SlideShare a Scribd company logo
1
Sensors Characteristics
2
A. Static conditions 0
,
0 

dt
dy
dt
dx
B. Dynamic conditions )
(
))
(
(
0
t
x
dt
t
y
d
a
k
k
k 



3
A.1 Static characteristics
)
(x
f
y 
Sensors
x
y
Ko
x
K
y 

 K - scaling factor in linear systems
)
(x
f - polynomial, exponential, logarithmic function
or experimental determination
)
(x
f -result from modeling of the system (sensor)
-univocal process
4
A.1 Static characteristic
A.2 Invers characteristic (function)
Sensors
x
y
- Perturbative parameters like: humidity, temperature, altitude, ….
i

)
,..
,
( 1 n
x
f
y 


i

F = f -1
Sensors
x
y
f
F
]
[
);
1
(
])
[
( 0
0




 T
R
C
T
R 
]
[
;
)
(
])
[
( 0
0
0 C
R
R
R
R
T





f:
F:
5
]
[
]);
[
],
[
( 1 Hz
C
T
mm
x
f
y o


F = f -1
 
25
02
.
0
1000
1000
0106
.
0
]
[ 1
2
0
2













 
y
y
mm
x
])
[
(
1 
 R


A.1 Static characteristic of complex sensors-Vibrating Wire Jointmeter
A.2 Invers characteristic (function) Vibrating Wire Jointmeter
6
Static conditions
A.1, A.2 e.g.
A.1 Thermistor 1k A.2
A.1 Characteristic processing, linearization
   
   















max
max
max
max
min
1
min
1
2
1
2
1
1
;
;
,
,
:
...
;
;
,
,
:
y
y
x
x
y
y
x
x
y
y
x
x
y
y
x
x
n
n
n
n
n
]
,
[
]
,
[
: max
min
max
min y
y
x
x 

0
)
(
)
,
( 



 y
x
y
E
Approximation function of
experimental data
7
Static conditions, example
A.1 GP2Y0A02YK0F A.2
]
55
.
1
8
.
2
[ 

out
V
]
8
.
0
55
.
1
( 

out
V
]
45
.
0
8
.
0
( 

out
V
Γ2(Vout)= 119.22 - 52.40 ∙ Vout;
Γ1(Vout)=71.31-20.36∙ Vout ;
Γ3(Vout)= 223.88-183.19∙ Vout
8
Static conditions
A.1, A.2 e.g. GP2Y0A02YK0F
L
L
E C
C
C 
 3
,
2
,
1
L _ BSLF - Best Straight Line Fit
-Mathematical determination
- Software consideration (Curve expert)
9
Static conditions
A.3 Full Scale input range
Out of range - recalibration, saturate,
- new calibration function
A.4 Full Scale output range
[xmin…xmax]
GP2Y0A02YK0F
)
(x
f
y 
)
(x
f
y  ]
[ max
min y
y
y 

]
45
.
0
8
.
2
[ 

out
V
GP2Y0A02YK0F
cm
L ]
150
15
[ 

ymin  0 for xmin = 0, and: ymin = 0 when xmin  0.
x
y f1
f2
f3
f4
X min X max
Y min
y max
10
Static conditions
A.5 Sensitivity
Relative sensitivity
1
2
1
2
x
x
y
y
S



min
max
min
max
x
x
y
y
S


 Linear system, K=S
If “K” is higher is better,
but the range is lower.
i
i
x
x
dx
dy
S

 Non-linear system
n
x
m
y
II 

 2
:
order x
m
dx
dy
S 


 2











[x]
%
;
2
1
m
dx
dy
x
x
S
X

]
[
);
1
(
])
[
(
:
order 0
0




 T
R
C
T
R
I  


 0
R
dT
dR
S 




 
C
0
11
Static conditions
A.5 Sensitivity with external parameters
A.6 Resolution
- sensorial systems with digital unit
- depend by of ADC’s number of bits
)
,..
,
( 1 n
x
f
y 

