SlideShare a Scribd company logo
1 of 16
Download to read offline
ANSWER KEY
  12 th ABCD (Date: 14-06-2009)                                Review Test-2
                    Code-B
                   Paper-1

      CHEMISTRY              PHYSICS                          MATHS
                             SECTION-2
                                                              SECTION-3
       SECTION-1
                             PART-A
PART-A                                                        PART-A
                             Q.1    D
Q.1    D                     Q.2    D                         Q.1    B
Q.2    C                     Q.3    D                         Q.2    C
Q.3    C                     Q.4    A                         Q.3    A
Q.4    A                     Q.5    C                         Q.4    B
Q.5    C                     Q.6    B                         Q.5    D
Q.6    B                     Q.7    B                         Q.6    A
Q.7    A                     Q.8    C                         Q.7    C
Q.8    B                     Q.9    A                         Q.8    D
Q.9    C                     Q.10 B or D                      Q.9    B
Q.10   A                     Q.11   A                         Q.10   C
Q.11   D                     Q.12 C                           Q.11   A
Q.12   A                     Q.13 D                           Q.12   C
Q.13   B                     Q.14 A                           Q.13   A
Q.14   A                     Q.15 A, B, C, D                  Q.14   D
Q.15   C, D                  Q.16 A, B, C, D                  Q.15   A, B
Q.16   A, C                  Q.17 B, C, D                     Q.16   A, B, C, D
Q.17   C, D                  Q.18 C, D                        Q.17   B, C
Q.18   C                                                      Q.18   C, D
                             PART-B
                             Q.1    (A) Q, S, (B) P, R, S ;   PART-B
PART-B
                                    (C) P, R, S               Q.1    (A) R ; (B) P ; (C) Q
Q.1    (A) P,Q,R,S (B) R,S
       (C) Q                 PART-C
                             Q.1    0090 or 0270              PART-C
PART-C
                             Q.2    0002                      Q.1    0025
Q.1    0033
                                                              Q.2    0005
Q.2    5280
PHYSICS
                                         PART-A
Q.1
[Sol.   After some time force on a become constant when relative motion starts but on B is going on increasing.]
Q.2
[Sol.   Radius of curvature f       ]
Q.3
[Sol.   On the centre line          ]
Q.4
                               1   2    1
[Sol.   f = 120, fm = 30,       = f + f              ]
                               f        m

Q.5
[Sol.   Wg + Wf = KE
              2Fd  2Mgd
        v=                          ]
                  M
Q.6
[Sol.   If temperature constant speed does not change. ]
Q.7



[Sol.     /2     


                                
        By symmetery  =
                                2
                       
        I = I0 cos2
                       4
        I = I0/2                    ]
Q.9

        By conservation of energy mgh =  F dx
                                                  d

[Sol.                                                     ]
                                                  0

Q.10



[Sol.
               H           H
        by using similar triangle the shaded length = 5H/6 ]
Q.11
[Sol.   µ = 1 + 12 = 2
        sin i                                 1
              =2                   sin r =              r = 30°
        sin r                                 2
     unit vector = cos 30ˆ  sin 30ˆ
                          i          j                ]
Code-B                                                                                           Page # 1
PHYSICS
Q.12




[Sol.                                   ]



Q.13
[Sol.   No TIR take place in case of sphere ]
Q.14
[Sol.   Molar heat capacity of given process is negative. ]
Q.15


                   O


[Sol.   (A & B)        F



                                                              I



                                       2F


                  O
                                            F

        (C)           F




                   O



                       F
        (D)                                                        ]




Code-B                                                                 Page # 2
PHYSICS
Q.16
[Sol.   All dimension will increase       ]

Q.17
Sol.    I < Iavg
        if each source have equal intensity
                 4 I0 cos2 /2 < 2I0
                                  1                       3
                   cos2 /2 <             i.e.         <<          ]
                                  2                  2      2

Q.18
[Sol.   Breaking force = breaking stress × cross-sectional area ]

                                          PART-B
Q.1
[Sol.   Use P-V graph.
               P                                 P                        P
                    C         B                      A     B                  B

        (A)                               (B)                       (C)                           ]
                              A                            C                  A     C
                                      V                         V                       V



                                          PART-C
Q.1
                              B


                          30°
                            30°
                        60°
[Sol.                                     ]
              A               C
        Ray

Q.2
[Sol.   Q = 7J
        Q = DU + W
        7 = nCvT + PdV
              5
        =n      RT + nRT
              2
              7
        7=      (nRT)  nRT = 2 J ]
              2




Code-B                                                                                      Page # 3
CHEMISTRY
                                              PART-A
Q.1
[Sol.   FeSO4 + HO – OH is Fenton's reagents
                         e                     
        HO — OH            HO — OH
        Fe2+  Fe3+ + e
        OH is not formed.       ]

Q.2
[Sol.   AlF3 is ionic and during formation of ionic bond octet of Al3+ as well as that of F¯ have been completed.
        AlCl3 and AlBr3 are coval;ent and hypovalent. ]

Q.3
[Sol.   (a)     Trans 1,2-dimethyl cyclohexane equatorial–equatorial position
        (b)     Trans 1,2-dimethyl cyclohexane equatorial–equatorial position
        (c)     Trans 1,2-dimethyl cyclohexane axial, axial position ]

Q.4



                O                              O                         O
[Sol.     H                             F                         F                            S
              H                          F                             F                  H         H
                           3                          3                             3                      3
        Hybridisation : sp         Hybridisation : sp            Hybridisation : sp     Hybridisation : sp

        Bond angle between H2O & OF2 is compared on the basis of Bent's rule.
        FSF in SF2 >  HSH in H2S        :      From Drago's rule
        FOF in OF2 >  FSF in SF2        :      On descending in a group for same substituents bond
                                                  angle decreases.         ]

Q.5
[Sol.   Pvr = K
        for diatomic gas

              V2 
               = 
                     r  7/5
        P1
                     
                     3
        P2 =  V1 
                  4

        for monoatomic gas

             Vnew               3
                           5/3                                           21
                                                                    3  25
                                        7/5

           =         
        P1
            V                  =          Vnew = Vinitial   ×                           ]
        P2   initial            4                              4




Code-B                                                                                                 Page # 1
CHEMISTRY
Q.6
              O                           O
[Sol.                                             
        CH3 – C – O             CH 3 – C = O

              O                           O

        CH 3– C – OH            CH 3– C = OH
                                               +




        r : pure double fuel
        y : CH3 – OH pure single bond
        x : Partial double bond character
        p : Partial double bond character
        q : Partial single bond character                   ]

Q.7
[Sol.   The magnitude of negative charge developed at chlorine atoms in SiCl4 is more in comparision to negative
        charge developed at chlorine atoms in CCl4, it is due to more electronegativity difference between Si
        and Cl than that of between C and Cl. ]

Q.8
[Sol.   U        =q+w
                  = (40 × 200) + (–2 × 10 × 100)
                  = 6000 J Ans. ]

Q.9

          O                                            OH                         OH
                                                                    OH
                                                                                 
[Sol.                     MgHg 
                                                          H
                                                             
                                                                        
                               H 2O
                                                                    
                  O                                OH
                                                                                       
                                                                                  –H


                                                                              O
                                                                                           ]

Q.10


        Cl                Cl                   Cl
                  I                   I
[Sol.
        Cl                Cl                   Cl

        Hybridisation of each I : sp3 d2
        Planar structure

Code-B                                                                                           Page # 2
CHEMISTRY
        2 bonds are of 3C –       4e–
        4 bonds are of 2C – 2e–
        Cl            Cl                Cl
               Al                Al
        Cl            Cl                Cl
        Hybridisation of each Al : sp3
        Non planar structure
        2 bonds are of 3C–4e–
        4 bonds are of 2C–2e–                ]

Q.12

                 F           F
[Sol.   (A)           Xe
                 F           F

        Hybridisation of Xe : sp3 d2
        All four Xe – F bonds are of equal lengths as they lie in same plane and are at 90° apart from each other.

