SlideShare a Scribd company logo
1 of 77
Download to read offline
First Order Estimation
Second Order Estimation DYNSTOCH 2016
Second order asymptotic efficiency for a Poisson
process
Samvel B. GASPARYAN
Joint work with Yu.A. Kutoyants
Universit´e du Maine, Le Mans, France
masiv6@gmail.com
10 June, 2016
Rennes
Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 1 / 27
First Order Estimation
Second Order Estimation DYNSTOCH 2016
Outline
First Order Estimation
Statement of the Problem
Lower bound
Second Order Estimation
Classes of As. Efficient Estimators
The Main Theorem
Sketch of the Proof
Further Work
Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 2 / 27
First Order Estimation
Second Order Estimation DYNSTOCH 2016
Inhomogeneous Poisson process
• In non-parametric estimation the unknown object is a
function.
Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 3 / 27
First Order Estimation
Second Order Estimation DYNSTOCH 2016
Inhomogeneous Poisson process
• In non-parametric estimation the unknown object is a
function.
• We observe a periodic Poisson process with a known period τ
XT
= {X(t), t ∈ [0, T]}, T = nτ.
Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 3 / 27
First Order Estimation
Second Order Estimation DYNSTOCH 2016
Inhomogeneous Poisson process
• In non-parametric estimation the unknown object is a
function.
• We observe a periodic Poisson process with a known period τ
XT
= {X(t), t ∈ [0, T]}, T = nτ.
• X(0) = 0, has independent increments and there exists a
positive, increasing function Λ(t) s.t. for all t ∈ [0, T]
P(X(t) = k) =
[Λ(t)]k
k!
e−Λ(t)
, k = 0, 1, · · · .
Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 3 / 27
First Order Estimation
Second Order Estimation DYNSTOCH 2016
Trajectory of a Poisson process
Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 4 / 27
First Order Estimation
Second Order Estimation DYNSTOCH 2016
Models description
• In the definition
P(X(t) = k) =
[Λ(t)]k
k!
e−Λ(t)
, k = 0, 1, · · · .
Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 5 / 27
First Order Estimation
Second Order Estimation DYNSTOCH 2016
Models description
• In the definition
P(X(t) = k) =
[Λ(t)]k
k!
e−Λ(t)
, k = 0, 1, · · · .
• The function Λ(·) is called the mean function since
EX(t) = Λ(t).
Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 5 / 27
First Order Estimation
Second Order Estimation DYNSTOCH 2016
Models description
• In the definition
P(X(t) = k) =
[Λ(t)]k
k!
e−Λ(t)
, k = 0, 1, · · · .
• The function Λ(·) is called the mean function since
EX(t) = Λ(t).
• We consider the case were Λ(·) is absolutely continuous
Λ(t) =
t
0 λ(s)ds.
Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 5 / 27
First Order Estimation
Second Order Estimation DYNSTOCH 2016
Models description
• In the definition
P(X(t) = k) =
[Λ(t)]k
k!
e−Λ(t)
, k = 0, 1, · · · .
• The function Λ(·) is called the mean function since
EX(t) = Λ(t).
• We consider the case were Λ(·) is absolutely continuous
Λ(t) =
t
0 λ(s)ds.
• The positive function λ(·) is called the intensity function and
the periodicity of a Poisson process means the periodicity of
its intensity function
λ(t) = λ(t + kτ), t ∈ [0, τ], k ∈ Z+.
Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 5 / 27
First Order Estimation
Second Order Estimation DYNSTOCH 2016
Mean and the Intensity functions
• With the notations
Xj (t) = X((j − 1)τ + t) − X((j − 1)τ), t ∈ [0, τ],
Xj = {Xj (t), t ∈ [0, τ]}, j = 1, · · · , n,
Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 6 / 27
First Order Estimation
Second Order Estimation DYNSTOCH 2016
Mean and the Intensity functions
• With the notations
Xj (t) = X((j − 1)τ + t) − X((j − 1)τ), t ∈ [0, τ],
Xj = {Xj (t), t ∈ [0, τ]}, j = 1, · · · , n,
• We get an i.i.d. model Xn = (X1, X2, · · · , Xn) generated from
a Poisson process.
Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 6 / 27
First Order Estimation
Second Order Estimation DYNSTOCH 2016
Mean and the Intensity functions
• With the notations
Xj (t) = X((j − 1)τ + t) − X((j − 1)τ), t ∈ [0, τ],
Xj = {Xj (t), t ∈ [0, τ]}, j = 1, · · · , n,
• We get an i.i.d. model Xn = (X1, X2, · · · , Xn) generated from
a Poisson process.
• Estimation problems of λ(t), t ∈ [0, τ] and Λ(t), t ∈ [0, τ] are
completely different.
Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 6 / 27
First Order Estimation
Second Order Estimation DYNSTOCH 2016
Mean and the Intensity functions
• With the notations
Xj (t) = X((j − 1)τ + t) − X((j − 1)τ), t ∈ [0, τ],
Xj = {Xj (t), t ∈ [0, τ]}, j = 1, · · · , n,
• We get an i.i.d. model Xn = (X1, X2, · · · , Xn) generated from
a Poisson process.
• Estimation problems of λ(t), t ∈ [0, τ] and Λ(t), t ∈ [0, τ] are
completely different.
• We would like to have H´ajek-Le Cam type lower bounds for
function estimation
lim
δ↓0
lim
n→+∞
sup
|θ−θ0|≤δ
nEθ(¯θn − θ)2
≥
1
I(θ0)
.
Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 6 / 27
First Order Estimation
Second Order Estimation DYNSTOCH 2016
Mean function estimation
• We consider the estimation problem of the mean function
{Λ(t), t ∈ [0, τ]}.
Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 7 / 27
First Order Estimation
Second Order Estimation DYNSTOCH 2016
Mean function estimation
• We consider the estimation problem of the mean function
{Λ(t), t ∈ [0, τ]}.
• Each measurable function ¯Λn(t) = ¯Λn(t, Xn) of observations
is an estimator for Λ(t).
Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 7 / 27
First Order Estimation
Second Order Estimation DYNSTOCH 2016
Mean function estimation
• We consider the estimation problem of the mean function
{Λ(t), t ∈ [0, τ]}.
• Each measurable function ¯Λn(t) = ¯Λn(t, Xn) of observations
is an estimator for Λ(t).
• To assess the quality of an estimator we use the MISE
EΛ||¯Λn − Λ||2
= EΛ
τ
0
(¯Λn(t) − Λ(t))2
dt.
Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 7 / 27
First Order Estimation
Second Order Estimation DYNSTOCH 2016
Mean function estimation
• We consider the estimation problem of the mean function
{Λ(t), t ∈ [0, τ]}.
• Each measurable function ¯Λn(t) = ¯Λn(t, Xn) of observations
is an estimator for Λ(t).
• To assess the quality of an estimator we use the MISE
EΛ||¯Λn − Λ||2
= EΛ
τ
0
(¯Λn(t) − Λ(t))2
dt.
• The simplest estimator is the empirical mean function
ˆΛn(t) =
1
n
n
j=1
Xj (t), t ∈ [0, τ].
Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 7 / 27
First Order Estimation
Second Order Estimation DYNSTOCH 2016
The basic equality for the EMF
• The following basic equality for the EMF implies two things
EΛ||
√
n(¯Λn − Λ)||2
=
τ
0
Λ(t)dt.
Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 8 / 27
First Order Estimation
Second Order Estimation DYNSTOCH 2016
The basic equality for the EMF
• The following basic equality for the EMF implies two things
EΛ||
√
n(¯Λn − Λ)||2
=
τ
0
Λ(t)dt.
1 The EMF is consistent with the classical rate of convergence√
n.
Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 8 / 27
First Order Estimation
Second Order Estimation DYNSTOCH 2016
The basic equality for the EMF
• The following basic equality for the EMF implies two things
EΛ||
√
n(¯Λn − Λ)||2
=
τ
0
Λ(t)dt.
1 The EMF is consistent with the classical rate of convergence√
n.
2 The asymptotic variance (which is non-asymptotic) of the
EMF is
τ
0
Λ(t)dt.
Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 8 / 27
First Order Estimation
Second Order Estimation DYNSTOCH 2016
The basic equality for the EMF
• The following basic equality for the EMF implies two things
EΛ||
√
n(¯Λn − Λ)||2
=
τ
0
Λ(t)dt.
1 The EMF is consistent with the classical rate of convergence√
n.
2 The asymptotic variance (which is non-asymptotic) of the
EMF is
τ
0
Λ(t)dt.
• Can we have better rate of convergence or smaller asymptotic
variance for an estimator?
Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 8 / 27
First Order Estimation
Second Order Estimation DYNSTOCH 2016
As. efficiency of the EMF
• The EMF is asymptotically efficient among all estimators
¯Λn(t),
Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 9 / 27
First Order Estimation
Second Order Estimation DYNSTOCH 2016
As. efficiency of the EMF
• The EMF is asymptotically efficient among all estimators
¯Λn(t),
• Kutoyants’ result-for all estimators ¯Λn(t)
lim
δ↓0
lim
n→+∞
sup
Λ∈Vδ
EΛ||
√
n(¯Λn − Λ)||2
≥
τ
0
Λ∗
(t)dt,
with Vδ = {Λ : sup0≤t≤τ |Λ(t) − Λ∗(t)| ≤ δ}, δ > 0.
Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 9 / 27
First Order Estimation
Second Order Estimation DYNSTOCH 2016
As. efficiency of the EMF
• The EMF is asymptotically efficient among all estimators
¯Λn(t),
• Kutoyants’ result-for all estimators ¯Λn(t)
lim
δ↓0
lim
n→+∞
sup
Λ∈Vδ
EΛ||
√
n(¯Λn − Λ)||2
≥
τ
0
Λ∗
(t)dt,
with Vδ = {Λ : sup0≤t≤τ |Λ(t) − Λ∗(t)| ≤ δ}, δ > 0.
• Reformulation
lim
n→+∞
sup
Λ∈F
EΛ||
√
n(¯Λn − Λ)||2
−
τ
0
Λ(t)dt ≥ 0.
Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 9 / 27
First Order Estimation
Second Order Estimation DYNSTOCH 2016
As. efficiency of the EMF
• The EMF is asymptotically efficient among all estimators
¯Λn(t),
• Kutoyants’ result-for all estimators ¯Λn(t)
lim
δ↓0
lim
n→+∞
sup
Λ∈Vδ
EΛ||
√
n(¯Λn − Λ)||2
≥
τ
0
Λ∗
(t)dt,
with Vδ = {Λ : sup0≤t≤τ |Λ(t) − Λ∗(t)| ≤ δ}, δ > 0.
• Reformulation
lim
n→+∞
sup
Λ∈F
EΛ||
√
n(¯Λn − Λ)||2
−
τ
0
Λ(t)dt ≥ 0.
• F ⊂ L2[0, τ] is a sufficiently “rich”, bounded set.
Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 9 / 27
First Order Estimation
Second Order Estimation DYNSTOCH 2016
As. efficiency of the EMF
• The EMF is asymptotically efficient among all estimators
¯Λn(t),
