SlideShare a Scribd company logo
1 of 40
CIS 674 
Introduction to Data Mining 
Srinivasan Parthasarathy 
srini@cse.ohio-state.edu 
Office Hours: TTH 2-3:18PM 
DL317 
© Prentice Hall 1
Introduction Outline 
GGooaall:: PPrroovviiddee aann oovveerrvviieeww ooff ddaattaa mmiinniinngg.. 
• Define data mining 
• Data mining vs. databases 
• Basic data mining tasks 
• Data mining development 
• Data mining issues 
© Prentice Hall 2
Introduction 
• Data is produced at a phenomenal rate 
• Our ability to store has grown 
• Users expect more sophisticated 
information 
• How? 
UUNNCCOOVVEERR HHIIDDDDEENN IINNFFOORRMMAATTIIOONN 
DDAATTAA MMIINNIINNGG 
© Prentice Hall 3
Data Mining 
• Objective: Fit data to a model 
• Potential Result: Higher-level meta 
information that may not be obvious when 
looking at raw data 
• Similar terms 
– Exploratory data analysis 
– Data driven discovery 
– Deductive learning 
© Prentice Hall 4
Data Mining Algorithm 
• Objective: Fit Data to a Model 
– Descriptive 
– Predictive 
• Preferential Questions 
– Which technique to choose? 
• ARM/Classification/Clustering 
• Answer: Depends on what you want to do with data? 
– Search Strategy – Technique to search the data 
• Interface? Query Language? 
• Efficiency 
© Prentice Hall 5
Database Processing vs. Data 
Mining Processing 
© Prentice Hall 6 
• Query 
– Well defined 
– SQL 
• Query 
– Poorly defined 
– No precise query language 
 OOuuttppuutt 
– PPrreecciissee 
– SSuubbsseett ooff ddaattaabbaassee 
 OOuuttppuutt 
– FFuuzzzzyy 
– NNoott aa ssuubbsseett ooff ddaattaabbaassee
Query Examples 
– FFiinndd aallll ccrreeddiitt aapppplliiccaannttss wwiitthh llaasstt nnaammee ooff SSmmiitthh.. 
– IIddeennttiiffyy ccuussttoommeerrss wwhhoo hhaavvee ppuurrcchhaasseedd mmoorree 
tthhaann $$1100,,000000 iinn tthhee llaasstt mmoonntthh.. 
– Find all customers who hhaavvee ppuurrcchhaasseedd mmiillkk 
– FFiinndd aallll ccrreeddiitt aapppplliiccaannttss wwhhoo aarree ppoooorr ccrreeddiitt 
rriisskkss.. ((ccllaassssiiffiiccaattiioonn)) 
– IIddeennttiiffyy ccuussttoommeerrss wwiitthh ssiimmiillaarr bbuuyyiinngg hhaabbiittss.. 
((CClluusstteerriinngg)) 
© Prentice Hall 7 
• Database 
• Data Mining 
– FFiinndd aallll iitteemmss wwhhiicchh aarree ffrreeqquueennttllyy ppuurrcchhaasseedd 
wwiitthh mmiillkk.. ((aassssoocciiaattiioonn rruulleess))
Data Mining Models and Tasks 
© Prentice Hall 8
Basic Data Mining Tasks 
• Classification maps data into predefined 
groups or classes 
– Supervised learning 
– Pattern recognition 
– Prediction 
• Regression is used to map a data item to a 
real valued prediction variable. 
• Clustering groups similar data together into 
clusters. 
– Unsupervised learning 
– Segmentation 
– Partitioning 
© Prentice Hall 9
Basic Data Mining Tasks 
(cont’d) 
• Summarization maps data into subsets with 
associated simple descriptions. 
– Characterization 
– Generalization 
• Link Analysis uncovers relationships among 
data. 
– Affinity Analysis 
– Association Rules 
– Sequential Analysis determines sequential patterns. 
© Prentice Hall 10
Ex: Time Series Analysis 
• Example: Stock Market 
• Predict future values 
• Determine similar patterns over time 
• Classify behavior 
© Prentice Hall 11
Data Mining vs. KDD 
• Knowledge Discovery in Databases 
(KDD): process of finding useful 
information and patterns in data. 
• Data Mining: Use of algorithms to extract 
the information and patterns derived by 
the KDD process. 
© Prentice Hall 12
Knowledge Discovery Process 
– Data mining: the core 
of knowledge discovery 
Knowledge Interpretation 
process. 
Data Mining 
Task-relevant Data 
Data transformations 
Preprocessed 
Data 
Data Cleaning 
Data Integration 
Databases 
Selection
KDD Process Ex: Web Log 
• Selection: 
– Select log data (dates and locations) to use 
© Prentice Hall 14 
• Preprocessing: 
– Remove identifying URLs 
– Remove error logs 
• Transformation: 
– Sessionize (sort and group) 
• Data Mining: 
– Identify and count patterns 
– Construct data structure 
• Interpretation/Evaluation: 
– Identify and display frequently accessed sequences. 
• Potential User Applications: 
– Cache prediction 
– Personalization
Data Mining Development 
•Similarity Measures 
•Hierarchical Clustering 
•IR Systems 
•Imprecise Queries 
•Textual Data 
•Web Search Engines 
•Bayes Theorem 
•Regression Analysis 
•EM Algorithm 
•K-Means Clustering 
•Time Series Analysis 
•Neural Networks 
•Decision Tree Algorithms 
DATA MINING 
© Prentice Hall 15 
•Relational Data Model 
•SQL 
•Association Rule Algorithms 
•Data Warehousing 
•Scalability Techniques 
•Algorithm Design Techniques 
•Algorithm Analysis 
•Data Structures 
HIGH PERFORMANCE
KDD Issues 
• Human Interaction 
• Overfitting 
• Outliers 
• Interpretation 
• Visualization 
• Large Datasets 
• High Dimensionality 
© Prentice Hall 16
KDD Issues (cont’d) 
• Multimedia Data 
• Missing Data 
• Irrelevant Data 
• Noisy Data 
• Changing Data 
• Integration 
• Application 
© Prentice Hall 17