  







i
i
f
x
x
f
y 
 i
f



- Parasitic sensitivity
T
K
l
K
T
S
l
l
T
S
T
S
l
R 






























 '
)
1
(
1
)
1
( 0
0
0
0 





   
C
K
m
K 


12
Static conditions
A.5 Error-Accuracy
- function approximation,
- Noise,
- Improper device,…
;
,
x x
X
X 



 
 x
X 

 X estimation of x - true value
100
[%]
or
100
[%] 





x
x
X
x
x
X

 ;
0

x
[%]
100




x
X
R
   ];
[
10
then,
10 6
%
6
% ppm
if ppm 

 



13
Static conditions
A.5.1 Offset Error
y’= f’(x)= f(x)+εoff
A.5.2 Gain Error
y = f(x) linear system
off
x
f 

 )
0
(
' )
0
(
'
)
( 


 x
f
x
f
y off

ideal
min
max
min
max
x
x
y
k
y



real
min
max
min
max '
'
'
x
x
y
k
y


 k
r
y
r
y
C
C
x
x
y
x
x
y
k 







min
max
min
max
min
max
min
max
)
'
'
(
'
, true
14
Static conditions
A.5.3 Non-linear Error
-Caused by approximation
A.5.6 Repeatability Error
..
3
3
2
2
)
(
1
0
)
(
1
0
0
)
(
x
k
x
k
x
g
x
k
k
x
g
x
k
k
i
i
x
i
k
x
f















[%]
100


 R
R


15
Problemes
A given sensor has a specified linearity error of 1 % of the
reading plus 0.1 % of the full-scale output (FSO). A second
sensor having the same measurement range has a specified
error of 0.5 % of the reading plus 0.2 % FSO. For what range
of values is the first sensor more accurate than the second
one? If the second sensor had a measurement range twice
that of the first one, for what range of values would it be the
more accurate?
16
Dinamic conditions
)
(
))
(
(
0
t
x
dt
t
y
d
a
k
k
k 



 
pol
s
a
s
a
s
a
s
X
s
Y
s
H
s
X
s
Y
a
s
a
s
a
t
y
a
dt
t
y
d
a
dt
t
y
d
a
L
k
k
k
k
k
k

























,
j
s
;
...
1
)
(
)
(
)
(
)
(
)
(
...
)
(
))
(
(
...
))
(
(
0
1
0
1
1
1
1


Exponential Growth
Oscilation
Damped oscillator
Over Damped
17
Dynamic conditions
 Potentiometer
 Thermistor
)
(
)
( 0 t
x
a
t
y 

)
(
)
(
))
(
(
0
1 t
x
t
y
a
dt
t
y
d
a 



y
sensitivit
static
1
constant,
time
1
)
(
)
(
)
(
)
(
1
)
(
))
(
(
0
0
1
0
0
1
a
k
a
a
s
k
s
X
s
Y
s
H
t
x
a
t
y
dt
t
y
d
a
a












),
(
1
)
( s
X
s
k
s
Y 













 1
1
1
)
(
s
k
s
k
s
s
k
s
Y  
)
(
)
( 1
s
Y
L
t
y 

)
1
(
)
( 
t
e
k
t
y




signal
step
unit
/
1
))
(
(
)
( s
t
x
L
s
X
if 

zero order
firs order
18
Dynamic conditions
Rising time ( tC )
Response time (tt)
Signal rise
(εM)
)
(
)
(
))
(
(
))
(
(
0
1
2
2
2 t
x
t
y
a
dt
t
y
d
a
dt
t
y
d
a 




 second order
19
LM92 temperature sensor
20
KTY81
21
GP2Y0A02YK0F
22
MPX53
23
S18U

More Related Content

Similar to Cours_01_characteristics.ppt

Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)
IJERD Editor
 
DSP.ppt
DSP.pptDSP.ppt
Presentació renovables
Presentació renovablesPresentació renovables
Presentació renovables
Jordi Cusido
 
COTS_poster
COTS_posterCOTS_poster
COTS_poster
Tiansong Wang
 
Presentation for the 21th EUROSTAR Users Conference - June 2013
Presentation for the 21th EUROSTAR Users Conference - June 2013 Presentation for the 21th EUROSTAR Users Conference - June 2013
Presentation for the 21th EUROSTAR Users Conference - June 2013
Antonios Arkas
 
Implementation of the fully adaptive radar framework: Practical limitations
Implementation of the fully adaptive radar framework: Practical limitationsImplementation of the fully adaptive radar framework: Practical limitations
Implementation of the fully adaptive radar framework: Practical limitations
Luis Úbeda Medina
 