• Kutoyants’ result-for all estimators ¯Λn(t)
lim
δ↓0
lim
n→+∞
sup
Λ∈Vδ
EΛ||
√
n(¯Λn − Λ)||2
≥
τ
0
Λ∗
(t)dt,
with Vδ = {Λ : sup0≤t≤τ |Λ(t) − Λ∗(t)| ≤ δ}, δ > 0.
• Reformulation
lim
n→+∞
sup
Λ∈F
EΛ||
√
n(¯Λn − Λ)||2
−
τ
0
Λ(t)dt ≥ 0.
• F ⊂ L2[0, τ] is a sufficiently “rich”, bounded set.
• Can we have other asymptotically efficient estimators?
Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 9 / 27
First Order Estimation
Second Order Estimation DYNSTOCH 2016
Efficient estimators
• Existence of other as. efficient estimators depends on the
regularity conditions imposed on unknown Λ(·).
Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 10 / 27
First Order Estimation
Second Order Estimation DYNSTOCH 2016
Efficient estimators
• Existence of other as. efficient estimators depends on the
regularity conditions imposed on unknown Λ(·).
• In other words, it depends on the choice of the set F in
lim
n→+∞
sup
Λ∈F
EΛ||
√
n(¯Λn − Λ)||2
−
τ
0
Λ(t)dt ≥ 0.
Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 10 / 27
First Order Estimation
Second Order Estimation DYNSTOCH 2016
Efficient estimators
• Existence of other as. efficient estimators depends on the
regularity conditions imposed on unknown Λ(·).
• In other words, it depends on the choice of the set F in
lim
n→+∞
sup
Λ∈F
EΛ||
√
n(¯Λn − Λ)||2
−
τ
0
Λ(t)dt ≥ 0.
• Demanding existence of derivatives of higher order of the
unknown function, we can enlarge the class of as. efficient
estimators.
Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 10 / 27
First Order Estimation
Second Order Estimation DYNSTOCH 2016
First results
• At first, consider the L2 ball with a center Λ∗
B(R) = {Λ : ||Λ − Λ∗
||2
≤ R, Λ∗
(τ) = Λ(τ)}.
Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 11 / 27
First Order Estimation
Second Order Estimation DYNSTOCH 2016
First results
• At first, consider the L2 ball with a center Λ∗
B(R) = {Λ : ||Λ − Λ∗
||2
≤ R, Λ∗
(τ) = Λ(τ)}.
• Consider a kernel-type estimator
˜Λn(t) =
τ
0
Kn(s − t)(ˆΛn(s) − Λ∗(s))ds + Λ∗(t).
Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 11 / 27
First Order Estimation
Second Order Estimation DYNSTOCH 2016
First results
• At first, consider the L2 ball with a center Λ∗
B(R) = {Λ : ||Λ − Λ∗
||2
≤ R, Λ∗
(τ) = Λ(τ)}.
• Consider a kernel-type estimator
˜Λn(t) =
τ
0
Kn(s − t)(ˆΛn(s) − Λ∗(s))ds + Λ∗(t).
• Kernels satisfy
Kn(u) ≥ 0, u ∈ −
τ
2
,
τ
2
,
−τ
2
−τ
2
Kn(u)du = 1, n ∈ N,
and we continue them τ periodically on the whole real line R
Kn(u) = Kn(−u), Kn(u) = Kn(u + kτ), u ∈ −
τ
2
,
τ
2
, k ∈ Z.
Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 11 / 27
First Order Estimation
Second Order Estimation DYNSTOCH 2016
Kernel-type estimator
• Consider the trigonometric basis in L2[0, τ]
φ1(t) =
1
τ
, φ2l (t) =
2
τ
cos
2πl
τ
t, φ2l+1(t) =
2
τ
sin
2πl
τ
t.
Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 12 / 27
First Order Estimation
Second Order Estimation DYNSTOCH 2016
Kernel-type estimator
• Consider the trigonometric basis in L2[0, τ]
φ1(t) =
1
τ
, φ2l (t) =
2
τ
cos
2πl
τ
t, φ2l+1(t) =
2
τ
sin
2πl
τ
t.
• Coefficients of the kernel-type estimator w.r.t. this basis
˜Λ1,n = ˆΛ1,n, ˜Λ2l,n =
τ
2
K2l,n(ˆΛ2l,n − Λ∗
2l ) + Λ∗
2l ,
˜Λ2l+1,n =
τ
2
K2l,n(ˆΛ2l+1,n − Λ∗
2l+1) + Λ∗
2l+1, l ∈ N,
where ˆΛl,n are the Fourier coefficients of the EMF.
Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 12 / 27
First Order Estimation
Second Order Estimation DYNSTOCH 2016
Efficiency over a ball
• A kernel-type estimator
˜Λn(t) =
τ
0
Kn(s − t)(ˆΛn(s) − Λ∗(s))ds + Λ∗(t).
Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 13 / 27
First Order Estimation
Second Order Estimation DYNSTOCH 2016
Efficiency over a ball
• A kernel-type estimator
˜Λn(t) =
τ
0
Kn(s − t)(ˆΛn(s) − Λ∗(s))ds + Λ∗(t).
• with a kernel satisfying the condition
n sup
l≥1
τ
2
K2l,n − 1
2
−→ 0,
Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 13 / 27
First Order Estimation
Second Order Estimation DYNSTOCH 2016
Efficiency over a ball
• A kernel-type estimator
˜Λn(t) =
τ
0
Kn(s − t)(ˆΛn(s) − Λ∗(s))ds + Λ∗(t).
• with a kernel satisfying the condition
n sup
l≥1
τ
2
K2l,n − 1
2
−→ 0,
• is asymptotically efficient over a ball
lim
n→+∞
sup
Λ∈B(R)
EΛ||
√
n(˜Λn − Λ)||2
−
τ
0
Λ(t)dt = 0.
Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 13 / 27
First Order Estimation
Second Order Estimation DYNSTOCH 2016
Efficiency over a compact set
• Now we impose additional conditions of regularity on the
unknown mean function
Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 14 / 27
First Order Estimation
Second Order Estimation DYNSTOCH 2016
Efficiency over a compact set
• Now we impose additional conditions of regularity on the
unknown mean function
• it belongs to Σ(R)
Σ(R) = {Λ : ||λ − λ∗
||2
≤ R, Λ∗
(τ) = Λ(τ)}.
Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 14 / 27
First Order Estimation
Second Order Estimation DYNSTOCH 2016
Efficiency over a compact set
• Now we impose additional conditions of regularity on the
unknown mean function
• it belongs to Σ(R)
Σ(R) = {Λ : ||λ − λ∗
||2
≤ R, Λ∗
(τ) = Λ(τ)}.
• A kernel-type estimator with the kernel satisfying
n sup
l≥1
τ
2 K2l,n − 1
2πl
τ
2
−→ 0,
Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 14 / 27
First Order Estimation
Second Order Estimation DYNSTOCH 2016
Efficiency over a compact set
• Now we impose additional conditions of regularity on the
unknown mean function
• it belongs to Σ(R)
Σ(R) = {Λ : ||λ − λ∗
||2
≤ R, Λ∗
(τ) = Λ(τ)}.
• A kernel-type estimator with the kernel satisfying
n sup
l≥1
τ
2 K2l,n − 1
2πl
τ
2
−→ 0,
• is asymptotically efficient over Σ(R)
lim
n→+∞
sup
Λ∈Σ(R)
EΛ||
√
n(˜Λn − Λ)||2
−
τ
0
Λ(t)dt = 0.
Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 14 / 27
First Order Estimation
Second Order Estimation DYNSTOCH 2016
Example of another as. effective estimator
• Consider a kernel
K(u) ≥ 0, u ∈ −
τ
2
,
τ
2
,
τ
2
−τ
2
K(u)du = 1,
K(u) = K(−u), K(u) = K(u + kτ), u ∈ −
τ
2
,
τ
2
, k ∈ Z.
Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 15 / 27
First Order Estimation
Second Order Estimation DYNSTOCH 2016
Example of another as. effective estimator
• Consider a kernel
K(u) ≥ 0, u ∈ −
τ
2
,
τ
2
,
τ
2
−τ
2
K(u)du = 1,
K(u) = K(−u), K(u) = K(u + kτ), u ∈ −
τ
2
,
τ
2
, k ∈ Z.
• A sequence 0 ≤ hn ≤ 1 be s.t. h2
nn −→ 0, n → +∞.
Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 15 / 27
First Order Estimation
Second Order Estimation DYNSTOCH 2016
Example of another as. effective estimator
• Consider a kernel
K(u) ≥ 0, u ∈ −
τ
2
,
τ
2
,
τ
2
−τ
2
K(u)du = 1,
K(u) = K(−u), K(u) = K(u + kτ), u ∈ −
τ
2
,
τ
2
, k ∈ Z.
• A sequence 0 ≤ hn ≤ 1 be s.t. h2
nn −→ 0, n → +∞.
• Then, the kernels
Kn(u) =
1
hn
K
u
hn
1I |u| ≤
τ
2
hn
satisfy the previous condition and hence
Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 15 / 27
First Order Estimation
Second Order Estimation DYNSTOCH 2016
Example of another as. effective estimator
• Consider a kernel
K(u) ≥ 0, u ∈ −
τ
2
,
τ
2
,
τ
2
−τ
2
K(u)du = 1,
K(u) = K(−u), K(u) = K(u + kτ), u ∈ −
τ
2
,
τ
2
, k ∈ Z.
• A sequence 0 ≤ hn ≤ 1 be s.t. h2
nn −→ 0, n → +∞.
• Then, the kernels
Kn(u) =
1
hn
K
u
hn
1I |u| ≤
τ
2
hn
satisfy the previous condition and hence
• the corresponding kernel-type estimator
˜Λn(t) =
τ
0
Kn(s − t)(ˆΛn(s) − Λ∗(s))ds + Λ∗(t).
is as. efficient over Σ(R).
Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 15 / 27
First Order Estimation
Second Order Estimation DYNSTOCH 2016
Second order efficiency
• How to compare as. efficient estimators?
Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 16 / 27
First Order Estimation
Second Order Estimation DYNSTOCH 2016
Second order efficiency
• How to compare as. efficient estimators?
• The first step would be to find the rate of convergence in
lim
n→+∞
sup
Λ∈F
EΛ||
√
n(¯Λn − Λ)||2
−
τ
0
Λ(t)dt ≥ 0,
Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 16 / 27
First Order Estimation
Second Order Estimation DYNSTOCH 2016
Second order efficiency
• How to compare as. efficient estimators?
• The first step would be to find the rate of convergence in
lim
n→+∞
sup
Λ∈F
EΛ||
√
n(¯Λn − Λ)||2
−
τ
0
Λ(t)dt ≥ 0,
• that is, the sequence γn −→ +∞ s.t.
lim
n→+∞
sup
Λ∈F
γn EΛ||
√
n(¯Λn − Λ)||2
−
τ
0
Λ(t)dt ≥ C,
Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 16 / 27
First Order Estimation
Second Order Estimation DYNSTOCH 2016
Second order efficiency
• How to compare as. efficient estimators?
• The first step would be to find the rate of convergence in
lim
n→+∞
sup
Λ∈F
EΛ||
√
n(¯Λn − Λ)||2
−
τ
0
Λ(t)dt ≥ 0,
• that is, the sequence γn −→ +∞ s.t.
lim
n→+∞
sup
Λ∈F
γn EΛ||
√
n(¯Λn − Λ)||2
−
τ
0
Λ(t)dt ≥ C,
• Then, to construct an estimator which attains this bound.
Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 16 / 27
First Order Estimation
Second Order Estimation DYNSTOCH 2016
Second order efficiency
• How to compare as. efficient estimators?
• The first step would be to find the rate of convergence in
lim
n→+∞
sup
Λ∈F
EΛ||
√
n(¯Λn − Λ)||2
−
τ
0
Λ(t)dt ≥ 0,
• that is, the sequence γn −→ +∞ s.t.
lim
n→+∞
sup
Λ∈F
γn EΛ||
√
n(¯Λn − Λ)||2
−
τ
0
Λ(t)dt ≥ C,
• Then, to construct an estimator which attains this bound.
• Calculate the constant C.
Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 16 / 27
First Order Estimation
Second Order Estimation DYNSTOCH 2016
Related works
• Second order estimation was introduced by
[Golubev G.K. and Levit B.Ya., 1996] in the distribution
function estimation problem.
Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 17 / 27
First Order Estimation
Second Order Estimation DYNSTOCH 2016
Related works
• Second order estimation was introduced by
