SlideShare a Scribd company logo
1 of 22
EC3354 SIGNALS AND SYSTEMS
UNIT III
Laplace Transform
Mrs.Mohanapriya S
AP/ECE
JCT CET
JCT COLLEGE OF ENGINEERING AND TECHNOLOGY
PICHANUR, COIMBATORE – 641105
Why use Laplace Transforms?
• Find solution to differential equation using
algebra
• Relationship to Fourier Transform allows easy
way to characterize systems
• No need for convolution of input and
differential equation solution
• Useful with multiple processes in system
How to use Laplace
• Find differential equations that describe
system
• Obtain Laplace transform
• Perform algebra to solve for output or variable
of interest
• Apply inverse transform to find solution
What are Laplace transforms?
















j
j
st
1
0
st
ds
e
)
s
(
F
j
2
1
)}
s
(
F
{
L
)
t
(
f
dt
e
)
t
(
f
)}
t
(
f
{
L
)
s
(
F
• t is real, s is complex!
• Inverse requires complex analysis to solve
• Note “transform”: f(t)  F(s), where t is integrated and s is
variable
• Conversely F(s)  f(t), t is variable and s is integrated
• Assumes f(t) = 0 for all t < 0
Evaluating F(s) = L{f(t)}
• Hard Way – do the integral

 



 




















0
st
0 0
t
)
a
s
(
st
at
at
0
st
dt
)
t
sin(
e
)
s
(
F
t
sin
)
t
(
f
a
s
1
dt
e
dt
e
e
)
s
(
F
e
)
t
(
f
s
1
)
1
0
(
s
1
dt
e
)
s
(
F
1
)
t
(
f
let
let
let
Integrate by parts
Evaluating F(s)=L{f(t)}- Hard Way
remember  

 vdu
uv
udv
)
t
cos(
v
,
dt
)
t
sin(
dv
dt
se
du
,
e
u st
st





 


 



 











0
st
st
0 0
st
0
st
st
dt
)
t
cos(
e
s
)
1
(
e
dt
)
t
cos(
e
s
)
t
cos(
e
[
dt
)
t
sin(
e ]
)
t
sin(
v
,
dt
)
t
cos(
dv
dt
se
du
,
e
u st
st




 




















0
st
st
0
st
0
st
0
st
dt
)
t
sin(
e
s
)
0
(
e
dt
)
t
sin(
e
s
)
t
sin(
e
[
dt
)
t
cos(
e
]
2
0
st
0
st
2
0 0
st
2
st
s
1
1
dt
)
t
sin(
e
1
dt
)
t
sin(
e
)
s
1
(
dt
)
t
sin(
e
s
1
dt
)
t
sin(
se









 




 


let
let
Substituting, we get:
It only gets worse…
Evaluating F(s) = L{f(t)}
• This is the easy way ...
• Recognize a few different transforms
• See table 2.3 on page 42 in textbook
• Or see handout ....
• Learn a few different properties
• Do a little math
Table of selected Laplace Transforms
1
s
1
)
s
(
F
)
t
(
u
)
t
sin(
)
t
(
f
1
s
s
)
s
(
F
)
t
(
u
)
t
cos(
)
t
(
f
a
s
1
)
s
(
F
)
t
(
u
e
)
t
(
f
s
1
)
s
(
F
)
t
(
u
)
t
(
f
2
2
at
















More transforms
1
n
n
s
!
n
)
s
(
F
)
t
(
u
t
)
t
(
f 



6
6
5
2
1
s
120
s
!
5
)
s
(
F
)
t
(
u
t
)
t
(
f
,
5
n
s
!
1
)
s
(
F
)
t
(
tu
)
t
(
f
,
1
n
s
1
s
!
0
)
s
(
F
)
t
(
u
)
t
(
f
,
0
n














1
)
s
(
F
)
t
(
)
t
(
f 



Note on step functions in Laplace




0
st
dt
e
)
t
(
f
)}
t
(
f
{
L
• Unit step function definition:
• Used in conjunction with f(t)  f(t)u(t)
because of Laplace integral limits:
0
t
,
0
)
t
(
u
0
t
,
1
)
t
(
u




Properties of Laplace Transforms
• Linearity
• Scaling in time
• Time shift
• “frequency” or s-plane shift
• Multiplication by tn
• Integration
• Differentiation
Properties: Linearity
)
s
(
F
c
)
s
(
F
c
)}
t
(
f
c
)
t
(
f
c
{
L 2
2
1
1
2
2
1
1 