Consider the system.docx
Consider the system.docxConsider the system.docx
Consider the system.docx
honeyarguelles
 
Introduction
IntroductionIntroduction
Introduction
butest
 
Section9 stochastic
Section9 stochasticSection9 stochastic
Section9 stochastic
cairo university
 
IIR filter
IIR filterIIR filter
IIR filter
ssuser2797e4
 
Using Principal Component Analysis to Remove Correlated Signal from Astronomi...
Using Principal Component Analysis to Remove Correlated Signal from Astronomi...Using Principal Component Analysis to Remove Correlated Signal from Astronomi...
Using Principal Component Analysis to Remove Correlated Signal from Astronomi...
CvilleDataScience
 
Self-configuring Classical Logic Gate Circuits using Genetic Programming in J...
Self-configuring Classical Logic Gate Circuits using Genetic Programming in J...Self-configuring Classical Logic Gate Circuits using Genetic Programming in J...
Self-configuring Classical Logic Gate Circuits using Genetic Programming in J...
Aritra Sarkar
 
Vu_HPSC2012_02.pptx
Vu_HPSC2012_02.pptxVu_HPSC2012_02.pptx
Vu_HPSC2012_02.pptx
QucngV
 
df_lesson_01.ppt
df_lesson_01.pptdf_lesson_01.ppt
df_lesson_01.ppt
kcharizmacruz
 
Lecture 07+08_1st & 2nd Order Control Systems (1).pptx
Lecture 07+08_1st & 2nd Order Control Systems (1).pptxLecture 07+08_1st & 2nd Order Control Systems (1).pptx
Lecture 07+08_1st & 2nd Order Control Systems (1).pptx
FaheemAbbas82
 
Digitalcontrolsystems
DigitalcontrolsystemsDigitalcontrolsystems
Digitalcontrolsystems
Satish Gottumukkala
 
residue
residueresidue
residue
Rob Arnold
 
EC8553 Discrete time signal processing
EC8553 Discrete time signal processing EC8553 Discrete time signal processing
EC8553 Discrete time signal processing
ssuser2797e4
 
4 matched filters and ambiguity functions for radar signals
4 matched filters and ambiguity functions for radar signals4 matched filters and ambiguity functions for radar signals
4 matched filters and ambiguity functions for radar signals
Solo Hermelin
 
Controllability of Linear Dynamical System
Controllability of  Linear Dynamical SystemControllability of  Linear Dynamical System
Controllability of Linear Dynamical System
Purnima Pandit
 

Similar to Cours_01_characteristics.ppt (20)

Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)
 
DSP.ppt
DSP.pptDSP.ppt
DSP.ppt
 
Presentació renovables
Presentació renovablesPresentació renovables
Presentació renovables
 
COTS_poster
COTS_posterCOTS_poster
COTS_poster
 
Presentation for the 21th EUROSTAR Users Conference - June 2013
Presentation for the 21th EUROSTAR Users Conference - June 2013 Presentation for the 21th EUROSTAR Users Conference - June 2013
Presentation for the 21th EUROSTAR Users Conference - June 2013
 
Implementation of the fully adaptive radar framework: Practical limitations
Implementation of the fully adaptive radar framework: Practical limitationsImplementation of the fully adaptive radar framework: Practical limitations
Implementation of the fully adaptive radar framework: Practical limitations
 
Consider the system.docx
Consider the system.docxConsider the system.docx
Consider the system.docx
 
Introduction
IntroductionIntroduction
Introduction
 
Section9 stochastic
Section9 stochasticSection9 stochastic
Section9 stochastic
 
IIR filter
IIR filterIIR filter
IIR filter
 
Using Principal Component Analysis to Remove Correlated Signal from Astronomi...
Using Principal Component Analysis to Remove Correlated Signal from Astronomi...Using Principal Component Analysis to Remove Correlated Signal from Astronomi...
Using Principal Component Analysis to Remove Correlated Signal from Astronomi...
 
Self-configuring Classical Logic Gate Circuits using Genetic Programming in J...
Self-configuring Classical Logic Gate Circuits using Genetic Programming in J...Self-configuring Classical Logic Gate Circuits using Genetic Programming in J...
Self-configuring Classical Logic Gate Circuits using Genetic Programming in J...
 