Social Implications of DM 
• Privacy 
• Profiling 
• Unauthorized use 
© Prentice Hall 18
Data Mining Metrics 
• Usefulness 
• Return on Investment (ROI) 
• Accuracy 
• Space/Time 
© Prentice Hall 19
Database Perspective on Data 
Mining 
• Scalability 
• Real World Data 
• Updates 
• Ease of Use 
© Prentice Hall 20
Outline of Today’s Class 
• Statistical Basics 
– Point Estimation 
– Models Based on Summarization 
– Bayes Theorem 
– Hypothesis Testing 
– Regression and Correlation 
• Similarity Measures 
© Prentice Hall 21
Point Estimation 
• Point Estimate: estimate a population 
parameter. 
• May be made by calculating the parameter for a 
sample. 
• May be used to predict value for missing data. 
• Ex: 
– R contains 100 employees 
– 99 have salary information 
– Mean salary of these is $50,000 
– Use $50,000 as value of remaining employee’s 
salary. 
Is this a good idea? 
© Prentice Hall 22
Estimation Error 
• Bias: Difference between expected value and 
actual value. 
• Mean Squared Error (MSE): expected value of 
the squared difference between the estimate 
and the actual value: 
• Why square? 
• Root Mean Square Error (RMSE) 
© Prentice Hall 23
Jackknife Estimate 
• Jackknife Estimate: estimate of parameter is 
obtained by omitting one value from the set of 
observed values. 
– Treat the data like a population 
– Take samples from this population 
– Use these samples to estimate the parameter 
• Let θ(hat) be an estimate on the entire pop. 
• Let θ(j)(hat) be an estimator of the same form 
with observation j deleted 
• Allows you to examine the impact of outliers! 
© Prentice Hall 24
Maximum Likelihood 
Estimate (MLE) 
• Obtain parameter estimates that maximize 
the probability that the sample data occurs for 
the specific model. 
• Joint probability for observing the sample 
data by multiplying the individual probabilities. 
Likelihood function: 
© Prentice Hall 25 
• Maximize L.
MLE Example 
• Coin toss five times: {H,H,H,H,T} 
• Assuming a perfect coin with H and T equally 
likely, the likelihood of this sequence is: 
• However if the probability of a H is 0.8 then: 
© Prentice Hall 26
MLE Example (cont’d) 
• General likelihood formula: 
• Estimate for p is then 4/5 = 0.8 
© Prentice Hall 27
Expectation-Maximization (EM) 
• Solves estimation with incomplete data. 
• Obtain initial estimates for parameters. 
• Iteratively use estimates for missing data 
and continue until convergence. 
© Prentice Hall 28
EM Example 
© Prentice Hall 29
EM Algorithm 
© Prentice Hall 30
Bayes Theorem Example 
• Credit authorizations (hypotheses): 
h1=authorize purchase, h2 = authorize after 
further identification, h3=do not authorize, 
h4= do not authorize but contact police 
• Assign twelve data values for all 
combinations of credit and income: 
1 2 3 4 
Excellent x1 x2 x3 x4 
Good x5 x6 x7 x8 
Bad x9 x10 x11 x12 
• From training data: P(h1) = 60%; P(h2)=20%; 
P(h3)=10%; P(h4)=10%. 
© Prentice Hall 31
Bayes Example(cont’d) 
© Prentice Hall 32 
• Training Data: 
ID Income Credit Class xi 
1 4 Excellent h1 x4 
2 3 Good h1 x7 
3 2 Excellent h1 x2 
4 3 Good h1 x7 
5 4 Good h1 x8 
6 2 Excellent h1 x2 
7 3 Bad h2 x11 
8 2 Bad h2 x10 
9 3 Bad h3 x11 
10 1 Bad h4 x9
Bayes Example(cont’d) 
• Calculate P(xi|hj) and P(xi) 
• Ex: P(x7|h1)=2/6; P(x4|h1)=1/6; P(x2|h1)=2/6; P(x8| 
h1)=1/6; P(xi|h1)=0 for all other xi. 
• Predict the class for x4: 
– Calculate P(hj|x4) for all hj. 
– Place x4 in class with largest value. 
– Ex: 
• P(h1|x4)=(P(x4|h1)(P(h1))/P(x4) 
=(1/6)(0.6)/0.1=1. 
© Prentice Hall 33 
• x4 in class h1.
Other Statistical Measures 
© Prentice Hall 34 
• Chi-Squared 
– O – observed value 
– E – Expected value based on hypothesis. 
• Jackknife Estimate 
– estimate of parameter is obtained by omitting one value from the 
set of observed values. 
• Regression 
– Predict future values based on past values 
– Linear Regression assumes linear relationship exists. 
y = c0 + c1 x1 + … + cn xn 
• Find values to best fit the data 
• Correlation
Similarity Measures 
• Determine similarity between two objects. 
• Similarity characteristics: 
• Alternatively, distance measure measure how 
unlike or dissimilar objects are. 
© Prentice Hall 35
Similarity Measures 
© Prentice Hall 36
Distance Measures 
• Measure dissimilarity between objects 
© Prentice Hall 37
Information Retrieval 
• Information Retrieval (IR): retrieving desired 
information from textual data. 
• Library Science 
• Digital Libraries 
• Web Search Engines 
• Traditionally keyword based 
• Sample query: 
Find all documents about “data mining”. 
DM: Similarity measures; 
Mine text/Web data. 
© Prentice Hall 38
Information Retrieval (cont’d) 
• Similarity: measure of how close a 
query is to a document. 
• Documents which are “close enough” 
are retrieved. 
• Metrics: 
–Precision = |Relevant and Retrieved| 
|Retrieved| 
–Recall = |Relevant and Retrieved| 
|Relevant| 
© Prentice Hall 39
IR Query Result Measures and 
Classification 
IR Classification 
© Prentice Hall 40