Example :
1
s
1
)
1
s
)
1
s
(
)
1
s
(
(
2
1
)
1
s
1
1
s
1
(
2
1
}
e
{
L
2
1
}
e
{
L
2
1
}
e
2
1
e
2
1
{
y
)}
t
{sinh(
L
2
2
t
t
t
t

















Proof :
)
s
(
F
c
)
s
(
F
c
dt
e
)
t
(
f
c
dt
e
)
t
(
f
c
dt
e
)]
t
(
f
c
)
t
(
f
c
[
)}
t
(
f
c
)
t
(
f
c
{
L
2
2
1
1
0
st
2
2
0
st
1
1
st
2
2
0
1
1
2
2
1
1
















)
a
s
(
F
a
1
)}
at
(
f
{
L 
Example :
2
2
2
2
2
2
s
)
s
(
1
)
1
)
s
(
1
(
1
)}
t
{sin(
L












 Proof :
)
a
s
(
F
a
1
du
e
)
u
(
f
a
1
du
a
1
dt
,
a
u
t
,
at
u
dt
e
)
at
(
f
)}
at
(
f
{
L
a
0
u
)
a
s
(
0
st












let
Properties: Scaling in Time
Properties: Time Shift
)
s
(
F
e
)}
t
t
(
u
)
t
t
(
f
{
L 0
st
0
0




Example :
a
s
e
)}
10
t
(
u
e
{
L
s
10
)
10
t
(
a






Proof :
)
s
(
F
e
du
e
)
u
(
f
e
du
e
)
u
(
f
t
u
t
,
t
t
u
dt
e
)
t
t
(
f
dt
e
)
t
t
(
u
)
t
t
(
f
)}
t
t
(
u
)
t
t
(
f
{
L
0
0
0
0
0
st
0
su
st
t
0
)
t
u
(
s
0
0
t
st
0
0
st
0
0
0
0






























let
Properties: S-plane (frequency) shift
)
a
s
(
F
)}
t
(
f
e
{
L at



Example :
2
2
at
)
a
s
(
)}
t
sin(
e
{
L






 Proof :
)
a
s
(
F
dt
e
)
t
(
f
dt
e
)
t
(
f
e
)}
t
(
f
e
{
L
0
t
)
a
s
(
0
st
at
at













Properties: Multiplication by tn
)
s
(
F
ds
d
)
1
(
)}
t
(
f
t
{
L n
n
n
n


Example :
1
n
n
n
n
n
s
!
n
)
s
1
(
ds
d
)
1
(
)}
t
(
u
t
{
L




Proof :
)
s
(
F
s
)
1
(
dt
e
)
t
(
f
s
)
1
(
dt
e
s
)
t
(
f
)
1
(
dt
e
t
)
t
(
f
dt
e
)
t
(
f
t
)}
t
(
f
t
{
L
n
n
n
0
st
n
n
n
0
st
n
n
n
0
st
n
0
st
n
n


























The “D” Operator
1. Differentiation shorthand
2. Integration shorthand
)
t
(
f
dt
d
)
t
(
f
D
dt
)
t
(
df
)
t
(
Df
2
2
2


)
t
(
f
)
t
(
Dg
dt
)
t
(
f
)
t
(
g
t

 

)
t
(
f
D
)
t
(
g
dt
)
t
(
f
)
t
(
g
1
a
t
a


 
if
then then
if
Properties: Integrals
s
)
s
(
F
)}
t
(
f
D
{
L 1
0 

Example :
)}
t
{sin(
L
1
s
1
)
1
s
s
)(
s
1
(
)}
t
cos(
D
{
L
2
2
1
0





Proof :
let
st
st
0
st
1
0
e
s
1
v
,
dt
e
dv
dt
)
t
(
f
du
),
t
(
g
u
dt
e
)
t
(
g
)}
t
{sin(
L
)
t
(
f
D
)
t
(
g



















 


t
0
st
0
st
dt
)
t
(
f
)
t
(
g
s
)
s
(
F
dt
e
)
t
(
f
s
1
]
e
)
t
(
g
s
1
[








0
)
(
)
( dt
e
t
f
t st
If t=0, g(t)=0
for so
slower than





0
)
(
)
( t
g
dt
t
f 0

st
e
Properties: Derivatives
(this is the big one)
)
0
(
f
)
s
(
sF
)}
t
(
Df
{
L 


