SlideShare a Scribd company logo
1 of 1
Download to read offline
 The	
  rate	
  of	
  vaccina.on	
  of	
  all	
  age	
  classes,	
  p,	
  is	
  a	
  func.on	
  of	
  .me	
  
such	
  that:	
  
	
  
	
  
See	
  Figure	
  3a.	
  Rou.ne	
  vaccina.on	
  of	
  babies	
  occurs	
  at	
  a	
  separate	
  
rate	
  d.	
  Analysis	
  revealed	
  that	
  b	
  and	
  c	
  have	
  li@le	
  effect	
  on	
  the	
  
propor.on	
  of	
  individuals	
  vaccinated	
  (see	
  V	
  in	
  Figure	
  3b),	
  
therefore	
  only	
  a	
  is	
  varied	
  here.	
  
Parameters	
  &	
  Methods	
  
Introduc2on	
  
The	
  meningi.s	
  belt	
  –	
  stretching	
  from	
  Senegal	
  to	
  
Ethiopia	
  –	
  has	
  the	
  highest	
  incidence	
  of	
  meningococcal	
  
meningi.s	
  in	
  the	
  world.	
  Meningi.s	
  frequently	
  causes	
  death	
  
and	
  lifelong	
  disability,	
  as	
  well	
  as	
  serious	
  economic	
  drain	
  on	
  
impacted	
  countries.	
  Epidemics	
  are	
  seasonal,	
  but	
  in	
  the	
  past	
  
decade	
  have	
  become	
  more	
  frequent	
  and	
  irregular	
  and	
  
have	
  spread	
  to	
  countries	
  farther	
  south.	
  A	
  conjugate	
  
vaccine	
  against	
  meningococcal	
  serogroup	
  A,	
  which	
  causes	
  
most	
  invasive	
  disease	
  in	
  the	
  African	
  meningi.s	
  belt,	
  was	
  
introduced	
  in	
  2010	
  and	
  appears	
  to	
  have	
  significantly	
  
reduced	
  carriage	
  and	
  incidence	
  of	
  serogroup	
  A	
  
meningococcal	
  disease	
  in	
  vaccinated	
  communi.es	
  [1].	
  
However,	
  serogroup	
  W	
  caused	
  a	
  major	
  outbreak	
  in	
  2000	
  
and	
  2001	
  during	
  the	
  Hajj	
  –	
  a	
  Muslim	
  pilgrimage	
  to	
  Saudi	
  
Arabia	
  –	
  in	
  a	
  popula.on	
  of	
  individuals	
  vaccinated	
  against	
  
serogroups	
  A	
  and	
  C.	
  Pilgrims	
  brought	
  the	
  outbreak	
  strain	
  
back	
  to	
  Africa,	
  where	
  it	
  con.nues	
  to	
  circulate	
  [2].	
  With	
  the	
  
intensifica.on	
  of	
  serogroup	
  A	
  vaccina.on	
  in	
  the	
  meningi.s	
  
belt,	
  there	
  is	
  concern	
  that	
  serogroup	
  W	
  could	
  replace	
  
serogroup	
  A	
  as	
  the	
  major	
  cause	
  of	
  disease	
  in	
  the	
  region	
  [3].	
  
In	
  meningococcal	
  meningi.s,	
  epidemics	
  of	
  invasive	
  
disease	
  appear	
  to	
  be	
  driven	
  by	
  seasonal	
  fluctua.ons	
  in	
  
carriage	
  prevalence	
  and	
  epidemics	
  are	
  almost	
  always	
  
associated	
  with	
  high	
  levels	
  of	
  carriage	
  [4].	
  For	
  these	
  
reasons,	
  understanding	
  the	
  dynamics	
  of	
  carriage	
  is	
  key	
  to	
  
reducing	
  the	
  burden	
  of	
  invasive	
  disease.	
  	
  
Model	
  
Discussion	
  
These	
  results	
  suggest	
  that	
  rela.ve	
  transmissibility	
  of	
  
strains	
  is	
  important	
  in	
  choosing	
  op.mal	
  vaccina.on	
  levels.	
  
If	
  serogroup	
  W	
  is	
  more	
  transmissible	
  than	
  A,	
  vaccina.on	
  
may	
  actually	
  increase	
  overall	
  meningococcal	
  carriage	
  
because	
  vaccina.on	
  will	
  increase	
  the	
  number	
  of	
  
suscep.ble	
  individuals	
  available	
  for	
  coloniza.on	
  by	
  W,	
  the	
  
“stronger	
  compe.tor”	
  of	
  the	
  two.	
  If	
  serogroup	
  W	
  is	
  less	
  
transmissible	
  than	
  A,	
  vaccina.on	
  will	
  decrease	
  overall	
  
meningococcal	
  carriage.	
  
This	
  model	
  also	
  suggests	
  that	
  low	
  or	
  intermediate	
  
levels	
  of	
  vaccina.on	
  may	
  be	
  more	
  advantageous	
  in	
  
reducing	
  overall	
  carriage	
  than	
  high	
  vaccina.on.	
  For	
  a	
  given	
  
transmissibility	
  level,	
  increasing	
  vaccina.on	
  oen	
  results	
  in	
  
higher	
  overall	
  carriage.	
  
Interes.ngly,	
  vaccina.on	
  plays	
  the	
  greatest	
  role	
  in	
  
reducing	
  carriage	
  of	
  serogroup	
  A	
  where	
  A	
  and	
  W	
  are	
  
equally	
  transmissible.	
  This	
  is	
  probably	
  because	
  when	
  A	
  is	
  
less	
  transmissible	
  than	
  W,	
  strain	
  compe..on	
  plays	
  an	
  
important	
  role	
  in	
  decreasing	
  carriage	
  and	
  when	
  A	
  is	
  more	
  
transmissible	
  than	
  W,	
  both	
  vaccina.on	
  and	
  strain	
  
compe..on	
  are	
  less	
  effec.ve	
  at	
  reducing	
  carriage.	
  
It	
  is	
  important	
  to	
  note	
  that	
  although	
  increased	
  carriage	
  
is	
  linked	
  increased	
  rates	
  of	
  invasive	
  disease,	
  not	
  all	
  
serogroups	
  are	
  equally	
  virulent	
  and	
  therefore	
  all	
  types	
  of	
  
carriage	
  may	
  not	
  be	
  of	
  equal	
  concern.	
  If	
  serogroup	
  A	
  is	
  
significantly	
  more	
  virulent	
  than	
  serogroup	
  W,	
  higher	
  
vaccina.on	
  coverage	
  may	
  save	
  more	
  lives	
  even	
  though	
  it	
  
may	
  result	
  in	
  higher	
  rates	
  of	
  carriage.	
  
Using	
  an	
  age-­‐structured	
  version	
  of	
  this	
  model	
  would	
  
allow	
  for	
  targe.ng	
  of	
  certain	
  age	
  classes	
  for	
  vaccina.on	
  
and	
  differen.al	
  interac.on	
  between	
  age	
  groups.	
  	
  
This	
  analysis	
  could	
  also	
  benefit	
  from	
  the	
  use	
  of	
  a	
  
neutral	
  null	
  model,	
  which	
  displays	
  both	
  ecological	
  
neutrality,	
  meaning	
  that	
  the	
  number	
  of	
  hosts	
  infected	
  by	
  a	
  
par.cular	
  number	
  of	
  strains	
  (0,	
  1,	
  2…)	
  is	
  independent	
  of	
  
strain	
  iden.ty,	
  and	
  popula.on	
  gene.c	
  neutrality,	
  meaning	
  
that	
  it	
  is	
  possible	
  to	
  choose	
  parameters	
  that	
  guarantee	
  a	
  
stable	
  arbitrary	
  frequency	
  of	
  strains	
  [6].	
  The	
  advantage	
  of	
  
the	
  neutral	
  null	
  model	
  is	
  that	
  it	
  does	
  not	
  assume	
  stable	
  
coexistence	
  of	
  strains,	
  and	
  therefore	
  is	
  not	
  biased	
  towards	
  
predic.on	
  of	
  serotype	
  replacement	
  or	
  non-­‐replacement.	
  
