SlideShare a Scribd company logo
1 of 105
Download to read offline
Fourth M.I.T. Conference on Computational Fluid and Solid Mechanics –Focus: Fluid-Structure InteractionsBoston, June 13-15, 2007Comparison of time domain techniquesfor the evaluation of the response and the stabilityof long span suspension bridges 
F.Petrini, F.Giuliano, F.Bontempi* 
*Professor of Structural Analysis and Design 
University of Rome La Sapienza -ITALY
FB 2
PART #1 
CONTEXT
FB 4
FB 5
777 183 3300 183 627 
960 3300 m 810 
+77.00 m 
+383.00 +383.00 
+54.00 
+118.00 
+52.00 +63.00 
STRUCTURAL MODEL 
LOADING SYSTEM 
GEOMETRY AND MATERIAL 
UNCERTAINTY
777 183 3300 183 627 
960 3300 m 810 
+77.00 m 
+383.00 +383.00 
+54.00 
+118.00 
+52.00 +63.00 
CONTROL DEVICES 
SOIL BEHAVIOR 
MATERIAL NONLINEARITY 
SOIL/STRUCTURE INTERFACE CONTACT 
HANGERS 
TOWERS 
MAIN CABLES 
GEOMETRIC NONLINEARITY 
NONLINEARITY
777 183 3300 183 627 
960 3300 m 810 
+77.00 m 
+383.00 +383.00 
+54.00 
+118.00 
+52.00 +63.00 
TRAFFIC – STRUCTURE 
WIND - STRUCTURE 
SOIL - STRUCTURE 
INTERACTION 
GLOBAL/LOCAL STRUCTURAL BEHAVIOUR
FB 9 
DECISION 
NEGOTIATION & REFRAMING 
WIND & TEMPERATURE 
EARTHQUAKE 
ANTROPIC ACTIONS 
(RAILWAY & HIGHWAY) 
STRUCTURAL BEHAVIOR & 
PERFORMANCE ASSESSMENT 
MODEL
FB 10 
Vento = f(s,t) 
Vento = f(s,t) 
Performance level assessing in response problem 
Wind Vel 
(m/s) 
Return 
Period 
(years) 
Performance to be furnished Level of 
performance 
21 50 Complete serviceability 
(roadway and railway traffic) 
High 
45 200 Partial serviceability (railway 
traffic) 
Medium 
57 2000 Maintaining the structural 
integrity 
Low
a) COMPOUND DECK 
structural complexity
FB 12 
deck arrangement
FB 13 
deck arrangement
FB 14 
highway girder section
FB 15 
railway girder section
FB 16
FB 17 
transverse element section
FB 18
FB 19
FB 20
FB 21
FB 22
FB 23
FB 24
FB 25
FB 26
b) RESTRAINT DEVICES 
localized nonlinearities
FB 28
FB 29
FB 30
FB 31
FB 32
FB 33
FB 34
FB 35
FB 36
FB 37
FB 38
FB 39
FB 40
FB 41 
WIND 
HG 
TG 
SICILIA’S TOWER LEG 
WIND 
SICILIA’S TOWER LEG CALABRIA’S TOWER LEG 
CALABRIA’S TOWER LEG 
TS 
LS 
Sicilia Calabria 
RG 
HG 
TG 
LS 
TS 
Transversal slack (TS) and longitudinal slack (LS) arrangement 
along the suspension bridge. 
(HG: Highway box girder; RG: Railway box girder; TG: Transverse box girder.)
FB 42 
TRANSVERSAL DISPLACEMENTS-101234567-1921805409001260162019802340270030603420L [m] Uy [m] 0 cm30 cm50 cm
FB 43 
HORIZONTAL CURVATURE 
-2.0E-05 
0.0E+00 
2.0E-05 
4.0E-05 
6.0E-05 
-120 240 600 960 1320 1680 2040 2400 2760 3120 
L [m] 
c [m 
-1 
] 
0 cm 30 cm 50 cm
(i) ANALYSIS 
strategies
FB 45 
STRATEGY #1: SENSITIVITY 
governance of priorities
FB 46 
STRATEGY #2: BOUNDING 
behavior governance 
p 
(p) 
 
p 
 (p) 

FB 47 
Super 
Controllore 
Problema Risultato 
Solutore #1 
Solutore #2 
Voting System 
STRATEGY #3: REDUNDANCY 
factors governance
PART #2 
FLUID-STRUCTURE 
INTERACTIONS
FB 49 
Equation of dynamic equilibrium 
By discretizing the body to a finite number of degrees of freedom (DOFs), the 
equation governing the body motion is the dynamic equilibrium equation: 
M  q  C  q  K  q  F(body shape ;q,q,q;V;t;n) (1) 
where 
M  mass matrix of the system, 
C  damping matrix of the system, 
K  stiffness matrix of the system, 
q, q, q  DOFs of the system and their first an second time derivates, 
V  incident wind velocity, 
t  time, 
n  oscillation frequencies of the system.
FB 50 
Classification (I): Collar
FB 51 
Classification (II): 
Naudascher / Rockwell 
FLOW-INDUCED VIBRATIONS 
caused by fluctuations in 
flow velocity or 
pressures that are 
independent of any flow 
instability originating 
from the structure 
considered and 
independent of structural 
movements except for 
added-mass and 
fluid-damping effects 
brought about by a flow 
instability that is intrinsic 
to the flow system; in 
other words, the flow 
instability is inherent to 
the flow created by the 
structure considered 
due to fluctuating forces 
that arise from 
movements of the 
vibrating body; a 
dynamic instability of the 
body oscillator can gives 
rise to energy transfer 
from the main flow to the 
oscillator 
EIE 
Extraneously 
induced excitation 
MIE 
Movement-induced 
excitation 
IIE 
Instability-induced 
excitation 
es. 
TURBULENCE 
BUFFETING 
es. 
VORTEX 
SHEDDING 
es. 
FLUTTER
FB 52 
if F(t) contains negative flow-induced damping 
FLOW-INDUCED FORCES 
ON STATIONARY BODY 
MOVEMENT-INDUCED FORCES 
IN STAGNANT FLUID 
Fmean 
mean value 
F'(t) 
due to 
fluctuating 
fluid 
F''(t) 
due to 
vibrating body 
Extraneous 
source 
Flow instability 
In phase with 
body velocity 
In phase with 
body 
displacement 
or acceleration 
Mean 
loading 
system 
EIE IIE MIE 
Alteration of 
body dynamic 
characteristics
(ii) WIND VELOCITIES 
factors
FB 54 
Vento = f(t) 
Vento = f(s,t) 
LAMINAR / TURBOLENT
FB 55 
Atmosferic turbulence 
Time variation 
Spatial 
variation 
Three spatial 
component 
Mean 
component 
Turbulent 
component
FB 56 
Componente verticale 
-15 
-10 
-5 
0 
5 
10 
15 
0 500 1000 1500 T (secondi) 
Vz (m/s) 
Velocity 
time 
        j   
k k 
j 
k j k k (t) 2     cos tR sin tI 
mc 
k 1 
     