                        F
                                 F
                 F      P
        (B)
                                 F
                        F
        Hybridisation : sp3d
        (P–F) axial > (P–F)equatorial
        (1.58 Å)            (1.53 Å)

                        F
                                 F
                       S
        (C)
                                 F
                        F
        Hybridisation : sp3d
        (S–F)axial > (S–F)equatorial                  ]
Q.13

               COOK


[Sol.                                                                 ]

                                                  It is optically
               COOK                               inactive due to
                                                  plane of symmetry

Code-B
Q.14                                                                                               Page # 3
CHEMISTRY
Q.15

            
        dP      P
[Sol.
        dV      V
              P
           
        dP
        dT   1 T

           
        dV        1 T
              (   1) V
                                   ]
        dT

Q.16




                          N
[Sol.   NH3          H         H
                          H


        Hybridisation of N : sp3
        Bond angle HNH less than 109°
        l.p. exists in hybrid orbitals.


                          P
                     H         H
        PH3
                          H

        Hybridisation of P : N.A.
         HPH close towards 90°
        l.p. exists in s-orbital.
        dipole moment of pure orbital is zero.
        As l.p. in NH3 exists in hybrid orbital while in PH3 it exists in s-orbital, hence NH3 is stronger Lewis base
        than PH3.
        D of PH3 is less than that of NH3 as bond moment of N–H is greater than that of P–H because of
        nitrogen is more electronegative than phosphorus.             ]

Q.18

          Cl     Cl
           R     R
[Sol.                    No plane of symmetry. Optically active but having C2 axis of symmetry.
                                                                                              .
           R     R


          Cl     Cl
        Presence of AoS doesn't matter for O. Activity.            ]

Code-B                                                                                                Page # 4
CHEMISTRY
                                        PART-C
Q.1
[Sol.   10 intermediate free radicals




                           
                    Br
                     
                     




        So 10 structural isomeric products are formed and total products including stereoisomers are 33.
                                     Br                       Br                         Br
        Br
                     (4)                  (2)                      (4)                         (2)



                                          Br                                      Br

                  (2)                           (1)    Br                (4)             (8)
             Br


        Br
                        (2)     Br              (4)    ]




Code-B                                                                                           Page # 5
MATHEMATICS
                                                   PART-A
Q.1
[Sol.   P' (x) = f (x) g ' (x) + g (x) f ' (x)
        P' (2) = f (2) g ' (2) + g (2) f ' (2)
               = (1) (2) + 4 (–1)
               =–2
                     g ( x )f ' ( x )  f ( x ) g ' ( x )
        Q ' (x) =
                                  g 2 (x )
                     ( 4)(1)  (1)( 2)     6    3
        Q ' (2) =                       =–    =–
                            16             16    8
        C' (x) = f ' g( x )  g' ( x )
        C ' (2) = f ' (4) · 2
                =3·2=6 ]

Q.2
            cos x  x sin x
[Sol.          x cos x
                            dx ;           put x cos x = t  (cos x – x sin x) dx = 2t dt


            
                2 t dt
        =              = 2t + C = 2 x cos x + C Ans.]
                   t
Q.3
                   a ( x1  y1 )  b ( x 2  y 2 )  c ( x 3  y 3 )                             A(0, 0)
                                     abc
[Sol.   h+k=
                                                                                      3x+4y=0          4x+3y=0

                                9  15
                       (0)  5  3    (3  4)
                     7                                                                  15/4            5
                                                     
                                                   15 15
                     4              4 4           4 4 0
                   =                             =
                               5 
                                    15 7
                                                   5
                                                      22                               B                     C
                                                                                   (3, – 9/4)               (3,– 4)
                                                                                                                    x=3
                                     4 4                                                         7/4
                                                       4
Alteantively: Equation of angle bisector of angle A
                    3x  4 y     4 x  3y
                                                  x=±y
                       5             5
                   equation of internal bisector is x = – y
                   since h and k lie on the line x = – y
                           h + k = 0 Ans.]

Q.4
                           x 
[Sol.   We have g(x) = f  f (x) 
                                  
        on differentiating w.r.t. x, we get
                  x                 f ( x )  xf ' ( x )                             1   f (1)  f ' (1) 
     g'(x) = f ' 
                  f (x)  ·
                                    
                                                           ;
                                                                                       f (1)  ×  f 2 (1) 
                                                                           f '(1) = f '                      
                                          f 2 (x)                                                        
     As f(1) = f '(1)
             g'(1) = 0 ]
Code-B                                                                                                        Page # 1
MATHEMATICS
Q.5
[Sol.   Let g (x) = P(x) – x.
        Hence g (x) vanishes at x = 1, 2, 3, 4, 5 and 6. Since it is a polynomial of degree six
        so      g (x) = P(x) – x = (x – 1)(x – 2)(x – 3)(x – 4)(x – 5)(x – 6)
               P(7) = 6 · 5 · 4 · 3 · 2 · 1 + 7 = 727 Ans.]

Q.6
                                                                   2                       2
        – 1  3x – 1  1                             0x                     domain is 0, 
                                                                                           3
[Sol.
                                                                   3
                                                   2
        when x = 0 then y = 1; x =                   , y = 4. Hence range is [1, 4] Ans. Ans.         ]
                                                   3
Q.7
                                                                                      
        2 sin        cos      = sin( + ) 2 cos     cos                                 cos       0
                                                                                                     
[Sol.
                  2        2                      2        2                                    2
                                
        sin        = 2 sin      cos 2
                2            2         2
               
                      –1=0
              2
        2 cos
                 2
        cos( + ) = 0          +  = 90°
               = 90° = cot –1(0) Ans.]


Q.8
                x100
[Sol.   Lim             = 0 (using L'Hospital's Rule)
        x      ex

                2
                           x2
        Lim  cos                         (1)
        x     x
                          2                    1 cos t 
              Lim x 2  cos 1           Lim            ·4           2                   2
        =   e x         x 
                                   =   e   x 0  t 2      
                                                                 ; put     =t          x=
                                                                         x                   t
        = e–2 Ans.]