Finally,	
  given	
  the	
  importance	
  of	
  rela.ve	
  transmissibility	
  
in	
  selec.ng	
  an	
  op.mal	
  vaccina.on	
  strategy,	
  it	
  would	
  be	
  
valuable	
  to	
  derive	
  key	
  epidemiological	
  parameters	
  β	
  
(transmissibility)	
  and	
  r	
  (rate	
  of	
  recovery	
  from	
  carriage)	
  for	
  
both	
  serogroups.	
  
It	
  should	
  be	
  emphasized	
  that	
  this	
  model	
  does	
  not	
  
produce	
  quan.ta.ve	
  predic.ons,	
  but	
  instead	
  provides	
  
qualita.ve	
  insight	
  into	
  the	
  effect	
  of	
  vaccina.on	
  on	
  the	
  
compe..ve	
  landscape.	
  
References	
  
1.Daugla,	
  D.	
  et	
  al.	
  Effect	
  of	
  a	
  serogroup	
  A	
  meningococcal	
  conjugate	
  vaccine	
  (PsA–TT)	
  
on	
  serogroup	
  A	
  meningococcal	
  meningi.s	
  and	
  carriage	
  in	
  Chad:	
  a	
  community	
  study.	
  
The	
  Lancet	
  383,	
  40–47	
  (2014).	
  
2.Harrison,	
  L.	
  H.,	
  Tro@er,	
  C.	
  L.	
  &	
  Ramsay,	
  M.	
  E.	
  Global	
  epidemiology	
  of	
  meningococcal	
  
disease.	
  Vaccine	
  27,	
  Supplement	
  2,	
  B51–B63	
  (2009).	
  
3.Caugant,	
  D.	
  A.	
  &	
  Nicolas,	
  P.	
  Molecular	
  surveillance	
  of	
  meningococcal	
  meningi.s	
  in	
  
Africa.	
  Vaccine	
  25,	
  Supplement	
  1,	
  A8–A11	
  (2007).	
  
4.Irving,	
  T.	
  J.,	
  Blyuss,	
  K.	
  B.,	
  Colijn,	
  C.	
  &	
  Tro@er,	
  C.	
  L.	
  Modelling	
  meningococcal	
  
meningi.s	
  in	
  the	
  African	
  meningi.s	
  belt.	
  Epidemiol.	
  Infect.	
  140,	
  897–905	
  (2012).	
  
5.Tro@er,	
  C.	
  L.,	
  Gay,	
  N.	
  J.	
  &	
  Edmunds,	
  W.	
  J.	
  Dynamic	
  Models	
  of	
  Meningococcal	
  
Carriage,	
  Disease,	
  and	
  the	
  Impact	
  of	
  Serogroup	
  C	
  Conjugate	
  Vaccina.on.	
  Am.	
  J.	
  
Epidemiol.	
  162,	
  89–100	
  (2005).	
  
6.Lipsitch,	
  M.,	
  Colijn,	
  C.,	
  Cohen,	
  T.,	
  Hanage,	
  W.	
  P.	
  &	
  Fraser,	
  C.	
  No	
  coexistence	
  for	
  free:	
  
Neutral	
  null	
  models	
  for	
  mul.strain	
  pathogens.	
  Epidemics	
  1,	
  2–13	
  (2009).	
  
	
  
Op:mal	
  Vaccina:on	
  for	
  Meningococcal	
  Serogroup	
  A	
  in	
  the	
  African	
  Meningi:s	
  Belt	
  	
  
Laura	
  Cooper	
  
ENV	
  304	
  Disease	
  Ecology,	
  Economics	
  and	
  Policy	
  
Name	
   Meaning	
   Value	
  Range	
   Unit	
   Comment	
  
μ	
   Natural	
  birth	
  and	
  death	
  rate	
   0.00032	
   1/week	
   Fixed.	
  Life	
  expectancy	
  around	
  60	
  years.	
  	
  
βA	
   Transmission	
  rate	
  of	
  carriage	
   0.113	
   1/week	
   Fixed.	
  Calculated	
  from	
  es.mated	
  R0	
  of	
  1.36.	
  [5]	
  
βW	
   Transmission	
  rate	
  of	
  carriage	
   0.103-­‐0.123	
   1/week	
   Considered	
  values	
  smaller	
  and	
  larger	
  than	
  βA	
  that	
  
did	
  not	
  result	
  in	
  compe..ve	
  exclusion	
  of	
  strains.	
  
rA,	
  rW	
   Rate	
  of	
  loss	
  of	
  carriage	
   0.0833	
   1/week	
   Fixed.	
  Carriage	
  lasts	
  12	
  weeks.	
  [5]	
  
d	
   Propor.on	
  of	
  newborns	
  
vaccinated	
  
0-­‐1	
   None	
   No	
  newborn	
  vaccina.on	
  used	
  for	
  calcula.on	
  of	
  
end	
  states	
  –	
  li@le	
  change	
  in	
  carriage	
  reduc.on.	
  
γ	
   Rate	
  of	
  loss	
  of	
  vaccine	
  
protec.on	
  
0.0038	
   1/week	
   Fixed.	
  5	
  years	
  of	
  protec.on.	
  
p	
   Rate	
  of	
  vaccina.on	
  of	
  general	
  
popula.on	
  
See	
  Table	
  3	
  
and	
  Figure	
  3a	
  
1/week	
   	
  See	
  below.	
  
ϵ	
   Seasonal	
  forcing	
  term	
   0-­‐1	
   None	
   No	
  seasonal	
  forcing	
  used	
  for	
  calcula.on	
  of	
  end	
  
states.	
  
φ	
   Vaccine	
  efficacy	
  against	
  
carriage	
  acquisi.on	
  
0.6	
   None	
   Fixed.	
  Vaccine	
  protects	
  against	
  90%	
  of	
  carriage	
  
acquisi.on.	
  
Table	
  2.	
  Carriage	
  Model	
  Parameters	
  
Class	
   Meaning	
  
S	
   Unvaccinated	
  suscep.ble	
  individuals	
  
SV	
   Vaccinated	
  suscep.ble	
  individuals	
  
A	
   Unvaccinated	
  individuals	
  carrying	
  serogroup	
  A	
  
AV	
   Vaccinated	
  individuals	
  carrying	
  serogroup	
  A	
  
W	
   Unvaccinated	
  individuals	
  carrying	
  serogroup	
  W	
  
WV	
   Vaccinated	
  individuals	
  carrying	
  serogroup	
  W	
  
Table	
  1.	
  Carriage	
  model	
  classes	
  
! ! = ! ∗ exp
− ! − ! !
2!!
!
!
! ! = !!(1 + ! ∗ cos 2!" )!
!
!"
!"
= !! ! ! ! + !" + !"# − (!! + ! + !(!))!!
!
!"#
!"
= ! ! ! + 1 − ! !! ! !" ! + !" − ! + !! + ! !"!
!
!"
!"
= !! ! ! ! + !" + !"! − (!! + ! + !(!))!!
!
!"#
!"
= ! ! ! + !! ! !" ! + !" − ! + !! + ! !"!
!
!"
!"
= ! 1 − ! + !!! + !!! + !"# − !! ! ! ! + !" − !! ! ! ! + !" − !"!
!
!"#
!"
= !! + !!!" + !!!" − 1 − ! !! ! !! ! + !" − !! ! !! ! + !" − (! + !)!!!
!
!!
!"
= !! + !(!)(1 − !) − (! + !)!!
!
!
Name! Meaning! Value!
Range!
Unit! Comment!
!! Natural!birth!and!death!rate! 0.00032! 1/week! Fixed.!Life!expectancy!around!
60!years.!
!!, !!! Transmission!rate!of!carriage! 0.113! 1/week! Fixed.!Calculated!from!
estimated!R0!of!1.36.!
!!,!!!! Rate!of!loss!of!carriage! 0.0833! 1/week! Fixed.!Carriage!lasts!12!weeks.!
d! Proportion!of!newborns!
vaccinated!
0L1! None! !
!! Rate!of!loss!of!vaccine!protection! 0.0038! 1/week! Fixed.!5!years!of!protection.!
p! Rate!of!vaccination!of!general!
population!
See!! 1/week! !
!! Seasonal!forcing!term! 0L1! None! !
!! Vaccine!efficacy!against!carriage!
acquisition!
0L1! None! !
!
Name	
   Value	
  