 
j j Y 
Time Histories generation by harmonic functions 
superposition 
Checking the spectral 
compatibility 
Wind velocity time histories generation (III)
FB 57
FB 58
FB 59
FB 60 
Vento = f(s,t) 
Vento = f(s,t) 
Wind velocity field 
Aeroelastic 
theories 
From 
the wind 
velocities 
to 
the sectional 
forces 
( )  ( ) 
2 
1 
( ) 
2 
D t V t B c t a D       
( ) *  ( ) 
2 
1 
( ) 
2 
L t V t B c t a L       
( ) *  ( ) 
2 
1 
( ) 2 2 
M t V t B c t a M       
a) Laminar 
b) Turbulent 
t1 
t2 
Computing of instantaneous wind forces 
Velocities are stationary 
Velocities are uniform at the 
same altitude 
Velocities are non stationary 
and non uniform 
Loading 
system
(iii) AERODYNAMIC THEORIES 
factors
FB 62 
LES–Flow around Nude Section
FB 63 
LES–Flow around a RealisticSection
FB 64 
Aeroelastic theories: 
F q q q n P t n q Q t n q R t n q se ( , , ; )  ( , )   ( , )    ( , )  
Approximated Formulation for Aeroelastic Forces (1) 
Non aeroelastic 
(NO)
FB 65 
(NO) AEROELASTIC THEORY 
Umean U’(t) 
W’(t) 
α(t) 
α(t) 
α(t) 
undeformed configuration 
E 
( )  ( ) 
2 
1 
( ) 
2 
D t V t B c t a D       
( )  ( ) 
2 
1 
( ) 0 
2 
L t V t B K t a L       
( )  ( ) 
2 
1 
( ) 0 
2 2 
M t V t B K t a M      
FB 66 
(t) 
t 
0 
no influence 
NO 
STRUCTURAL MOTION
FB 67 
STEADY THEORY (ST) 
Umean U’(t) 
W’(t) 
α(t) 
α(t) 
α(t) 
θ(t) 
θ(t) 
γ(t) 
γ(t) 
undeformed configuration 
E 
E 
( )  ( ) 
2 
1 
( ) 
2 
D t V t B c t a D       
( )  ( ) 
2 
1 
( ) 
2 
L t V t B c t a L       
( )  ( ) 
2 
1 
( ) 2 2 
M t V t B c t a M      
FB 68 
(t) 
t 
 
t 
influence for instantaneous 
effects of generalized 
displacements 
STRUCTURAL MOTION
FB 69 
QUASI STEADY THEORY (QS) - 1 
Umean 
U’(t) W’(t) 
β(t) 
α(t) 
β(t) 
θ(t) 
θ(t) 
γ(t) 
γ(t) 
undeformed configuration 
E 
E 
-p(t) 
-hA(t) 
( )  ( ) 
2 
1 
( ) 
2 
D t V t B c t ai D       
( )  ( ) 
2 
1 
( ) 
2 
L t V t B c t ai L       
( )  ( ) 
2 
1 
( ) 2 2 
M t V t B c t ai M      
FB 70 
QUASI STEADY THEORY (QS) - 2 
θ(t) 
θ(t) 
undeformed configuration 
E 
E 
p 
p(t) 
hA(t) 
A 
A 
B 
biB 
hA(t)=h(t)+biBθ(t) 
h(t) 
p(t)
FB 71 
(t) 
t 
 
