Dividing polynomials
This PowerPoint presentation
demonstrates two different methods
of polynomial division.
Algebraic long division
Divide 2x³ + 3x² - x + 1 by x + 2
3 2
2 2 3 1
x x x x
   
x + 2 is the
divisor
The quotient
will be here.
2x³ + 3x² - x + 1
is the dividend
Algebraic long division
First divide the first term of the dividend, 2x³,
by x (the first term of the divisor).
3 2
2 2 3 1
x x x x
   
2
2x
This gives 2x².
This will be the
first term of
the quotient.
Algebraic long division
Now multiply
2x² by x + 2
3 2
2 2 3 1
x x x x
   
3 2
2 4
x x

2
2x
2
x

and subtract
Algebraic long division
Bring down the
next term, -x.
3 2
2 2 3 1
x x x x
   
3 2
2 4
x x

2
2x
2
x
 x

Algebraic long division
Now divide –x²,
the first term of
–x² - x, by x, the
first term of the
divisor
3 2
2 2 3 1
x x x x
   
3 2
2 4
x x

2
2x
2
x
 x

x

which gives –x.
Algebraic long division
Multiply –x by x + 2
3 2
2 2 3 1
x x x x
   
3 2
2 4
x x

2
2x
2
x
 x

x

2
2
x x
 
To get a result of:
Algebraic long division
Now subtract
3 2
2 2 3 1
x x x x
   
3 2
2 4
x x

2
2x
2
x
 x

x

2
2
x x
 
** remember, you must
subtract both the –x2
term and the -2x term
Algebraic long division
Now combine
like terms
3 2
2 2 3 1
x x x x
   
3 2
2 4
x x

2
2x
2
x
 x

x

2
2
x x
 
x
(since we subtracted two
negative terms they both
turned into positive terms)
{
Algebraic long division
Bring down the
next term, 1
x
3 2
2 2 3 1
x x x x
   
3 2
2 4
x x

2
2x
2
x
 x

x

2
2
x x
 
1

Algebraic long division
Divide x, the first
term of x + 1, by x,
the first term of
the divisor
1

3 2
2 2 3 1
x x x x
   
3 2
2 4
x x

2
2x
2
x
 x

x

2
2
x x
 
x 1

which gives 1
Algebraic long division
Multiply x + 2 by 1
3 2
2 2 3 1
x x x x
   
3 2
2 4
x x

2
2x
2
x
 x

x

2
2
x x
 
x
1

1

2
x 
1

and subtract
Algebraic long division
The remainder is –1.
3 2
2 2 3 1
x x x x
   
3 2
2 4
x x

2
2x
2
x
 x

x

2
2
x x
 
x
1

1

2
x 
1

The quotient is
2x² - x + 1

dividing polynomials .pptx

  • 1.
    Dividing polynomials This PowerPointpresentation demonstrates two different methods of polynomial division.
  • 2.
    Algebraic long division Divide2x³ + 3x² - x + 1 by x + 2 3 2 2 2 3 1 x x x x     x + 2 is the divisor The quotient will be here. 2x³ + 3x² - x + 1 is the dividend
  • 3.
    Algebraic long division Firstdivide the first term of the dividend, 2x³, by x (the first term of the divisor). 3 2 2 2 3 1 x x x x     2 2x This gives 2x². This will be the first term of the quotient.
  • 4.
    Algebraic long division Nowmultiply 2x² by x + 2 3 2 2 2 3 1 x x x x     3 2 2 4 x x  2 2x 2 x  and subtract
  • 5.
    Algebraic long division Bringdown the next term, -x. 3 2 2 2 3 1 x x x x     3 2 2 4 x x  2 2x 2 x  x 
  • 6.
    Algebraic long division Nowdivide –x², the first term of –x² - x, by x, the first term of the divisor 3 2 2 2 3 1 x x x x     3 2 2 4 x x  2 2x 2 x  x  x  which gives –x.
  • 7.
    Algebraic long division Multiply–x by x + 2 3 2 2 2 3 1 x x x x     3 2 2 4 x x  2 2x 2 x  x  x  2 2 x x   To get a result of:
  • 8.
    Algebraic long division Nowsubtract 3 2 2 2 3 1 x x x x     3 2 2 4 x x  2 2x 2 x  x  x  2 2 x x   ** remember, you must subtract both the –x2 term and the -2x term
  • 9.
    Algebraic long division Nowcombine like terms 3 2 2 2 3 1 x x x x     3 2 2 4 x x  2 2x 2 x  x  x  2 2 x x   x (since we subtracted two negative terms they both turned into positive terms) {
  • 10.
    Algebraic long division Bringdown the next term, 1 x 3 2 2 2 3 1 x x x x     3 2 2 4 x x  2 2x 2 x  x  x  2 2 x x   1 
  • 11.
    Algebraic long division Dividex, the first term of x + 1, by x, the first term of the divisor 1  3 2 2 2 3 1 x x x x     3 2 2 4 x x  2 2x 2 x  x  x  2 2 x x   x 1  which gives 1
  • 12.
    Algebraic long division Multiplyx + 2 by 1 3 2 2 2 3 1 x x x x     3 2 2 4 x x  2 2x 2 x  x  x  2 2 x x   x 1  1  2 x  1  and subtract
  • 13.
    Algebraic long division Theremainder is –1. 3 2 2 2 3 1 x x x x     3 2 2 4 x x  2 2x 2 x  x  x  2 2 x x   x 1  1  2 x  1  The quotient is 2x² - x + 1