More Related Content

What's hot

Barga Data Science lecture 9
Barga Data Science lecture 9Barga Data Science lecture 9
Barga Data Science lecture 9Roger Barga
 
overview of_data_processing
overview of_data_processingoverview of_data_processing
overview of_data_processingFEG
 
Data streaming fundamentals- EUDAT Summer School (Giuseppe Fiameni, CINECA)
Data streaming fundamentals- EUDAT Summer School (Giuseppe Fiameni, CINECA)Data streaming fundamentals- EUDAT Summer School (Giuseppe Fiameni, CINECA)
Data streaming fundamentals- EUDAT Summer School (Giuseppe Fiameni, CINECA)EUDAT
 
6 data envelopment_analysis
6 data envelopment_analysis6 data envelopment_analysis
6 data envelopment_analysisFEG
 
CRISP-DM - Agile Approach To Data Mining Projects
CRISP-DM - Agile Approach To Data Mining ProjectsCRISP-DM - Agile Approach To Data Mining Projects
CRISP-DM - Agile Approach To Data Mining ProjectsMichał Łopuszyński
 
Barga Data Science lecture 8
Barga Data Science lecture 8Barga Data Science lecture 8
Barga Data Science lecture 8Roger Barga
 
Data mining technique for classification and feature evaluation using stream ...
Data mining technique for classification and feature evaluation using stream ...Data mining technique for classification and feature evaluation using stream ...
Data mining technique for classification and feature evaluation using stream ...ranjit banshpal
 
Exploratory data analysis with Python
Exploratory data analysis with PythonExploratory data analysis with Python
Exploratory data analysis with PythonDavis David
 
On Statistical Analysis and Optimization of Information Retrieval Effectivene...
On Statistical Analysis and Optimization of Information Retrieval Effectivene...On Statistical Analysis and Optimization of Information Retrieval Effectivene...
On Statistical Analysis and Optimization of Information Retrieval Effectivene...Jun Wang
 
Portfolio Theory of Information Retrieval
Portfolio Theory of Information RetrievalPortfolio Theory of Information Retrieval
Portfolio Theory of Information RetrievalJun Wang
 
The Other HPC: High Productivity Computing in Polystore Environments
The Other HPC: High Productivity Computing in Polystore EnvironmentsThe Other HPC: High Productivity Computing in Polystore Environments
The Other HPC: High Productivity Computing in Polystore EnvironmentsUniversity of Washington
 
Top 10 Data Science Practitioner Pitfalls
Top 10 Data Science Practitioner PitfallsTop 10 Data Science Practitioner Pitfalls
Top 10 Data Science Practitioner PitfallsSri Ambati
 
Predictive model based on Supervised ML
Predictive model based on Supervised MLPredictive model based on Supervised ML
Predictive model based on Supervised MLUmeshchandraYadav5
 
A Semantic Web Platform for Automating the Interpretation of Finite Element ...
A Semantic Web Platform for Automating the Interpretation of Finite Element ...A Semantic Web Platform for Automating the Interpretation of Finite Element ...
A Semantic Web Platform for Automating the Interpretation of Finite Element ...Andre Freitas
 
Systems Modelling and Qualitative Data
Systems Modelling and Qualitative Data Systems Modelling and Qualitative Data
Systems Modelling and Qualitative Data mikeyearworth
 

What's hot (18)

Barga Data Science lecture 9
Barga Data Science lecture 9Barga Data Science lecture 9
Barga Data Science lecture 9
 
overview of_data_processing
overview of_data_processingoverview of_data_processing
overview of_data_processing
 
Data streaming fundamentals- EUDAT Summer School (Giuseppe Fiameni, CINECA)
Data streaming fundamentals- EUDAT Summer School (Giuseppe Fiameni, CINECA)Data streaming fundamentals- EUDAT Summer School (Giuseppe Fiameni, CINECA)
Data streaming fundamentals- EUDAT Summer School (Giuseppe Fiameni, CINECA)
 
6 data envelopment_analysis
6 data envelopment_analysis6 data envelopment_analysis
6 data envelopment_analysis
 
CRISP-DM - Agile Approach To Data Mining Projects
CRISP-DM - Agile Approach To Data Mining ProjectsCRISP-DM - Agile Approach To Data Mining Projects
CRISP-DM - Agile Approach To Data Mining Projects
 
main
mainmain
main
 
Barga Data Science lecture 8
Barga Data Science lecture 8Barga Data Science lecture 8
Barga Data Science lecture 8
 
Data mining technique for classification and feature evaluation using stream ...
Data mining technique for classification and feature evaluation using stream ...Data mining technique for classification and feature evaluation using stream ...
Data mining technique for classification and feature evaluation using stream ...
 
Exploratory data analysis with Python
Exploratory data analysis with PythonExploratory data analysis with Python
Exploratory data analysis with Python
 
On Statistical Analysis and Optimization of Information Retrieval Effectivene...
On Statistical Analysis and Optimization of Information Retrieval Effectivene...On Statistical Analysis and Optimization of Information Retrieval Effectivene...
On Statistical Analysis and Optimization of Information Retrieval Effectivene...
 