t 
influence for instantaneous 
effects of generalized 
(t) displacements and velocities 
 STRUCTURAL MOTION
FB 72 
MODIFIED QS THEORY (QSM) - 1 
In respect to the QS theory, the only changes concern the aerodynamic coefficients for 
the Lift and the Moment, which become dynamic as measured by wind tunnel tests. 
Aeroelastic forces are expressed by the following expressions: 
( )  ( ) 
2 
1 
( ) 
2 
D t V t B c t aL D       
( ) *  ( ) 
2 
1 
( ) 
2 
L t V t B c t aL L       (10) 
( ) *  ( ) 
2 
1 
( ) 2 2 
M t V t B c t aM M       
where (t) i  , 
2 
V (t) ai ( i  L,M ) and D c , have the same meaning as the previous 
expressions included in QS theory.
FB 73 
MODIFIED QS THEORY (QSM) -2 
In the expressions (10), aerodynamic coefficients Lc* and Mc* are dynamic and they are computed like below:           00)(* )(* 00dKccdKccMMMLLL (11) where )(0Lc e )(0Mc are the static aerodynamic coefficients computed in the mean equilibrium configuration (0), and LK, MK are the “dynamic derivatives” computed like below:                     MMLLcaKchK33 (12) where3h and 3a are the Zasso’s theory coefficients [15], assessed by dynamic wind tunnel tests. These coefficients are similar to the Scanlan’s motion derivatives (2), and they depend both from the rotation deck angle and the “reduced wind velocity” BVVred (depending from, which is the motion frequency).
FB 74 
(t) 
t t 
influence of 
delay/memory effects 
STRUCTURAL MOTION
FB 75 
Complexity 
Aeroelastic theories 
F q q q n P t n q Q t n q R t n q se ( , , ; )  ( , )   ( , )    ( , )  
Approximated formulation for aeroelastic forces (2)
PART #3 
RESULTS
(iv) STABILITY RESULTSfor non turbulent wind 
Vento = f(t)
FB 78 
0,500 
0,505 
0,510 
0,515 
0,520 
600 650 700 750 800 850 900 950 1000 
t (sec) 
stable (positive damping) 
0,500 
0,505 
0,510 
0,515 
0,520 
0,525 
600 650 700 750 800 850 900 950 1000 
t (sec) 
critical (zero damping) 
0,300 
0,400 
0,500 
0,600 
0,700 
600 650 700 750 800 850 900 950 1000 
t (sec) 
unstable (negative damping) 
V<Vcrit – δ>0 
V~Vcrit – δ~0 
V>Vcrit – δ<0
FB 79 
Uz 
Theta 
start 
final 
V<Vcrit – δ>0
FB 80 
V~Vcrit –δ~0 
Uz Theta startfinalUz startfinal
FB 81 
V>Vcrit –δ<0 
Uz Theta startfinalUz startfinalstartfinal
FB 82 
Mid span oscillation envelope to evaluate damping 
0,5000,5050,5100,5150,5200,5256006507007508008509009501000t (sec) teqqq 0Uz; Thetaqq+q00,5000,5050,5100,5150,5200,5256006507007508008509009501000t q0 V<Vcrit 0
FB 83 
Damping and Vcrit 
-1,5 
-1,0 
-0,5 
0,0 
0,5 
1,0 
1,5 
0 10 20 30 40 50 60 70 80 
Wind Velocity (m/s) 
Damping (%) 
Total Structural Aerodynamic 
-1,5 
-1,0 
-0,5 
0,0 
0,5 
1,0 
1,5 
0 10 20 30 40 50 60 70 80 
Wind Velocity (m/s) 
Damping (%) 
Total Structural Aerodynamic
FB 84 
66m/s 70m/s 85m/s0102030405060708090NOSTQSQSM V (m/s) NO FLUTTER
(v) RESPONSE RESULTSfor turbulent wind 
Vento = f(s,t)
FB 86
FB 87 
Time history Frequencies Probability density 
NO 
0 
2 
4 
6 
8 
10 
12 
14 
400 900 1400 1900 2400 2900 
time (sec) 
Uy (m) 
0 
200 
400 
600 
800 
1000 
1200 
2,41 
3,91 
5,42 
6,92 
8,43 
9,93 
11,43 
12,94 
Class 
Frequency 
ST 
0 
2 
4 
6 
8 
10 
12 
14 
400 900 1400 1900 2400 2900 
time (sec) 
Uy (m) 
0 
200 
400 
600 
800 
1000 
1200 
2,41 
3,91 
5,42 
6,92 
8,43 
9,93 
11,43 
12,94 
Class 
Frequency 
QS 
0 
2 
4 
6 
8 
10 
12 
14 
400 900 1400 1900 2400 2900 
time (sec) 
Uy (m) 
0 
200 
400 
600 
800 
1000 
1200 
2,41 
3,91 
5,42 
6,92 
8,43 
9,93 
11,43 
12,94 
Class 
Frequency 
QSM 
0 
2 
4 
6 
8 
10 
12 
14 
400 900 1400 1900 2400 2900 
time (sec) 
Uy (m) 
0 
200 
400 
600 
800 
1000 
1200 
2,41 
3,91 
5,42 
6,92 
8,43 
9,93 
11,43 
12,94 
Class 
Frequency 
Mean wind velocity = 45 m/s
FB 88 
Time history Frequencies Probability density 
NO 
-3,5 
-2,5 
-1,5 
-0,5 
0,5 
1,5 
2,5 
3,5 
400 900 1400 1900 2400 2900 
time (sec) 
Uz (m) 
0 
200 
400 
600 
800 
1000 
1200 
-1,79 
-1,02 
-0,25 
0,53 
1,30 
2,07 
2,84 
3,61 
Class 
Frequency 
ST 
-3,5 
-2,5 
-1,5 
-0,5 
0,5 
1,5 
2,5 
3,5 
400 900 1400 1900 2400 2900 
time (sec) 
Uz (m) 
0 
200 
400 
600 
800 
1000 
1200 
-1,79 
-1,02 
-0,25 
0,53 
1,30 
2,07 
2,84 
3,61 
Class 
Frequency 
QS 
-3,5 
-2,5 
-1,5 
-0,5 
0,5 
1,5 
2,5 
3,5 
400 900 1400 1900 2400 2900 
time (sec) 
Uz (m) 
0 
200 
400 
600 
800 
1000 
1200 
1400 
1600 
1800 
-1,79 
-1,02 
-0,25 
0,53 
1,30 
2,07 
2,84 
3,61 
Class 
Frequency 
QSM 
-3,5 
-2,5 
-1,5 
-0,5 
0,5 
1,5 
2,5 
3,5 
400 900 1400 1900 2400 2900 
time (sec) 
Uz (m) 
0 
500 
1000 
1500 
2000 
2500 
3000 
3500 
-1,79 
-1,02 
-0,25 
0,53 
1,30 
2,07 
2,84 
3,61 
Class 
Frequency 
Mean wind velocity = 45 m/s
FB 89 
Time history Frequencies Probability density 
NO 
-0,055 
-0,045 
-0,035 
-0,025 
-0,015 
-0,005 
0,005 
0,015 
0,025 