[Golubev G.K. and Levit B.Ya., 1996] in the distribution
function estimation problem.
• For other models second order efficiency was proved by
[Dalalyan A.S. and Kutoyants Yu.A., 2004],
[Golubev G.K. and H¨ardle W., 2000].
Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 17 / 27
First Order Estimation
Second Order Estimation DYNSTOCH 2016
Related works
• Second order estimation was introduced by
[Golubev G.K. and Levit B.Ya., 1996] in the distribution
function estimation problem.
• For other models second order efficiency was proved by
[Dalalyan A.S. and Kutoyants Yu.A., 2004],
[Golubev G.K. and H¨ardle W., 2000].
• Asymptotic efficiency in non-parametric estimation problems
was done for the first time in [Pinsker M.S., 1980],
Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 17 / 27
First Order Estimation
Second Order Estimation DYNSTOCH 2016
Related works
• Second order estimation was introduced by
[Golubev G.K. and Levit B.Ya., 1996] in the distribution
function estimation problem.
• For other models second order efficiency was proved by
[Dalalyan A.S. and Kutoyants Yu.A., 2004],
[Golubev G.K. and H¨ardle W., 2000].
• Asymptotic efficiency in non-parametric estimation problems
was done for the first time in [Pinsker M.S., 1980],
• where the analogue of the inverse of the Fisher information in
non-parametric estimation problem was calculated (Pinsker’s
constant).
Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 17 / 27
First Order Estimation
Second Order Estimation DYNSTOCH 2016
Main theorems
• Introduce
Fper
m (R, S) = Λ(·) :
τ
0
[λ(m−1)
(t)]2
dt ≤ R, Λ(0) = 0, Λ(τ) = S
where R > 0, S > 0, m > 1, are given constants.
Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 18 / 27
First Order Estimation
Second Order Estimation DYNSTOCH 2016
Main theorems
• Introduce
Fper
m (R, S) = Λ(·) :
τ
0
[λ(m−1)
(t)]2
dt ≤ R, Λ(0) = 0, Λ(τ) = S
where R > 0, S > 0, m > 1, are given constants.
• For all estimators ¯Λn(t) of the mean function Λ(t), following
lower bound holds
lim
n→+∞
sup
Λ∈Fm(R,S)
n
1
2m−1 EΛ||
√
n(¯Λn − Λ)||2
−
τ
0
Λ(t)dt ≥ −Π,
Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 18 / 27
First Order Estimation
Second Order Estimation DYNSTOCH 2016
Main theorems
• Introduce
Fper
m (R, S) = Λ(·) :
τ
0
[λ(m−1)
(t)]2
dt ≤ R, Λ(0) = 0, Λ(τ) = S
where R > 0, S > 0, m > 1, are given constants.
• For all estimators ¯Λn(t) of the mean function Λ(t), following
lower bound holds
lim
n→+∞
sup
Λ∈Fm(R,S)
n
1
2m−1 EΛ||
√
n(¯Λn − Λ)||2
−
τ
0
Λ(t)dt ≥ −Π,
• where
Π = Πm(R, S) = (2m − 1)R
S
πR
m
(2m − 1)(m − 1)
2m
2m−1
,
plays the role of the Pinsker’s constant.
Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 18 / 27
First Order Estimation
Second Order Estimation DYNSTOCH 2016
Second order as. efficient estimator
• Consider
Λ∗
n(t) = ˆΛ0,nφ0(t) +
Nn
l=1
˜Kl,n
ˆΛl,nφl (t),
where {φl }+∞
l=0 is the trigonometric cosine basis, ˆΛl,n are the
Fourier coefficients of the EMF w.r.t. this basis and
˜Kl,n = 1 −
πl
τ
m
α∗
n
+
, α∗
n =
S
nR
τ
π
m
(2m − 1)(m − 1)
m
2m−1
,
Nn =
τ
π
(α∗
n)− 1
m ≈ Cn
1
2m−1 , x+ = max(x, 0), x ∈ R.
Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 19 / 27
First Order Estimation
Second Order Estimation DYNSTOCH 2016
Second order as. efficient estimator
• Consider
Λ∗
n(t) = ˆΛ0,nφ0(t) +
Nn
l=1
˜Kl,n
ˆΛl,nφl (t),
where {φl }+∞
l=0 is the trigonometric cosine basis, ˆΛl,n are the
Fourier coefficients of the EMF w.r.t. this basis and
˜Kl,n = 1 −
πl
τ
m
α∗
n
+
, α∗
n =
S
nR
τ
π
m
(2m − 1)(m − 1)
m
2m−1
,
Nn =
τ
π
(α∗
n)− 1
m ≈ Cn
1
2m−1 , x+ = max(x, 0), x ∈ R.
• The estimator Λ∗
n(t) attains the lower bound described above,
that is,
lim
n→+∞
sup
Λ∈Fm(R,S)
n
1
2m−1 EΛ||
√
n(¯Λn − Λ)||2
−
τ
0
Λ(t)dt = −Π.
Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 19 / 27
First Order Estimation
Second Order Estimation DYNSTOCH 2016
Sketch of the proof
• Proof consists of several steps:
Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 20 / 27
First Order Estimation
Second Order Estimation DYNSTOCH 2016
Sketch of the proof
• Proof consists of several steps:
•
Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 20 / 27
First Order Estimation
Second Order Estimation DYNSTOCH 2016
First step
•
Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 21 / 27
First Order Estimation
Second Order Estimation DYNSTOCH 2016
First step
•
• Reduce the minimax problem to a Bayes risk maximization
problem
sup
Λ∈F
(per)
m (R,S)
EΛ||¯Λn − Λ||2
− EΛ||ˆΛn − Λ||2
≥
sup
Q∈P F
(per)
m (R,S)
EΛ||¯Λn − Λ||2
− EΛ||ˆΛn − Λ||2
dQ.
Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 21 / 27
First Order Estimation
Second Order Estimation DYNSTOCH 2016
Second step
•
Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 22 / 27
First Order Estimation
Second Order Estimation DYNSTOCH 2016
Second step
•
• In the maximization problem replace the set of probabilities
P(F) concentrated on F
(per)
m (R, S)
sup
Q∈P(F) F
(per)
m (R,S)
EΛ||¯Λn − Λ||2
− EΛ||ˆΛn − Λ||2
dQ,
Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 22 / 27
First Order Estimation
Second Order Estimation DYNSTOCH 2016
Second step
•
• In the maximization problem replace the set of probabilities
P(F) concentrated on F
(per)
m (R, S)
sup
Q∈P(F) F
(per)
m (R,S)
EΛ||¯Λn − Λ||2
− EΛ||ˆΛn − Λ||2
dQ,
• by the set of probabilities E(F) concentrated on F
(per)
m (R, S)
in mean.
Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 22 / 27
First Order Estimation
Second Order Estimation DYNSTOCH 2016
Third step
•
Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 23 / 27
First Order Estimation
Second Order Estimation DYNSTOCH 2016
Third step
•
• Replace the ellipsoid by the least favorable parametric family
(heavy functions)
sup
Λθ∈F
(per)
m (R,S) Θ
Eθ||¯Λn − Λθ||2
− Eθ||ˆΛn − Λθ||2
dQ.
Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 23 / 27
First Order Estimation
Second Order Estimation DYNSTOCH 2016
Fourth step
•
Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 24 / 27
First Order Estimation
Second Order Estimation DYNSTOCH 2016
Fourth step
•
• Shrink the heavy functions and the least favorable prior
distribution to fit the ellipsoid
Q{θ : Λθ /∈ F
(per)
m (R, S)} = o(n−2
).
Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 24 / 27
First Order Estimation
Second Order Estimation DYNSTOCH 2016
Further work
• What can be done or what had to be done?
Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 25 / 27
First Order Estimation
Second Order Estimation DYNSTOCH 2016
Further work
• What can be done or what had to be done?
• The condition Λ(τ) = S in the definition of the set
F
(per)
m (R, S) have to be replaced by Λ(τ) ≤ S. The last one
cannot be thrown out since with a notation
πj (t) = Xj (t) − Λ(t) we get
ˆΛn(t) = Λ(t) +
1
n
n
j=1
πj (t), data=signal+“noise”
and the variance of the noise is 1
n Λ(t). (Simultaneous
estimation of the function and its variance).
Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 25 / 27
First Order Estimation
Second Order Estimation DYNSTOCH 2016
Further work
• What can be done or what had to be done?
• The condition Λ(τ) = S in the definition of the set
F
(per)
m (R, S) have to be replaced by Λ(τ) ≤ S. The last one
cannot be thrown out since with a notation
πj (t) = Xj (t) − Λ(t) we get
ˆΛn(t) = Λ(t) +
1
n
n
j=1
πj (t), data=signal+“noise”
and the variance of the noise is 1
n Λ(t). (Simultaneous
estimation of the function and its variance).
• Adaptive estimation-construct an estimator that does not
depend on m, S, R.
Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 25 / 27
First Order Estimation
Second Order Estimation DYNSTOCH 2016
Further work
• What can be done or what had to be done?
• The condition Λ(τ) = S in the definition of the set
F
(per)
m (R, S) have to be replaced by Λ(τ) ≤ S. The last one
cannot be thrown out since with a notation
πj (t) = Xj (t) − Λ(t) we get
ˆΛn(t) = Λ(t) +
1
n
n
j=1
πj (t), data=signal+“noise”
and the variance of the noise is 1
n Λ(t). (Simultaneous
estimation of the function and its variance).
• Adaptive estimation-construct an estimator that does not
depend on m, S, R.
• Consider other models or formulate a general result for
non-parametric LAN.
Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 25 / 27
First Order Estimation
Second Order Estimation DYNSTOCH 2016
References
Gasparyan S.B. and Kutoyants Yu.A.,
On the lower bound in second order asymptotically efficient estimation for
Poisson processes.
Submitted. (2016).
Gill R.D. and Levit B.Ya.,
Applications of the van Trees inequality: a Bayesian Cram´er-Rao bound.
Bernoulli, 1(1-2), 59-79. (1995).
Golubev G.K. and H¨ardle W.,
Second order minimax estimation in partial linear models.
Math. Methods Statist., 9(2), 160-175. (2000).
Golubev G.K. and Levit B.Ya.,
On the second order minimax estimation of distribution functions.
Math. Methods Statist., 5(1), 1-31. (1996).
Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 26 / 27
First Order Estimation
Second Order Estimation DYNSTOCH 2016
References
Ibragimov, I., Hasminskii R.,
Statistical Estimation: Asymptotic Theory.
Springer, New York (1981).
Dalalyan A.S. and Kutoyants Yu.A.,
On second order minimax estimation of invariant density for ergodic
diffusion.
Statistics & Decisions, 22(1), 17-42. (2004).
Kutoyants, Yu. A.,
Introduction to Statistics of Poisson Processes.
To appear. (2016).
Pinsker M.S.,
Optimal filtering of square-integrable signals in Gaussian noise.
Probl. Inf. Transm., 16(2), 120-133. (1980).
Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 27 / 27