Text Analytics for Legal work
Text Analytics for Legal workText Analytics for Legal work
Text Analytics for Legal work
 
Portfolio Theory of Information Retrieval
Portfolio Theory of Information RetrievalPortfolio Theory of Information Retrieval
Portfolio Theory of Information Retrieval
 
The Other HPC: High Productivity Computing in Polystore Environments
The Other HPC: High Productivity Computing in Polystore EnvironmentsThe Other HPC: High Productivity Computing in Polystore Environments
The Other HPC: High Productivity Computing in Polystore Environments
 
Top 10 Data Science Practitioner Pitfalls
Top 10 Data Science Practitioner PitfallsTop 10 Data Science Practitioner Pitfalls
Top 10 Data Science Practitioner Pitfalls
 
Predictive model based on Supervised ML
Predictive model based on Supervised MLPredictive model based on Supervised ML
Predictive model based on Supervised ML
 
A Semantic Web Platform for Automating the Interpretation of Finite Element ...
A Semantic Web Platform for Automating the Interpretation of Finite Element ...A Semantic Web Platform for Automating the Interpretation of Finite Element ...
A Semantic Web Platform for Automating the Interpretation of Finite Element ...
 
Classification
ClassificationClassification
Classification
 
Systems Modelling and Qualitative Data
Systems Modelling and Qualitative Data Systems Modelling and Qualitative Data
Systems Modelling and Qualitative Data
 

Similar to data mining

04-Data-Analysis-Overview.pptx
04-Data-Analysis-Overview.pptx04-Data-Analysis-Overview.pptx
04-Data-Analysis-Overview.pptxShree Shree
 
MSPresentation_Spring2011
MSPresentation_Spring2011MSPresentation_Spring2011
MSPresentation_Spring2011Shaun Smith
 
Data analytcis-first-steps
Data analytcis-first-stepsData analytcis-first-steps
Data analytcis-first-stepsShesha R
 
Conceptual framework for entity integration from multiple data sources - Draz...
Conceptual framework for entity integration from multiple data sources - Draz...Conceptual framework for entity integration from multiple data sources - Draz...
Conceptual framework for entity integration from multiple data sources - Draz...Institute of Contemporary Sciences
 
SQLBits Module 2 RStats Introduction to R and Statistics
SQLBits Module 2 RStats Introduction to R and StatisticsSQLBits Module 2 RStats Introduction to R and Statistics
SQLBits Module 2 RStats Introduction to R and StatisticsJen Stirrup
 
Machinr Learning and artificial_Lect1.pdf
Machinr Learning and artificial_Lect1.pdfMachinr Learning and artificial_Lect1.pdf
Machinr Learning and artificial_Lect1.pdfSaketBansal9
 
Business intelligence prof nikhat fatma mumtaz husain shaikh
Business intelligence  prof nikhat fatma mumtaz husain shaikhBusiness intelligence  prof nikhat fatma mumtaz husain shaikh
Business intelligence prof nikhat fatma mumtaz husain shaikhNikhat Fatma Mumtaz Husain Shaikh
 
Risk Management and Reliable Forecasting using Un-reliable Data (magennis) - ...
Risk Management and Reliable Forecasting using Un-reliable Data (magennis) - ...Risk Management and Reliable Forecasting using Un-reliable Data (magennis) - ...
Risk Management and Reliable Forecasting using Un-reliable Data (magennis) - ...Troy Magennis
 
"Quantum Clustering - Physics Inspired Clustering Algorithm", Sigalit Bechler...
"Quantum Clustering - Physics Inspired Clustering Algorithm", Sigalit Bechler..."Quantum Clustering - Physics Inspired Clustering Algorithm", Sigalit Bechler...
"Quantum Clustering - Physics Inspired Clustering Algorithm", Sigalit Bechler...Dataconomy Media
 
Data Patterns - A Native Open Source Data Profiling Tool for HPCC Systems
Data Patterns - A Native Open Source Data Profiling Tool for HPCC SystemsData Patterns - A Native Open Source Data Profiling Tool for HPCC Systems
Data Patterns - A Native Open Source Data Profiling Tool for HPCC SystemsHPCC Systems
 
Spsshelp 100608163328-phpapp01
Spsshelp 100608163328-phpapp01Spsshelp 100608163328-phpapp01
Spsshelp 100608163328-phpapp01Henock Beyene
 

Similar to data mining (20)

Daming
DamingDaming
Daming
 
Data mining
Data miningData mining
Data mining
 
04-Data-Analysis-Overview.pptx
04-Data-Analysis-Overview.pptx04-Data-Analysis-Overview.pptx
04-Data-Analysis-Overview.pptx
 
Data science guide
Data science guideData science guide
Data science guide
 
EDA.pptx
EDA.pptxEDA.pptx
EDA.pptx
 
MSPresentation_Spring2011
MSPresentation_Spring2011MSPresentation_Spring2011
MSPresentation_Spring2011
 
Data analytcis-first-steps
Data analytcis-first-stepsData analytcis-first-steps
Data analytcis-first-steps
 
Conceptual framework for entity integration from multiple data sources - Draz...
Conceptual framework for entity integration from multiple data sources - Draz...Conceptual framework for entity integration from multiple data sources - Draz...
Conceptual framework for entity integration from multiple data sources - Draz...
 
SQLBits Module 2 RStats Introduction to R and Statistics
SQLBits Module 2 RStats Introduction to R and StatisticsSQLBits Module 2 RStats Introduction to R and Statistics
SQLBits Module 2 RStats Introduction to R and Statistics
 
Machinr Learning and artificial_Lect1.pdf
Machinr Learning and artificial_Lect1.pdfMachinr Learning and artificial_Lect1.pdf
Machinr Learning and artificial_Lect1.pdf
 
AL slides.ppt
AL slides.pptAL slides.ppt
AL slides.ppt
 
Business intelligence prof nikhat fatma mumtaz husain shaikh
Business intelligence  prof nikhat fatma mumtaz husain shaikhBusiness intelligence  prof nikhat fatma mumtaz husain shaikh
Business intelligence prof nikhat fatma mumtaz husain shaikh
 
Weka bike rental
Weka bike rentalWeka bike rental
Weka bike rental
 
Risk Management and Reliable Forecasting using Un-reliable Data (magennis) - ...
Risk Management and Reliable Forecasting using Un-reliable Data (magennis) - ...Risk Management and Reliable Forecasting using Un-reliable Data (magennis) - ...
Risk Management and Reliable Forecasting using Un-reliable Data (magennis) - ...
 