400 900 1400 1900 2400 2900 
time (sec) 
Rot (RAD) 
0 
200 
400 
600 
800 
1000 
1200 
-0,047 
-0,036 
-0,025 
-0,014 
-0,003 
0,008 
0,019 
0,030 
Class 
Frequency 
ST 
-0,055 
-0,045 
-0,035 
-0,025 
-0,015 
-0,005 
0,005 
0,015 
0,025 
400 900 1400 1900 2400 2900 
time (sec) 
Rot (RAD) 
0 
200 
400 
600 
800 
1000 
1200 
-0,047 
-0,036 
-0,025 
-0,014 
-0,003 
0,008 
0,019 
0,030 
Class 
Frequency 
QS 
-0,055 
-0,045 
-0,035 
-0,025 
-0,015 
-0,005 
0,005 
0,015 
0,025 
400 900 1400 1900 2400 2900 
time (sec) 
Rot (RAD) 
0 
200 
400 
600 
800 
1000 
1200 
1400 
1600 
1800 
2000 
-0,047 
-0,036 
-0,025 
-0,014 
-0,003 
0,008 
0,019 
0,030 
Class 
Frequency 
QSM 
-0,055 
-0,045 
-0,035 
-0,025 
-0,015 
-0,005 
0,005 
0,015 
0,025 
400 900 1400 1900 2400 2900 
time (sec) 
Rot (RAD) 
0 
200 
400 
600 
800 
1000 
1200 
1400 
1600 
1800 
2000 
-0,047 
-0,036 
-0,025 
-0,014 
-0,003 
0,008 
0,019 
0,030 
Class 
Frequency 
Mean wind velocity = 45 m/s
FB 90 
Time history Probability density Mean values 
900 1400 1900 2400 2900 
time (sec) 
NO_V45 ST_V45 QS_V45 QSM_V45 
0,0 
1,0 
2,0 
3,0 
4,0 
5,0 
6,0 
7,0 
NO ST QS QSM Experim 
900 1400 1900 2400 2900 
time (sec) 
NO_V45 ST_V45 QS_V45 QSM_V45 
-0,4 
-0,3 
-0,2 
-0,1 
0,0 
NO ST QS QSM Experim 
900 1400 1900 2400 2900 
time (sec) 
NO_V45 ST_V45 QS_V45 QSM_V45 
-0,6 
-0,5 
-0,4 
-0,3 
-0,2 
-0,1 
0,0 
NO ST QS QSM Experim 
Rotation(DEG) 
Mean wind velocity = 45 m/s
FB 95 
Envelope transv. velocity 
NO_V45 
ST_V45 
QS_V45 
QSM_V45 
-1,8 
-0,8 
0,2 
1,2 
0 500 1000 1500 2000 2500 3000 3500 
abscissa (m) 
Vy (m/s) 
NO_V45 ST_V45 QS_V45 QSM_V45
FB 96 
Envelope transv. accelerationNO_V45ST_V45QS_V45QSM_V45-0,9-0,5-0,10,30,70500100015002000250030003500abscissa (m) ay (m/s^2) NO_V45ST_V45QS_V45QSM_V45
FB 97 
Envelope vert. velocity NO_V45ST_V45QS_V45QSM_V45-2,5-1,5-0,50,51,52,50500100015002000250030003500abscissa (m) Vy (m/s) NO_V45ST_V45QS_V45QSM_V45
FB 98 
Envelope vert. acceleration NO_V45ST_V45QS_V45QSM_V45-1,5-0,50,51,50500100015002000250030003500abscissa (m) az (m/s^2) NO_V45ST_V45QS_V45QSM_V45
FB 99 
Tiro cavi all'ancoraggio 
115000 
120000 
125000 
130000 
135000 
140000 
600 1100 1600 2100 2600 3100 
Tempo (s) 
Tiro (Ton) 
Sponda siciliana, lato nord Sponda calabrese, lato nord 
Sponda siciliana, lato sud Sponda calabrese, lato sud 
AXIAL FORCE IN THE MAIN CABLES (1) 
Vento = f(s,t) 
Vento = f(s,t)
FB 100 
Tiro cavi all'ancoraggio 
115000 
120000 
125000 
130000 
135000 
140000 
600 1100 1600 2100 2600 3100 
Tempo (s) 
Tiro (Ton) 
Sponda siciliana, lato nord Sponda calabrese, lato nord 
Sponda siciliana, lato sud Sponda calabrese, lato sud 
AXIAL FORCE IN THE MAIN CABLES (2) 
Vento = f(s,t) 
Vento = f(s,t)
FB 101 
CONCLUSIONS -stability 
1.NO formulation can not compute the flutter phenomenon, while the other formulations can; 
2.increasing the complexity of the aeroelastic forces representation, the value of the critical velocity increases; 
3.the variation of aeroelastic damping with the wind incident velocity has been assessed using QS formulation, where the aerodynamic damping increases its value from zero velocity to a certain value of the wind velocity; beyond this value it starts to decrease and finally it becomes negative.
FB 102 
CONCLUSIONS -response 
1.with non turbulent wind, the QS and QSM formulations have a damping greater than linear; concerning the time envelopes of deck displacements, the results obtained from different formulations are very similar; 
2.with turbulent incident wind, the differences between the oscillations amplitude computed by different formulations become significant. 
In general, increasing the complexity of the aeroelastic forces representation (following the succession NO, ST, QS, QSM), the maximum response decrease. These differences increase with the increase of the wind mean velocity.
FB 103 
ACKNOWLEDGMENTS 
•The authors thank Professors R. Calzona, P.G. Malerba, and K.J. Bathe for fundamental supports related to this study. 
•Thanks to the Reviewers of the present paper. 
•The financial supports of University of Rome “La Sapienza”, COFIN2004 and Stretto di Messina S.p.A. are acknowledged. 
•Nevertheless, the opinions and the results presented here are responsibility of the authors and cannot be assumed to reflect the ones of University of Rome “La Sapienza” or of Stretto di Messina S.p.A.
Fourth M.I.T. Conference on Computational Fluid and Solid Mechanics –Focus: Fluid-Structure InteractionsBoston, June 13-15, 2007Comparison of time domain techniquesfor the evaluation of the response and the stabilityof long span suspension bridges 
F.Petrini, F.Giuliano, F.Bontempi* 
*Professor of Structural Analysis and Design 
University of Rome La Sapienza -ITALY
FB 105