Q.9
[Sol.   Let          2k = A
                     (cot3A – cot A) sin4A

                                                                        · 2 · sin 4 A
                                                                   cos A cos 2A                       1
                    cot A(cot2A – 1) sin4A                                                           sin 4A
                                                                   sin A sin A                        4

         1                                                                                           
         
                            
                sin 4A = 1  sin 2 k  2  = 1 [sin 22 + sin 23 + sin 24 + ....] =                 sin 2 k  = 4 Ans.]
                                                                                      1                           a
         4 k 0          4 k 0              4                                        4              k 2
                           
                                               S




Code-B                                                                                                       Page # 2
MATHEMATICS
Q.10
[Sol.          f (x) is differentiable in (0, )    [TN, MOD] to be put
        hence Lim f ( x ) must exist and is finite
              x 
               y = f (x) must have a horizontal asymptote
                as x  then only Lim f ( x ) will exist
                                   x 

        If f (x) has an inclined asymptotes as y = x 
                                                                1
                                                                  then Lim f ( x ) 
                                                                x      x 
               f (x) has a horizontal asymptote
                hence Lim f ' ( x ) 
                      x 
         (C) (also see figure for f (x) = tan–1x)
        e.g. Take the example given
                                    1
        (i)     Let f (x) = x sin     which is differentiable in (0, )
                                    x

                                  cos
                                1 1    1
                f ' (x) = sin
                                x x    x

                                        1             1
                f (x) + f ' (x) =  x sin    sin  cos 
                                                   1 1
                                      x x 
                                  x       x        
                                                         
                                    Lim 1               Lim 0
                                    x                  x 


                hence Lim f ( x )  L and Lim f ' ( x )  0 Ans.
                         x                      x 
        (ii)    f (x) = tan–1x   in (0, ) ]

Q.11
[Sol.   (m2 – 1)x2 – (m + 2)x + 1 = 0
                                                  1
        If m = 1, 3x = 1                    x=     which lies in (–1, 1)
                                                  3
     hence m = 1 is possible
     m = – 1, x = 1 which does not lie in (– 1, 1) hence m  – 1
     For m  ± 1,
              f (x) = (m2 – 1)x2 – (m + 2)x + 1 = 0
             f (1) · f (–1) < 0
              (m2 – 1 + 1 – m – 2) (m2 – 1 + m + 2 + 1) < 0
              (m2 – m – 2) (m2 + m + 2) < 0
     but m2 + m + 2 > 0  m  R
     hence, m2 – m – 2 < 0
              (m – 2)(m + 1) < 0             m  (–1, 2)
     if f (1) = 0 then m2 – m – 2 = 0;        m = 2 or m = – 1
     if m = 2 then equation is
              3x2 – 4x + 1 = 0               3x2 – 3x – x + 1 = 0
             3x(x – 1) – (x – 1) = 0
              (x – 1)(3x – 1) = 0            x = 1/3 or = 1
     hence m = 2 is also permissible.
     if f (–1) = 0             m2 + m + 2 = 0  no solution
     hence m  (– 1, 2] Ans.]
Code-B                                                                                        Page # 3
MATHEMATICS
Q.12

                                           2 dt
                                       dx
[Sol.     x =t               
                                        x
                             t                      t       
        I = 2  (e  e ) cos e  e    (e  e ) cos e  e   dt
                  t   t           t       t   t           t
                                     4                       4

                d     t        d     t  t  
        I = 2   sin  e  e    sin  e  e   dt
                             t

                 dt           4  dt          4 

                t       t        t  t         t           t 
          = 2 sin  e  e    sin  e  e   = 4 sin  e   cos e                     
                           4              4             4         

                              sin(e )  cos(e ) =
                                                                                                       
                                   t         t
                      t
          = 4 cos(e        )·                         2 2 cos(e    x
                                                                        ) sin(e     x
                                                                                        )  cos(e   x
                                                                                                        )  C Ans. ]
                                       2

Q.13
[Sol.   Put [x] = x – {x}
        f(x) = (a – 2b + c) x2 + 2(b – c) x{x} + c{x}2
        will be periodic only if
        a – 2b + c = 0           &       b=c
                a=b=c ]

Q.14
[Sol.   Statement-1 is false as it has a period equal to 2 and statement-2 is true
                               2  x  1
                
                    0
                   N.D.       1  x  0
        f (x) =    0          0  x 1               period 2 Ans.
                              1 x  2
                
                    N.D.
                    0          2x3



                                                       ]


Q.15
         k 1 k 1
             
         h 1 h 1
[Sol.              =2

                 ( h  1)  ( h  1) 
        (k – 1)                       =±2
                       h2 1         
         2(k  1)
                  = ± 2  k – 1 = ± (h2 – 1)
          h2 1
        (+) ve, k – 1 = h2 – 1   y = x2 Ans.                               (A)
        (–) ve, k – 1 = 1 – h 2  y = 2 – x2 Ans.                           (B)]


Code-B                                                                                                             Page # 4
MATHEMATICS
Q.16
                1 
                                 n
         x          
[Sol.       2 · x1 4 
                     

                  x                                                      x
                                                                                 n 2
                                                  n 1
                         n C1 x                         ·          n C2          2 ·           ......
        n           n                                          1                           1
            C0                                                  34
                                                             2x                           4 x
                             n                n
                   nC
                                 C1               C2
        now             0,            ,                      are in A.P.
                                                                       .
                                 2                4
                         n n ( n  1)                                        n ( n  1)                                 n ( n  1)
                   1,      ,          ;                           n=1+                                     (n – 1) =                     n=8
                         2      8                                                 8                                          8

                       1 2 x 1 4 
                                                                 8

        hence we have  x 
                      
                                   
                             2   
                                          
                                              r
                          8 r
                        ·x 2
                          · r
        Tr+1 = 8 C         x 4
                   r
                            2
        for integral powers of x
                   8r r
                       must be an integer
                    2  4
                   16  2r  r 16  3r
                                         must be an integer                                               r = 0, 4, 8
                        4           4
                  3 terms with integral power            (D)]

Q.17
[Sol.   x + y = k; AB = 1
                 k
        p=
                  2
                    ;            2 12  p 2 = 1  4(1 – p2) = 1                                            4p2 = 3

           k2
        4·
                                                                3                        3
                                                                          k=±            =±
                                                                                               6
              =3                                    k2 =                                         Ans. ]
           2                                                    2                        2    2
Q.18
[Sol.   We have
                exy + y cos x = 2                                                                 ....(1)
        Put     x = 0, we get
                1+y=2
               y=1
               (0, 1) lies on the given curve.
        On differentiating (1) w.r.t. x, we get
                      dy        
                             y  + y (–sin x) + cos x
                                                       dy
               exy  x
                      dx        
                                                          =0                                      ....(2)
                                                       dx
        As (0, 1) satisfying it, we get
                                     dy
                  0+1+                 =0                                 y'(0) = –1 Ans.  (C)
                                     dx
Code-B                                                                                                                               Page # 5
MATHEMATICS
       Again differentiating (2), we get
                     d 2 y dy dy                                dy         y cos x  sin x dy 
                                                                                   2
                                 xy                                                                       d2y
               exy  x                                            x dx  y  – 
                                                                                                                          dy
                                                                                                   + cos x    2 – sin x
                              dx dx  + e                                                     dx 
                                                                                                                             =0
                     dx                                         
                          2
                                                                                                             dx           dx
               As (0, 1) satisfy it, we get
              –2 + 1 – 1 + y''(0) = 0
              y''(0) = 2 Ans.  (D)]

                                                      PART-B
Q.1
                                                                    e x
                     1  e4x                               1  e 4x dx
                           ex
Sol.   Given I =                       dx and J =

                         e2x · e x
               J=    1  e 4x dx
                               e x (1  e 2 x )
              I+J=        
                        1  e4x
                                                      dx

       put     ex = t  exdx = dt

                                                                                   1
                                                                                     1
                                                       1
                                        1
                       1 t
               I+J =        dt =                                             1 2 dt
                                        2
                                                                                     t2
                                       t 2 dt =
                       1 t4        t2  2
                                          1
                                                                               t    2
                                         t                                      t