CS194Lec0hbh6EDA.pptx
CS194Lec0hbh6EDA.pptxCS194Lec0hbh6EDA.pptx
CS194Lec0hbh6EDA.pptx
 
"Quantum Clustering - Physics Inspired Clustering Algorithm", Sigalit Bechler...
"Quantum Clustering - Physics Inspired Clustering Algorithm", Sigalit Bechler..."Quantum Clustering - Physics Inspired Clustering Algorithm", Sigalit Bechler...
"Quantum Clustering - Physics Inspired Clustering Algorithm", Sigalit Bechler...
 
Data Patterns - A Native Open Source Data Profiling Tool for HPCC Systems
Data Patterns - A Native Open Source Data Profiling Tool for HPCC SystemsData Patterns - A Native Open Source Data Profiling Tool for HPCC Systems
Data Patterns - A Native Open Source Data Profiling Tool for HPCC Systems
 
Spsshelp 100608163328-phpapp01
Spsshelp 100608163328-phpapp01Spsshelp 100608163328-phpapp01
Spsshelp 100608163328-phpapp01
 
Intro_2.ppt
Intro_2.pptIntro_2.ppt
Intro_2.ppt
 
Intro.ppt
Intro.pptIntro.ppt
Intro.ppt
 

Recently uploaded

Industrialised data - the key to AI success.pdf
Industrialised data - the key to AI success.pdfIndustrialised data - the key to AI success.pdf
Industrialised data - the key to AI success.pdfLars Albertsson
 
定制英国白金汉大学毕业证(UCB毕业证书) 成绩单原版一比一
定制英国白金汉大学毕业证(UCB毕业证书)																			成绩单原版一比一定制英国白金汉大学毕业证(UCB毕业证书)																			成绩单原版一比一
定制英国白金汉大学毕业证(UCB毕业证书) 成绩单原版一比一ffjhghh
 
Al Barsha Escorts $#$ O565212860 $#$ Escort Service In Al Barsha
Al Barsha Escorts $#$ O565212860 $#$ Escort Service In Al BarshaAl Barsha Escorts $#$ O565212860 $#$ Escort Service In Al Barsha
Al Barsha Escorts $#$ O565212860 $#$ Escort Service In Al BarshaAroojKhan71
 
Mature dropshipping via API with DroFx.pptx
Mature dropshipping via API with DroFx.pptxMature dropshipping via API with DroFx.pptx
Mature dropshipping via API with DroFx.pptxolyaivanovalion
 
EMERCE - 2024 - AMSTERDAM - CROSS-PLATFORM TRACKING WITH GOOGLE ANALYTICS.pptx
EMERCE - 2024 - AMSTERDAM - CROSS-PLATFORM  TRACKING WITH GOOGLE ANALYTICS.pptxEMERCE - 2024 - AMSTERDAM - CROSS-PLATFORM  TRACKING WITH GOOGLE ANALYTICS.pptx
EMERCE - 2024 - AMSTERDAM - CROSS-PLATFORM TRACKING WITH GOOGLE ANALYTICS.pptxthyngster
 
Customer Service Analytics - Make Sense of All Your Data.pptx
Customer Service Analytics - Make Sense of All Your Data.pptxCustomer Service Analytics - Make Sense of All Your Data.pptx
Customer Service Analytics - Make Sense of All Your Data.pptxEmmanuel Dauda
 
RA-11058_IRR-COMPRESS Do 198 series of 1998
RA-11058_IRR-COMPRESS Do 198 series of 1998RA-11058_IRR-COMPRESS Do 198 series of 1998
RA-11058_IRR-COMPRESS Do 198 series of 1998YohFuh
 
CebaBaby dropshipping via API with DroFX.pptx
CebaBaby dropshipping via API with DroFX.pptxCebaBaby dropshipping via API with DroFX.pptx
CebaBaby dropshipping via API with DroFX.pptxolyaivanovalion
 
VIP High Profile Call Girls Amravati Aarushi 8250192130 Independent Escort Se...
VIP High Profile Call Girls Amravati Aarushi 8250192130 Independent Escort Se...VIP High Profile Call Girls Amravati Aarushi 8250192130 Independent Escort Se...
VIP High Profile Call Girls Amravati Aarushi 8250192130 Independent Escort Se...Suhani Kapoor
 
Midocean dropshipping via API with DroFx
Midocean dropshipping via API with DroFxMidocean dropshipping via API with DroFx
Midocean dropshipping via API with DroFxolyaivanovalion
 
Ukraine War presentation: KNOW THE BASICS
Ukraine War presentation: KNOW THE BASICSUkraine War presentation: KNOW THE BASICS
Ukraine War presentation: KNOW THE BASICSAishani27
 
100-Concepts-of-AI by Anupama Kate .pptx
100-Concepts-of-AI by Anupama Kate .pptx100-Concepts-of-AI by Anupama Kate .pptx
100-Concepts-of-AI by Anupama Kate .pptxAnupama Kate
 
Carero dropshipping via API with DroFx.pptx
Carero dropshipping via API with DroFx.pptxCarero dropshipping via API with DroFx.pptx
Carero dropshipping via API with DroFx.pptxolyaivanovalion
 
Invezz.com - Grow your wealth with trading signals
Invezz.com - Grow your wealth with trading signalsInvezz.com - Grow your wealth with trading signals
Invezz.com - Grow your wealth with trading signalsInvezz1
 
Beautiful Sapna Vip Call Girls Hauz Khas 9711199012 Call /Whatsapps
Beautiful Sapna Vip  Call Girls Hauz Khas 9711199012 Call /WhatsappsBeautiful Sapna Vip  Call Girls Hauz Khas 9711199012 Call /Whatsapps
Beautiful Sapna Vip Call Girls Hauz Khas 9711199012 Call /Whatsappssapnasaifi408
 