More Related Content

What's hot

84-91 UNI RM - Bontempi REV.pdf
84-91 UNI RM - Bontempi REV.pdf84-91 UNI RM - Bontempi REV.pdf
84-91 UNI RM - Bontempi REV.pdfFranco Bontempi
 
Analisi tridimensionale di pile da ponte a doppia lama.
Analisi tridimensionale di pile da ponte a doppia lama.Analisi tridimensionale di pile da ponte a doppia lama.
Analisi tridimensionale di pile da ponte a doppia lama.Franco Bontempi
 
Ottimizzazione Strutturale - Gridshells
Ottimizzazione Strutturale - GridshellsOttimizzazione Strutturale - Gridshells
Ottimizzazione Strutturale - GridshellsFranco Bontempi
 
progettazione strutturale antincendio - ANTINCENDIO 2008-2019
progettazione strutturale antincendio - ANTINCENDIO 2008-2019progettazione strutturale antincendio - ANTINCENDIO 2008-2019
progettazione strutturale antincendio - ANTINCENDIO 2008-2019Franco Bontempi
 
Tecnica delle costruzioni alessandra aguinagalde.image.marked.text.marked
Tecnica delle costruzioni alessandra aguinagalde.image.marked.text.markedTecnica delle costruzioni alessandra aguinagalde.image.marked.text.marked
Tecnica delle costruzioni alessandra aguinagalde.image.marked.text.markedFranco Bontempi Org Didattica
 
CALZONA - precompressione
CALZONA - precompressioneCALZONA - precompressione
CALZONA - precompressioneFranco Bontempi
 
PSA 2023 - chapter 1.pdf
PSA 2023 - chapter 1.pdfPSA 2023 - chapter 1.pdf
PSA 2023 - chapter 1.pdfFranco Bontempi
 
Appunti del corso di Tecnica delle Costruzioni - Bontempi, Sapienza
Appunti del corso di Tecnica delle Costruzioni - Bontempi, SapienzaAppunti del corso di Tecnica delle Costruzioni - Bontempi, Sapienza
Appunti del corso di Tecnica delle Costruzioni - Bontempi, SapienzaFranco Bontempi
 
radogna appunti.Image.Marked.pdf
radogna appunti.Image.Marked.pdfradogna appunti.Image.Marked.pdf
radogna appunti.Image.Marked.pdfFranco Bontempi
 
PGS - lezione 04 - MODELLAZIONI DISCRETE.pdf
PGS - lezione 04 - MODELLAZIONI DISCRETE.pdfPGS - lezione 04 - MODELLAZIONI DISCRETE.pdf
PGS - lezione 04 - MODELLAZIONI DISCRETE.pdfFranco Bontempi
 
Costruzioni Metalliche - Ponti: seminario Ing. Luca ROMANO
Costruzioni Metalliche - Ponti: seminario Ing. Luca ROMANOCostruzioni Metalliche - Ponti: seminario Ing. Luca ROMANO
Costruzioni Metalliche - Ponti: seminario Ing. Luca ROMANOFranco Bontempi
 
Sicurezza Strutturale di Gallerie in Caso di Incendio
Sicurezza Strutturale di Gallerie in Caso di IncendioSicurezza Strutturale di Gallerie in Caso di Incendio
Sicurezza Strutturale di Gallerie in Caso di IncendioFranco Bontempi
 
Analisi strutturale non lineare: modellazione, algoritmi, aspetti critici.
Analisi strutturale non lineare: modellazione, algoritmi, aspetti critici.Analisi strutturale non lineare: modellazione, algoritmi, aspetti critici.
Analisi strutturale non lineare: modellazione, algoritmi, aspetti critici.Franco Bontempi
 
1. Aspetti elementari del comportamento del calcestruzzo
1. Aspetti elementari del comportamento del calcestruzzo1. Aspetti elementari del comportamento del calcestruzzo
1. Aspetti elementari del comportamento del calcestruzzoFranco Bontempi Org Didattica
 

What's hot (20)

84-91 UNI RM - Bontempi REV.pdf
84-91 UNI RM - Bontempi REV.pdf84-91 UNI RM - Bontempi REV.pdf
84-91 UNI RM - Bontempi REV.pdf
 
Analisi tridimensionale di pile da ponte a doppia lama.
Analisi tridimensionale di pile da ponte a doppia lama.Analisi tridimensionale di pile da ponte a doppia lama.
Analisi tridimensionale di pile da ponte a doppia lama.
 
Ottimizzazione Strutturale - Gridshells
Ottimizzazione Strutturale - GridshellsOttimizzazione Strutturale - Gridshells
Ottimizzazione Strutturale - Gridshells
 
progettazione strutturale antincendio - ANTINCENDIO 2008-2019
progettazione strutturale antincendio - ANTINCENDIO 2008-2019progettazione strutturale antincendio - ANTINCENDIO 2008-2019
progettazione strutturale antincendio - ANTINCENDIO 2008-2019
 
Aspetti operativi della modellazione strutturale
Aspetti operativi della modellazione strutturaleAspetti operativi della modellazione strutturale
Aspetti operativi della modellazione strutturale
 
Tecnica delle costruzioni alessandra aguinagalde.image.marked.text.marked
Tecnica delle costruzioni alessandra aguinagalde.image.marked.text.markedTecnica delle costruzioni alessandra aguinagalde.image.marked.text.marked
Tecnica delle costruzioni alessandra aguinagalde.image.marked.text.marked
 
Appunti di Teoria e Progetto di Ponti - Catigbac
Appunti di Teoria e Progetto di Ponti - CatigbacAppunti di Teoria e Progetto di Ponti - Catigbac
Appunti di Teoria e Progetto di Ponti - Catigbac
 
TPP 2021/22
TPP 2021/22TPP 2021/22
TPP 2021/22
 
Piastre e tubi - Samuele Ferretti
Piastre e tubi - Samuele FerrettiPiastre e tubi - Samuele Ferretti
Piastre e tubi - Samuele Ferretti
 