More Related Content

What's hot

Survival analysis 1
Survival analysis 1Survival analysis 1
Survival analysis 1KyusonLim
 
Correlation analysis ppt
Correlation analysis pptCorrelation analysis ppt
Correlation analysis pptAnil Mishra
 
Multiple Regression Case
Multiple Regression CaseMultiple Regression Case
Multiple Regression CaseKusuma Arifiani
 
Density theorems for anisotropic point configurations
Density theorems for anisotropic point configurationsDensity theorems for anisotropic point configurations
Density theorems for anisotropic point configurationsVjekoslavKovac1
 
Dynamical systems
Dynamical systemsDynamical systems
Dynamical systemsSpringer
 
A Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cubeA Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cubeVjekoslavKovac1
 
Numerical solution of boundary value problems by piecewise analysis method
Numerical solution of boundary value problems by piecewise analysis methodNumerical solution of boundary value problems by piecewise analysis method
Numerical solution of boundary value problems by piecewise analysis methodAlexander Decker
 
Arithmetic and geometric mean
Arithmetic and geometric meanArithmetic and geometric mean
Arithmetic and geometric meanRekhaChoudhary24
 
Cunningham slides-ch2
Cunningham slides-ch2Cunningham slides-ch2
Cunningham slides-ch2cunningjames
 

What's hot (20)

Regression
RegressionRegression
Regression
 
Friction
FrictionFriction
Friction
 
Lecture 12 f17
Lecture 12 f17Lecture 12 f17
Lecture 12 f17
 
Survival analysis 1
Survival analysis 1Survival analysis 1
Survival analysis 1
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
Correlation analysis ppt
Correlation analysis pptCorrelation analysis ppt
Correlation analysis ppt
 
2018 MUMS Fall Course - Bayesian inference for model calibration in UQ - Ralp...
2018 MUMS Fall Course - Bayesian inference for model calibration in UQ - Ralp...2018 MUMS Fall Course - Bayesian inference for model calibration in UQ - Ralp...
2018 MUMS Fall Course - Bayesian inference for model calibration in UQ - Ralp...
 
Ch02 5
Ch02 5Ch02 5
Ch02 5
 
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
2018 MUMS Fall Course - Statistical Representation of Model Input (EDITED) - ...
 
Multiple Regression Case
Multiple Regression CaseMultiple Regression Case
Multiple Regression Case
 
Density theorems for anisotropic point configurations
Density theorems for anisotropic point configurationsDensity theorems for anisotropic point configurations
Density theorems for anisotropic point configurations
 
Dynamical systems
Dynamical systemsDynamical systems
Dynamical systems
 
A Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cubeA Szemeredi-type theorem for subsets of the unit cube
A Szemeredi-type theorem for subsets of the unit cube
 
Malhotra17
Malhotra17Malhotra17
Malhotra17
 
Numerical solution of boundary value problems by piecewise analysis method
Numerical solution of boundary value problems by piecewise analysis methodNumerical solution of boundary value problems by piecewise analysis method
Numerical solution of boundary value problems by piecewise analysis method
 
Arithmetic and geometric mean
Arithmetic and geometric meanArithmetic and geometric mean
Arithmetic and geometric mean
 
Cunningham slides-ch2
Cunningham slides-ch2Cunningham slides-ch2
Cunningham slides-ch2
 
Regression analysis
Regression analysisRegression analysis
Regression analysis
 
2018 MUMS Fall Course - Statistical and Mathematical Techniques for Sensitivi...
2018 MUMS Fall Course - Statistical and Mathematical Techniques for Sensitivi...2018 MUMS Fall Course - Statistical and Mathematical Techniques for Sensitivi...
2018 MUMS Fall Course - Statistical and Mathematical Techniques for Sensitivi...
 