April 2024 - Crypto Market Report's Analysis
April 2024 - Crypto Market Report's AnalysisApril 2024 - Crypto Market Report's Analysis
April 2024 - Crypto Market Report's Analysismanisha194592
 
Introduction-to-Machine-Learning (1).pptx
Introduction-to-Machine-Learning (1).pptxIntroduction-to-Machine-Learning (1).pptx
Introduction-to-Machine-Learning (1).pptxfirstjob4
 
04242024_CCC TUG_Joins and Relationships
04242024_CCC TUG_Joins and Relationships04242024_CCC TUG_Joins and Relationships
04242024_CCC TUG_Joins and Relationshipsccctableauusergroup
 

Recently uploaded (20)

Industrialised data - the key to AI success.pdf
Industrialised data - the key to AI success.pdfIndustrialised data - the key to AI success.pdf
Industrialised data - the key to AI success.pdf
 
定制英国白金汉大学毕业证(UCB毕业证书) 成绩单原版一比一
定制英国白金汉大学毕业证(UCB毕业证书)																			成绩单原版一比一定制英国白金汉大学毕业证(UCB毕业证书)																			成绩单原版一比一
定制英国白金汉大学毕业证(UCB毕业证书) 成绩单原版一比一
 
Al Barsha Escorts $#$ O565212860 $#$ Escort Service In Al Barsha
Al Barsha Escorts $#$ O565212860 $#$ Escort Service In Al BarshaAl Barsha Escorts $#$ O565212860 $#$ Escort Service In Al Barsha
Al Barsha Escorts $#$ O565212860 $#$ Escort Service In Al Barsha
 
Mature dropshipping via API with DroFx.pptx
Mature dropshipping via API with DroFx.pptxMature dropshipping via API with DroFx.pptx
Mature dropshipping via API with DroFx.pptx
 
EMERCE - 2024 - AMSTERDAM - CROSS-PLATFORM TRACKING WITH GOOGLE ANALYTICS.pptx
EMERCE - 2024 - AMSTERDAM - CROSS-PLATFORM  TRACKING WITH GOOGLE ANALYTICS.pptxEMERCE - 2024 - AMSTERDAM - CROSS-PLATFORM  TRACKING WITH GOOGLE ANALYTICS.pptx
EMERCE - 2024 - AMSTERDAM - CROSS-PLATFORM TRACKING WITH GOOGLE ANALYTICS.pptx
 
Customer Service Analytics - Make Sense of All Your Data.pptx
Customer Service Analytics - Make Sense of All Your Data.pptxCustomer Service Analytics - Make Sense of All Your Data.pptx
Customer Service Analytics - Make Sense of All Your Data.pptx
 
꧁❤ Aerocity Call Girls Service Aerocity Delhi ❤꧂ 9999965857 ☎️ Hard And Sexy ...
꧁❤ Aerocity Call Girls Service Aerocity Delhi ❤꧂ 9999965857 ☎️ Hard And Sexy ...꧁❤ Aerocity Call Girls Service Aerocity Delhi ❤꧂ 9999965857 ☎️ Hard And Sexy ...
꧁❤ Aerocity Call Girls Service Aerocity Delhi ❤꧂ 9999965857 ☎️ Hard And Sexy ...
 
Delhi 99530 vip 56974 Genuine Escort Service Call Girls in Kishangarh
Delhi 99530 vip 56974 Genuine Escort Service Call Girls in  KishangarhDelhi 99530 vip 56974 Genuine Escort Service Call Girls in  Kishangarh
Delhi 99530 vip 56974 Genuine Escort Service Call Girls in Kishangarh
 
RA-11058_IRR-COMPRESS Do 198 series of 1998
RA-11058_IRR-COMPRESS Do 198 series of 1998RA-11058_IRR-COMPRESS Do 198 series of 1998
RA-11058_IRR-COMPRESS Do 198 series of 1998
 
CebaBaby dropshipping via API with DroFX.pptx
CebaBaby dropshipping via API with DroFX.pptxCebaBaby dropshipping via API with DroFX.pptx
CebaBaby dropshipping via API with DroFX.pptx
 
VIP High Profile Call Girls Amravati Aarushi 8250192130 Independent Escort Se...
VIP High Profile Call Girls Amravati Aarushi 8250192130 Independent Escort Se...VIP High Profile Call Girls Amravati Aarushi 8250192130 Independent Escort Se...
VIP High Profile Call Girls Amravati Aarushi 8250192130 Independent Escort Se...
 
Midocean dropshipping via API with DroFx
Midocean dropshipping via API with DroFxMidocean dropshipping via API with DroFx
Midocean dropshipping via API with DroFx
 
Ukraine War presentation: KNOW THE BASICS
Ukraine War presentation: KNOW THE BASICSUkraine War presentation: KNOW THE BASICS
Ukraine War presentation: KNOW THE BASICS
 
100-Concepts-of-AI by Anupama Kate .pptx
100-Concepts-of-AI by Anupama Kate .pptx100-Concepts-of-AI by Anupama Kate .pptx
100-Concepts-of-AI by Anupama Kate .pptx
 
Carero dropshipping via API with DroFx.pptx
Carero dropshipping via API with DroFx.pptxCarero dropshipping via API with DroFx.pptx
Carero dropshipping via API with DroFx.pptx
 
Invezz.com - Grow your wealth with trading signals
Invezz.com - Grow your wealth with trading signalsInvezz.com - Grow your wealth with trading signals
Invezz.com - Grow your wealth with trading signals
 
