Modern College of Arts, Science & Commerce Ganeshkhind Pune-16.
Department of Computer Science
Data Mining Assignment
THE APRIORI ALGORITHM
EXAMPLE
Presented by
Ms. Gunshri Patil gunshrisp4955@gmail.com
Ms. Divya Chavda divyachavda429@gmail.com
Ms. Dhanshree Hande dhanshreehande2157@gmail.com
Ms. Madhuri Patil patilmadhuri4488@gmail.com
Guided by
Dr. Dipali Meher
1
Q. Perform Apriori Algorithm to Find Frequent Patterns
with Minimum Support=2.
 Given Dataset:
Tid Items
1 A,B,C,D
2 A,B,D
3 A,D
4 A,C
5 B,C
6 B,D
7 A,C,D
2
Step-1:Calculating C1(Candidate set)
Minimum Support=2
Dataset D
C1
C1
TID Items
1 A,B,C,D
2 A,B,D
3 A,D
4 A,C
5 B,C
6 B,D
7 A,C,D
Itemset Support Count
{A} 5
{B} 4
{C} 4
{D} 5
3
Step-2:Now, we will take the itemsets that have the Minimum
Support(2).it will give us the table L1(frequent itemset)
C1 L1
L1
Itemset Support Count
{A} 5
{B} 4
{C} 4
{D} 5
Itemset Support Count
{A} 5
{B} 4
{C} 4
{D} 5
4
Step-3: Candidate Generation C2, and L2:
C2 L2
Itemset
{A,B}
{A,C}
{A,D}
{B,C}
{B,D}
{C,D}
Itemset Support Count
{A,B} 2
{A,C} 3
{A,D} 4
{B,C} 2
{B,D} 3
{C,D} 2
L2
5
Step-4: Candidate generation C3, and L3:
L3 will have only one combination, i.e., {A, C, D}.
C3 L3
 Frequent itemset ={A,C,D}
Itemset Support Count
{A,B,C} 1
{B,C,D} 1
{A,C,D} 2
{A,D,B} 0
Itemset
{A,C,D}
6
THANK YOU
7

Data Mining - Apriori Algorithm Example

  • 1.
    Modern College ofArts, Science & Commerce Ganeshkhind Pune-16. Department of Computer Science Data Mining Assignment THE APRIORI ALGORITHM EXAMPLE Presented by Ms. Gunshri Patil gunshrisp4955@gmail.com Ms. Divya Chavda divyachavda429@gmail.com Ms. Dhanshree Hande dhanshreehande2157@gmail.com Ms. Madhuri Patil patilmadhuri4488@gmail.com Guided by Dr. Dipali Meher 1
  • 2.
    Q. Perform AprioriAlgorithm to Find Frequent Patterns with Minimum Support=2.  Given Dataset: Tid Items 1 A,B,C,D 2 A,B,D 3 A,D 4 A,C 5 B,C 6 B,D 7 A,C,D 2
  • 3.
    Step-1:Calculating C1(Candidate set) MinimumSupport=2 Dataset D C1 C1 TID Items 1 A,B,C,D 2 A,B,D 3 A,D 4 A,C 5 B,C 6 B,D 7 A,C,D Itemset Support Count {A} 5 {B} 4 {C} 4 {D} 5 3
  • 4.
    Step-2:Now, we willtake the itemsets that have the Minimum Support(2).it will give us the table L1(frequent itemset) C1 L1 L1 Itemset Support Count {A} 5 {B} 4 {C} 4 {D} 5 Itemset Support Count {A} 5 {B} 4 {C} 4 {D} 5 4
  • 5.
    Step-3: Candidate GenerationC2, and L2: C2 L2 Itemset {A,B} {A,C} {A,D} {B,C} {B,D} {C,D} Itemset Support Count {A,B} 2 {A,C} 3 {A,D} 4 {B,C} 2 {B,D} 3 {C,D} 2 L2 5
  • 6.
    Step-4: Candidate generationC3, and L3: L3 will have only one combination, i.e., {A, C, D}. C3 L3  Frequent itemset ={A,C,D} Itemset Support Count {A,B,C} 1 {B,C,D} 1 {A,C,D} 2 {A,D,B} 0 Itemset {A,C,D} 6
  • 7.