Similar to Dynstoch (presented)

Sequential Probability Ratio Test for Sparse Signals
Sequential Probability Ratio Test for Sparse SignalsSequential Probability Ratio Test for Sparse Signals
Sequential Probability Ratio Test for Sparse SignalsMohamed Seif
 
Markov chain Monte Carlo methods and some attempts at parallelizing them
Markov chain Monte Carlo methods and some attempts at parallelizing themMarkov chain Monte Carlo methods and some attempts at parallelizing them
Markov chain Monte Carlo methods and some attempts at parallelizing themPierre Jacob
 
Mathematics and AI
Mathematics and AIMathematics and AI
Mathematics and AIMarc Lelarge
 
Scattering theory analogues of several classical estimates in Fourier analysis
Scattering theory analogues of several classical estimates in Fourier analysisScattering theory analogues of several classical estimates in Fourier analysis
Scattering theory analogues of several classical estimates in Fourier analysisVjekoslavKovac1
 
Group No 05, calculus.pptx
Group No 05, calculus.pptxGroup No 05, calculus.pptx
Group No 05, calculus.pptxEmonKundu
 
Nonstationary Relaxed Multisplitting Methods for Solving Linear Complementari...
Nonstationary Relaxed Multisplitting Methods for Solving Linear Complementari...Nonstationary Relaxed Multisplitting Methods for Solving Linear Complementari...
Nonstationary Relaxed Multisplitting Methods for Solving Linear Complementari...ijcsa
 
NONSTATIONARY RELAXED MULTISPLITTING METHODS FOR SOLVING LINEAR COMPLEMENTARI...
NONSTATIONARY RELAXED MULTISPLITTING METHODS FOR SOLVING LINEAR COMPLEMENTARI...NONSTATIONARY RELAXED MULTISPLITTING METHODS FOR SOLVING LINEAR COMPLEMENTARI...
NONSTATIONARY RELAXED MULTISPLITTING METHODS FOR SOLVING LINEAR COMPLEMENTARI...ijcsa
 
Tutorial APS 2023: Phase transition for statistical estimation: algorithms an...
Tutorial APS 2023: Phase transition for statistical estimation: algorithms an...Tutorial APS 2023: Phase transition for statistical estimation: algorithms an...
Tutorial APS 2023: Phase transition for statistical estimation: algorithms an...Marc Lelarge
 
SOME PROPERTIES OF ESTIMATORS - 552.ppt
SOME PROPERTIES OF ESTIMATORS - 552.pptSOME PROPERTIES OF ESTIMATORS - 552.ppt
SOME PROPERTIES OF ESTIMATORS - 552.pptdayashka1
 
Signals and systems-3
Signals and systems-3Signals and systems-3
Signals and systems-3sarun soman
 
Time series Modelling Basics
Time series Modelling BasicsTime series Modelling Basics
Time series Modelling BasicsAshutosh Kumar
 
Statistical Decision Theory
Statistical Decision TheoryStatistical Decision Theory
Statistical Decision TheorySangwoo Mo
 

Similar to Dynstoch (presented) (20)

Sequential Probability Ratio Test for Sparse Signals
Sequential Probability Ratio Test for Sparse SignalsSequential Probability Ratio Test for Sparse Signals
Sequential Probability Ratio Test for Sparse Signals
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
Markov chain Monte Carlo methods and some attempts at parallelizing them
Markov chain Monte Carlo methods and some attempts at parallelizing themMarkov chain Monte Carlo methods and some attempts at parallelizing them
Markov chain Monte Carlo methods and some attempts at parallelizing them
 
CLIM: Transition Workshop - Projected Data Assimilation - Erik Van Vleck, Ma...
CLIM: Transition Workshop - Projected Data Assimilation  - Erik Van Vleck, Ma...CLIM: Transition Workshop - Projected Data Assimilation  - Erik Van Vleck, Ma...
CLIM: Transition Workshop - Projected Data Assimilation - Erik Van Vleck, Ma...
 
Mathematics and AI
Mathematics and AIMathematics and AI
Mathematics and AI
 
ch3.ppt
ch3.pptch3.ppt
ch3.ppt
 
QMC: Transition Workshop - Importance Sampling the Union of Rare Events with ...
QMC: Transition Workshop - Importance Sampling the Union of Rare Events with ...QMC: Transition Workshop - Importance Sampling the Union of Rare Events with ...
QMC: Transition Workshop - Importance Sampling the Union of Rare Events with ...
 
Scattering theory analogues of several classical estimates in Fourier analysis
Scattering theory analogues of several classical estimates in Fourier analysisScattering theory analogues of several classical estimates in Fourier analysis
Scattering theory analogues of several classical estimates in Fourier analysis
 
Presentation
PresentationPresentation
Presentation
 
Group No 05, calculus.pptx
Group No 05, calculus.pptxGroup No 05, calculus.pptx
Group No 05, calculus.pptx
 
Econometrics 2017-graduate-3
Econometrics 2017-graduate-3Econometrics 2017-graduate-3
Econometrics 2017-graduate-3
 
Nonstationary Relaxed Multisplitting Methods for Solving Linear Complementari...
Nonstationary Relaxed Multisplitting Methods for Solving Linear Complementari...Nonstationary Relaxed Multisplitting Methods for Solving Linear Complementari...
Nonstationary Relaxed Multisplitting Methods for Solving Linear Complementari...
 
NONSTATIONARY RELAXED MULTISPLITTING METHODS FOR SOLVING LINEAR COMPLEMENTARI...
NONSTATIONARY RELAXED MULTISPLITTING METHODS FOR SOLVING LINEAR COMPLEMENTARI...NONSTATIONARY RELAXED MULTISPLITTING METHODS FOR SOLVING LINEAR COMPLEMENTARI...
NONSTATIONARY RELAXED MULTISPLITTING METHODS FOR SOLVING LINEAR COMPLEMENTARI...
 
Tutorial APS 2023: Phase transition for statistical estimation: algorithms an...
Tutorial APS 2023: Phase transition for statistical estimation: algorithms an...Tutorial APS 2023: Phase transition for statistical estimation: algorithms an...
Tutorial APS 2023: Phase transition for statistical estimation: algorithms an...
 
SOME PROPERTIES OF ESTIMATORS - 552.ppt
SOME PROPERTIES OF ESTIMATORS - 552.pptSOME PROPERTIES OF ESTIMATORS - 552.ppt
SOME PROPERTIES OF ESTIMATORS - 552.ppt
 
Stopping Problems
Stopping ProblemsStopping Problems
Stopping Problems
 
Signals and systems-3
Signals and systems-3Signals and systems-3
Signals and systems-3
 
Time series Modelling Basics
Time series Modelling BasicsTime series Modelling Basics
Time series Modelling Basics
 
Statistical Decision Theory
Statistical Decision TheoryStatistical Decision Theory
Statistical Decision Theory
 
Unit II PPT.pptx
Unit II PPT.pptxUnit II PPT.pptx
Unit II PPT.pptx
 

Dynstoch (presented)