Beautiful Sapna Vip Call Girls Hauz Khas 9711199012 Call /Whatsapps
Beautiful Sapna Vip  Call Girls Hauz Khas 9711199012 Call /WhatsappsBeautiful Sapna Vip  Call Girls Hauz Khas 9711199012 Call /Whatsapps
Beautiful Sapna Vip Call Girls Hauz Khas 9711199012 Call /Whatsapps
 
April 2024 - Crypto Market Report's Analysis
April 2024 - Crypto Market Report's AnalysisApril 2024 - Crypto Market Report's Analysis
April 2024 - Crypto Market Report's Analysis
 
Introduction-to-Machine-Learning (1).pptx
Introduction-to-Machine-Learning (1).pptxIntroduction-to-Machine-Learning (1).pptx
Introduction-to-Machine-Learning (1).pptx
 
04242024_CCC TUG_Joins and Relationships
04242024_CCC TUG_Joins and Relationships04242024_CCC TUG_Joins and Relationships
04242024_CCC TUG_Joins and Relationships
 

data mining

  • 1. CIS 674 Introduction to Data Mining Srinivasan Parthasarathy srini@cse.ohio-state.edu Office Hours: TTH 2-3:18PM DL317 © Prentice Hall 1
  • 2. Introduction Outline GGooaall:: PPrroovviiddee aann oovveerrvviieeww ooff ddaattaa mmiinniinngg.. • Define data mining • Data mining vs. databases • Basic data mining tasks • Data mining development • Data mining issues © Prentice Hall 2
  • 3. Introduction • Data is produced at a phenomenal rate • Our ability to store has grown • Users expect more sophisticated information • How? UUNNCCOOVVEERR HHIIDDDDEENN IINNFFOORRMMAATTIIOONN DDAATTAA MMIINNIINNGG © Prentice Hall 3
  • 4. Data Mining • Objective: Fit data to a model • Potential Result: Higher-level meta information that may not be obvious when looking at raw data • Similar terms – Exploratory data analysis – Data driven discovery – Deductive learning © Prentice Hall 4
  • 5. Data Mining Algorithm • Objective: Fit Data to a Model – Descriptive – Predictive • Preferential Questions – Which technique to choose? • ARM/Classification/Clustering • Answer: Depends on what you want to do with data? – Search Strategy – Technique to search the data • Interface? Query Language? • Efficiency © Prentice Hall 5
  • 6. Database Processing vs. Data Mining Processing © Prentice Hall 6 • Query – Well defined – SQL • Query – Poorly defined – No precise query language  OOuuttppuutt – PPrreecciissee – SSuubbsseett ooff ddaattaabbaassee  OOuuttppuutt – FFuuzzzzyy – NNoott aa ssuubbsseett ooff ddaattaabbaassee
  • 7. Query Examples – FFiinndd aallll ccrreeddiitt aapppplliiccaannttss wwiitthh llaasstt nnaammee ooff SSmmiitthh.. – IIddeennttiiffyy ccuussttoommeerrss wwhhoo hhaavvee ppuurrcchhaasseedd mmoorree tthhaann $$1100,,000000 iinn tthhee llaasstt mmoonntthh.. – Find all customers who hhaavvee ppuurrcchhaasseedd mmiillkk – FFiinndd aallll ccrreeddiitt aapppplliiccaannttss wwhhoo aarree ppoooorr ccrreeddiitt rriisskkss.. ((ccllaassssiiffiiccaattiioonn)) – IIddeennttiiffyy ccuussttoommeerrss wwiitthh ssiimmiillaarr bbuuyyiinngg hhaabbiittss.. ((CClluusstteerriinngg)) © Prentice Hall 7 • Database • Data Mining – FFiinndd aallll iitteemmss wwhhiicchh aarree ffrreeqquueennttllyy ppuurrcchhaasseedd wwiitthh mmiillkk.. ((aassssoocciiaattiioonn rruulleess))
  • 8. Data Mining Models and Tasks © Prentice Hall 8
  • 9. Basic Data Mining Tasks • Classification maps data into predefined groups or classes – Supervised learning – Pattern recognition – Prediction • Regression is used to map a data item to a real valued prediction variable. • Clustering groups similar data together into clusters. – Unsupervised learning – Segmentation – Partitioning © Prentice Hall 9
  • 10. Basic Data Mining Tasks (cont’d) • Summarization maps data into subsets with associated simple descriptions. – Characterization – Generalization • Link Analysis uncovers relationships among data. – Affinity Analysis – Association Rules – Sequential Analysis determines sequential patterns. © Prentice Hall 10
  • 11. Ex: Time Series Analysis • Example: Stock Market • Predict future values • Determine similar patterns over time • Classify behavior © Prentice Hall 11
  • 12. Data Mining vs. KDD • Knowledge Discovery in Databases (KDD): process of finding useful information and patterns in data. • Data Mining: Use of algorithms to extract the information and patterns derived by the KDD process. © Prentice Hall 12
  • 13. Knowledge Discovery Process – Data mining: the core of knowledge discovery Knowledge Interpretation process. Data Mining Task-relevant Data Data transformations Preprocessed Data Data Cleaning Data Integration Databases Selection
  • 14. KDD Process Ex: Web Log • Selection: – Select log data (dates and locations) to use © Prentice Hall 14 • Preprocessing: – Remove identifying URLs – Remove error logs • Transformation: – Sessionize (sort and group) • Data Mining: – Identify and count patterns – Construct data structure • Interpretation/Evaluation: – Identify and display frequently accessed sequences. • Potential User Applications: – Cache prediction – Personalization
  • 15. Data Mining Development •Similarity Measures •Hierarchical Clustering •IR Systems •Imprecise Queries •Textual Data •Web Search Engines •Bayes Theorem •Regression Analysis •EM Algorithm •K-Means Clustering •Time Series Analysis •Neural Networks •Decision Tree Algorithms DATA MINING © Prentice Hall 15 •Relational Data Model •SQL •Association Rule Algorithms •Data Warehousing •Scalability Techniques •Algorithm Design Techniques •Algorithm Analysis •Data Structures HIGH PERFORMANCE