Range	
  
Meaning	
  
a	
   0-­‐0.1	
   Maximum	
  vaccina.on	
  effort	
  
b	
   30	
   “Lag”	
  –	
  propor.onal	
  to	
  start	
  
.me	
  of	
  campaign	
  
c	
   10	
   Propor.onal	
  to	
  length	
  of	
  
campaign	
  
Table	
  3.	
  VaccinaFon	
  campaign	
  model	
  parameters	
  [	
  p(t)	
  ]	
  
0 100 200 300 400
0.00.20.40.6
Weeks
Proportion
V
A
W
0 100 200 300 400
0.000.030.06
Weeks
p
Figure	
  3.	
  Time	
  series	
  predicFon	
  
a.	
  p,	
  the	
  rate	
  of	
  vaccina.on,	
  as	
  a	
  
func.on	
  of	
  .me.	
  Parameter	
  values	
  
–	
  a=.05,	
  b=30,	
  c=10	
  	
  
b.	
  Propor.on	
  vaccinated	
  shown	
  in	
  
black	
  (V).	
  Carriers	
  of	
  W	
  shown	
  in	
  
blue	
  and	
  carriers	
  of	
  A	
  shown	
  in	
  
red,	
  with	
  and	
  without	
  seasonal	
  
forcing.	
  Parameter	
  values	
  –	
  	
  
βW=0.113,	
  d=0,	
  ϵ=0.8	
  or	
  0,	
  φ=0.6,	
  	
  
A0=W0=0.13.	
  
	
  	
  
a.	
  Percent	
  Decrease	
  in	
  Carriage	
  of	
  Serogroup	
  A	
   c.	
  Percent	
  Increase	
  in	
  Carriage	
  of	
  Serogroup	
  W	
   d.	
  Percent	
  Change	
  in	
  Overall	
  Carriage	
  
a,	
  c,	
  and	
  d	
  calculated	
  in	
  rela.on	
  to	
  carriage	
  levels	
  aer	
  zero	
  vaccina.on.	
  Beta	
  W:Beta	
  A	
  on	
  the	
  horizontal	
  axis	
  is	
  the	
  ra.o	
  of	
  rela.ve	
  transmissibility	
  of	
  the	
  serogroups:	
  at	
  BetaW:BetaA	
  equals	
  1,	
  the	
  
serogroups	
  are	
  assumed	
  to	
  be	
  equally	
  transmissible.	
  On	
  the	
  ver.cal	
  axis	
  is	
  the	
  maximum	
  popula.on	
  vaccine	
  coverage	
  level	
  achieved	
  before	
  waning	
  (see	
  Fig.3a).	
  Model	
  was	
  run	
  for	
  the	
  equivalent	
  of	
  
5	
  years.	
  Parameter	
  values	
  –d=0,	
  φ=.9,	
  A0=W0=0.13.	
  	
  a.	
  Increased	
  vaccina.on	
  results	
  in	
  decreased	
  carriage	
  of	
  serogroup	
  A.	
  When	
  W	
  is	
  less	
  transmissible	
  than	
  A	
  (BetaW:BetaA	
  less	
  than	
  1)	
  reduc.on	
  in	
  
carriage	
  of	
  A	
  requires	
  higher	
  levels	
  of	
  vaccina.on.	
  The	
  greatest	
  reduc.ons	
  in	
  carriage	
  occur	
  where	
  A	
  and	
  W	
  are	
  equally	
  transmissible.	
  b.	
  Carriage	
  of	
  serogroup	
  W	
  increases	
  with	
  increasing	
  
vaccina.on	
  against	
  serogroup	
  A	
  and	
  with	
  increasing	
  transmissibility	
  of	
  serogroup	
  W.	
  	
  c.	
  Vaccina.on	
  has	
  the	
  greatest	
  effect	
  on	
  carriage	
  of	
  W	
  when	
  transmissibility	
  is	
  low.	
  When	
  serogroup	
  W	
  is	
  more	
  
transmissible	
  than	
  A,	
  vaccina.on	
  results	
  in	
  li@le	
  addi.onal	
  increase	
  in	
  carriage.	
  d.	
  	
  In	
  most	
  cases,	
  vaccina.on	
  results	
  in	
  a	
  net	
  decrease	
  in	
  meningococcal	
  carriage.	
  At	
  high	
  levels	
  of	
  vaccina.on	
  where	
  
W	
  is	
  moderately	
  more	
  transmissible	
  than	
  A	
  (darkest	
  green),	
  vaccina.on	
  results	
  in	
  a	
  small	
  net	
  increase	
  in	
  carriage.	
  
b.	
  Final	
  Carriage	
  of	
  Serogroup	
  W	
  
Figure	
  5.	
  Effect	
  of	
  VaccinaFon	
  Depends	
  on	
  Coverage	
  and	
  RelaFve	
  Transmissibility	
  of	
  Serogroup	
  W	
  Carriage	
  	
  	
  	
  
Results	
  
a.	
  
b.	
  
! ! = !!(1 + ! ∗ cos 2!" )!
!
!"
!"
= !! ! ! ! + !" + !"# − (!! + ! + !(!))!!
!
!"#
!"
= ! ! ! + 1 − ! !! ! !" ! + !" − ! + !! + ! !"!
!
!"
!"
= !! ! ! ! + !" + !"# − (!! + ! + !(!))!!
!
!"#
!"
= ! ! ! + !! ! !" ! + !" − ! + !! + ! !"!
!
!"
!"
= ! 1 − ! + !!! + !!! + !"# − !! ! ! ! + !" !!
−!! ! ! ! + !" − !"!
!
!"#
!"
= !" + !!!" + !!!" − 1 − ! !! ! !" ! + !" !!
−!! ! !" ! + !" − (! + !)!"!
!
Figure	
  2.	
  Carriage	
  model	
  equaFons	
  
A	
  
S	
  
W	
  
AV	
  
SV	
  
WV	
  
Carriage	
  
status	
  
Vaccina.on	
  status	
  
p	
  
ϒ	
  
p	
  
ϒ	
  
p	
  
ϒ	
  
βA	
  rA	
   (1-­‐φ)βA	
  rA	
  
βW	
  rW	
  βW	
  rW	
  
μ(1-­‐d)	
   μd	
  
To	
  inves.gate	
  the	
  effects	
  of	
  serogroup	
  A	
  vaccina.on	
  on	
  
meningococcal	
  disease	
  in	
  a	
  community	
  with	
  circula.on	
  of	
  
both	
  serogroups	
  A	
  and	
  W,	
  a	
  compartment	
  model	
  of	
  
carriage	
  and	
  vaccina.on	
  was	
  constructed.	
  This	
  model	
  
assumes	
  no	
  co-­‐carriage	
  of	
  strains	
  [5].	
  The	
  vaccine	
  is	
  known	
  
to	
  protect	
  against	
  acquisi.on	
  of	
  serogroup	
  A	
  carriage	
  [1]	
  
but	
  no	
  cross-­‐protec.ve	
  immunity	
  is	
  assumed	
  [5].	
  
Figure	
  1.	
  Compartment	
  model	
  of	
  carriage	
  transmission	
  
and	
  vaccinaFon	
  
Li@le	
  serogroup-­‐specific	
  data	
  is	
  available	
  on	
  key	
  epidemiological	
  parameters,	
  although	
  these	
  could	
  be	
  
es.mated	
  from	
  private	
  serogroup-­‐specific	
  incidence	
  data	
  as	
  part	
  of	
  a	
  further	
  inves.ga.on.	
  For	
  this	
  
simula.on,	
  the	
  same	
  general	
  parameters	
  were	
  used	
  as	
  baseline	
  values	
  for	
  both	
  serogroups	
  A	
  and	
  W	
  and	
  
the	
  effects	
  of	
  poten.al	
  differences	
  in	
  transmissibility	
  of	
  the	
  two	
  were	
  examined.	
  The	
  effect	
  of	
  two	
  other	
  
parameters	
  not	
  shown	
  below	
  were	
  also	
  inves.gated.	
  Varying	
  vaccine	
  efficacy(φ)	
  versus	
  rela.ve	
  
transmissibility	
  produces	
  similar	
  outcomes	
  as	
  those	
  presented	
  in	
  Figure	
  5.	
  Rou.ne	
  vaccina.on	
  of	
  
newborns	
  (d)	
  decreased	
  the	
  rate	
  of	
  waning	
  of	
  popula.on-­‐wide	
  immunity	
  following	
  the	
  campaign,	
  but	
  had	
  
li@le	
  effect	
  on	
  carriage,	
  probably	
  because	
  of	
  the	
  rela.vely	
  short	
  .me	
  frame	
  considered	
  (five	
  years).	
  
	
  
	
  
85% 90% 95%
Carriage 6 Weeks Post Vaccination
Phi
0.000000.00015
Figure	
  4.	
  Carriage	
  of	
  A,	
  Six	
  Weeks	
  Post-­‐VaccinaFon	
  
Vaccine	
  efficacy,	
  φ,	
  was	
  es.mated	
  from	
  data	
  documen.ng	
  the	
  post-­‐vaccina.on	
  
reduc.on	
  in	
  carriage	
  [1].	
  Model	
  outputs	
  (green)	
  were	
  closest	
  to	
  observed	
  data	
  (black)	
  at	
  
a	
  vaccine	
  efficacy	
  of	
  90%.	
  
0.72
0.68
0.63
0.58
0.52
0.44
0.36
0.26
0.14
0
accineCoverage
% Change in Carriage
−20 −10 0
0.72
0.68
0.63
0.58
0.52
0.44
0.36
0.26
0.14
0
ccineCoverage
0 100 300 500
0.91
0.92
0.94
0.95
0.96
0.97
0.98
0.99
1.01
1.02
1.03
1.04
1.05
1.06
1.08
1.09
0.86
0.85
0.83
0.81
0.78
0.75
0.72
0.68
0.63
0.58
0.52
0.44
0.36
0.26
0.14
0
Beta W:Beta A
VaccineCoverage
0 100 300 500
0.91
0.92
0.94
0.95
0.96
0.97
0.98
0.99
1.01
1.02
1.03
1.04
1.05
1.06
1.08
1.09
0.86
0.85
0.83
0.81
0.78
0.75
0.72
0.68
0.63
0.58
0.52
0.44
0.36
0.26
0.14
0
Beta W:Beta A
VaccineCoverage
−20 −10 0
0.91
0.92
0.94
0.95
0.96
0.97
0.98
0.99
1.01
1.02
1.03
1.04
1.05
1.06
1.08
1.09
0.86
0.85
0.83
0.81
0.78
0.75
0.72
0.68
0.63
0.58
0.52
0.44
0.36
0.26
0.14
0
Beta W:Beta A
VaccineCoverage
0 20 40 60 80
0.72
0.68
0.63
0.58
0.52
0.44
0.36
0.26
0.14
0
ccineCoverage
0 20 40 60 80
>99.995%	
  
>99.99%	
  
>99%	
  
>95%	
  
>90%	
  >80%	
  
>50%	
  
0.91
0.92
0.94
0.95
0.96
0.97
0.98
0.99
1.01
1.02
1.03
1.04
1.05
1.06
1.08
1.09
0.86
0.85
0.83
0.81
0.78
0.75
0.72
0.68
0.63
0.58
0.52
0.44
0.36
0.26
0.14
0
Beta W:Beta A
VaccineCoverage
Final Carriage of W
0.05 0.15 0.25
0.72
0.68
0.63
0.58
0.52
0.44
0.36
0.26
0.14
0
ccineCoverage
Final Carriage of W
0.05 0.15 0.25
Conclusions	
  
What	
  are	
  the	
  effects	
  of	
  serogroup	
  A	
  vaccinaFon	
  on	
  carriage	
  
of	
  serogroup	
  A?	
  
•  Higher	
  vaccina.on	
  decreases	
  carriage	
  of	
  A	
  	
  regardless	
  of	
  
rela.ve	
  transmissibility.	
  
•  Carriage	
  of	
  A	
  is	
  decreased	
  most	
  where	
  W	
  is	
  more	
  
transmissible	
  than	
  A.	
  
•  Vaccina.on	
  contributes	
  most	
  to	
  the	
  decrease	
  in	
  carriage	
  
of	
  A	
  where	
  W	
  and	
  A	
  are	
  equally	
  transmissible.	
  
On	
  carriage	
  of	
  serogroup	
  W?	
  
•  Carriage	
  of	
  W	
  increases	
  with	
  increasing	
  vaccine	
  coverage	
  
and	
  where	
  W	
  is	
  more	
  transmissible	
  than	
  A.	
  
•  Vaccina.on	
  contributes	
  most	
  to	
  the	
  increase	
  in	
  carriage	
  
where	
  W	
  is	
  less	
  transmissible	
  than	
  A.	
  
On	
  overall	
  carriage?	
  
•  In	
  most	
  cases,	
  vaccina.on	
  results	
  in	
  modest	
  decreases	
  in	
  
overall	
  carriage.	
  
•  Greatest	
  decreases	
  in	
  carriage	
  occur	
  at	
  lower	
  vaccina.on	
  
coverage	
  and	
  where	
  W	
  is	
  less	
  transmissible	
  than	
  A.	
  

More Related Content

What's hot

Daniel Strickman-Enfermedades transmitidas por vectores
Daniel Strickman-Enfermedades transmitidas por vectoresDaniel Strickman-Enfermedades transmitidas por vectores
Daniel Strickman-Enfermedades transmitidas por vectoresFundación Ramón Areces
 
Using a participatory approach to characterize HPAI outbreaks in Indonesian v...
Using a participatory approach to characterize HPAI outbreaks in Indonesian v...Using a participatory approach to characterize HPAI outbreaks in Indonesian v...
Using a participatory approach to characterize HPAI outbreaks in Indonesian v...ILRI
 
Martin's December 2015 CV
Martin's December 2015 CVMartin's December 2015 CV
Martin's December 2015 CVMartin Grunnill
 
8 global impact of rv vaccines expt rev vaccines 2010
8 global impact of rv vaccines expt rev vaccines 20108 global impact of rv vaccines expt rev vaccines 2010
8 global impact of rv vaccines expt rev vaccines 2010Ruth Vargas Gonzales
 
Ebola_2014_outbreak
Ebola_2014_outbreakEbola_2014_outbreak
Ebola_2014_outbreakDagmara Grad
 
Genomic epidemiology of Campylobacter jejuni associated with asymptomatic pae...
Genomic epidemiology of Campylobacter jejuni associated with asymptomatic pae...Genomic epidemiology of Campylobacter jejuni associated with asymptomatic pae...
Genomic epidemiology of Campylobacter jejuni associated with asymptomatic pae...Ben Pascoe
 
Prevalence of Malaria Parasites Amongst Pregnant Women in Calabar Cross River...
Prevalence of Malaria Parasites Amongst Pregnant Women in Calabar Cross River...Prevalence of Malaria Parasites Amongst Pregnant Women in Calabar Cross River...
Prevalence of Malaria Parasites Amongst Pregnant Women in Calabar Cross River...Healthcare and Medical Sciences
 
4.SANITATION VS VACCINATION - Infectious Diseases and Social Change, Vitamin ...
4.SANITATION VS VACCINATION - Infectious Diseases and Social Change, Vitamin ...4.SANITATION VS VACCINATION - Infectious Diseases and Social Change, Vitamin ...
4.SANITATION VS VACCINATION - Infectious Diseases and Social Change, Vitamin ...Antonio Bernard
 
Relations between pathogens, hosts and environment
Relations between pathogens, hosts and environmentRelations between pathogens, hosts and environment
Relations between pathogens, hosts and environmentEFSA EU
 
Dr. Amy Kinsley - Movement Matters: Using Swine Shipment Patterns to Identify...
Dr. Amy Kinsley - Movement Matters: Using Swine Shipment Patterns to Identify...Dr. Amy Kinsley - Movement Matters: Using Swine Shipment Patterns to Identify...
Dr. Amy Kinsley - Movement Matters: Using Swine Shipment Patterns to Identify...John Blue
 
120 EXPERT Opinions on Coronavirus (COVID-19)- How the Mass Media Exaggerated...
120 EXPERT Opinions on Coronavirus (COVID-19)- How the Mass Media Exaggerated...120 EXPERT Opinions on Coronavirus (COVID-19)- How the Mass Media Exaggerated...
120 EXPERT Opinions on Coronavirus (COVID-19)- How the Mass Media Exaggerated...Antonio Bernard
 
Livestock disease drivers, ecology and pathogen evolution
Livestock disease drivers, ecology and pathogen evolutionLivestock disease drivers, ecology and pathogen evolution
Livestock disease drivers, ecology and pathogen evolutionEFSA EU
 
epidemiology report on The Coming Plague by Laurie Garrett
epidemiology report on The Coming Plague by Laurie Garrettepidemiology report on The Coming Plague by Laurie Garrett
epidemiology report on The Coming Plague by Laurie GarrettJames Nichols
 
Social dimensions of zoonoses in interdisciplinary research
Social dimensions of zoonoses in interdisciplinary researchSocial dimensions of zoonoses in interdisciplinary research
Social dimensions of zoonoses in interdisciplinary researchNaomi Marks
 

What's hot (20)

Daniel Strickman-Enfermedades transmitidas por vectores
Daniel Strickman-Enfermedades transmitidas por vectoresDaniel Strickman-Enfermedades transmitidas por vectores
Daniel Strickman-Enfermedades transmitidas por vectores
 
Using a participatory approach to characterize HPAI outbreaks in Indonesian v...
Using a participatory approach to characterize HPAI outbreaks in Indonesian v...Using a participatory approach to characterize HPAI outbreaks in Indonesian v...
Using a participatory approach to characterize HPAI outbreaks in Indonesian v...
 
Martin's December 2015 CV
Martin's December 2015 CVMartin's December 2015 CV
Martin's December 2015 CV
 
8 global impact of rv vaccines expt rev vaccines 2010
8 global impact of rv vaccines expt rev vaccines 20108 global impact of rv vaccines expt rev vaccines 2010
8 global impact of rv vaccines expt rev vaccines 2010
 
Ebola_2014_outbreak
Ebola_2014_outbreakEbola_2014_outbreak
Ebola_2014_outbreak
 
journal.pone.0082246
journal.pone.0082246journal.pone.0082246
journal.pone.0082246
 
Genomic epidemiology of Campylobacter jejuni associated with asymptomatic pae...
Genomic epidemiology of Campylobacter jejuni associated with asymptomatic pae...Genomic epidemiology of Campylobacter jejuni associated with asymptomatic pae...
Genomic epidemiology of Campylobacter jejuni associated with asymptomatic pae...
 
Gurjav IGE 2015
Gurjav IGE 2015Gurjav IGE 2015
Gurjav IGE 2015
 
Prevalence of Malaria Parasites Amongst Pregnant Women in Calabar Cross River...
Prevalence of Malaria Parasites Amongst Pregnant Women in Calabar Cross River...Prevalence of Malaria Parasites Amongst Pregnant Women in Calabar Cross River...
Prevalence of Malaria Parasites Amongst Pregnant Women in Calabar Cross River...
 
4.SANITATION VS VACCINATION - Infectious Diseases and Social Change, Vitamin ...
4.SANITATION VS VACCINATION - Infectious Diseases and Social Change, Vitamin ...4.SANITATION VS VACCINATION - Infectious Diseases and Social Change, Vitamin ...
4.SANITATION VS VACCINATION - Infectious Diseases and Social Change, Vitamin ...
 
AutumnBridges_Thesis
AutumnBridges_ThesisAutumnBridges_Thesis
AutumnBridges_Thesis
 
Relations between pathogens, hosts and environment
Relations between pathogens, hosts and environmentRelations between pathogens, hosts and environment
Relations between pathogens, hosts and environment
 
Dr. Amy Kinsley - Movement Matters: Using Swine Shipment Patterns to Identify...
Dr. Amy Kinsley - Movement Matters: Using Swine Shipment Patterns to Identify...Dr. Amy Kinsley - Movement Matters: Using Swine Shipment Patterns to Identify...
Dr. Amy Kinsley - Movement Matters: Using Swine Shipment Patterns to Identify...
 
Maghaleh viruse
Maghaleh viruseMaghaleh viruse
Maghaleh viruse
 
120 EXPERT Opinions on Coronavirus (COVID-19)- How the Mass Media Exaggerated...
120 EXPERT Opinions on Coronavirus (COVID-19)- How the Mass Media Exaggerated...120 EXPERT Opinions on Coronavirus (COVID-19)- How the Mass Media Exaggerated...
120 EXPERT Opinions on Coronavirus (COVID-19)- How the Mass Media Exaggerated...
 
Livestock disease drivers, ecology and pathogen evolution
Livestock disease drivers, ecology and pathogen evolutionLivestock disease drivers, ecology and pathogen evolution
Livestock disease drivers, ecology and pathogen evolution
 
HunterThesis
HunterThesisHunterThesis
HunterThesis
 
epidemiology report on The Coming Plague by Laurie Garrett
epidemiology report on The Coming Plague by Laurie Garrettepidemiology report on The Coming Plague by Laurie Garrett
epidemiology report on The Coming Plague by Laurie Garrett
 
Dengue Fever and Blood Transfusion
Dengue Fever and Blood TransfusionDengue Fever and Blood Transfusion
Dengue Fever and Blood Transfusion
 
Social dimensions of zoonoses in interdisciplinary research
Social dimensions of zoonoses in interdisciplinary researchSocial dimensions of zoonoses in interdisciplinary research
Social dimensions of zoonoses in interdisciplinary research
 

Similar to Cooper_Laura_poster_resized

Modeling the Effect of Variation of Recruitment Rate on the Transmission Dyna...
Modeling the Effect of Variation of Recruitment Rate on the Transmission Dyna...Modeling the Effect of Variation of Recruitment Rate on the Transmission Dyna...
Modeling the Effect of Variation of Recruitment Rate on the Transmission Dyna...IOSR Journals
 
Infection and Disease 2021-22.pptx
Infection and Disease 2021-22.pptxInfection and Disease 2021-22.pptx
Infection and Disease 2021-22.pptxjelikov
 
HPV Vaccination , Dr. Sharda Jain
HPV Vaccination , Dr. Sharda Jain HPV Vaccination , Dr. Sharda Jain
HPV Vaccination , Dr. Sharda Jain Lifecare Centre
 
Vaccination or herd immunity?
Vaccination or herd immunity?Vaccination or herd immunity?
Vaccination or herd immunity?DebjeetNath
 
Understanding Herd immunity
Understanding Herd immunityUnderstanding Herd immunity
Understanding Herd immunitydipesh125
 
1 s2.0-s2352396419302592-main (1)
1 s2.0-s2352396419302592-main (1)1 s2.0-s2352396419302592-main (1)
1 s2.0-s2352396419302592-main (1)Miguel Alca Alvaro
 
A SEIR MODEL FOR CONTROL OF INFECTIOUS DISEASES
A SEIR MODEL FOR CONTROL OF INFECTIOUS DISEASESA SEIR MODEL FOR CONTROL OF INFECTIOUS DISEASES
A SEIR MODEL FOR CONTROL OF INFECTIOUS DISEASESSOUMYADAS835019
 
An Epidemiological Model of Malaria Transmission in Ghana.pdf
An Epidemiological Model of Malaria Transmission in Ghana.pdfAn Epidemiological Model of Malaria Transmission in Ghana.pdf
An Epidemiological Model of Malaria Transmission in Ghana.pdfEmily Smith
 
DjaniDylan_Bluetongue
DjaniDylan_BluetongueDjaniDylan_Bluetongue
DjaniDylan_BluetongueDylan Djani
 
INFLUENZA VACCINE UPDATE 2020 BY DR SHAILESH MEHTA
INFLUENZA VACCINE UPDATE 2020 BY DR SHAILESH MEHTAINFLUENZA VACCINE UPDATE 2020 BY DR SHAILESH MEHTA
INFLUENZA VACCINE UPDATE 2020 BY DR SHAILESH MEHTADR SHAILESH MEHTA
 
Niall_McCarra_FYP_Final_Draft
Niall_McCarra_FYP_Final_DraftNiall_McCarra_FYP_Final_Draft
Niall_McCarra_FYP_Final_DraftNiall McCarra
 
The local and global stability of the disease free equilibrium in a co infect...
The local and global stability of the disease free equilibrium in a co infect...The local and global stability of the disease free equilibrium in a co infect...
The local and global stability of the disease free equilibrium in a co infect...iosrjce
 
Hep a Live & Inactivated vaccines in India
Hep a Live & Inactivated vaccines in IndiaHep a Live & Inactivated vaccines in India
Hep a Live & Inactivated vaccines in IndiaGaurav Gupta
 
BASIC MEASUREMENTS IN EPIDEMIOLOGY presentation
BASIC MEASUREMENTS IN EPIDEMIOLOGY presentationBASIC MEASUREMENTS IN EPIDEMIOLOGY presentation
BASIC MEASUREMENTS IN EPIDEMIOLOGY presentationPaul523674
 

Similar to Cooper_Laura_poster_resized (20)

Ijetr021115
Ijetr021115Ijetr021115
Ijetr021115
 
Ijetr021115
Ijetr021115Ijetr021115
Ijetr021115
 
Modeling the Effect of Variation of Recruitment Rate on the Transmission Dyna...
Modeling the Effect of Variation of Recruitment Rate on the Transmission Dyna...Modeling the Effect of Variation of Recruitment Rate on the Transmission Dyna...
Modeling the Effect of Variation of Recruitment Rate on the Transmission Dyna...
 
G027041044
G027041044G027041044
G027041044
 
Infection and Disease 2021-22.pptx
Infection and Disease 2021-22.pptxInfection and Disease 2021-22.pptx
Infection and Disease 2021-22.pptx
 
HPV Vaccination , Dr. Sharda Jain
HPV Vaccination , Dr. Sharda Jain HPV Vaccination , Dr. Sharda Jain
HPV Vaccination , Dr. Sharda Jain
 
Vaccination or herd immunity?
Vaccination or herd immunity?Vaccination or herd immunity?
Vaccination or herd immunity?
 
Understanding Herd immunity
Understanding Herd immunityUnderstanding Herd immunity
Understanding Herd immunity
 
1 s2.0-s2352396419302592-main (1)
1 s2.0-s2352396419302592-main (1)1 s2.0-s2352396419302592-main (1)
1 s2.0-s2352396419302592-main (1)
 
A SEIR MODEL FOR CONTROL OF INFECTIOUS DISEASES
A SEIR MODEL FOR CONTROL OF INFECTIOUS DISEASESA SEIR MODEL FOR CONTROL OF INFECTIOUS DISEASES
A SEIR MODEL FOR CONTROL OF INFECTIOUS DISEASES
 
An Epidemiological Model of Malaria Transmission in Ghana.pdf
An Epidemiological Model of Malaria Transmission in Ghana.pdfAn Epidemiological Model of Malaria Transmission in Ghana.pdf
An Epidemiological Model of Malaria Transmission in Ghana.pdf
 
Respiratory epidemic impact on workers health
Respiratory epidemic impact on workers healthRespiratory epidemic impact on workers health
Respiratory epidemic impact on workers health
 
DjaniDylan_Bluetongue
DjaniDylan_BluetongueDjaniDylan_Bluetongue
DjaniDylan_Bluetongue
 
INFLUENZA VACCINE UPDATE 2020 BY DR SHAILESH MEHTA
INFLUENZA VACCINE UPDATE 2020 BY DR SHAILESH MEHTAINFLUENZA VACCINE UPDATE 2020 BY DR SHAILESH MEHTA
INFLUENZA VACCINE UPDATE 2020 BY DR SHAILESH MEHTA
 
Niall_McCarra_FYP_Final_Draft
Niall_McCarra_FYP_Final_DraftNiall_McCarra_FYP_Final_Draft
Niall_McCarra_FYP_Final_Draft
 
The local and global stability of the disease free equilibrium in a co infect...
The local and global stability of the disease free equilibrium in a co infect...The local and global stability of the disease free equilibrium in a co infect...
The local and global stability of the disease free equilibrium in a co infect...
 
05 flu s lee
05 flu s lee05 flu s lee
05 flu s lee
 
Hep a Live & Inactivated vaccines in India
Hep a Live & Inactivated vaccines in IndiaHep a Live & Inactivated vaccines in India
Hep a Live & Inactivated vaccines in India
 
BASIC MEASUREMENTS IN EPIDEMIOLOGY presentation
BASIC MEASUREMENTS IN EPIDEMIOLOGY presentationBASIC MEASUREMENTS IN EPIDEMIOLOGY presentation
BASIC MEASUREMENTS IN EPIDEMIOLOGY presentation
 
06_AJMS_387_22_Revised.pdf
06_AJMS_387_22_Revised.pdf06_AJMS_387_22_Revised.pdf
06_AJMS_387_22_Revised.pdf
 

Cooper_Laura_poster_resized

  • 1.  The  rate  of  vaccina.on  of  all  age  classes,  p,  is  a  func.on  of  .me   such  that:       See  Figure  3a.  Rou.ne  vaccina.on  of  babies  occurs  at  a  separate   rate  d.  Analysis  revealed  that  b  and  c  have  li@le  effect  on  the   propor.on  of  individuals  vaccinated  (see  V  in  Figure  3b),   therefore  only  a  is  varied  here.   Parameters  &  Methods   Introduc2on   The  meningi.s  belt  –  stretching  from  Senegal  to   Ethiopia  –  has  the  highest  incidence  of  meningococcal   meningi.s  in  the  world.  Meningi.s  frequently  causes  death   and  lifelong  disability,  as  well  as  serious  economic  drain  on   impacted  countries.  Epidemics  are  seasonal,  but  in  the  past   decade  have  become  more  frequent  and  irregular  and   have  spread  to  countries  farther  south.  A  conjugate   vaccine  against  meningococcal  serogroup  A,  which  causes   most  invasive  disease  in  the  African  meningi.s  belt,  was   introduced  in  2010  and  appears  to  have  significantly   reduced  carriage  and  incidence  of  serogroup  A   meningococcal  disease  in  vaccinated  communi.es  [1].   However,  serogroup  W  caused  a  major  outbreak  in  2000   and  2001  during  the  Hajj  –  a  Muslim  pilgrimage  to  Saudi   Arabia  –  in  a  popula.on  of  individuals  vaccinated  against   serogroups  A  and  C.  Pilgrims  brought  the  outbreak  strain   back  to  Africa,  where  it  con.nues  to  circulate  [2].  With  the   intensifica.on  of  serogroup  A  vaccina.on  in  the  meningi.s   belt,  there  is  concern  that  serogroup  W  could  replace   serogroup  A  as  the  major  cause  of  disease  in  the  region  [3].   In  meningococcal  meningi.s,  epidemics  of  invasive   disease  appear  to  be  driven  by  seasonal  fluctua.ons  in   carriage  prevalence  and  epidemics  are  almost  always   associated  with  high  levels  of  carriage  [4].  For  these   reasons,  understanding  the  dynamics  of  carriage  is  key  to   reducing  the  burden  of  invasive  disease.     Model   Discussion   These  results  suggest  that  rela.ve  transmissibility  of   strains  is  important  in  choosing  op.mal  vaccina.on  levels.   If  serogroup  W  is  more  transmissible  than  A,  vaccina.on   may  actually  increase  overall  meningococcal  carriage   because  vaccina.on  will  increase  the  number  of   suscep.ble  individuals  available  for  coloniza.on  by  W,  the   “stronger  compe.tor”  of  the  two.  If  serogroup  W  is  less   transmissible  than  A,  vaccina.on  will  decrease  overall   meningococcal  carriage.   This  model  also  suggests  that  low  or  intermediate   levels  of  vaccina.on  may  be  more  advantageous  in   reducing  overall  carriage  than  high  vaccina.on.  For  a  given   transmissibility  level,  increasing  vaccina.on  oen  results  in   higher  overall  carriage.   Interes.ngly,  vaccina.on  plays  the  greatest  role  in   reducing  carriage  of  serogroup  A  where  A  and  W  are   equally  transmissible.  This  is  probably  because  when  A  is   less  transmissible  than  W,  strain  compe..on  plays  an   important  role  in  decreasing  carriage  and  when  A  is  more   transmissible  than  W,  both  vaccina.on  and  strain   compe..on  are  less  effec.ve  at  reducing  carriage.   It  is  important  to  note  that  although  increased  carriage   is  linked  increased  rates  of  invasive  disease,  not  all   serogroups  are  equally  virulent  and  therefore  all  types  of   carriage  may  not  be  of  equal  concern.  If  serogroup  A  is   significantly  more  virulent  than  serogroup  W,  higher   vaccina.on  coverage  may  save  more  lives  even  though  it   may  result  in  higher  rates  of  carriage.   Using  an  age-­‐structured  version  of  this  model  would   allow  for  targe.ng  of  certain  age  classes  for  vaccina.on   and  differen.al  interac.on  between  age  groups.     This  analysis  could  also  benefit  from  the  use  of  a   neutral  null  model,  which  displays  both  ecological   neutrality,  meaning  that  the  number  of  hosts  infected  by  a   par.cular  number  of  strains  (0,  1,  2…)  is  independent  of   strain  iden.ty,  and  popula.on  gene.c  neutrality,  meaning   that  it  is  possible  to  choose  parameters  that  guarantee  a   stable  arbitrary  frequency  of  strains  [6].  The  advantage  of   the  neutral  null  model  is  that  it  does  not  assume  stable   coexistence  of  strains,  and  therefore  is  not  biased  towards   predic.on  of  serotype  replacement  or  non-­‐replacement.   Finally,  given  the  importance  of  rela.ve  transmissibility   in  selec.ng  an  op.mal  vaccina.on  strategy,  it  would  be   valuable  to  derive  key  epidemiological  parameters  β   (transmissibility)  and  r  (rate  of  recovery  from  carriage)  for   both  serogroups.   It  should  be  emphasized  that  this  model  does  not   produce  quan.ta.ve  predic.ons,  but  instead  provides   qualita.ve  insight  into  the  effect  of  vaccina.on  on  the   compe..ve  landscape.   References   1.Daugla,  D.  et  al.  Effect  of  a  serogroup  A  meningococcal  conjugate  vaccine  (PsA–TT)   on  serogroup  A  meningococcal  meningi.s  and  carriage  in  Chad:  a  community  study.   The  Lancet  383,  40–47  (2014).   2.Harrison,  L.  H.,  Tro@er,  C.  L.  &  Ramsay,  M.  E.  Global  epidemiology  of  meningococcal   disease.  Vaccine  27,  Supplement  2,  B51–B63  (2009).   3.Caugant,  D.  A.  &  Nicolas,  P.  Molecular  surveillance  of  meningococcal  meningi.s  in   Africa.  Vaccine  25,  Supplement  1,  A8–A11  (2007).   4.Irving,  T.  J.,  Blyuss,  K.  B.,  Colijn,  C.  &  Tro@er,  C.  L.  Modelling  meningococcal   meningi.s  in  the  African  meningi.s  belt.  Epidemiol.  Infect.  140,  897–905  (2012).   5.Tro@er,  C.  L.,  Gay,  N.  J.  &  Edmunds,  W.  J.  Dynamic  Models  of  Meningococcal   Carriage,  Disease,  and  the  Impact  of  Serogroup  C  Conjugate  Vaccina.on.  Am.  J.   Epidemiol.  162,  89–100  (2005).   6.Lipsitch,  M.,  Colijn,  C.,  Cohen,  T.,  Hanage,  W.  P.  &  Fraser,  C.  No  coexistence  for  free:   Neutral  null  models  for  mul.strain  pathogens.  Epidemics  1,  2–13  (2009).     Op:mal  Vaccina:on  for  Meningococcal  Serogroup  A  in  the  African  Meningi:s  Belt     Laura  Cooper   ENV  304  Disease  Ecology,  Economics  and  Policy   Name   Meaning   Value  Range   Unit   Comment   μ   Natural  birth  and  death  rate   0.00032   1/week   Fixed.  Life  expectancy  around  60  years.     βA   Transmission  rate  of  carriage   0.113   1/week   Fixed.  Calculated  from  es.mated  R0  of  1.36.  [5]   βW   Transmission  rate  of  carriage   0.103-­‐0.123   1/week   Considered  values  smaller  and  larger  than  βA  that   did  not  result  in  compe..ve  exclusion  of  strains.   rA,  rW   Rate  of  loss  of  carriage   0.0833   1/week   Fixed.  Carriage  lasts  12  weeks.  [5]   d   Propor.on  of  newborns   vaccinated   0-­‐1   None   No  newborn  vaccina.on  used  for  calcula.on  of   end  states  –  li@le  change  in  carriage  reduc.on.   γ   Rate  of  loss  of  vaccine   protec.on   0.0038   1/week   Fixed.  5  years  of  protec.on.   p   Rate  of  vaccina.on  of  general   popula.on   See  Table  3   and  Figure  3a   1/week    See  below.   ϵ   Seasonal  forcing  term   0-­‐1   None   No  seasonal  forcing  used  for  calcula.on  of  end   states.   φ   Vaccine  efficacy  against   carriage  acquisi.on   0.6   None   Fixed.  Vaccine  protects  against  90%  of  carriage   acquisi.on.   Table  2.  Carriage  Model  Parameters   Class   Meaning   S   Unvaccinated  suscep.ble  individuals   SV   Vaccinated  suscep.ble  individuals   A   Unvaccinated  individuals  carrying  serogroup  A   AV   Vaccinated  individuals  carrying  serogroup  A   W   Unvaccinated  individuals  carrying  serogroup  W   WV   Vaccinated  individuals  carrying  serogroup  W   Table  1.  Carriage  model  classes   ! ! = ! ∗ exp − ! − ! ! 2!! ! ! ! ! = !!(1 + ! ∗ cos 2!" )! ! !" !" = !! ! ! ! + !" + !"# − (!! + ! + !(!))!! ! !"# !" = ! ! ! + 1 − ! !! ! !" ! + !" − ! + !! + ! !"! ! !" !" = !! ! ! ! + !" + !"! − (!! + ! + !(!))!! ! !"# !" = ! ! ! + !! ! !" ! + !" − ! + !! + ! !"! ! !" !" = ! 1 − ! + !!! + !!! + !"# − !! ! ! ! + !" − !! ! ! ! + !" − !"! ! !"# !" = !! + !!!" + !!!" − 1 − ! !! ! !! ! + !" − !! ! !! ! + !" − (! + !)!!! ! !! !" = !! + !(!)(1 − !) − (! + !)!! ! ! Name! Meaning! Value! Range! Unit! Comment! !! Natural!birth!and!death!rate! 0.00032! 1/week! Fixed.!Life!expectancy!around! 60!years.! !!, !!! Transmission!rate!of!carriage! 0.113! 1/week! Fixed.!Calculated!from! estimated!R0!of!1.36.! !!,!!!! Rate!of!loss!of!carriage! 0.0833! 1/week! Fixed.!Carriage!lasts!12!weeks.! d! Proportion!of!newborns! vaccinated! 0L1! None! ! !! Rate!of!loss!of!vaccine!protection! 0.0038! 1/week! Fixed.!5!years!of!protection.! p! Rate!of!vaccination!of!general! population! See!! 1/week! ! !! Seasonal!forcing!term! 0L1! None! ! !! Vaccine!efficacy!against!carriage! acquisition! 0L1! None! ! ! Name   Value   Range   Meaning   a   0-­‐0.1   Maximum  vaccina.on  effort   b   30   “Lag”  –  propor.onal  to  start   .me  of  campaign   c   10   Propor.onal  to  length  of   campaign   Table  3.  VaccinaFon  campaign  model  parameters  [  p(t)  ]   0 100 200 300 400 0.00.20.40.6 Weeks Proportion V A W 0 100 200 300 400 0.000.030.06 Weeks p Figure  3.  Time  series  predicFon   a.  p,  the  rate  of  vaccina.on,  as  a   func.on  of  .me.  Parameter  values   –  a=.05,  b=30,  c=10     b.  Propor.on  vaccinated  shown  in   black  (V).  Carriers  of  W  shown  in   blue  and  carriers  of  A  shown  in   red,  with  and  without  seasonal   forcing.  Parameter  values  –     βW=0.113,  d=0,  ϵ=0.8  or  0,  φ=0.6,     A0=W0=0.13.       a.  Percent  Decrease  in  Carriage  of  Serogroup  A   c.  Percent  Increase  in  Carriage  of  Serogroup  W   d.  Percent  Change  in  Overall  Carriage   a,  c,  and  d  calculated  in  rela.on  to  carriage  levels  aer  zero  vaccina.on.  Beta  W:Beta  A  on  the  horizontal  axis  is  the  ra.o  of  rela.ve  transmissibility  of  the  serogroups:  at  BetaW:BetaA  equals  1,  the   serogroups  are  assumed  to  be  equally  transmissible.  On  the  ver.cal  axis  is  the  maximum  popula.on  vaccine  coverage  level  achieved  before  waning  (see  Fig.3a).  Model  was  run  for  the  equivalent  of   5  years.  Parameter  values  –d=0,  φ=.9,  A0=W0=0.13.    a.  Increased  vaccina.on  results  in  decreased  carriage  of  serogroup  A.  When  W  is  less  transmissible  than  A  (BetaW:BetaA  less  than  1)  reduc.on  in   carriage  of  A  requires  higher  levels  of  vaccina.on.  The  greatest  reduc.ons  in  carriage  occur  where  A  and  W  are  equally  transmissible.  b.  Carriage  of  serogroup  W  increases  with  increasing   vaccina.on  against  serogroup  A  and  with  increasing  transmissibility  of  serogroup  W.    c.  Vaccina.on  has  the  greatest  effect  on  carriage  of  W  when  transmissibility  is  low.  When  serogroup  W  is  more   transmissible  than  A,  vaccina.on  results  in  li@le  addi.onal  increase  in  carriage.  d.    In  most  cases,  vaccina.on  results  in  a  net  decrease  in  meningococcal  carriage.  At  high  levels  of  vaccina.on  where   W  is  moderately  more  transmissible  than  A  (darkest  green),  vaccina.on  results  in  a  small  net  increase  in  carriage.   b.  Final  Carriage  of  Serogroup  W   Figure  5.  Effect  of  VaccinaFon  Depends  on  Coverage  and  RelaFve  Transmissibility  of  Serogroup  W  Carriage         Results   a.   b.   ! ! = !!(1 + ! ∗ cos 2!" )! ! !" !" = !! ! ! ! + !" + !"# − (!! + ! + !(!))!! ! !"# !" = ! ! ! + 1 − ! !! ! !" ! + !" − ! + !! + ! !"! ! !" !" = !! ! ! ! + !" + !"# − (!! + ! + !(!))!! ! !"# !" = ! ! ! + !! ! !" ! + !" − ! + !! + ! !"! ! !" !" = ! 1 − ! + !!! + !!! + !"# − !! ! ! ! + !" !! −!! ! ! ! + !" − !"! ! !"# !" = !" + !!!" + !!!" − 1 − ! !! ! !" ! + !" !! −!! ! !" ! + !" − (! + !)!"! ! Figure  2.  Carriage  model  equaFons   A   S   W   AV   SV   WV   Carriage   status   Vaccina.on  status   p   ϒ   p   ϒ   p   ϒ   βA  rA   (1-­‐φ)βA  rA   βW  rW  βW  rW   μ(1-­‐d)   μd   To  inves.gate  the  effects  of  serogroup  A  vaccina.on  on   meningococcal  disease  in  a  community  with  circula.on  of   both  serogroups  A  and  W,  a  compartment  model  of   carriage  and  vaccina.on  was  constructed.  This  model   assumes  no  co-­‐carriage  of  strains  [5].  The  vaccine  is  known   to  protect  against  acquisi.on  of  serogroup  A  carriage  [1]   but  no  cross-­‐protec.ve  immunity  is  assumed  [5].   Figure  1.  Compartment  model  of  carriage  transmission   and  vaccinaFon   Li@le  serogroup-­‐specific  data  is  available  on  key  epidemiological  parameters,  although  these  could  be   es.mated  from  private  serogroup-­‐specific  incidence  data  as  part  of  a  further  inves.ga.on.  For  this   simula.on,  the  same  general  parameters  were  used  as  baseline  values  for  both  serogroups  A  and  W  and   the  effects  of  poten.al  differences  in  transmissibility  of  the  two  were  examined.  The  effect  of  two  other   parameters  not  shown  below  were  also  inves.gated.  Varying  vaccine  efficacy(φ)  versus  rela.ve   transmissibility  produces  similar  outcomes  as  those  presented  in  Figure  5.  Rou.ne  vaccina.on  of   newborns  (d)  decreased  the  rate  of  waning  of  popula.on-­‐wide  immunity  following  the  campaign,  but  had   li@le  effect  on  carriage,  probably  because  of  the  rela.vely  short  .me  frame  considered  (five  years).       85% 90% 95% Carriage 6 Weeks Post Vaccination Phi 0.000000.00015 Figure  4.  Carriage  of  A,  Six  Weeks  Post-­‐VaccinaFon   Vaccine  efficacy,  φ,  was  es.mated  from  data  documen.ng  the  post-­‐vaccina.on   reduc.on  in  carriage  [1].  Model  outputs  (green)  were  closest  to  observed  data  (black)  at   a  vaccine  efficacy  of  90%.   0.72 0.68 0.63 0.58 0.52 0.44 0.36 0.26 0.14 0 accineCoverage % Change in Carriage −20 −10 0 0.72 0.68 0.63 0.58 0.52 0.44 0.36 0.26 0.14 0 ccineCoverage 0 100 300 500 0.91 0.92 0.94 0.95 0.96 0.97 0.98 0.99 1.01 1.02 1.03 1.04 1.05 1.06 1.08 1.09 0.86 0.85 0.83 0.81 0.78 0.75 0.72 0.68 0.63 0.58 0.52 0.44 0.36 0.26 0.14 0 Beta W:Beta A VaccineCoverage 0 100 300 500 0.91 0.92 0.94 0.95 0.96 0.97 0.98 0.99 1.01 1.02 1.03 1.04 1.05 1.06 1.08 1.09 0.86 0.85 0.83 0.81 0.78 0.75 0.72 0.68 0.63 0.58 0.52 0.44 0.36 0.26 0.14 0 Beta W:Beta A VaccineCoverage −20 −10 0 0.91 0.92 0.94 0.95 0.96 0.97 0.98 0.99 1.01 1.02 1.03 1.04 1.05 1.06 1.08 1.09 0.86 0.85 0.83 0.81 0.78 0.75 0.72 0.68 0.63 0.58 0.52 0.44 0.36 0.26 0.14 0 Beta W:Beta A VaccineCoverage 0 20 40 60 80 0.72 0.68 0.63 0.58 0.52 0.44 0.36 0.26 0.14 0 ccineCoverage 0 20 40 60 80 >99.995%   >99.99%   >99%   >95%   >90%  >80%   >50%   0.91 0.92 0.94 0.95 0.96 0.97 0.98 0.99 1.01 1.02 1.03 1.04 1.05 1.06 1.08 1.09 0.86 0.85 0.83 0.81 0.78 0.75 0.72 0.68 0.63 0.58 0.52 0.44 0.36 0.26 0.14 0 Beta W:Beta A VaccineCoverage Final Carriage of W 0.05 0.15 0.25 0.72 0.68 0.63 0.58 0.52 0.44 0.36 0.26 0.14 0 ccineCoverage Final Carriage of W 0.05 0.15 0.25 Conclusions   What  are  the  effects  of  serogroup  A  vaccinaFon  on  carriage   of  serogroup  A?   •  Higher  vaccina.on  decreases  carriage  of  A    regardless  of   rela.ve  transmissibility.   •  Carriage  of  A  is  decreased  most  where  W  is  more   transmissible  than  A.   •  Vaccina.on  contributes  most  to  the  decrease  in  carriage   of  A  where  W  and  A  are  equally  transmissible.   On  carriage  of  serogroup  W?   •  Carriage  of  W  increases  with  increasing  vaccine  coverage   and  where  W  is  more  transmissible  than  A.   •  Vaccina.on  contributes  most  to  the  increase  in  carriage   where  W  is  less  transmissible  than  A.   On  overall  carriage?   •  In  most  cases,  vaccina.on  results  in  modest  decreases  in   overall  carriage.   •  Greatest  decreases  in  carriage  occur  at  lower  vaccina.on   coverage  and  where  W  is  less  transmissible  than  A.