Example :
)}
t
sin(
{
L
1
s
1
1
s
)
1
s
(
s
1
1
s
s
)
0
(
f
1
s
s
)}
t
cos(
D
{
L
2
2
2
2
2
2
2
2















Proof :
)
s
(
sF
)
0
(
f
dt
e
)
t
(
f
s
)]
t
(
f
e
[
)
t
(
f
v
,
dt
)
t
(
f
dt
d
dv
se
du
,
e
u
dt
e
)
t
(
f
dt
d
)}
t
(
Df
{
L
0
st
0
st
st
st
0
st





















let
Difference in
• The values are only different if f(t) is not
continuous @ t=0
• Example of discontinuous function: u(t)
)
0
(
f
&
)
0
(
f
),
0
(
f 

1
)
0
(
u
)
0
(
f
1
)
t
(
u
lim
)
0
(
f
0
)
t
(
u
lim
)
0
(
f
0
t
0
t












?
)}
t
(
f
D
{
L 2

)
0
(
'
f
)
0
(
sF
)
s
(
F
s
)
0
(
'
f
))
0
(
f
)
s
(
sF
(
s
)
0
(
'
f
)}
t
(
Df
{
sL
)
0
(
g
)
s
(
sG
)}
t
(
g
D
{
L
)
0
(
'
f
)
0
(
Df
)
0
(
g
),
t
(
Df
)
t
(
g
2
2














let
)
0
(
f
)
0
(
sf
)
0
(
'
f
s
)
0
(
f
s
)
s
(
F
s
)}
t
(
f
D
{
L )'
1
n
(
)'
2
n
(
)
2
n
(
)
1
n
(
n
n 








 
NOTE: to take
you need the value @ t=0 for
called initial conditions!
We will use this to solve differential equations!



)
t
(
f
),
t
(
Df
),...
t
(
f
D
),
t
(
f
D 2
n
1
n
)}
t
(
f
D
{
L n
Properties: Nth order derivatives
Properties: Nth order derivatives
)
0
(
f
)
s
(
sF
)}
t
(
Df
{
L 

)}
t
(
f
D
{
L 2
)
0
(
f
)
s
(
sF
)}
t
(
Df
{
L
)}
t
(
g
{
L
)
s
(
G
)
0
(
'
f
)
0
(
g
)
t
(
Df
)
t
(
g
)
0
(
g
)
s
(
sG
)}
t
(
Dg
{
L
)
t
(
f
D
)
t
(
Dg
and
)
t
(
Df
)
t
(
g 2











)
0
(
'
f
)
0
(
sf
)
s
(
F
s
)
0
(
'
f
)]
0
(
f
)
s
(
sF
[
s
)
0
(
g
)
s
(
sG
)}
t
(
Dg
{
L 2









.
etc
),
t
(
f
D
),
t
(
f
D 4
3
Start with
Now apply again
let
then
remember
Can repeat for
)
0
(
f
)
0
(
sf
)
0
(
'
f
s
)
0
(
f
s
)
s
(
F
s
)}
t
(
f
D
{
L )'
1
n
(
)'
2
n
(
)
2
n
(
)
1
n
(
n
n 








 

More Related Content

Similar to EC3354 SIGNALS AND SYSTEM LAPLACE TRANSFORM

transformada de lapalace universidaqd ppt para find eaño
transformada de lapalace universidaqd ppt para find eañotransformada de lapalace universidaqd ppt para find eaño
transformada de lapalace universidaqd ppt para find eaño
luis506251
 
Laplace transform
Laplace transformLaplace transform
Laplace transform
joni joy
 

Similar to EC3354 SIGNALS AND SYSTEM LAPLACE TRANSFORM (20)

transformada de lapalace universidaqd ppt para find eaño
transformada de lapalace universidaqd ppt para find eañotransformada de lapalace universidaqd ppt para find eaño
transformada de lapalace universidaqd ppt para find eaño
 
Top ranking colleges in india
Top ranking colleges in indiaTop ranking colleges in india
Top ranking colleges in india
 
Clase 02-modelado-de-sistemas-de-control (1)
Clase 02-modelado-de-sistemas-de-control (1)Clase 02-modelado-de-sistemas-de-control (1)
Clase 02-modelado-de-sistemas-de-control (1)
 