  • 16. KDD Issues • Human Interaction • Overfitting • Outliers • Interpretation • Visualization • Large Datasets • High Dimensionality © Prentice Hall 16
  • 17. KDD Issues (cont’d) • Multimedia Data • Missing Data • Irrelevant Data • Noisy Data • Changing Data • Integration • Application © Prentice Hall 17
  • 18. Social Implications of DM • Privacy • Profiling • Unauthorized use © Prentice Hall 18
  • 19. Data Mining Metrics • Usefulness • Return on Investment (ROI) • Accuracy • Space/Time © Prentice Hall 19
  • 20. Database Perspective on Data Mining • Scalability • Real World Data • Updates • Ease of Use © Prentice Hall 20
  • 21. Outline of Today’s Class • Statistical Basics – Point Estimation – Models Based on Summarization – Bayes Theorem – Hypothesis Testing – Regression and Correlation • Similarity Measures © Prentice Hall 21
  • 22. Point Estimation • Point Estimate: estimate a population parameter. • May be made by calculating the parameter for a sample. • May be used to predict value for missing data. • Ex: – R contains 100 employees – 99 have salary information – Mean salary of these is $50,000 – Use $50,000 as value of remaining employee’s salary. Is this a good idea? © Prentice Hall 22
  • 23. Estimation Error • Bias: Difference between expected value and actual value. • Mean Squared Error (MSE): expected value of the squared difference between the estimate and the actual value: • Why square? • Root Mean Square Error (RMSE) © Prentice Hall 23
  • 24. Jackknife Estimate • Jackknife Estimate: estimate of parameter is obtained by omitting one value from the set of observed values. – Treat the data like a population – Take samples from this population – Use these samples to estimate the parameter • Let θ(hat) be an estimate on the entire pop. • Let θ(j)(hat) be an estimator of the same form with observation j deleted • Allows you to examine the impact of outliers! © Prentice Hall 24
  • 25. Maximum Likelihood Estimate (MLE) • Obtain parameter estimates that maximize the probability that the sample data occurs for the specific model. • Joint probability for observing the sample data by multiplying the individual probabilities. Likelihood function: © Prentice Hall 25 • Maximize L.
  • 26. MLE Example • Coin toss five times: {H,H,H,H,T} • Assuming a perfect coin with H and T equally likely, the likelihood of this sequence is: • However if the probability of a H is 0.8 then: © Prentice Hall 26
  • 27. MLE Example (cont’d) • General likelihood formula: • Estimate for p is then 4/5 = 0.8 © Prentice Hall 27
  • 28. Expectation-Maximization (EM) • Solves estimation with incomplete data. • Obtain initial estimates for parameters. • Iteratively use estimates for missing data and continue until convergence. © Prentice Hall 28
  • 29. EM Example © Prentice Hall 29
  • 30. EM Algorithm © Prentice Hall 30
  • 31. Bayes Theorem Example • Credit authorizations (hypotheses): h1=authorize purchase, h2 = authorize after further identification, h3=do not authorize, h4= do not authorize but contact police • Assign twelve data values for all combinations of credit and income: 1 2 3 4 Excellent x1 x2 x3 x4 Good x5 x6 x7 x8 Bad x9 x10 x11 x12 • From training data: P(h1) = 60%; P(h2)=20%; P(h3)=10%; P(h4)=10%. © Prentice Hall 31
  • 32. Bayes Example(cont’d) © Prentice Hall 32 • Training Data: ID Income Credit Class xi 1 4 Excellent h1 x4 2 3 Good h1 x7 3 2 Excellent h1 x2 4 3 Good h1 x7 5 4 Good h1 x8 6 2 Excellent h1 x2 7 3 Bad h2 x11 8 2 Bad h2 x10 9 3 Bad h3 x11 10 1 Bad h4 x9
  • 33. Bayes Example(cont’d) • Calculate P(xi|hj) and P(xi) • Ex: P(x7|h1)=2/6; P(x4|h1)=1/6; P(x2|h1)=2/6; P(x8| h1)=1/6; P(xi|h1)=0 for all other xi. • Predict the class for x4: – Calculate P(hj|x4) for all hj. – Place x4 in class with largest value. – Ex: • P(h1|x4)=(P(x4|h1)(P(h1))/P(x4) =(1/6)(0.6)/0.1=1. © Prentice Hall 33 • x4 in class h1.
  • 34. Other Statistical Measures © Prentice Hall 34 • Chi-Squared – O – observed value – E – Expected value based on hypothesis. • Jackknife Estimate – estimate of parameter is obtained by omitting one value from the set of observed values. • Regression – Predict future values based on past values – Linear Regression assumes linear relationship exists. y = c0 + c1 x1 + … + cn xn • Find values to best fit the data • Correlation
  • 35. Similarity Measures • Determine similarity between two objects. • Similarity characteristics: • Alternatively, distance measure measure how unlike or dissimilar objects are. © Prentice Hall 35
  • 36. Similarity Measures © Prentice Hall 36
  • 37. Distance Measures • Measure dissimilarity between objects © Prentice Hall 37
  • 38. Information Retrieval • Information Retrieval (IR): retrieving desired information from textual data. • Library Science • Digital Libraries • Web Search Engines • Traditionally keyword based • Sample query: Find all documents about “data mining”. DM: Similarity measures; Mine text/Web data. © Prentice Hall 38
  • 39. Information Retrieval (cont’d) • Similarity: measure of how close a query is to a document. • Documents which are “close enough” are retrieved. • Metrics: –Precision = |Relevant and Retrieved| |Retrieved| –Recall = |Relevant and Retrieved| |Relevant| © Prentice Hall 39
  • 40. IR Query Result Measures and Classification IR Classification © Prentice Hall 40