CALZONA - precompressione
CALZONA - precompressioneCALZONA - precompressione
CALZONA - precompressione
 
PSA 2023 - chapter 1.pdf
PSA 2023 - chapter 1.pdfPSA 2023 - chapter 1.pdf
PSA 2023 - chapter 1.pdf
 
Costruzione di ponti in acciaio
Costruzione di ponti in acciaioCostruzione di ponti in acciaio
Costruzione di ponti in acciaio
 
Bontempi cv 2012 totale
Bontempi cv 2012 totaleBontempi cv 2012 totale
Bontempi cv 2012 totale
 
Appunti del corso di Tecnica delle Costruzioni - Bontempi, Sapienza
Appunti del corso di Tecnica delle Costruzioni - Bontempi, SapienzaAppunti del corso di Tecnica delle Costruzioni - Bontempi, Sapienza
Appunti del corso di Tecnica delle Costruzioni - Bontempi, Sapienza
 
radogna appunti.Image.Marked.pdf
radogna appunti.Image.Marked.pdfradogna appunti.Image.Marked.pdf
radogna appunti.Image.Marked.pdf
 
PGS - lezione 04 - MODELLAZIONI DISCRETE.pdf
PGS - lezione 04 - MODELLAZIONI DISCRETE.pdfPGS - lezione 04 - MODELLAZIONI DISCRETE.pdf
PGS - lezione 04 - MODELLAZIONI DISCRETE.pdf
 
Costruzioni Metalliche - Ponti: seminario Ing. Luca ROMANO
Costruzioni Metalliche - Ponti: seminario Ing. Luca ROMANOCostruzioni Metalliche - Ponti: seminario Ing. Luca ROMANO
Costruzioni Metalliche - Ponti: seminario Ing. Luca ROMANO
 
Sicurezza Strutturale di Gallerie in Caso di Incendio
Sicurezza Strutturale di Gallerie in Caso di IncendioSicurezza Strutturale di Gallerie in Caso di Incendio
Sicurezza Strutturale di Gallerie in Caso di Incendio
 
Analisi strutturale non lineare: modellazione, algoritmi, aspetti critici.
Analisi strutturale non lineare: modellazione, algoritmi, aspetti critici.Analisi strutturale non lineare: modellazione, algoritmi, aspetti critici.
Analisi strutturale non lineare: modellazione, algoritmi, aspetti critici.
 
1. Aspetti elementari del comportamento del calcestruzzo
1. Aspetti elementari del comportamento del calcestruzzo1. Aspetti elementari del comportamento del calcestruzzo
1. Aspetti elementari del comportamento del calcestruzzo
 

Similar to Comparison of time domain techniques for the evaluation of the response and the stability of long span suspension bridges

Module 8, Spring 2020.pdf
Module 8, Spring 2020.pdfModule 8, Spring 2020.pdf
Module 8, Spring 2020.pdfMohammad Javed
 
D0372027037
D0372027037D0372027037
D0372027037theijes
 
Finite Element Analysis of the Beams Under Thermal Loading
Finite Element Analysis of the Beams Under Thermal LoadingFinite Element Analysis of the Beams Under Thermal Loading
Finite Element Analysis of the Beams Under Thermal LoadingMohammad Tawfik
 
Metal cutting tool position control using static output feedback and full sta...
Metal cutting tool position control using static output feedback and full sta...Metal cutting tool position control using static output feedback and full sta...
Metal cutting tool position control using static output feedback and full sta...Mustefa Jibril
 
Vibration attenuation control of ocean marine risers with axial-transverse co...
Vibration attenuation control of ocean marine risers with axial-transverse co...Vibration attenuation control of ocean marine risers with axial-transverse co...
Vibration attenuation control of ocean marine risers with axial-transverse co...TELKOMNIKA JOURNAL
 
Modeling of Deep Girders Supporting Shear Walls
Modeling of Deep Girders Supporting Shear WallsModeling of Deep Girders Supporting Shear Walls
Modeling of Deep Girders Supporting Shear WallsSyed Karar Hussain
 
sdof-1211798306003307-8.pptx
sdof-1211798306003307-8.pptxsdof-1211798306003307-8.pptx
sdof-1211798306003307-8.pptxSahilDhanvijay2
 
Structural dynamics good notes
Structural dynamics good notesStructural dynamics good notes
Structural dynamics good notessantosh161832
 
Signature analysis of cracked cantilever beam
Signature analysis of cracked cantilever beamSignature analysis of cracked cantilever beam
Signature analysis of cracked cantilever beamiaemedu
 
Signature analysis of cracked cantilever beam
Signature analysis of cracked cantilever beamSignature analysis of cracked cantilever beam
Signature analysis of cracked cantilever beamiaemedu
 
Gradually Varied Flow in Open Channel
Gradually Varied Flow in Open ChannelGradually Varied Flow in Open Channel
Gradually Varied Flow in Open ChannelAmro Elfeki
 
Mhd and heat transfer in a thin film over an unsteady stretching surface with
Mhd and heat transfer in a thin film over an unsteady stretching surface withMhd and heat transfer in a thin film over an unsteady stretching surface with
Mhd and heat transfer in a thin film over an unsteady stretching surface withIAEME Publication
 
An introduction to discrete wavelet transforms
An introduction to discrete wavelet transformsAn introduction to discrete wavelet transforms
An introduction to discrete wavelet transformsLily Rose
 
Robust Control of Rotor/AMB Systems
Robust Control of Rotor/AMB SystemsRobust Control of Rotor/AMB Systems
Robust Control of Rotor/AMB SystemsSina Kuseyri
 
Clase 02-modelado-de-sistemas-de-control (1)
Clase 02-modelado-de-sistemas-de-control (1)Clase 02-modelado-de-sistemas-de-control (1)
Clase 02-modelado-de-sistemas-de-control (1)ronald sanchez
 