  • 1. First Order Estimation Second Order Estimation DYNSTOCH 2016 Second order asymptotic efficiency for a Poisson process Samvel B. GASPARYAN Joint work with Yu.A. Kutoyants Universit´e du Maine, Le Mans, France masiv6@gmail.com 10 June, 2016 Rennes Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 1 / 27
  • 2. First Order Estimation Second Order Estimation DYNSTOCH 2016 Outline First Order Estimation Statement of the Problem Lower bound Second Order Estimation Classes of As. Efficient Estimators The Main Theorem Sketch of the Proof Further Work Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 2 / 27
  • 3. First Order Estimation Second Order Estimation DYNSTOCH 2016 Inhomogeneous Poisson process • In non-parametric estimation the unknown object is a function. Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 3 / 27
  • 4. First Order Estimation Second Order Estimation DYNSTOCH 2016 Inhomogeneous Poisson process • In non-parametric estimation the unknown object is a function. • We observe a periodic Poisson process with a known period τ XT = {X(t), t ∈ [0, T]}, T = nτ. Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 3 / 27
  • 5. First Order Estimation Second Order Estimation DYNSTOCH 2016 Inhomogeneous Poisson process • In non-parametric estimation the unknown object is a function. • We observe a periodic Poisson process with a known period τ XT = {X(t), t ∈ [0, T]}, T = nτ. • X(0) = 0, has independent increments and there exists a positive, increasing function Λ(t) s.t. for all t ∈ [0, T] P(X(t) = k) = [Λ(t)]k k! e−Λ(t) , k = 0, 1, · · · . Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 3 / 27
  • 6. First Order Estimation Second Order Estimation DYNSTOCH 2016 Trajectory of a Poisson process Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 4 / 27
  • 7. First Order Estimation Second Order Estimation DYNSTOCH 2016 Models description • In the definition P(X(t) = k) = [Λ(t)]k k! e−Λ(t) , k = 0, 1, · · · . Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 5 / 27
  • 8. First Order Estimation Second Order Estimation DYNSTOCH 2016 Models description • In the definition P(X(t) = k) = [Λ(t)]k k! e−Λ(t) , k = 0, 1, · · · . • The function Λ(·) is called the mean function since EX(t) = Λ(t). Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 5 / 27
  • 9. First Order Estimation Second Order Estimation DYNSTOCH 2016 Models description • In the definition P(X(t) = k) = [Λ(t)]k k! e−Λ(t) , k = 0, 1, · · · . • The function Λ(·) is called the mean function since EX(t) = Λ(t). • We consider the case were Λ(·) is absolutely continuous Λ(t) = t 0 λ(s)ds. Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 5 / 27
  • 10. First Order Estimation Second Order Estimation DYNSTOCH 2016 Models description • In the definition P(X(t) = k) = [Λ(t)]k k! e−Λ(t) , k = 0, 1, · · · . • The function Λ(·) is called the mean function since EX(t) = Λ(t). • We consider the case were Λ(·) is absolutely continuous Λ(t) = t 0 λ(s)ds. • The positive function λ(·) is called the intensity function and the periodicity of a Poisson process means the periodicity of its intensity function λ(t) = λ(t + kτ), t ∈ [0, τ], k ∈ Z+. Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 5 / 27
  • 11. First Order Estimation Second Order Estimation DYNSTOCH 2016 Mean and the Intensity functions • With the notations Xj (t) = X((j − 1)τ + t) − X((j − 1)τ), t ∈ [0, τ], Xj = {Xj (t), t ∈ [0, τ]}, j = 1, · · · , n, Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 6 / 27
  • 12. First Order Estimation Second Order Estimation DYNSTOCH 2016 Mean and the Intensity functions • With the notations Xj (t) = X((j − 1)τ + t) − X((j − 1)τ), t ∈ [0, τ], Xj = {Xj (t), t ∈ [0, τ]}, j = 1, · · · , n, • We get an i.i.d. model Xn = (X1, X2, · · · , Xn) generated from a Poisson process. Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 6 / 27
  • 13. First Order Estimation Second Order Estimation DYNSTOCH 2016 Mean and the Intensity functions • With the notations Xj (t) = X((j − 1)τ + t) − X((j − 1)τ), t ∈ [0, τ], Xj = {Xj (t), t ∈ [0, τ]}, j = 1, · · · , n, • We get an i.i.d. model Xn = (X1, X2, · · · , Xn) generated from a Poisson process. • Estimation problems of λ(t), t ∈ [0, τ] and Λ(t), t ∈ [0, τ] are completely different. Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 6 / 27
  • 14. First Order Estimation Second Order Estimation DYNSTOCH 2016 Mean and the Intensity functions • With the notations Xj (t) = X((j − 1)τ + t) − X((j − 1)τ), t ∈ [0, τ], Xj = {Xj (t), t ∈ [0, τ]}, j = 1, · · · , n, • We get an i.i.d. model Xn = (X1, X2, · · · , Xn) generated from a Poisson process. • Estimation problems of λ(t), t ∈ [0, τ] and Λ(t), t ∈ [0, τ] are completely different. • We would like to have H´ajek-Le Cam type lower bounds for function estimation lim δ↓0 lim n→+∞ sup |θ−θ0|≤δ nEθ(¯θn − θ)2 ≥ 1 I(θ0) . Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 6 / 27
  • 15. First Order Estimation Second Order Estimation DYNSTOCH 2016 Mean function estimation • We consider the estimation problem of the mean function {Λ(t), t ∈ [0, τ]}. Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 7 / 27
  • 16. First Order Estimation Second Order Estimation DYNSTOCH 2016 Mean function estimation • We consider the estimation problem of the mean function {Λ(t), t ∈ [0, τ]}. • Each measurable function ¯Λn(t) = ¯Λn(t, Xn) of observations is an estimator for Λ(t). Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 7 / 27
  • 17. First Order Estimation Second Order Estimation DYNSTOCH 2016 Mean function estimation • We consider the estimation problem of the mean function {Λ(t), t ∈ [0, τ]}. • Each measurable function ¯Λn(t) = ¯Λn(t, Xn) of observations is an estimator for Λ(t). • To assess the quality of an estimator we use the MISE EΛ||¯Λn − Λ||2 = EΛ τ 0 (¯Λn(t) − Λ(t))2 dt. Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 7 / 27
  • 18. First Order Estimation Second Order Estimation DYNSTOCH 2016 Mean function estimation • We consider the estimation problem of the mean function {Λ(t), t ∈ [0, τ]}. • Each measurable function ¯Λn(t) = ¯Λn(t, Xn) of observations is an estimator for Λ(t). • To assess the quality of an estimator we use the MISE EΛ||¯Λn − Λ||2 = EΛ τ 0 (¯Λn(t) − Λ(t))2 dt. • The simplest estimator is the empirical mean function ˆΛn(t) = 1 n n j=1 Xj (t), t ∈ [0, τ]. Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 7 / 27
  • 19. First Order Estimation Second Order Estimation DYNSTOCH 2016 The basic equality for the EMF • The following basic equality for the EMF implies two things EΛ|| √ n(¯Λn − Λ)||2 = τ 0 Λ(t)dt. Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 8 / 27
  • 20. First Order Estimation Second Order Estimation DYNSTOCH 2016 The basic equality for the EMF • The following basic equality for the EMF implies two things EΛ|| √ n(¯Λn − Λ)||2 = τ 0 Λ(t)dt. 1 The EMF is consistent with the classical rate of convergence√ n. Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 8 / 27
  • 21. First Order Estimation Second Order Estimation DYNSTOCH 2016 The basic equality for the EMF • The following basic equality for the EMF implies two things EΛ|| √ n(¯Λn − Λ)||2 = τ 0 Λ(t)dt. 1 The EMF is consistent with the classical rate of convergence√ n. 2 The asymptotic variance (which is non-asymptotic) of the EMF is τ 0 Λ(t)dt. Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 8 / 27
  • 22. First Order Estimation Second Order Estimation DYNSTOCH 2016 The basic equality for the EMF • The following basic equality for the EMF implies two things EΛ|| √ n(¯Λn − Λ)||2 = τ 0 Λ(t)dt. 1 The EMF is consistent with the classical rate of convergence√ n. 2 The asymptotic variance (which is non-asymptotic) of the EMF is τ 0 Λ(t)dt. • Can we have better rate of convergence or smaller asymptotic variance for an estimator? Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 8 / 27
  • 23. First Order Estimation Second Order Estimation DYNSTOCH 2016 As. efficiency of the EMF • The EMF is asymptotically efficient among all estimators ¯Λn(t), Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 9 / 27
  • 24. First Order Estimation Second Order Estimation DYNSTOCH 2016 As. efficiency of the EMF • The EMF is asymptotically efficient among all estimators ¯Λn(t), • Kutoyants’ result-for all estimators ¯Λn(t) lim δ↓0 lim n→+∞ sup Λ∈Vδ EΛ|| √ n(¯Λn − Λ)||2 ≥ τ 0 Λ∗ (t)dt, with Vδ = {Λ : sup0≤t≤τ |Λ(t) − Λ∗(t)| ≤ δ}, δ > 0. Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 9 / 27
  • 25. First Order Estimation Second Order Estimation DYNSTOCH 2016 As. efficiency of the EMF • The EMF is asymptotically efficient among all estimators ¯Λn(t), • Kutoyants’ result-for all estimators ¯Λn(t) lim δ↓0 lim n→+∞ sup Λ∈Vδ EΛ|| √ n(¯Λn − Λ)||2 ≥ τ 0 Λ∗ (t)dt, with Vδ = {Λ : sup0≤t≤τ |Λ(t) − Λ∗(t)| ≤ δ}, δ > 0. • Reformulation lim n→+∞ sup Λ∈F EΛ|| √ n(¯Λn − Λ)||2 − τ 0 Λ(t)dt ≥ 0. Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 9 / 27
  • 26. First Order Estimation Second Order Estimation DYNSTOCH 2016 As. efficiency of the EMF • The EMF is asymptotically efficient among all estimators ¯Λn(t), • Kutoyants’ result-for all estimators ¯Λn(t) lim δ↓0 lim n→+∞ sup Λ∈Vδ EΛ|| √ n(¯Λn − Λ)||2 ≥ τ 0 Λ∗ (t)dt, with Vδ = {Λ : sup0≤t≤τ |Λ(t) − Λ∗(t)| ≤ δ}, δ > 0. • Reformulation lim n→+∞ sup Λ∈F EΛ|| √ n(¯Λn − Λ)||2 − τ 0 Λ(t)dt ≥ 0. • F ⊂ L2[0, τ] is a sufficiently “rich”, bounded set. Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 9 / 27
