered Light. Astrophys. J. 744, 129 (2012). 1109.4175. 23. Fox, O. et al. Near-Infrared Photometry of the Type IIn SN 2005ip: The Case for Dust Condensation. Astrophys. J. 691, 650–660 (2009). 0807.3555. 24. Ofek, E. O. et al. SN 2010jl: Optical to Hard X-Ray Observations Reveal an Explosion Embedded in a Ten Solar Mass Cocoon. Astrophys. J. 781, 42 (2014). 1307.2247. 10
  • 11. 25. Sarangi, A. & Cherchneff, I. The Chemically Controlled Synthesis of Dust in Type II-P Su- pernovae. Astrophys. J. 776, 107 (2013). 1309.5887. 26. Mauerhan, J. & Smith, N. Supernova 1998S at 14 years postmortem: continuing circumstellar interaction and dust formation. Mon. Not. R. Astron. Soc. 424, 2659–2666 (2012). 1204.1610. 27. Van Dyk, S. D. Late-time Dust Emission from the Type IIn Supernova 1995N. Astron. J. 145, 118 (2013). 1305.0028. 28. Jones, A. P. & Nuth, J. A. Dust destruction in the ISM: a re-evaluation of dust lifetimes. Astron. Astrophys. 530, A44 (2011). 29. Frisch, P. C. et al. Dust in the Local Interstellar Wind. Astrophys. J. 525, 492–516 (1999). astro-ph/9905108. 30. Gallagher, J. S. et al. Optical and Infrared Analysis of Type II SN 2006bc. Astrophys. J. 753, 109 (2012). 1205.5517. Supplementary Information Is available in the online version of the paper. Acknowledgments We thank Lise Christensen and Teddy Frederiksen for advice on data reduction with the X-shooter pipeline and Maximilian Stritzinger and Rick Arendt for discussions. This investigation is based on 11
  • 12. observations made with ESO Telescopes at the La Silla Paranal Observatory under programme IDs 084.C-0315(D) and 087.C-0456(A). C.G. was supported from the NASA Postdoctoral Program (NPP) and acknowledges funding provided by the Danish Agency for Science and Technology and Innovation. G.L. is supported by the Swedish Research Council through grant No. 623-2011- 7117. A.C.D.J. is supported by the Proyecto Basal PB06 (CATA), and partially supported by the Joint Committee ESO-Government Chile. The Dark Cosmology Centre is funded by the Danish National Research Foundation. Author contributions C.G. and J.H. conducted the observational campaign, reduced and analysed the data and wrote the manuscript. D.W. was the P.I. of the observing programs and assisted in writing the manuscript. E.D. performed calculations of vaporization radii and assisted in writing the manuscript. O.F. and G.L. assisted in data analysis. J.R.M. helped with the interpretation of the spectra and line profiles. D.M. and D.W. assisted with observations. A.C.D.J. conducted the observation of the epoch 2 spectrum. All authors were engaged in discussions and provided comments on the manuscript. Author information Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests. Readers are welcome to comment on the online version of the paper. Correspondence and requests for materials should be addressed to C.G. (cgall@phys.au.dk). 12
  • 13. Figure 1 | Evolution of the hydrogen and oxygen line profiles in the spectrum of SN 2010jl. Line profiles for a, Hγ λ4340.472 and b, Pβ λ12818.072 for epochs from 26 to 239 days and c, Hγ and Pβ at 868 days. d, The [O i] λλ6300.304, 6363.776 doublet (zero velocity set at λ6300.304), and e, the [O i] λ11297.68 line. The dashed-dotted lines in all panels denote zero velocity, at red- shift z = 0.01058, as determined from narrow emission lines in the spectrum. Figure 2 | Supernova dust extinction curves. a, The evolution of the extinction, Aλ, of the hydrogen lines (open circles with standard deviations; Methods). The solid lines represent the (lin- early interpolated) extinction curves. b, The grey-shaded area represents the range of extinction curves relative to AV (filled triangles with error bars). Grey curves are the SMC and MW extinc- tion curves, while the red curves include a grey component (Methods). c, Fits to the optical depth within the 1, 2 and 3 σ (68.3, 95.4 and 99.7 %) confidence interval (Methods). Dashed and solid curves are models with ‘best fitting’ and MW parameters, respectively. Figure 3 | Maximum grain size and slope of the grain size distribution. Confidence contours, as constrained by the normalized optical depth τ(λ) (see Figure 2). The most favorable power- law models lie within a parameter range for α between ∼ 3.4 and 3.7 and require large grains of amax 1.3 µm (1σ). The confidence limits are as in Figure 2. Even at the 3σ confidence limit the maximum grain size is larger (amax 0.5 µm) than MW maximum grain sizes for a power law model (amax ≈ 0.25 µm) (20) or more sophisticated models (21, 22). 13
  • 14. Figure 4 | Temporal evolution of the dust mass. Carbon dust masses and standard deviation derived from the extinction (green band) and the NIR emission (red bars and band; Methods) in- cluding a literature data point at 553 days (13). The light grey shaded area illustrates the evolution of the early (Md ∝ t0.8 at t < 250 days) and late (Md ∝ t2.4 at t > 250 days) stages of dust formation when SN 2010jl switches from circumstellar to ejecta dust formation. The grey and blue symbols correspond to literature data for SN 2005ip (triangles), SN 2006jd (dots), and other supernovae (bars) (1, 5, 6, 9, 10, 27, 30). The length of the symbols for SN 1995N and SN1987A correspond to the quoted dust mass range. For other supernova the standard deviation is either smaller than the size of the symbols or have not been reported. 14
  • 15. Fλ(v)(arbitraryunits) Hγ 0.43 µm a -4 -2 0 2 4 26 d 44 d 66 d 104 d 121 d 140 d 158 d 196 d 239 d Pβ 1.28 µm b Doppler velocity (103 km s-1 ) -4 -2 0 2 4 c Pβ, 868 d Hγ, 868 d d [O Ι] 0.63 µm -4 -2 0 2 4 e [O Ι] 1.13 µm 868 d 15
  • 16. 0.5 1.0 1.5 2.0 2.5 1 / λ (µm-1 ) 0.0 0.2 0.4 0.6 0.8 1.0 1.2 Aλ(mag) a HδHγHβPβBrγ 44 d 66 d 104 d 121 d 140 d 158 d 196 d 239 d 0.5 1.0 1.5 2.0 2.5 1 / λ (µm-1 ) 0.0 0.5 1.0 1.5 Aλ/AV b Grey + Milky Way dust Grey + SMC dust Milky Way SMC 0.5 1.0 1.5 2.0 2.5 1 / λ (µm-1 ) 0.0 0.5 1.0 1.5 τλ/τV c Confidence 68.3% 95.4% 99.7% Milky Way model Best fit 16
  • 17. 0.1 0.2 0.5 1.0 2.0 3.0 4.5 Maximum grain size amax (µm) 2.8 3.0 3.2 3.4 3.6 3.8 4.0 α Milky Way Confidence 99.7% 95.4% 68.3% 17
  • 18. 50 100 150 239 500 868 1638 5000 9000 Time since peak (days) 10-5 10-4 10-3 10-2 10-1 100 Md(MO•) SN2005af SN2003gd SN1998S SN2005ip SN2006jc SN2004et SN1999em SN2004et SN2006jd SN2003gd SN2006bc SN1987A SN1987A SN1995N SN 2010jl (extinction) SN 2010jl (NIR emission) 50 100 150 239 500 868 1638 5000 9000 Time since peak (days) 10-5 10-4 10-3 10-2 10-1 100 Md(MO•) 18