                                                                1
               t y                                   y =  t  2  dt  dy
                 1
                                            
                                                            t 
       put
                 t

                                                     t2 1
                    y2  2 2  tan 1         tan 1
                      dy     1        y    1
               =           =             =
                                       2    2          2t

                       e2x  1 
               tan 1          
                       2e x   C
            1
       J+I=                                                           ....(1)                (P)
             2                 

                                                                                                                  1  2
                                                                                                                       1
                                                                                              1
                                                                                                    1
                              e (1  e )                           1 t                                                   1         
                                                                                                             1  2 dt  t  t  y 
                               x                 2x                          2
               J–I=                                                                                t 2 dt = +         t
                                                      dx =                       dt = +
                                                                                                                                      
       |||ly
                                   1 e     4x
                                                                     1 t4                    t2  2
                                                                                                   1
                                                                                                                t    2
                                                                                                  t              t

                                                                         y 2
                                 y2  2          =
                                       dy                   1
              J–I =+                                               ln
                                                           2 2           y 2

                            t  2
                              1
                                      1 t2  2 t 1   1 e2x  2 ex  1
               J–I=          t    1    · 2             ·               ....(2)  (Q)
                                     2 2 t  2 t  1 2 2 e2x  2 ex  1
                         ln        =                =
                      2 2 t  2
                              1
                              t

Code-B                                                                                                                     Page # 6
MATHEMATICS
                     (1) – (2) gives
                                                        e2x  1   1 e2x  2 ex  1
                                                 tan 1         
                                              1
                                                          2 ex 2 2 e2x  2 ex  1
                                         2I =
                                               2

                                             1  1 e 2 x  1 1 e 2 x  2 e x  1 
                                                tan          ·                   
                                                       2 e x 2 e 2 x  2 e x  1
                                         I=                                                                                (R)       ]
                                            2 2


                                                       PART-C
Q.1
                                                                                                        
                                                                                  1                         1
          1 5 1                     1  5 1                                   y 5 · y1                    5·y
              1                          1
           · y · y1              –    ·y      · y1                          ·                 ·
                                                                          1                   1 y              1
[Sol.                                                 = 2;                                                         =2
          5                          5                                    5             y     5   y

                                                              1         1                                                 1         1
                                                                                    2                                                        2
                     
                                                              y 5  y  5   100 y                                        y 5  y  5   4  100 y
           1             1                                                           2                                                                 2
                y           
                               10 y
          y5             5
                                                                                                                                    
                                                                                                                                      
                                                                                  2                                                                 2
                                y1                                               y1                                                                y1

                        100 y 2
         4(x2    – 1) =    2                                y1 (x2 – 1) = 25y2
                                                              2                                                   (x2 – 1)2y1y2 + y1 2x = 25 · 2 · yy1
                                                                                                                                    2
                          y1

                                                                          d2y                dy
         (x2    – 1)y2 + xy1 = 25y or                        (x2   – 1)         2       +x      = 25y                     k = 25 Ans.]
                                                                          dx                 dx



                          n  3n  2n 1  (n 1) + n  n  2n  3  (n 1)
Q.2

[Sol.      Lim
         = n  n            3       3      2                                                2



                                                                        
                                           n n 3  3n 2  2n  1  (n  1)3                                                     
                                                                                                                                n n 2  2n  3  (n  1) 2   
                                                                                                
      = Lim                                                                                                             + Lim
         n 
                (n 3  3n 2  2n  1) 2 / 3  (n  1) n 3  3n 2  2n  1                                (n  1) 2      n 
                                                                                                                                     n  2n  3  (n  1)
                                                                                                 1/ 3                                    2


                                                              n ( n )                                                                       n ( 2)
        = Lim                                                                                                           + Lim
         n     (n 3  3n 2  2n  1) 2 / 3  (n  1) (n 3  3n 2  2n  1)1 / 3  (n  1) 2                             n 
                                                                                                                                   n 2  2n  3  ( n  1)
                1   2    1    2
                        =– +1=
              111 11
         =         +                                                      ]
                          3    3




Code-B                                                                                                                                           Page # 7

More Related Content

What's hot

BukitPanjang GovtHigh Emath Paper2_printed
BukitPanjang GovtHigh Emath Paper2_printedBukitPanjang GovtHigh Emath Paper2_printed
BukitPanjang GovtHigh Emath Paper2_printedFelicia Shirui
 
Chapter two(was 1) v9-oldformat
Chapter two(was 1) v9-oldformatChapter two(was 1) v9-oldformat
Chapter two(was 1) v9-oldformatnewtonsgroove
 
F4 09 Trigonometry Ii
F4 09 Trigonometry IiF4 09 Trigonometry Ii
F4 09 Trigonometry Iiguestcc333c
 
MODULE 3-Circle Area and Perimeter
MODULE 3-Circle Area and PerimeterMODULE 3-Circle Area and Perimeter
MODULE 3-Circle Area and Perimeterguestcc333c
 
IIT JEE - 2008 ii - chemistry
IIT JEE  - 2008  ii - chemistryIIT JEE  - 2008  ii - chemistry
IIT JEE - 2008 ii - chemistryVasista Vinuthan
 
F4 11 Lines And Planes In 3 Dim
F4 11 Lines And Planes In 3 DimF4 11 Lines And Planes In 3 Dim
F4 11 Lines And Planes In 3 Dimguestcc333c
 
On restrictions of balanced 2-interval graphs
On restrictions of balanced 2-interval graphsOn restrictions of balanced 2-interval graphs
On restrictions of balanced 2-interval graphsPhilippe Gambette
 
Math 1 pksr 1 - 2012
Math 1   pksr 1 - 2012Math 1   pksr 1 - 2012
Math 1 pksr 1 - 2012AZUAD ozil
 
Pmr trial-2010-math-qa-perak
Pmr trial-2010-math-qa-perakPmr trial-2010-math-qa-perak
Pmr trial-2010-math-qa-perakpheobi PHEOBI
 
Module 3 circle 2
Module 3 circle 2Module 3 circle 2
Module 3 circle 2roszelan
 
Line Plane In 3 Dimension
Line   Plane In 3 Dimension Line   Plane In 3 Dimension
Line Plane In 3 Dimension roszelan
 
Students module 1 PMR
Students module 1 PMRStudents module 1 PMR
Students module 1 PMRroszelan
 

What's hot (16)

BukitPanjang GovtHigh Emath Paper2_printed
BukitPanjang GovtHigh Emath Paper2_printedBukitPanjang GovtHigh Emath Paper2_printed
BukitPanjang GovtHigh Emath Paper2_printed
 
09 trial kedah_s1
09 trial kedah_s109 trial kedah_s1
09 trial kedah_s1
 
Chapter two(was 1) v9-oldformat
Chapter two(was 1) v9-oldformatChapter two(was 1) v9-oldformat
Chapter two(was 1) v9-oldformat
 
F4 09 Trigonometry Ii
F4 09 Trigonometry IiF4 09 Trigonometry Ii
F4 09 Trigonometry Ii
 
MODULE 3-Circle Area and Perimeter
MODULE 3-Circle Area and PerimeterMODULE 3-Circle Area and Perimeter
MODULE 3-Circle Area and Perimeter
 
IIT JEE - 2008 ii - chemistry
IIT JEE  - 2008  ii - chemistryIIT JEE  - 2008  ii - chemistry
IIT JEE - 2008 ii - chemistry
 