  • 27. First Order Estimation Second Order Estimation DYNSTOCH 2016 As. efficiency of the EMF • The EMF is asymptotically efficient among all estimators ¯Λn(t), • Kutoyants’ result-for all estimators ¯Λn(t) lim δ↓0 lim n→+∞ sup Λ∈Vδ EΛ|| √ n(¯Λn − Λ)||2 ≥ τ 0 Λ∗ (t)dt, with Vδ = {Λ : sup0≤t≤τ |Λ(t) − Λ∗(t)| ≤ δ}, δ > 0. • Reformulation lim n→+∞ sup Λ∈F EΛ|| √ n(¯Λn − Λ)||2 − τ 0 Λ(t)dt ≥ 0. • F ⊂ L2[0, τ] is a sufficiently “rich”, bounded set. • Can we have other asymptotically efficient estimators? Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 9 / 27
  • 28. First Order Estimation Second Order Estimation DYNSTOCH 2016 Efficient estimators • Existence of other as. efficient estimators depends on the regularity conditions imposed on unknown Λ(·). Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 10 / 27
  • 29. First Order Estimation Second Order Estimation DYNSTOCH 2016 Efficient estimators • Existence of other as. efficient estimators depends on the regularity conditions imposed on unknown Λ(·). • In other words, it depends on the choice of the set F in lim n→+∞ sup Λ∈F EΛ|| √ n(¯Λn − Λ)||2 − τ 0 Λ(t)dt ≥ 0. Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 10 / 27
  • 30. First Order Estimation Second Order Estimation DYNSTOCH 2016 Efficient estimators • Existence of other as. efficient estimators depends on the regularity conditions imposed on unknown Λ(·). • In other words, it depends on the choice of the set F in lim n→+∞ sup Λ∈F EΛ|| √ n(¯Λn − Λ)||2 − τ 0 Λ(t)dt ≥ 0. • Demanding existence of derivatives of higher order of the unknown function, we can enlarge the class of as. efficient estimators. Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 10 / 27
  • 31. First Order Estimation Second Order Estimation DYNSTOCH 2016 First results • At first, consider the L2 ball with a center Λ∗ B(R) = {Λ : ||Λ − Λ∗ ||2 ≤ R, Λ∗ (τ) = Λ(τ)}. Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 11 / 27
  • 32. First Order Estimation Second Order Estimation DYNSTOCH 2016 First results • At first, consider the L2 ball with a center Λ∗ B(R) = {Λ : ||Λ − Λ∗ ||2 ≤ R, Λ∗ (τ) = Λ(τ)}. • Consider a kernel-type estimator ˜Λn(t) = τ 0 Kn(s − t)(ˆΛn(s) − Λ∗(s))ds + Λ∗(t). Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 11 / 27
  • 33. First Order Estimation Second Order Estimation DYNSTOCH 2016 First results • At first, consider the L2 ball with a center Λ∗ B(R) = {Λ : ||Λ − Λ∗ ||2 ≤ R, Λ∗ (τ) = Λ(τ)}. • Consider a kernel-type estimator ˜Λn(t) = τ 0 Kn(s − t)(ˆΛn(s) − Λ∗(s))ds + Λ∗(t). • Kernels satisfy Kn(u) ≥ 0, u ∈ − τ 2 , τ 2 , −τ 2 −τ 2 Kn(u)du = 1, n ∈ N, and we continue them τ periodically on the whole real line R Kn(u) = Kn(−u), Kn(u) = Kn(u + kτ), u ∈ − τ 2 , τ 2 , k ∈ Z. Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 11 / 27
  • 34. First Order Estimation Second Order Estimation DYNSTOCH 2016 Kernel-type estimator • Consider the trigonometric basis in L2[0, τ] φ1(t) = 1 τ , φ2l (t) = 2 τ cos 2πl τ t, φ2l+1(t) = 2 τ sin 2πl τ t. Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 12 / 27
  • 35. First Order Estimation Second Order Estimation DYNSTOCH 2016 Kernel-type estimator • Consider the trigonometric basis in L2[0, τ] φ1(t) = 1 τ , φ2l (t) = 2 τ cos 2πl τ t, φ2l+1(t) = 2 τ sin 2πl τ t. • Coefficients of the kernel-type estimator w.r.t. this basis ˜Λ1,n = ˆΛ1,n, ˜Λ2l,n = τ 2 K2l,n(ˆΛ2l,n − Λ∗ 2l ) + Λ∗ 2l , ˜Λ2l+1,n = τ 2 K2l,n(ˆΛ2l+1,n − Λ∗ 2l+1) + Λ∗ 2l+1, l ∈ N, where ˆΛl,n are the Fourier coefficients of the EMF. Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 12 / 27
  • 36. First Order Estimation Second Order Estimation DYNSTOCH 2016 Efficiency over a ball • A kernel-type estimator ˜Λn(t) = τ 0 Kn(s − t)(ˆΛn(s) − Λ∗(s))ds + Λ∗(t). Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 13 / 27
  • 37. First Order Estimation Second Order Estimation DYNSTOCH 2016 Efficiency over a ball • A kernel-type estimator ˜Λn(t) = τ 0 Kn(s − t)(ˆΛn(s) − Λ∗(s))ds + Λ∗(t). • with a kernel satisfying the condition n sup l≥1 τ 2 K2l,n − 1 2 −→ 0, Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 13 / 27
  • 38. First Order Estimation Second Order Estimation DYNSTOCH 2016 Efficiency over a ball • A kernel-type estimator ˜Λn(t) = τ 0 Kn(s − t)(ˆΛn(s) − Λ∗(s))ds + Λ∗(t). • with a kernel satisfying the condition n sup l≥1 τ 2 K2l,n − 1 2 −→ 0, • is asymptotically efficient over a ball lim n→+∞ sup Λ∈B(R) EΛ|| √ n(˜Λn − Λ)||2 − τ 0 Λ(t)dt = 0. Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 13 / 27
  • 39. First Order Estimation Second Order Estimation DYNSTOCH 2016 Efficiency over a compact set • Now we impose additional conditions of regularity on the unknown mean function Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 14 / 27
  • 40. First Order Estimation Second Order Estimation DYNSTOCH 2016 Efficiency over a compact set • Now we impose additional conditions of regularity on the unknown mean function • it belongs to Σ(R) Σ(R) = {Λ : ||λ − λ∗ ||2 ≤ R, Λ∗ (τ) = Λ(τ)}. Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 14 / 27
  • 41. First Order Estimation Second Order Estimation DYNSTOCH 2016 Efficiency over a compact set • Now we impose additional conditions of regularity on the unknown mean function • it belongs to Σ(R) Σ(R) = {Λ : ||λ − λ∗ ||2 ≤ R, Λ∗ (τ) = Λ(τ)}. • A kernel-type estimator with the kernel satisfying n sup l≥1 τ 2 K2l,n − 1 2πl τ 2 −→ 0, Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 14 / 27
  • 42. First Order Estimation Second Order Estimation DYNSTOCH 2016 Efficiency over a compact set • Now we impose additional conditions of regularity on the unknown mean function • it belongs to Σ(R) Σ(R) = {Λ : ||λ − λ∗ ||2 ≤ R, Λ∗ (τ) = Λ(τ)}. • A kernel-type estimator with the kernel satisfying n sup l≥1 τ 2 K2l,n − 1 2πl τ 2 −→ 0, • is asymptotically efficient over Σ(R) lim n→+∞ sup Λ∈Σ(R) EΛ|| √ n(˜Λn − Λ)||2 − τ 0 Λ(t)dt = 0. Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 14 / 27
  • 43. First Order Estimation Second Order Estimation DYNSTOCH 2016 Example of another as. effective estimator • Consider a kernel K(u) ≥ 0, u ∈ − τ 2 , τ 2 , τ 2 −τ 2 K(u)du = 1, K(u) = K(−u), K(u) = K(u + kτ), u ∈ − τ 2 , τ 2 , k ∈ Z. Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 15 / 27
  • 44. First Order Estimation Second Order Estimation DYNSTOCH 2016 Example of another as. effective estimator • Consider a kernel K(u) ≥ 0, u ∈ − τ 2 , τ 2 , τ 2 −τ 2 K(u)du = 1, K(u) = K(−u), K(u) = K(u + kτ), u ∈ − τ 2 , τ 2 , k ∈ Z. • A sequence 0 ≤ hn ≤ 1 be s.t. h2 nn −→ 0, n → +∞. Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 15 / 27
  • 45. First Order Estimation Second Order Estimation DYNSTOCH 2016 Example of another as. effective estimator • Consider a kernel K(u) ≥ 0, u ∈ − τ 2 , τ 2 , τ 2 −τ 2 K(u)du = 1, K(u) = K(−u), K(u) = K(u + kτ), u ∈ − τ 2 , τ 2 , k ∈ Z. • A sequence 0 ≤ hn ≤ 1 be s.t. h2 nn −→ 0, n → +∞. • Then, the kernels Kn(u) = 1 hn K u hn 1I |u| ≤ τ 2 hn satisfy the previous condition and hence Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 15 / 27
  • 46. First Order Estimation Second Order Estimation DYNSTOCH 2016 Example of another as. effective estimator • Consider a kernel K(u) ≥ 0, u ∈ − τ 2 , τ 2 , τ 2 −τ 2 K(u)du = 1, K(u) = K(−u), K(u) = K(u + kτ), u ∈ − τ 2 , τ 2 , k ∈ Z. • A sequence 0 ≤ hn ≤ 1 be s.t. h2 nn −→ 0, n → +∞. • Then, the kernels Kn(u) = 1 hn K u hn 1I |u| ≤ τ 2 hn satisfy the previous condition and hence • the corresponding kernel-type estimator ˜Λn(t) = τ 0 Kn(s − t)(ˆΛn(s) − Λ∗(s))ds + Λ∗(t). is as. efficient over Σ(R). Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 15 / 27
  • 47. First Order Estimation Second Order Estimation DYNSTOCH 2016 Second order efficiency • How to compare as. efficient estimators? Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 16 / 27
  • 48. First Order Estimation Second Order Estimation DYNSTOCH 2016 Second order efficiency • How to compare as. efficient estimators? • The first step would be to find the rate of convergence in lim n→+∞ sup Λ∈F EΛ|| √ n(¯Λn − Λ)||2 − τ 0 Λ(t)dt ≥ 0, Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 16 / 27
  • 49. First Order Estimation Second Order Estimation DYNSTOCH 2016 Second order efficiency • How to compare as. efficient estimators? • The first step would be to find the rate of convergence in lim n→+∞ sup Λ∈F EΛ|| √ n(¯Λn − Λ)||2 − τ 0 Λ(t)dt ≥ 0, • that is, the sequence γn −→ +∞ s.t. lim n→+∞ sup Λ∈F γn EΛ|| √ n(¯Λn − Λ)||2 − τ 0 Λ(t)dt ≥ C, Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 16 / 27
  • 50. First Order Estimation Second Order Estimation DYNSTOCH 2016 Second order efficiency • How to compare as. efficient estimators? • The first step would be to find the rate of convergence in lim n→+∞ sup Λ∈F EΛ|| √ n(¯Λn − Λ)||2 − τ 0 Λ(t)dt ≥ 0, • that is, the sequence γn −→ +∞ s.t. lim n→+∞ sup Λ∈F γn EΛ|| √ n(¯Λn − Λ)||2 − τ 0 Λ(t)dt ≥ C, • Then, to construct an estimator which attains this bound. Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 16 / 27
  • 51. First Order Estimation Second Order Estimation DYNSTOCH 2016 Second order efficiency • How to compare as. efficient estimators? • The first step would be to find the rate of convergence in lim n→+∞ sup Λ∈F EΛ|| √ n(¯Λn − Λ)||2 − τ 0 Λ(t)dt ≥ 0, • that is, the sequence γn −→ +∞ s.t. lim n→+∞ sup Λ∈F γn EΛ|| √ n(¯Λn − Λ)||2 − τ 0 Λ(t)dt ≥ C, • Then, to construct an estimator which attains this bound. • Calculate the constant C. Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 16 / 27
  • 52. First Order Estimation Second Order Estimation DYNSTOCH 2016 Related works • Second order estimation was introduced by [Golubev G.K. and Levit B.Ya., 1996] in the distribution function estimation problem. Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 17 / 27