Feedback control of_dynamic_systems
Feedback control of_dynamic_systemsFeedback control of_dynamic_systems
Feedback control of_dynamic_systemskarina G
 
Viktor Urumov - Time-delay feedback control of nonlinear oscillators
Viktor Urumov -  Time-delay feedback control of nonlinear oscillatorsViktor Urumov -  Time-delay feedback control of nonlinear oscillators
Viktor Urumov - Time-delay feedback control of nonlinear oscillatorsSEENET-MTP
 
Periodic material-based vibration isolation for satellites
Periodic material-based vibration isolation for satellitesPeriodic material-based vibration isolation for satellites
Periodic material-based vibration isolation for satellitesIJERA Editor
 

Similar to Comparison of time domain techniques for the evaluation of the response and the stability of long span suspension bridges (20)

Module 8, Spring 2020.pdf
Module 8, Spring 2020.pdfModule 8, Spring 2020.pdf
Module 8, Spring 2020.pdf
 
D0372027037
D0372027037D0372027037
D0372027037
 
Finite Element Analysis of the Beams Under Thermal Loading
Finite Element Analysis of the Beams Under Thermal LoadingFinite Element Analysis of the Beams Under Thermal Loading
Finite Element Analysis of the Beams Under Thermal Loading
 
Metal cutting tool position control using static output feedback and full sta...
Metal cutting tool position control using static output feedback and full sta...Metal cutting tool position control using static output feedback and full sta...
Metal cutting tool position control using static output feedback and full sta...
 
Vibration attenuation control of ocean marine risers with axial-transverse co...
Vibration attenuation control of ocean marine risers with axial-transverse co...Vibration attenuation control of ocean marine risers with axial-transverse co...
Vibration attenuation control of ocean marine risers with axial-transverse co...
 
Modeling of Deep Girders Supporting Shear Walls
Modeling of Deep Girders Supporting Shear WallsModeling of Deep Girders Supporting Shear Walls
Modeling of Deep Girders Supporting Shear Walls
 
sdof-1211798306003307-8.pptx
sdof-1211798306003307-8.pptxsdof-1211798306003307-8.pptx
sdof-1211798306003307-8.pptx
 
Structural dynamics good notes
Structural dynamics good notesStructural dynamics good notes
Structural dynamics good notes
 
Signature analysis of cracked cantilever beam
Signature analysis of cracked cantilever beamSignature analysis of cracked cantilever beam
Signature analysis of cracked cantilever beam
 
Signature analysis of cracked cantilever beam
Signature analysis of cracked cantilever beamSignature analysis of cracked cantilever beam
Signature analysis of cracked cantilever beam
 
Gradually Varied Flow in Open Channel
Gradually Varied Flow in Open ChannelGradually Varied Flow in Open Channel
Gradually Varied Flow in Open Channel
 
Mhd and heat transfer in a thin film over an unsteady stretching surface with
Mhd and heat transfer in a thin film over an unsteady stretching surface withMhd and heat transfer in a thin film over an unsteady stretching surface with
Mhd and heat transfer in a thin film over an unsteady stretching surface with
 
An introduction to discrete wavelet transforms
An introduction to discrete wavelet transformsAn introduction to discrete wavelet transforms
An introduction to discrete wavelet transforms
 
Robust Control of Rotor/AMB Systems
Robust Control of Rotor/AMB SystemsRobust Control of Rotor/AMB Systems
Robust Control of Rotor/AMB Systems
 
Clase 02-modelado-de-sistemas-de-control (1)
Clase 02-modelado-de-sistemas-de-control (1)Clase 02-modelado-de-sistemas-de-control (1)
Clase 02-modelado-de-sistemas-de-control (1)
 
40220130406004
4022013040600440220130406004
40220130406004
 
Mallett_LA14761
Mallett_LA14761Mallett_LA14761
Mallett_LA14761
 
Feedback control of_dynamic_systems
Feedback control of_dynamic_systemsFeedback control of_dynamic_systems
Feedback control of_dynamic_systems
 
Viktor Urumov - Time-delay feedback control of nonlinear oscillators
Viktor Urumov -  Time-delay feedback control of nonlinear oscillatorsViktor Urumov -  Time-delay feedback control of nonlinear oscillators
Viktor Urumov - Time-delay feedback control of nonlinear oscillators
 
Periodic material-based vibration isolation for satellites
Periodic material-based vibration isolation for satellitesPeriodic material-based vibration isolation for satellites
Periodic material-based vibration isolation for satellites
 

More from Franco Bontempi

PGS - lezione 63 - robustness.pdf
PGS - lezione 63 - robustness.pdfPGS - lezione 63 - robustness.pdf
PGS - lezione 63 - robustness.pdfFranco Bontempi
 
PGS - lezione 60 - evidences of failures.pdf
PGS - lezione 60 - evidences of failures.pdfPGS - lezione 60 - evidences of failures.pdf
PGS - lezione 60 - evidences of failures.pdfFranco Bontempi
 
La realtà dei ponti e dei viadotti: controllo e manutenzione
La realtà dei ponti e dei viadotti: controllo e manutenzioneLa realtà dei ponti e dei viadotti: controllo e manutenzione
La realtà dei ponti e dei viadotti: controllo e manutenzioneFranco Bontempi
 
ANALISI DEL RISCHIO PER LA SICUREZZA NELLE GALLERIE STRADALI.
ANALISI DEL RISCHIO PER LA SICUREZZA NELLE GALLERIE STRADALI.ANALISI DEL RISCHIO PER LA SICUREZZA NELLE GALLERIE STRADALI.
ANALISI DEL RISCHIO PER LA SICUREZZA NELLE GALLERIE STRADALI.Franco Bontempi
 
RISK ANALYSIS FOR SEVERE TRAFFIC ACCIDENTS IN ROAD TUNNELS
RISK ANALYSIS FOR SEVERE TRAFFIC ACCIDENTS IN ROAD TUNNELSRISK ANALYSIS FOR SEVERE TRAFFIC ACCIDENTS IN ROAD TUNNELS
RISK ANALYSIS FOR SEVERE TRAFFIC ACCIDENTS IN ROAD TUNNELSFranco Bontempi
 