F4 11 Lines And Planes In 3 Dim
F4 11 Lines And Planes In 3 DimF4 11 Lines And Planes In 3 Dim
F4 11 Lines And Planes In 3 Dim
 
On restrictions of balanced 2-interval graphs
On restrictions of balanced 2-interval graphsOn restrictions of balanced 2-interval graphs
On restrictions of balanced 2-interval graphs
 
Ch09
Ch09Ch09
Ch09
 
Math 1 pksr 1 - 2012
Math 1   pksr 1 - 2012Math 1   pksr 1 - 2012
Math 1 pksr 1 - 2012
 
Pmr trial-2010-math-qa-perak
Pmr trial-2010-math-qa-perakPmr trial-2010-math-qa-perak
Pmr trial-2010-math-qa-perak
 
Module 3 circle 2
Module 3 circle 2Module 3 circle 2
Module 3 circle 2
 
Line Plane In 3 Dimension
Line   Plane In 3 Dimension Line   Plane In 3 Dimension
Line Plane In 3 Dimension
 
Review exercises
 Review exercises Review exercises
Review exercises
 
DEV
DEVDEV
DEV
 
Students module 1 PMR
Students module 1 PMRStudents module 1 PMR
Students module 1 PMR
 

Similar to Cpm 14 06 2009 Paper 1 12th (Abcd) Code B

Day 3 metric and customary assessment
Day 3 metric and customary assessmentDay 3 metric and customary assessment
Day 3 metric and customary assessmentErik Tjersland
 
Assessment questions probability
Assessment questions  probabilityAssessment questions  probability
Assessment questions probabilityErik Tjersland
 
Day 2 adding polynomials senteo
Day 2 adding polynomials senteoDay 2 adding polynomials senteo
Day 2 adding polynomials senteoErik Tjersland
 
Sesión de aprendizaje de Radicación Algebra pre u ccesa007
Sesión de aprendizaje de Radicación  Algebra pre u  ccesa007Sesión de aprendizaje de Radicación  Algebra pre u  ccesa007
Sesión de aprendizaje de Radicación Algebra pre u ccesa007Demetrio Ccesa Rayme
 
Geometry assessment questions
Geometry assessment questionsGeometry assessment questions
Geometry assessment questionsErik Tjersland
 
Ficha trab solidos1 resolução
Ficha trab solidos1 resoluçãoFicha trab solidos1 resolução
Ficha trab solidos1 resoluçãomarcommendes
 
Trial terengganu spm 2014 physics k1 k2 k3 skema
Trial terengganu spm 2014 physics k1 k2 k3 skemaTrial terengganu spm 2014 physics k1 k2 k3 skema
Trial terengganu spm 2014 physics k1 k2 k3 skemaCikgu Pejal
 
Assessment questions probability
Assessment questions  probabilityAssessment questions  probability
Assessment questions probabilityErik Tjersland
 
Monfort Emath Paper2_printed
Monfort Emath Paper2_printedMonfort Emath Paper2_printed
Monfort Emath Paper2_printedFelicia Shirui
 
Day 3 metric and customary assessment
Day 3 metric and customary assessmentDay 3 metric and customary assessment
Day 3 metric and customary assessmentErik Tjersland
 
Module 3 Circle Area And Perimeter
Module 3 Circle Area And PerimeterModule 3 Circle Area And Perimeter
Module 3 Circle Area And Perimeternorainisaser
 

Similar to Cpm 14 06 2009 Paper 1 12th (Abcd) Code B (16)

Day 3 metric and customary assessment
Day 3 metric and customary assessmentDay 3 metric and customary assessment
Day 3 metric and customary assessment
 
Assessment questions probability
Assessment questions  probabilityAssessment questions  probability
Assessment questions probability
 
Day 2 adding polynomials senteo
Day 2 adding polynomials senteoDay 2 adding polynomials senteo
Day 2 adding polynomials senteo
 
Sesión de aprendizaje de Radicación Algebra pre u ccesa007
Sesión de aprendizaje de Radicación  Algebra pre u  ccesa007Sesión de aprendizaje de Radicación  Algebra pre u  ccesa007
Sesión de aprendizaje de Radicación Algebra pre u ccesa007
 
Geometry assessment questions
Geometry assessment questionsGeometry assessment questions
Geometry assessment questions
 
sains kedah
sains kedahsains kedah
sains kedah
 
0606 m18 2_2_qp
0606 m18 2_2_qp0606 m18 2_2_qp
0606 m18 2_2_qp
 
Ficha trab solidos1 resolução
Ficha trab solidos1 resoluçãoFicha trab solidos1 resolução
Ficha trab solidos1 resolução
 
Project management
Project managementProject management
Project management
 
Mathketball
MathketballMathketball
Mathketball
 
Trial terengganu spm 2014 physics k1 k2 k3 skema
Trial terengganu spm 2014 physics k1 k2 k3 skemaTrial terengganu spm 2014 physics k1 k2 k3 skema
Trial terengganu spm 2014 physics k1 k2 k3 skema
 
Assessment questions probability
Assessment questions  probabilityAssessment questions  probability
Assessment questions probability
 
Monfort Emath Paper2_printed
Monfort Emath Paper2_printedMonfort Emath Paper2_printed
Monfort Emath Paper2_printed
 
Day 3 metric and customary assessment
Day 3 metric and customary assessmentDay 3 metric and customary assessment
Day 3 metric and customary assessment
 
Module 3 Circle Area And Perimeter
Module 3 Circle Area And PerimeterModule 3 Circle Area And Perimeter
Module 3 Circle Area And Perimeter
 
add mad
add madadd mad
add mad
 

More from sracy.com

File 02 Iit Jee 09 Paper 02 Pcm
File 02 Iit Jee 09 Paper 02 PcmFile 02 Iit Jee 09 Paper 02 Pcm
File 02 Iit Jee 09 Paper 02 Pcmsracy.com
 
File 01 Iit Jee 09 Paper 01 Pcm
File 01 Iit Jee 09 Paper 01 PcmFile 01 Iit Jee 09 Paper 01 Pcm
File 01 Iit Jee 09 Paper 01 Pcmsracy.com
 
Educell Physics Sample
Educell Physics SampleEducell Physics Sample
Educell Physics Samplesracy.com
 
Educell Maths Sample
Educell Maths SampleEducell Maths Sample
Educell Maths Samplesracy.com
 
Educell Chemistry Sample
Educell Chemistry SampleEducell Chemistry Sample
Educell Chemistry Samplesracy.com
 

More from sracy.com (9)

File 02 Iit Jee 09 Paper 02 Pcm
File 02 Iit Jee 09 Paper 02 PcmFile 02 Iit Jee 09 Paper 02 Pcm
File 02 Iit Jee 09 Paper 02 Pcm
 
File 01 Iit Jee 09 Paper 01 Pcm
File 01 Iit Jee 09 Paper 01 PcmFile 01 Iit Jee 09 Paper 01 Pcm
File 01 Iit Jee 09 Paper 01 Pcm
 
Educell Physics Sample
Educell Physics SampleEducell Physics Sample
Educell Physics Sample
 
Educell Maths Sample
Educell Maths SampleEducell Maths Sample
Educell Maths Sample
 
Educell Chemistry Sample
Educell Chemistry SampleEducell Chemistry Sample
Educell Chemistry Sample
 
Dates
DatesDates
Dates
 
Cso
CsoCso
Cso
 
Cb
CbCb
Cb
 
8.Pdf
8.Pdf8.Pdf
8.Pdf
 

Recently uploaded

Benefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksBenefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksSoftradix Technologies
 
New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024BookNet Canada
 
SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024Scott Keck-Warren
 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Scott Keck-Warren
 
Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsMark Billinghurst
 
Artificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning eraArtificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning eraDeakin University
 
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | DelhiFULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhisoniya singh
 
AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsMemoori
 
Understanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitectureUnderstanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitecturePixlogix Infotech
 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesSinan KOZAK
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonetsnaman860154
 
Maximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxMaximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxOnBoard
 
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptxMaking_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptxnull - The Open Security Community
 
Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Enterprise Knowledge
 
Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationSlibray Presentation
 
Unlocking the Potential of the Cloud for IBM Power Systems
Unlocking the Potential of the Cloud for IBM Power SystemsUnlocking the Potential of the Cloud for IBM Power Systems
Unlocking the Potential of the Cloud for IBM Power SystemsPrecisely
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountPuma Security, LLC
 
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Alan Dix
 

Recently uploaded (20)

Benefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksBenefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other Frameworks
 
New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
New from BookNet Canada for 2024: BNC BiblioShare - Tech Forum 2024
 
SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024
 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024
 
Vulnerability_Management_GRC_by Sohang Sengupta.pptx
Vulnerability_Management_GRC_by Sohang Sengupta.pptxVulnerability_Management_GRC_by Sohang Sengupta.pptx
Vulnerability_Management_GRC_by Sohang Sengupta.pptx
 
Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR Systems
 
Artificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning eraArtificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning era
 
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | DelhiFULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
 
AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial Buildings
 
Understanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitectureUnderstanding the Laravel MVC Architecture
Understanding the Laravel MVC Architecture
 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen Frames
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonets
 
Maximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxMaximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptx
 
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptxMaking_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
Making_way_through_DLL_hollowing_inspite_of_CFG_by_Debjeet Banerjee.pptx
 
Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024
 
Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck Presentation
 
DMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special EditionDMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special Edition
 
Unlocking the Potential of the Cloud for IBM Power Systems
Unlocking the Potential of the Cloud for IBM Power SystemsUnlocking the Potential of the Cloud for IBM Power Systems
Unlocking the Potential of the Cloud for IBM Power Systems
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path Mount
 
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
 

Cpm 14 06 2009 Paper 1 12th (Abcd) Code B

  • 1. ANSWER KEY 12 th ABCD (Date: 14-06-2009) Review Test-2 Code-B Paper-1 CHEMISTRY PHYSICS MATHS SECTION-2 SECTION-3 SECTION-1 PART-A PART-A PART-A Q.1 D Q.1 D Q.2 D Q.1 B Q.2 C Q.3 D Q.2 C Q.3 C Q.4 A Q.3 A Q.4 A Q.5 C Q.4 B Q.5 C Q.6 B Q.5 D Q.6 B Q.7 B Q.6 A Q.7 A Q.8 C Q.7 C Q.8 B Q.9 A Q.8 D Q.9 C Q.10 B or D Q.9 B Q.10 A Q.11 A Q.10 C Q.11 D Q.12 C Q.11 A Q.12 A Q.13 D Q.12 C Q.13 B Q.14 A Q.13 A Q.14 A Q.15 A, B, C, D Q.14 D Q.15 C, D Q.16 A, B, C, D Q.15 A, B Q.16 A, C Q.17 B, C, D Q.16 A, B, C, D Q.17 C, D Q.18 C, D Q.17 B, C Q.18 C Q.18 C, D PART-B Q.1 (A) Q, S, (B) P, R, S ; PART-B PART-B (C) P, R, S Q.1 (A) R ; (B) P ; (C) Q Q.1 (A) P,Q,R,S (B) R,S (C) Q PART-C Q.1 0090 or 0270 PART-C PART-C Q.2 0002 Q.1 0025 Q.1 0033 Q.2 0005 Q.2 5280
  • 2. PHYSICS PART-A Q.1 [Sol. After some time force on a become constant when relative motion starts but on B is going on increasing.] Q.2 [Sol. Radius of curvature f ] Q.3 [Sol. On the centre line ] Q.4 1 2 1 [Sol. f = 120, fm = 30, = f + f ] f  m Q.5 [Sol. Wg + Wf = KE 2Fd  2Mgd v= ] M Q.6 [Sol. If temperature constant speed does not change. ] Q.7 [Sol. /2    By symmetery  = 2  I = I0 cos2 4 I = I0/2 ] Q.9 By conservation of energy mgh =  F dx d [Sol. ] 0 Q.10 [Sol. H H by using similar triangle the shaded length = 5H/6 ] Q.11 [Sol. µ = 1 + 12 = 2 sin i 1 =2  sin r =  r = 30° sin r 2 unit vector = cos 30ˆ  sin 30ˆ i j ] Code-B Page # 1
  • 3. PHYSICS Q.12 [Sol. ] Q.13 [Sol. No TIR take place in case of sphere ] Q.14 [Sol. Molar heat capacity of given process is negative. ] Q.15 O [Sol. (A & B) F I 2F O F (C) F O F (D) ] Code-B Page # 2
  • 4. PHYSICS Q.16 [Sol. All dimension will increase ] Q.17 Sol. I < Iavg if each source have equal intensity 4 I0 cos2 /2 < 2I0 1  3 cos2 /2 < i.e. << ] 2 2 2 Q.18 [Sol. Breaking force = breaking stress × cross-sectional area ] PART-B Q.1 [Sol. Use P-V graph. P P P C B A B B (A) (B) (C) ] A C A C V V V PART-C Q.1 B 30° 30° 60° [Sol. ] A C Ray Q.2 [Sol. Q = 7J Q = DU + W 7 = nCvT + PdV 5 =n RT + nRT 2 7 7= (nRT)  nRT = 2 J ] 2 Code-B Page # 3
  • 5. CHEMISTRY PART-A Q.1 [Sol. FeSO4 + HO – OH is Fenton's reagents e  HO — OH HO — OH Fe2+  Fe3+ + e OH is not formed. ] Q.2 [Sol. AlF3 is ionic and during formation of ionic bond octet of Al3+ as well as that of F¯ have been completed. AlCl3 and AlBr3 are coval;ent and hypovalent. ] Q.3 [Sol. (a) Trans 1,2-dimethyl cyclohexane equatorial–equatorial position (b) Trans 1,2-dimethyl cyclohexane equatorial–equatorial position (c) Trans 1,2-dimethyl cyclohexane axial, axial position ] Q.4 O O O [Sol. H F F S H F F H H 3 3 3 3 Hybridisation : sp Hybridisation : sp Hybridisation : sp Hybridisation : sp Bond angle between H2O & OF2 is compared on the basis of Bent's rule. FSF in SF2 >  HSH in H2S : From Drago's rule FOF in OF2 >  FSF in SF2 : On descending in a group for same substituents bond angle decreases. ] Q.5 [Sol. Pvr = K for diatomic gas  V2    =  r 7/5 P1   3 P2 =  V1    4 for monoatomic gas  Vnew  3 5/3 21  3  25 7/5 =  P1 V  =  Vnew = Vinitial ×   ] P2  initial  4 4 Code-B Page # 1
  • 6. CHEMISTRY Q.6 O O [Sol.   CH3 – C – O CH 3 – C = O O O CH 3– C – OH CH 3– C = OH + r : pure double fuel y : CH3 – OH pure single bond x : Partial double bond character p : Partial double bond character q : Partial single bond character ] Q.7 [Sol. The magnitude of negative charge developed at chlorine atoms in SiCl4 is more in comparision to negative charge developed at chlorine atoms in CCl4, it is due to more electronegativity difference between Si and Cl than that of between C and Cl. ] Q.8 [Sol. U =q+w = (40 × 200) + (–2 × 10 × 100) = 6000 J Ans. ] Q.9 O OH OH OH   [Sol. MgHg   H    H 2O  O OH  –H O ] Q.10 Cl Cl Cl I I [Sol. Cl Cl Cl Hybridisation of each I : sp3 d2 Planar structure Code-B Page # 2
  • 7. CHEMISTRY 2 bonds are of 3C – 4e– 4 bonds are of 2C – 2e– Cl Cl Cl Al Al Cl Cl Cl Hybridisation of each Al : sp3 Non planar structure 2 bonds are of 3C–4e– 4 bonds are of 2C–2e– ] Q.12 F F [Sol. (A) Xe F F Hybridisation of Xe : sp3 d2 All four Xe – F bonds are of equal lengths as they lie in same plane and are at 90° apart from each other. F F F P (B) F F Hybridisation : sp3d (P–F) axial > (P–F)equatorial (1.58 Å) (1.53 Å) F F S (C) F F Hybridisation : sp3d (S–F)axial > (S–F)equatorial ] Q.13 COOK [Sol.   ] It is optically COOK inactive due to plane of symmetry Code-B Q.14 Page # 3
  • 8. CHEMISTRY Q.15   dP P [Sol. dV V  P  dP dT   1 T  dV 1 T (   1) V ] dT Q.16 N [Sol. NH3 H H H Hybridisation of N : sp3 Bond angle HNH less than 109° l.p. exists in hybrid orbitals. P H H PH3 H Hybridisation of P : N.A.  HPH close towards 90° l.p. exists in s-orbital. dipole moment of pure orbital is zero. As l.p. in NH3 exists in hybrid orbital while in PH3 it exists in s-orbital, hence NH3 is stronger Lewis base than PH3. D of PH3 is less than that of NH3 as bond moment of N–H is greater than that of P–H because of nitrogen is more electronegative than phosphorus. ] Q.18 Cl Cl R R [Sol. No plane of symmetry. Optically active but having C2 axis of symmetry. . R R Cl Cl Presence of AoS doesn't matter for O. Activity. ] Code-B Page # 4
  • 9. CHEMISTRY PART-C Q.1 [Sol. 10 intermediate free radicals  Br   So 10 structural isomeric products are formed and total products including stereoisomers are 33. Br Br Br Br (4) (2) (4) (2) Br Br (2) (1) Br (4) (8) Br Br (2) Br (4) ] Code-B Page # 5
  • 10. MATHEMATICS PART-A Q.1 [Sol. P' (x) = f (x) g ' (x) + g (x) f ' (x) P' (2) = f (2) g ' (2) + g (2) f ' (2) = (1) (2) + 4 (–1) =–2 g ( x )f ' ( x )  f ( x ) g ' ( x ) Q ' (x) = g 2 (x ) ( 4)(1)  (1)( 2) 6 3 Q ' (2) = =– =– 16 16 8 C' (x) = f ' g( x )  g' ( x ) C ' (2) = f ' (4) · 2 =3·2=6 ] Q.2 cos x  x sin x [Sol.  x cos x dx ; put x cos x = t  (cos x – x sin x) dx = 2t dt  2 t dt = = 2t + C = 2 x cos x + C Ans.] t Q.3 a ( x1  y1 )  b ( x 2  y 2 )  c ( x 3  y 3 ) A(0, 0) abc [Sol. h+k= 3x+4y=0 4x+3y=0  9  15 (0)  5  3    (3  4) 7 15/4 5  15 15 4  4 4 4 4 0 = = 5  15 7 5 22 B C (3, – 9/4) (3,– 4) x=3 4 4 7/4 4 Alteantively: Equation of angle bisector of angle A 3x  4 y 4 x  3y   x=±y 5 5 equation of internal bisector is x = – y since h and k lie on the line x = – y  h + k = 0 Ans.] Q.4  x  [Sol. We have g(x) = f  f (x)    on differentiating w.r.t. x, we get  x   f ( x )  xf ' ( x )   1   f (1)  f ' (1)  g'(x) = f '   f (x)  ·    ;    f (1)  ×  f 2 (1)  f '(1) = f '        f 2 (x)      As f(1) = f '(1)  g'(1) = 0 ] Code-B Page # 1