Vu_HPSC2012_02.pptx
Vu_HPSC2012_02.pptxVu_HPSC2012_02.pptx
Vu_HPSC2012_02.pptx
 
df_lesson_01.ppt
df_lesson_01.pptdf_lesson_01.ppt
df_lesson_01.ppt
 
Lecture 07+08_1st & 2nd Order Control Systems (1).pptx
Lecture 07+08_1st & 2nd Order Control Systems (1).pptxLecture 07+08_1st & 2nd Order Control Systems (1).pptx
Lecture 07+08_1st & 2nd Order Control Systems (1).pptx
 
Digitalcontrolsystems
DigitalcontrolsystemsDigitalcontrolsystems
Digitalcontrolsystems
 
residue
residueresidue
residue
 
EC8553 Discrete time signal processing
EC8553 Discrete time signal processing EC8553 Discrete time signal processing
EC8553 Discrete time signal processing
 
4 matched filters and ambiguity functions for radar signals
4 matched filters and ambiguity functions for radar signals4 matched filters and ambiguity functions for radar signals
4 matched filters and ambiguity functions for radar signals
 
Controllability of Linear Dynamical System
Controllability of  Linear Dynamical SystemControllability of  Linear Dynamical System
Controllability of Linear Dynamical System
 

Recently uploaded

Supermarket Floral Ad Roundup- Week 23 2024.pdf
Supermarket Floral Ad Roundup- Week 23  2024.pdfSupermarket Floral Ad Roundup- Week 23  2024.pdf
Supermarket Floral Ad Roundup- Week 23 2024.pdf
KarliNelson4
 
Supermarket Floral Ad Roundup- Week 22 2024.pdf
Supermarket Floral Ad Roundup- Week 22 2024.pdfSupermarket Floral Ad Roundup- Week 22 2024.pdf
Supermarket Floral Ad Roundup- Week 22 2024.pdf
KarliNelson4
 
怎么购买澳洲南十字星大学毕业证文凭毕业证原版一模一样
怎么购买澳洲南十字星大学毕业证文凭毕业证原版一模一样怎么购买澳洲南十字星大学毕业证文凭毕业证原版一模一样
怎么购买澳洲南十字星大学毕业证文凭毕业证原版一模一样
w6zyq7uj
 
Charles McClure | Retail Scavenger Hunt |
Charles McClure | Retail Scavenger Hunt |Charles McClure | Retail Scavenger Hunt |
Charles McClure | Retail Scavenger Hunt |
YOUNGDOE2
 
Introducing Bliss Point by Tinuiti Webinar
Introducing Bliss Point by Tinuiti WebinarIntroducing Bliss Point by Tinuiti Webinar
Introducing Bliss Point by Tinuiti Webinar
Tinuiti
 
原版复制澳洲莫纳什大学毕业证硕士学历原版一模一样
原版复制澳洲莫纳什大学毕业证硕士学历原版一模一样原版复制澳洲莫纳什大学毕业证硕士学历原版一模一样
原版复制澳洲莫纳什大学毕业证硕士学历原版一模一样
w6zyq7uj
 
快速办理(BC毕业证书)波士顿学院毕业证PDF成绩单一模一样
快速办理(BC毕业证书)波士顿学院毕业证PDF成绩单一模一样快速办理(BC毕业证书)波士顿学院毕业证PDF成绩单一模一样
快速办理(BC毕业证书)波士顿学院毕业证PDF成绩单一模一样
aezncfe
 
Social Media is Eating Retail- The $Trillion Trend You Can't Ignore.pdf
Social Media is Eating Retail- The $Trillion Trend You Can't Ignore.pdfSocial Media is Eating Retail- The $Trillion Trend You Can't Ignore.pdf
Social Media is Eating Retail- The $Trillion Trend You Can't Ignore.pdf
Jasper Colin
 

Recently uploaded (8)

Supermarket Floral Ad Roundup- Week 23 2024.pdf
Supermarket Floral Ad Roundup- Week 23  2024.pdfSupermarket Floral Ad Roundup- Week 23  2024.pdf
Supermarket Floral Ad Roundup- Week 23 2024.pdf
 
Supermarket Floral Ad Roundup- Week 22 2024.pdf
Supermarket Floral Ad Roundup- Week 22 2024.pdfSupermarket Floral Ad Roundup- Week 22 2024.pdf
Supermarket Floral Ad Roundup- Week 22 2024.pdf
 
怎么购买澳洲南十字星大学毕业证文凭毕业证原版一模一样
怎么购买澳洲南十字星大学毕业证文凭毕业证原版一模一样怎么购买澳洲南十字星大学毕业证文凭毕业证原版一模一样
怎么购买澳洲南十字星大学毕业证文凭毕业证原版一模一样
 
Charles McClure | Retail Scavenger Hunt |
Charles McClure | Retail Scavenger Hunt |Charles McClure | Retail Scavenger Hunt |
Charles McClure | Retail Scavenger Hunt |
 
Introducing Bliss Point by Tinuiti Webinar
Introducing Bliss Point by Tinuiti WebinarIntroducing Bliss Point by Tinuiti Webinar
Introducing Bliss Point by Tinuiti Webinar
 
原版复制澳洲莫纳什大学毕业证硕士学历原版一模一样
原版复制澳洲莫纳什大学毕业证硕士学历原版一模一样原版复制澳洲莫纳什大学毕业证硕士学历原版一模一样
原版复制澳洲莫纳什大学毕业证硕士学历原版一模一样
 
快速办理(BC毕业证书)波士顿学院毕业证PDF成绩单一模一样
快速办理(BC毕业证书)波士顿学院毕业证PDF成绩单一模一样快速办理(BC毕业证书)波士顿学院毕业证PDF成绩单一模一样
快速办理(BC毕业证书)波士顿学院毕业证PDF成绩单一模一样
 
Social Media is Eating Retail- The $Trillion Trend You Can't Ignore.pdf
Social Media is Eating Retail- The $Trillion Trend You Can't Ignore.pdfSocial Media is Eating Retail- The $Trillion Trend You Can't Ignore.pdf
Social Media is Eating Retail- The $Trillion Trend You Can't Ignore.pdf
 

Cours_01_characteristics.ppt

  • 2. 2 A. Static conditions 0 , 0   dt dy dt dx B. Dynamic conditions ) ( )) ( ( 0 t x dt t y d a k k k    
  • 3. 3 A.1 Static characteristics ) (x f y  Sensors x y Ko x K y    K - scaling factor in linear systems ) (x f - polynomial, exponential, logarithmic function or experimental determination ) (x f -result from modeling of the system (sensor) -univocal process
  • 4. 4 A.1 Static characteristic A.2 Invers characteristic (function) Sensors x y - Perturbative parameters like: humidity, temperature, altitude, …. i  ) ,.. , ( 1 n x f y    i  F = f -1 Sensors x y f F ] [ ); 1 ( ]) [ ( 0 0      T R C T R  ] [ ; ) ( ]) [ ( 0 0 0 C R R R R T      f: F:
  • 5. 5 ] [ ]); [ ], [ ( 1 Hz C T mm x f y o   F = f -1   25 02 . 0 1000 1000 0106 . 0 ] [ 1 2 0 2                y y mm x ]) [ ( 1   R   A.1 Static characteristic of complex sensors-Vibrating Wire Jointmeter A.2 Invers characteristic (function) Vibrating Wire Jointmeter
  • 6. 6 Static conditions A.1, A.2 e.g. A.1 Thermistor 1k A.2 A.1 Characteristic processing, linearization                        max max max max min 1 min 1 2 1 2 1 1 ; ; , , : ... ; ; , , : y y x x y y x x y y x x y y x x n n n n n ] , [ ] , [ : max min max min y y x x   0 ) ( ) , (      y x y E Approximation function of experimental data
  • 7. 7 Static conditions, example A.1 GP2Y0A02YK0F A.2 ] 55 . 1 8 . 2 [   out V ] 8 . 0 55 . 1 (   out V ] 45 . 0 8 . 0 (   out V Γ2(Vout)= 119.22 - 52.40 ∙ Vout; Γ1(Vout)=71.31-20.36∙ Vout ; Γ3(Vout)= 223.88-183.19∙ Vout
  • 8. 8 Static conditions A.1, A.2 e.g. GP2Y0A02YK0F L L E C C C   3 , 2 , 1 L _ BSLF - Best Straight Line Fit -Mathematical determination - Software consideration (Curve expert)
  • 9. 9 Static conditions A.3 Full Scale input range Out of range - recalibration, saturate, - new calibration function A.4 Full Scale output range [xmin…xmax] GP2Y0A02YK0F ) (x f y  ) (x f y  ] [ max min y y y   ] 45 . 0 8 . 2 [   out V GP2Y0A02YK0F cm L ] 150 15 [   ymin  0 for xmin = 0, and: ymin = 0 when xmin  0. x y f1 f2 f3 f4 X min X max Y min y max
  • 10. 10 Static conditions A.5 Sensitivity Relative sensitivity 1 2 1 2 x x y y S    min max min max x x y y S    Linear system, K=S If “K” is higher is better, but the range is lower. i i x x dx dy S   Non-linear system n x m y II    2 : order x m dx dy S     2            [x] % ; 2 1 m dx dy x x S X  ] [ ); 1 ( ]) [ ( : order 0 0      T R C T R I      0 R dT dR S        C 0
  • 11. 11 Static conditions A.5 Sensitivity with external parameters A.6 Resolution - sensorial systems with digital unit - depend by of ADC’s number of bits ) ,.. , ( 1 n x f y             i i f x x f y   i f    - Parasitic sensitivity T K l K T S l l T S T S l R                                 ' ) 1 ( 1 ) 1 ( 0 0 0 0           C K m K   
  • 12. 12 Static conditions A.5 Error-Accuracy - function approximation, - Noise, - Improper device,… ; , x x X X        x X    X estimation of x - true value 100 [%] or 100 [%]       x x X x x X   ; 0  x [%] 100     x X R    ]; [ 10 then, 10 6 % 6 % ppm if ppm       
  • 13. 13 Static conditions A.5.1 Offset Error y’= f’(x)= f(x)+εoff A.5.2 Gain Error y = f(x) linear system off x f    ) 0 ( ' ) 0 ( ' ) (     x f x f y off  ideal min max min max x x y k y    real min max min max ' ' ' x x y k y    k r y r y C C x x y x x y k         min max min max min max min max ) ' ' ( ' , true
  • 14. 14 Static conditions A.5.3 Non-linear Error -Caused by approximation A.5.6 Repeatability Error .. 3 3 2 2 ) ( 1 0 ) ( 1 0 0 ) ( x k x k x g x k k x g x k k i i x i k x f                [%] 100    R R  
  • 15. 15 Problemes A given sensor has a specified linearity error of 1 % of the reading plus 0.1 % of the full-scale output (FSO). A second sensor having the same measurement range has a specified error of 0.5 % of the reading plus 0.2 % FSO. For what range of values is the first sensor more accurate than the second one? If the second sensor had a measurement range twice that of the first one, for what range of values would it be the more accurate?
  • 16. 16 Dinamic conditions ) ( )) ( ( 0 t x dt t y d a k k k       pol s a s a s a s X s Y s H s X s Y a s a s a t y a dt t y d a dt t y d a L k k k k k k                          , j s ; ... 1 ) ( ) ( ) ( ) ( ) ( ... ) ( )) ( ( ... )) ( ( 0 1 0 1 1 1 1   Exponential Growth Oscilation Damped oscillator Over Damped
  • 17. 17 Dynamic conditions  Potentiometer  Thermistor ) ( ) ( 0 t x a t y   ) ( ) ( )) ( ( 0 1 t x t y a dt t y d a     y sensitivit static 1 constant, time 1 ) ( ) ( ) ( ) ( 1 ) ( )) ( ( 0 0 1 0 0 1 a k a a s k s X s Y s H t x a t y dt t y d a a             ), ( 1 ) ( s X s k s Y                1 1 1 ) ( s k s k s s k s Y   ) ( ) ( 1 s Y L t y   ) 1 ( ) (  t e k t y     signal step unit / 1 )) ( ( ) ( s t x L s X if   zero order firs order
  • 18. 18 Dynamic conditions Rising time ( tC ) Response time (tt) Signal rise (εM) ) ( ) ( )) ( ( )) ( ( 0 1 2 2 2 t x t y a dt t y d a dt t y d a       second order