Production Engineering - Laplace Transformation
Production Engineering - Laplace TransformationProduction Engineering - Laplace Transformation
Production Engineering - Laplace Transformation
 
Jif 315 lesson 1 Laplace and fourier transform
Jif 315 lesson 1 Laplace and fourier transformJif 315 lesson 1 Laplace and fourier transform
Jif 315 lesson 1 Laplace and fourier transform
 
Laplace transform
Laplace transformLaplace transform
Laplace transform
 
Free Ebooks Download
Free Ebooks Download Free Ebooks Download
Free Ebooks Download
 
Laplace Final.pptx
Laplace Final.pptxLaplace Final.pptx
Laplace Final.pptx
 
Laplace transform
Laplace transformLaplace transform
Laplace transform
 
Over view of Laplace Transform and its Properties
Over view of Laplace Transform and its Properties Over view of Laplace Transform and its Properties
Over view of Laplace Transform and its Properties
 
hsu-Chapter 6 Laplace transform.pdf
hsu-Chapter 6 Laplace transform.pdfhsu-Chapter 6 Laplace transform.pdf
hsu-Chapter 6 Laplace transform.pdf
 
160280102011 c1 aem
160280102011 c1 aem160280102011 c1 aem
160280102011 c1 aem
 
Laplace Transformation & Its Application
Laplace Transformation & Its ApplicationLaplace Transformation & Its Application
Laplace Transformation & Its Application
 
Laplace
LaplaceLaplace
Laplace
 
Me330 lecture2
Me330 lecture2Me330 lecture2
Me330 lecture2
 
Intro laplacetransform
Intro laplacetransformIntro laplacetransform
Intro laplacetransform
 
On Laplace Transform.ppt
On Laplace Transform.pptOn Laplace Transform.ppt
On Laplace Transform.ppt
 
Laplace
LaplaceLaplace
Laplace
 
Signals and Systems-Fourier Series and Transform
Signals and Systems-Fourier Series and TransformSignals and Systems-Fourier Series and Transform
Signals and Systems-Fourier Series and Transform
 
Damped force vibrating Model Laplace Transforms
Damped force vibrating Model Laplace Transforms Damped force vibrating Model Laplace Transforms
Damped force vibrating Model Laplace Transforms
 

Recently uploaded

AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
ankushspencer015
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Christo Ananth
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
dollysharma2066
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college project
Tonystark477637
 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
rknatarajan
 

Recently uploaded (20)

Call for Papers - International Journal of Intelligent Systems and Applicatio...
Call for Papers - International Journal of Intelligent Systems and Applicatio...Call for Papers - International Journal of Intelligent Systems and Applicatio...
Call for Papers - International Journal of Intelligent Systems and Applicatio...
 
Unit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfUnit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdf
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
 
Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
 
chapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringchapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineering
 
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
 
Vivazz, Mieres Social Housing Design Spain
Vivazz, Mieres Social Housing Design SpainVivazz, Mieres Social Housing Design Spain
Vivazz, Mieres Social Housing Design Spain
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college project
 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSIS
 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
 
NFPA 5000 2024 standard .
NFPA 5000 2024 standard                                  .NFPA 5000 2024 standard                                  .
NFPA 5000 2024 standard .
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
 

EC3354 SIGNALS AND SYSTEM LAPLACE TRANSFORM

  • 1. EC3354 SIGNALS AND SYSTEMS UNIT III Laplace Transform Mrs.Mohanapriya S AP/ECE JCT CET JCT COLLEGE OF ENGINEERING AND TECHNOLOGY PICHANUR, COIMBATORE – 641105
  • 2. Why use Laplace Transforms? • Find solution to differential equation using algebra • Relationship to Fourier Transform allows easy way to characterize systems • No need for convolution of input and differential equation solution • Useful with multiple processes in system
  • 3. How to use Laplace • Find differential equations that describe system • Obtain Laplace transform • Perform algebra to solve for output or variable of interest • Apply inverse transform to find solution
  • 4. What are Laplace transforms?                 j j st 1 0 st ds e ) s ( F j 2 1 )} s ( F { L ) t ( f dt e ) t ( f )} t ( f { L ) s ( F • t is real, s is complex! • Inverse requires complex analysis to solve • Note “transform”: f(t)  F(s), where t is integrated and s is variable • Conversely F(s)  f(t), t is variable and s is integrated • Assumes f(t) = 0 for all t < 0
  • 5. Evaluating F(s) = L{f(t)} • Hard Way – do the integral                             0 st 0 0 t ) a s ( st at at 0 st dt ) t sin( e ) s ( F t sin ) t ( f a s 1 dt e dt e e ) s ( F e ) t ( f s 1 ) 1 0 ( s 1 dt e ) s ( F 1 ) t ( f let let let Integrate by parts
  • 6. Evaluating F(s)=L{f(t)}- Hard Way remember     vdu uv udv ) t cos( v , dt ) t sin( dv dt se du , e u st st                            0 st st 0 0 st 0 st st dt ) t cos( e s ) 1 ( e dt ) t cos( e s ) t cos( e [ dt ) t sin( e ] ) t sin( v , dt ) t cos( dv dt se du , e u st st                           0 st st 0 st 0 st 0 st dt ) t sin( e s ) 0 ( e dt ) t sin( e s ) t sin( e [ dt ) t cos( e ] 2 0 st 0 st 2 0 0 st 2 st s 1 1 dt ) t sin( e 1 dt ) t sin( e ) s 1 ( dt ) t sin( e s 1 dt ) t sin( se                    let let Substituting, we get: It only gets worse…
  • 7. Evaluating F(s) = L{f(t)} • This is the easy way ... • Recognize a few different transforms • See table 2.3 on page 42 in textbook • Or see handout .... • Learn a few different properties • Do a little math
  • 8. Table of selected Laplace Transforms 1 s 1 ) s ( F ) t ( u ) t sin( ) t ( f 1 s s ) s ( F ) t ( u ) t cos( ) t ( f a s 1 ) s ( F ) t ( u e ) t ( f s 1 ) s ( F ) t ( u ) t ( f 2 2 at                
  • 10. Note on step functions in Laplace     0 st dt e ) t ( f )} t ( f { L • Unit step function definition: • Used in conjunction with f(t)  f(t)u(t) because of Laplace integral limits: 0 t , 0 ) t ( u 0 t , 1 ) t ( u    
  • 11. Properties of Laplace Transforms • Linearity • Scaling in time • Time shift • “frequency” or s-plane shift • Multiplication by tn • Integration • Differentiation
  • 12. Properties: Linearity ) s ( F c ) s ( F c )} t ( f c ) t ( f c { L 2 2 1 1 2 2 1 1    Example : 1 s 1 ) 1 s ) 1 s ( ) 1 s ( ( 2 1 ) 1 s 1 1 s 1 ( 2 1 } e { L 2 1 } e { L 2 1 } e 2 1 e 2 1 { y )} t {sinh( L 2 2 t t t t                  Proof : ) s ( F c ) s ( F c dt e ) t ( f c dt e ) t ( f c dt e )] t ( f c ) t ( f c [ )} t ( f c ) t ( f c { L 2 2 1 1 0 st 2 2 0 st 1 1 st 2 2 0 1 1 2 2 1 1                
  • 13. ) a s ( F a 1 )} at ( f { L  Example : 2 2 2 2 2 2 s ) s ( 1 ) 1 ) s ( 1 ( 1 )} t {sin( L              Proof : ) a s ( F a 1 du e ) u ( f a 1 du a 1 dt , a u t , at u dt e ) at ( f )} at ( f { L a 0 u ) a s ( 0 st             let Properties: Scaling in Time
  • 14. Properties: Time Shift ) s ( F e )} t t ( u ) t t ( f { L 0 st 0 0     Example : a s e )} 10 t ( u e { L s 10 ) 10 t ( a       Proof : ) s ( F e du e ) u ( f e du e ) u ( f t u t , t t u dt e ) t t ( f dt e ) t t ( u ) t t ( f )} t t ( u ) t t ( f { L 0 0 0 0 0 st 0 su st t 0 ) t u ( s 0 0 t st 0 0 st 0 0 0 0                               let
  • 15. Properties: S-plane (frequency) shift ) a s ( F )} t ( f e { L at    Example : 2 2 at ) a s ( )} t sin( e { L        Proof : ) a s ( F dt e ) t ( f dt e ) t ( f e )} t ( f e { L 0 t ) a s ( 0 st at at             
  • 16. Properties: Multiplication by tn ) s ( F ds d ) 1 ( )} t ( f t { L n n n n   Example : 1 n n n n n s ! n ) s 1 ( ds d ) 1 ( )} t ( u t { L     Proof : ) s ( F s ) 1 ( dt e ) t ( f s ) 1 ( dt e s ) t ( f ) 1 ( dt e t ) t ( f dt e ) t ( f t )} t ( f t { L n n n 0 st n n n 0 st n n n 0 st n 0 st n n                          
  • 17. The “D” Operator 1. Differentiation shorthand 2. Integration shorthand ) t ( f dt d ) t ( f D dt ) t ( df ) t ( Df 2 2 2   ) t ( f ) t ( Dg dt ) t ( f ) t ( g t     ) t ( f D ) t ( g dt ) t ( f ) t ( g 1 a t a     if then then if
  • 18. Properties: Integrals s ) s ( F )} t ( f D { L 1 0   Example : )} t {sin( L 1 s 1 ) 1 s s )( s 1 ( )} t cos( D { L 2 2 1 0      Proof : let st st 0 st 1 0 e s 1 v , dt e dv dt ) t ( f du ), t ( g u dt e ) t ( g )} t {sin( L ) t ( f D ) t ( g                        t 0 st 0 st dt ) t ( f ) t ( g s ) s ( F dt e ) t ( f s 1 ] e ) t ( g s 1 [         0 ) ( ) ( dt e t f t st If t=0, g(t)=0 for so slower than      0 ) ( ) ( t g dt t f 0  st e
  • 19. Properties: Derivatives (this is the big one) ) 0 ( f ) s ( sF )} t ( Df { L    Example : )} t sin( { L 1 s 1 1 s ) 1 s ( s 1 1 s s ) 0 ( f 1 s s )} t cos( D { L 2 2 2 2 2 2 2 2                Proof : ) s ( sF ) 0 ( f dt e ) t ( f s )] t ( f e [ ) t ( f v , dt ) t ( f dt d dv se du , e u dt e ) t ( f dt d )} t ( Df { L 0 st 0 st st st 0 st                      let
  • 20. Difference in • The values are only different if f(t) is not continuous @ t=0 • Example of discontinuous function: u(t) ) 0 ( f & ) 0 ( f ), 0 ( f   1 ) 0 ( u ) 0 ( f 1 ) t ( u lim ) 0 ( f 0 ) t ( u lim ) 0 ( f 0 t 0 t            
  • 21. ? )} t ( f D { L 2  ) 0 ( ' f ) 0 ( sF ) s ( F s ) 0 ( ' f )) 0 ( f ) s ( sF ( s ) 0 ( ' f )} t ( Df { sL ) 0 ( g ) s ( sG )} t ( g D { L ) 0 ( ' f ) 0 ( Df ) 0 ( g ), t ( Df ) t ( g 2 2               let ) 0 ( f ) 0 ( sf ) 0 ( ' f s ) 0 ( f s ) s ( F s )} t ( f D { L )' 1 n ( )' 2 n ( ) 2 n ( ) 1 n ( n n            NOTE: to take you need the value @ t=0 for called initial conditions! We will use this to solve differential equations!    ) t ( f ), t ( Df ),... t ( f D ), t ( f D 2 n 1 n )} t ( f D { L n Properties: Nth order derivatives
  • 22. Properties: Nth order derivatives ) 0 ( f ) s ( sF )} t ( Df { L   )} t ( f D { L 2 ) 0 ( f ) s ( sF )} t ( Df { L )} t ( g { L ) s ( G ) 0 ( ' f ) 0 ( g ) t ( Df ) t ( g ) 0 ( g ) s ( sG )} t ( Dg { L ) t ( f D ) t ( Dg and ) t ( Df ) t ( g 2            ) 0 ( ' f ) 0 ( sf ) s ( F s ) 0 ( ' f )] 0 ( f ) s ( sF [ s ) 0 ( g ) s ( sG )} t ( Dg { L 2          . etc ), t ( f D ), t ( f D 4 3 Start with Now apply again let then remember Can repeat for ) 0 ( f ) 0 ( sf ) 0 ( ' f s ) 0 ( f s ) s ( F s )} t ( f D { L )' 1 n ( )' 2 n ( ) 2 n ( ) 1 n ( n n           