  • 53. First Order Estimation Second Order Estimation DYNSTOCH 2016 Related works • Second order estimation was introduced by [Golubev G.K. and Levit B.Ya., 1996] in the distribution function estimation problem. • For other models second order efficiency was proved by [Dalalyan A.S. and Kutoyants Yu.A., 2004], [Golubev G.K. and H¨ardle W., 2000]. Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 17 / 27
  • 54. First Order Estimation Second Order Estimation DYNSTOCH 2016 Related works • Second order estimation was introduced by [Golubev G.K. and Levit B.Ya., 1996] in the distribution function estimation problem. • For other models second order efficiency was proved by [Dalalyan A.S. and Kutoyants Yu.A., 2004], [Golubev G.K. and H¨ardle W., 2000]. • Asymptotic efficiency in non-parametric estimation problems was done for the first time in [Pinsker M.S., 1980], Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 17 / 27
  • 55. First Order Estimation Second Order Estimation DYNSTOCH 2016 Related works • Second order estimation was introduced by [Golubev G.K. and Levit B.Ya., 1996] in the distribution function estimation problem. • For other models second order efficiency was proved by [Dalalyan A.S. and Kutoyants Yu.A., 2004], [Golubev G.K. and H¨ardle W., 2000]. • Asymptotic efficiency in non-parametric estimation problems was done for the first time in [Pinsker M.S., 1980], • where the analogue of the inverse of the Fisher information in non-parametric estimation problem was calculated (Pinsker’s constant). Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 17 / 27
  • 56. First Order Estimation Second Order Estimation DYNSTOCH 2016 Main theorems • Introduce Fper m (R, S) = Λ(·) : τ 0 [λ(m−1) (t)]2 dt ≤ R, Λ(0) = 0, Λ(τ) = S where R > 0, S > 0, m > 1, are given constants. Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 18 / 27
  • 57. First Order Estimation Second Order Estimation DYNSTOCH 2016 Main theorems • Introduce Fper m (R, S) = Λ(·) : τ 0 [λ(m−1) (t)]2 dt ≤ R, Λ(0) = 0, Λ(τ) = S where R > 0, S > 0, m > 1, are given constants. • For all estimators ¯Λn(t) of the mean function Λ(t), following lower bound holds lim n→+∞ sup Λ∈Fm(R,S) n 1 2m−1 EΛ|| √ n(¯Λn − Λ)||2 − τ 0 Λ(t)dt ≥ −Π, Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 18 / 27
  • 58. First Order Estimation Second Order Estimation DYNSTOCH 2016 Main theorems • Introduce Fper m (R, S) = Λ(·) : τ 0 [λ(m−1) (t)]2 dt ≤ R, Λ(0) = 0, Λ(τ) = S where R > 0, S > 0, m > 1, are given constants. • For all estimators ¯Λn(t) of the mean function Λ(t), following lower bound holds lim n→+∞ sup Λ∈Fm(R,S) n 1 2m−1 EΛ|| √ n(¯Λn − Λ)||2 − τ 0 Λ(t)dt ≥ −Π, • where Π = Πm(R, S) = (2m − 1)R S πR m (2m − 1)(m − 1) 2m 2m−1 , plays the role of the Pinsker’s constant. Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 18 / 27
  • 59. First Order Estimation Second Order Estimation DYNSTOCH 2016 Second order as. efficient estimator • Consider Λ∗ n(t) = ˆΛ0,nφ0(t) + Nn l=1 ˜Kl,n ˆΛl,nφl (t), where {φl }+∞ l=0 is the trigonometric cosine basis, ˆΛl,n are the Fourier coefficients of the EMF w.r.t. this basis and ˜Kl,n = 1 − πl τ m α∗ n + , α∗ n = S nR τ π m (2m − 1)(m − 1) m 2m−1 , Nn = τ π (α∗ n)− 1 m ≈ Cn 1 2m−1 , x+ = max(x, 0), x ∈ R. Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 19 / 27
  • 60. First Order Estimation Second Order Estimation DYNSTOCH 2016 Second order as. efficient estimator • Consider Λ∗ n(t) = ˆΛ0,nφ0(t) + Nn l=1 ˜Kl,n ˆΛl,nφl (t), where {φl }+∞ l=0 is the trigonometric cosine basis, ˆΛl,n are the Fourier coefficients of the EMF w.r.t. this basis and ˜Kl,n = 1 − πl τ m α∗ n + , α∗ n = S nR τ π m (2m − 1)(m − 1) m 2m−1 , Nn = τ π (α∗ n)− 1 m ≈ Cn 1 2m−1 , x+ = max(x, 0), x ∈ R. • The estimator Λ∗ n(t) attains the lower bound described above, that is, lim n→+∞ sup Λ∈Fm(R,S) n 1 2m−1 EΛ|| √ n(¯Λn − Λ)||2 − τ 0 Λ(t)dt = −Π. Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 19 / 27
  • 61. First Order Estimation Second Order Estimation DYNSTOCH 2016 Sketch of the proof • Proof consists of several steps: Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 20 / 27
  • 62. First Order Estimation Second Order Estimation DYNSTOCH 2016 Sketch of the proof • Proof consists of several steps: • Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 20 / 27
  • 63. First Order Estimation Second Order Estimation DYNSTOCH 2016 First step • Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 21 / 27
  • 64. First Order Estimation Second Order Estimation DYNSTOCH 2016 First step • • Reduce the minimax problem to a Bayes risk maximization problem sup Λ∈F (per) m (R,S) EΛ||¯Λn − Λ||2 − EΛ||ˆΛn − Λ||2 ≥ sup Q∈P F (per) m (R,S) EΛ||¯Λn − Λ||2 − EΛ||ˆΛn − Λ||2 dQ. Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 21 / 27
  • 65. First Order Estimation Second Order Estimation DYNSTOCH 2016 Second step • Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 22 / 27
  • 66. First Order Estimation Second Order Estimation DYNSTOCH 2016 Second step • • In the maximization problem replace the set of probabilities P(F) concentrated on F (per) m (R, S) sup Q∈P(F) F (per) m (R,S) EΛ||¯Λn − Λ||2 − EΛ||ˆΛn − Λ||2 dQ, Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 22 / 27
  • 67. First Order Estimation Second Order Estimation DYNSTOCH 2016 Second step • • In the maximization problem replace the set of probabilities P(F) concentrated on F (per) m (R, S) sup Q∈P(F) F (per) m (R,S) EΛ||¯Λn − Λ||2 − EΛ||ˆΛn − Λ||2 dQ, • by the set of probabilities E(F) concentrated on F (per) m (R, S) in mean. Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 22 / 27
  • 68. First Order Estimation Second Order Estimation DYNSTOCH 2016 Third step • Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 23 / 27
  • 69. First Order Estimation Second Order Estimation DYNSTOCH 2016 Third step • • Replace the ellipsoid by the least favorable parametric family (heavy functions) sup Λθ∈F (per) m (R,S) Θ Eθ||¯Λn − Λθ||2 − Eθ||ˆΛn − Λθ||2 dQ. Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 23 / 27
  • 70. First Order Estimation Second Order Estimation DYNSTOCH 2016 Fourth step • Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 24 / 27
  • 71. First Order Estimation Second Order Estimation DYNSTOCH 2016 Fourth step • • Shrink the heavy functions and the least favorable prior distribution to fit the ellipsoid Q{θ : Λθ /∈ F (per) m (R, S)} = o(n−2 ). Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 24 / 27
  • 72. First Order Estimation Second Order Estimation DYNSTOCH 2016 Further work • What can be done or what had to be done? Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 25 / 27
  • 73. First Order Estimation Second Order Estimation DYNSTOCH 2016 Further work • What can be done or what had to be done? • The condition Λ(τ) = S in the definition of the set F (per) m (R, S) have to be replaced by Λ(τ) ≤ S. The last one cannot be thrown out since with a notation πj (t) = Xj (t) − Λ(t) we get ˆΛn(t) = Λ(t) + 1 n n j=1 πj (t), data=signal+“noise” and the variance of the noise is 1 n Λ(t). (Simultaneous estimation of the function and its variance). Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 25 / 27
  • 74. First Order Estimation Second Order Estimation DYNSTOCH 2016 Further work • What can be done or what had to be done? • The condition Λ(τ) = S in the definition of the set F (per) m (R, S) have to be replaced by Λ(τ) ≤ S. The last one cannot be thrown out since with a notation πj (t) = Xj (t) − Λ(t) we get ˆΛn(t) = Λ(t) + 1 n n j=1 πj (t), data=signal+“noise” and the variance of the noise is 1 n Λ(t). (Simultaneous estimation of the function and its variance). • Adaptive estimation-construct an estimator that does not depend on m, S, R. Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 25 / 27
  • 75. First Order Estimation Second Order Estimation DYNSTOCH 2016 Further work • What can be done or what had to be done? • The condition Λ(τ) = S in the definition of the set F (per) m (R, S) have to be replaced by Λ(τ) ≤ S. The last one cannot be thrown out since with a notation πj (t) = Xj (t) − Λ(t) we get ˆΛn(t) = Λ(t) + 1 n n j=1 πj (t), data=signal+“noise” and the variance of the noise is 1 n Λ(t). (Simultaneous estimation of the function and its variance). • Adaptive estimation-construct an estimator that does not depend on m, S, R. • Consider other models or formulate a general result for non-parametric LAN. Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 25 / 27
  • 76. First Order Estimation Second Order Estimation DYNSTOCH 2016 References Gasparyan S.B. and Kutoyants Yu.A., On the lower bound in second order asymptotically efficient estimation for Poisson processes. Submitted. (2016). Gill R.D. and Levit B.Ya., Applications of the van Trees inequality: a Bayesian Cram´er-Rao bound. Bernoulli, 1(1-2), 59-79. (1995). Golubev G.K. and H¨ardle W., Second order minimax estimation in partial linear models. Math. Methods Statist., 9(2), 160-175. (2000). Golubev G.K. and Levit B.Ya., On the second order minimax estimation of distribution functions. Math. Methods Statist., 5(1), 1-31. (1996). Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 26 / 27
  • 77. First Order Estimation Second Order Estimation DYNSTOCH 2016 References Ibragimov, I., Hasminskii R., Statistical Estimation: Asymptotic Theory. Springer, New York (1981). Dalalyan A.S. and Kutoyants Yu.A., On second order minimax estimation of invariant density for ergodic diffusion. Statistics & Decisions, 22(1), 17-42. (2004). Kutoyants, Yu. A., Introduction to Statistics of Poisson Processes. To appear. (2016). Pinsker M.S., Optimal filtering of square-integrable signals in Gaussian noise. Probl. Inf. Transm., 16(2), 120-133. (1980). Samvel B. GASPARYAN 10 June, 2016 Rennes Second order asymptotic efficiency 27 / 27