This document describes a research project on crop disease detection using image processing and machine learning. The authors aim to develop a system that can recognize plant diseases from images of leaves by analyzing color, texture, and shape. The system would classify diseases using algorithms like convolutional neural networks (CNN), artificial neural networks (ANN), support vector machines (SVM), and fuzzy logic. This automatic disease detection could help farmers identify issues early and apply the proper treatments to prevent crop destruction and financial losses. The methodology captures leaf images and uses machine learning models trained on symptom features to diagnose common diseases like early rot and bacterial spots. The goal is to provide farmers with a fast and accurate disease identification tool.