  • 11. MATHEMATICS Q.5 [Sol. Let g (x) = P(x) – x. Hence g (x) vanishes at x = 1, 2, 3, 4, 5 and 6. Since it is a polynomial of degree six so g (x) = P(x) – x = (x – 1)(x – 2)(x – 3)(x – 4)(x – 5)(x – 6)  P(7) = 6 · 5 · 4 · 3 · 2 · 1 + 7 = 727 Ans.] Q.6 2  2 – 1  3x – 1  1  0x  domain is 0,   3 [Sol. 3 2 when x = 0 then y = 1; x = , y = 4. Hence range is [1, 4] Ans. Ans. ] 3 Q.7            2 sin cos = sin( + ) 2 cos cos  cos  0   [Sol. 2 2 2 2 2      sin = 2 sin cos 2 2 2 2  –1=0 2 2 cos 2 cos( + ) = 0   +  = 90°   = 90° = cot –1(0) Ans.] Q.8 x100 [Sol. Lim = 0 (using L'Hospital's Rule) x  ex  2 x2 Lim  cos  (1) x   x  2   1 cos t  Lim x 2  cos 1   Lim  ·4 2 2 = e x   x  = e x 0  t 2  ; put =t  x= x t = e–2 Ans.] Q.9 [Sol. Let 2k = A (cot3A – cot A) sin4A · 2 · sin 4 A cos A cos 2A 1  cot A(cot2A – 1) sin4A   sin 4A sin A sin A 4 1      sin 4A = 1  sin 2 k  2  = 1 [sin 22 + sin 23 + sin 24 + ....] =  sin 2 k  = 4 Ans.] 1 a 4 k 0 4 k 0 4 4 k 2  S Code-B Page # 2
  • 12. MATHEMATICS Q.10 [Sol.  f (x) is differentiable in (0, ) [TN, MOD] to be put hence Lim f ( x ) must exist and is finite x   y = f (x) must have a horizontal asymptote as x  then only Lim f ( x ) will exist x  If f (x) has an inclined asymptotes as y = x  1 then Lim f ( x )  x x   f (x) has a horizontal asymptote hence Lim f ' ( x )  x   (C) (also see figure for f (x) = tan–1x) e.g. Take the example given 1 (i) Let f (x) = x sin which is differentiable in (0, ) x  cos 1 1 1 f ' (x) = sin x x x  1  1 f (x) + f ' (x) =  x sin    sin  cos  1 1     x x  x    x    Lim 1 Lim 0 x  x  hence Lim f ( x )  L and Lim f ' ( x )  0 Ans. x  x  (ii) f (x) = tan–1x in (0, ) ] Q.11 [Sol. (m2 – 1)x2 – (m + 2)x + 1 = 0 1 If m = 1, 3x = 1  x= which lies in (–1, 1) 3 hence m = 1 is possible m = – 1, x = 1 which does not lie in (– 1, 1) hence m  – 1 For m  ± 1, f (x) = (m2 – 1)x2 – (m + 2)x + 1 = 0  f (1) · f (–1) < 0 (m2 – 1 + 1 – m – 2) (m2 – 1 + m + 2 + 1) < 0 (m2 – m – 2) (m2 + m + 2) < 0 but m2 + m + 2 > 0  m  R hence, m2 – m – 2 < 0 (m – 2)(m + 1) < 0  m  (–1, 2) if f (1) = 0 then m2 – m – 2 = 0; m = 2 or m = – 1 if m = 2 then equation is 3x2 – 4x + 1 = 0  3x2 – 3x – x + 1 = 0  3x(x – 1) – (x – 1) = 0 (x – 1)(3x – 1) = 0  x = 1/3 or = 1 hence m = 2 is also permissible. if f (–1) = 0  m2 + m + 2 = 0  no solution hence m  (– 1, 2] Ans.] Code-B Page # 3
  • 13. MATHEMATICS Q.12  2 dt dx [Sol. x =t  x  t   t  I = 2  (e  e ) cos e  e    (e  e ) cos e  e   dt t t t t t t  4  4 d  t  d  t  t   I = 2   sin  e  e    sin  e  e   dt t  dt  4  dt  4    t t   t  t     t  t  = 2 sin  e  e    sin  e  e   = 4 sin  e   cos e      4  4    4  sin(e )  cos(e ) =   t t t = 4 cos(e )· 2 2 cos(e  x ) sin(e x )  cos(e x )  C Ans. ] 2 Q.13 [Sol. Put [x] = x – {x} f(x) = (a – 2b + c) x2 + 2(b – c) x{x} + c{x}2 will be periodic only if a – 2b + c = 0 & b=c  a=b=c ] Q.14 [Sol. Statement-1 is false as it has a period equal to 2 and statement-2 is true 2  x  1  0  N.D. 1  x  0 f (x) =  0 0  x 1  period 2 Ans.  1 x  2  N.D. 0 2x3 ] Q.15 k 1 k 1  h 1 h 1 [Sol. =2  ( h  1)  ( h  1)  (k – 1)   =±2  h2 1  2(k  1) = ± 2  k – 1 = ± (h2 – 1) h2 1 (+) ve, k – 1 = h2 – 1  y = x2 Ans.  (A) (–) ve, k – 1 = 1 – h 2  y = 2 – x2 Ans.  (B)] Code-B Page # 4
  • 14. MATHEMATICS Q.16  1  n  x  [Sol.  2 · x1 4     x    x n 2 n 1  n C1 x ·  n C2 2 ·  ...... n n 1 1 C0 34 2x 4 x n n nC C1 C2 now 0, , are in A.P. . 2 4 n n ( n  1) n ( n  1) n ( n  1) 1, , ; n=1+  (n – 1) =  n=8 2 8 8 8  1 2 x 1 4  8 hence we have  x     2    r 8 r ·x 2 · r Tr+1 = 8 C x 4 r 2 for integral powers of x 8r r  must be an integer 2 4 16  2r  r 16  3r  must be an integer  r = 0, 4, 8 4 4  3 terms with integral power  (D)] Q.17 [Sol. x + y = k; AB = 1 k p= 2 ; 2 12  p 2 = 1  4(1 – p2) = 1  4p2 = 3 k2 4· 3 3   k=± =± 6 =3 k2 = Ans. ] 2 2 2 2 Q.18 [Sol. We have exy + y cos x = 2 ....(1) Put x = 0, we get 1+y=2  y=1  (0, 1) lies on the given curve. On differentiating (1) w.r.t. x, we get  dy   y  + y (–sin x) + cos x dy  exy  x  dx  =0 ....(2) dx As (0, 1) satisfying it, we get dy  0+1+ =0  y'(0) = –1 Ans.  (C) dx Code-B Page # 5
  • 15. MATHEMATICS Again differentiating (2), we get  d 2 y dy dy   dy   y cos x  sin x dy  2    xy d2y exy  x  x dx  y  –  dy   + cos x 2 – sin x dx dx  + e   dx  =0  dx  2 dx dx As (0, 1) satisfy it, we get  –2 + 1 – 1 + y''(0) = 0  y''(0) = 2 Ans.  (D)] PART-B Q.1 e x  1  e4x  1  e 4x dx ex Sol. Given I = dx and J = e2x · e x J=  1  e 4x dx e x (1  e 2 x )  I+J=  1  e4x dx put ex = t  exdx = dt 1 1 1 1 1 t I+J =  dt =    1 2 dt 2 t2  t 2 dt = 1 t4 t2  2 1 t    2 t  t  1 t y y =  t  2  dt  dy 1   t  put t t2 1  y2  2 2 tan 1 tan 1 dy 1 y 1 = = = 2 2 2t  e2x  1  tan 1    2e x   C 1 J+I= ....(1)  (P) 2   1  2 1 1 1 e (1  e ) 1 t  1       1  2 dt  t  t  y  x 2x 2 J–I= t 2 dt = + t dx = dt = +   |||ly 1 e 4x 1 t4 t2  2 1 t    2 t  t y 2  y2  2 = dy 1  J–I =+ ln 2 2 y 2 t  2 1 1 t2  2 t 1 1 e2x  2 ex  1 J–I=  t 1 · 2 · ....(2)  (Q) 2 2 t  2 t  1 2 2 e2x  2 ex  1 ln = = 2 2 t  2 1 t Code-B Page # 6
  • 16. MATHEMATICS (1) – (2) gives e2x  1 1 e2x  2 ex  1 tan 1  1 2 ex 2 2 e2x  2 ex  1 2I = 2 1  1 e 2 x  1 1 e 2 x  2 e x  1   tan  ·   2 e x 2 e 2 x  2 e x  1 I= (R) ] 2 2 PART-C Q.1  1 1 1 5 1 1  5 1 y 5 · y1 5·y 1 1 · y · y1 – ·y · y1 ·  · 1 1 y 1 [Sol. = 2; =2 5 5 5 y 5 y  1 1  1 1 2 2   y 5  y  5   100 y  y 5  y  5   4  100 y 1 1 2 2 y  10 y y5 5           2 2 y1 y1 y1 100 y 2 4(x2 – 1) = 2  y1 (x2 – 1) = 25y2 2  (x2 – 1)2y1y2 + y1 2x = 25 · 2 · yy1 2 y1 d2y dy (x2 – 1)y2 + xy1 = 25y or (x2 – 1) 2 +x = 25y  k = 25 Ans.] dx dx  n  3n  2n 1  (n 1) + n  n  2n  3  (n 1) Q.2 [Sol. Lim = n  n 3 3 2 2   n n 3  3n 2  2n  1  (n  1)3   n n 2  2n  3  (n  1) 2    = Lim + Lim n  (n 3  3n 2  2n  1) 2 / 3  (n  1) n 3  3n 2  2n  1  (n  1) 2 n  n  2n  3  (n  1) 1/ 3 2 n ( n ) n ( 2) = Lim + Lim n  (n 3  3n 2  2n  1) 2 / 3  (n  1) (n 3  3n 2  2n  1)1 / 3  (n  1) 2 n  n 2  2n  3  ( n  1) 1 2 1 2 =– +1= 111 11 = + ] 3 3 Code-B Page # 7