Approccio sistemico al progetto dei grandi ponti
Approccio sistemico al progetto dei grandi pontiApproccio sistemico al progetto dei grandi ponti
Approccio sistemico al progetto dei grandi pontiFranco Bontempi
 
PGS - lezione D - grandi strutture.pdf
PGS - lezione D - grandi strutture.pdfPGS - lezione D - grandi strutture.pdf
PGS - lezione D - grandi strutture.pdfFranco Bontempi
 
PGS - lezione F - ingegneria forense.pdf
PGS - lezione F - ingegneria forense.pdfPGS - lezione F - ingegneria forense.pdf
PGS - lezione F - ingegneria forense.pdfFranco Bontempi
 
PGS - lezione C - controllo e manutenzione.pdf
PGS - lezione C - controllo e manutenzione.pdfPGS - lezione C - controllo e manutenzione.pdf
PGS - lezione C - controllo e manutenzione.pdfFranco Bontempi
 
Fenomeni di instabilita'
Fenomeni di instabilita'Fenomeni di instabilita'
Fenomeni di instabilita'Franco Bontempi
 
Introduzione al Calcolo Elasto – Plastico «a freddo» delle strutture in acciaio
Introduzione al Calcolo Elasto – Plastico «a freddo» delle strutture in acciaioIntroduzione al Calcolo Elasto – Plastico «a freddo» delle strutture in acciaio
Introduzione al Calcolo Elasto – Plastico «a freddo» delle strutture in acciaioFranco Bontempi
 
FB - PSA Esercitazione 1_12_18-II parte.pdf
FB - PSA Esercitazione 1_12_18-II parte.pdfFB - PSA Esercitazione 1_12_18-II parte.pdf
FB - PSA Esercitazione 1_12_18-II parte.pdfFranco Bontempi
 
Gestione di Ponti e Grandi Strutture: Spalle - Pile - Antenne
Gestione di Ponti e Grandi Strutture: Spalle - Pile - AntenneGestione di Ponti e Grandi Strutture: Spalle - Pile - Antenne
Gestione di Ponti e Grandi Strutture: Spalle - Pile - AntenneFranco Bontempi
 
Progettazione Strutturale Antincendio. ROBUSTEZZA
Progettazione Strutturale Antincendio. ROBUSTEZZAProgettazione Strutturale Antincendio. ROBUSTEZZA
Progettazione Strutturale Antincendio. ROBUSTEZZAFranco Bontempi
 
PGS - lezione B - robustness.pdf
PGS - lezione B - robustness.pdfPGS - lezione B - robustness.pdf
PGS - lezione B - robustness.pdfFranco Bontempi
 

More from Franco Bontempi (20)

PGS - lezione 63 - robustness.pdf
PGS - lezione 63 - robustness.pdfPGS - lezione 63 - robustness.pdf
PGS - lezione 63 - robustness.pdf
 
PGS - lezione 60 - evidences of failures.pdf
PGS - lezione 60 - evidences of failures.pdfPGS - lezione 60 - evidences of failures.pdf
PGS - lezione 60 - evidences of failures.pdf
 
La realtà dei ponti e dei viadotti: controllo e manutenzione
La realtà dei ponti e dei viadotti: controllo e manutenzioneLa realtà dei ponti e dei viadotti: controllo e manutenzione
La realtà dei ponti e dei viadotti: controllo e manutenzione
 
ANALISI DEL RISCHIO PER LA SICUREZZA NELLE GALLERIE STRADALI.
ANALISI DEL RISCHIO PER LA SICUREZZA NELLE GALLERIE STRADALI.ANALISI DEL RISCHIO PER LA SICUREZZA NELLE GALLERIE STRADALI.
ANALISI DEL RISCHIO PER LA SICUREZZA NELLE GALLERIE STRADALI.
 
RISK ANALYSIS FOR SEVERE TRAFFIC ACCIDENTS IN ROAD TUNNELS
RISK ANALYSIS FOR SEVERE TRAFFIC ACCIDENTS IN ROAD TUNNELSRISK ANALYSIS FOR SEVERE TRAFFIC ACCIDENTS IN ROAD TUNNELS
RISK ANALYSIS FOR SEVERE TRAFFIC ACCIDENTS IN ROAD TUNNELS
 
Approccio sistemico al progetto dei grandi ponti
Approccio sistemico al progetto dei grandi pontiApproccio sistemico al progetto dei grandi ponti
Approccio sistemico al progetto dei grandi ponti
 
PGS - lezione D - grandi strutture.pdf
PGS - lezione D - grandi strutture.pdfPGS - lezione D - grandi strutture.pdf
PGS - lezione D - grandi strutture.pdf
 
PGS - lezione F - ingegneria forense.pdf
PGS - lezione F - ingegneria forense.pdfPGS - lezione F - ingegneria forense.pdf
PGS - lezione F - ingegneria forense.pdf
 
PGS - lezione C - controllo e manutenzione.pdf
PGS - lezione C - controllo e manutenzione.pdfPGS - lezione C - controllo e manutenzione.pdf
PGS - lezione C - controllo e manutenzione.pdf
 
PSA_MF_05_05_23.pdf
PSA_MF_05_05_23.pdfPSA_MF_05_05_23.pdf
PSA_MF_05_05_23.pdf
 
PSA_MF_04_05_23.pdf
PSA_MF_04_05_23.pdfPSA_MF_04_05_23.pdf
PSA_MF_04_05_23.pdf
 
Fenomeni di instabilita'
Fenomeni di instabilita'Fenomeni di instabilita'
Fenomeni di instabilita'
 
Introduzione al Calcolo Elasto – Plastico «a freddo» delle strutture in acciaio
Introduzione al Calcolo Elasto – Plastico «a freddo» delle strutture in acciaioIntroduzione al Calcolo Elasto – