Math30-1 1
10.3 Composite Functions
( ) 6
g x x
  ( ) 5
h x x
 
( ) 4
f x x

( ( ))
f g x 
( ) 4
f 
x x
( )
g x  
6
x 
4
 x  
4 6

4 24
x
 
How would
you define
composite
functions?
Math30-1 2
When two functions are applied in succession,
the resulting function is called the composite
of the two given functions.
Composition of Two Functions
(g o f)(x) = g(f(x))
The range of f(x) becomes the
domain of g(x).
Evaluate f(x) then use the answer as
the input for g(x).
Notice: The function is evaluated
from the inside to the outside.
x is the input into the f function to get y
y is the input into the g function to get z
Math30-1 3
( )
y f x

( )
y g f x
 
 
( )
y g f x

( )
y f g x
 
 
( )
y f g x

10.3 Function
Composition
Math30-1 4
( ) 6
g x x
  ( ) 5
h x x
 
( ) 4
f x x

( ( ))
h f x (4 )
h x

 
4 5
x
 
4 5
x
  5
,
4
x 
Math30-1 5
Given h(x) = 4x + 3, determine the following:
b) (h o h)(-3)
(h o h)(-3) = h(h(-3))
= h(4(-3) + 3)
= h(-9)
h(-9) = 4(-9) + 3
= -33
a) (h o h)(x)
(h o h)(x) = h(h(x))
= h(4(x) + 3)
= h(4x + 3)
h(4x + 3) = 4(4x + 3) + 3
= 16x + 12 + 3
= 16x + 15
Note: (h o h)(x) ≠ (hh)(x)
(hh)(x) = h(x) x h(x)
Evaluating a Composition of a Functions
Math30-1 6
Given ( ) 1
f x x
 
2
( ) 3
g x x
  ( ) 2 5
h x x
 
Determine an expression in simplest form for
( ( ))
h f x  
2 1 5
x
   , 1
x  Why are there restrictions?
  
( )
k x h g f x
  
 
 
( ) 1
k x h g x
 
 
 
2
( ) 1 3
k x h x
  
 
( ) 2
k x h x
 
 
( ) 2 2 5
k x x
  
( ) 2 1
k x x
  , 1
x 
Math30-1 7
Using the function
2
4
( )
2
x
f x
x



determine the value of  
 
4
f f
 
 
2
4 4
4
4 2
f f f
 

  

 
 
   
4 10
f f f

 
 
2
10 4
4
10 2
f f



 
 
4 13
f f 
Math30-1 8
5
( ) log
f x x

Determine the expressions for h(x)= f(g(x)) and k(x) = g(f(x))
( ) ( ( ))
h x f g x

( ) 5x
g x 
 
5
( ) log 5x
h x 
( )
h x x

( ) ( ( ))
k x g f x

5
log
( ) 5 x
k x 
( )
k x x

The situation when f(g(x)) = g(f(x)) = x indicates that the original
functions are inverses.
Math30-1 9
Use the graph to determine
the value of
 
 
4
g f
( )
y f x

( )
y g x

 (3)
f g
 (3) (3)
f g
 
0 ( 12)
  
12

 
2
g

12

Math30-1 10
Assignment
Page 507
1a,c, 2a,c, 3c, 4a,d,e, 5b,c, 6, 7, 8, 11, 13, 14, 15, 17
C1, C2

Composite Functions for grade 11 students.pptx

  • 1.
    Math30-1 1 10.3 CompositeFunctions ( ) 6 g x x   ( ) 5 h x x   ( ) 4 f x x  ( ( )) f g x  ( ) 4 f  x x ( ) g x   6 x  4  x   4 6  4 24 x   How would you define composite functions?
  • 2.
    Math30-1 2 When twofunctions are applied in succession, the resulting function is called the composite of the two given functions. Composition of Two Functions (g o f)(x) = g(f(x)) The range of f(x) becomes the domain of g(x). Evaluate f(x) then use the answer as the input for g(x). Notice: The function is evaluated from the inside to the outside. x is the input into the f function to get y y is the input into the g function to get z
  • 3.
    Math30-1 3 ( ) yf x  ( ) y g f x     ( ) y g f x  ( ) y f g x     ( ) y f g x  10.3 Function Composition
  • 4.
    Math30-1 4 ( )6 g x x   ( ) 5 h x x   ( ) 4 f x x  ( ( )) h f x (4 ) h x    4 5 x   4 5 x   5 , 4 x 
  • 5.
    Math30-1 5 Given h(x)= 4x + 3, determine the following: b) (h o h)(-3) (h o h)(-3) = h(h(-3)) = h(4(-3) + 3) = h(-9) h(-9) = 4(-9) + 3 = -33 a) (h o h)(x) (h o h)(x) = h(h(x)) = h(4(x) + 3) = h(4x + 3) h(4x + 3) = 4(4x + 3) + 3 = 16x + 12 + 3 = 16x + 15 Note: (h o h)(x) ≠ (hh)(x) (hh)(x) = h(x) x h(x) Evaluating a Composition of a Functions
  • 6.
    Math30-1 6 Given () 1 f x x   2 ( ) 3 g x x   ( ) 2 5 h x x   Determine an expression in simplest form for ( ( )) h f x   2 1 5 x    , 1 x  Why are there restrictions?    ( ) k x h g f x        ( ) 1 k x h g x       2 ( ) 1 3 k x h x      ( ) 2 k x h x     ( ) 2 2 5 k x x    ( ) 2 1 k x x   , 1 x 
  • 7.
    Math30-1 7 Using thefunction 2 4 ( ) 2 x f x x    determine the value of     4 f f     2 4 4 4 4 2 f f f                4 10 f f f      2 10 4 4 10 2 f f        4 13 f f 
  • 8.
    Math30-1 8 5 ( )log f x x  Determine the expressions for h(x)= f(g(x)) and k(x) = g(f(x)) ( ) ( ( )) h x f g x  ( ) 5x g x    5 ( ) log 5x h x  ( ) h x x  ( ) ( ( )) k x g f x  5 log ( ) 5 x k x  ( ) k x x  The situation when f(g(x)) = g(f(x)) = x indicates that the original functions are inverses.
  • 9.
    Math30-1 9 Use thegraph to determine the value of     4 g f ( ) y f x  ( ) y g x   (3) f g  (3) (3) f g   0 ( 12)    12    2 g  12 
  • 10.
    Math30-1 10 Assignment Page 507 1a,c,2a,c, 3c, 4a,d,e, 5b,c, 6, 7, 8, 11, 13, 14, 15, 17 C1, C2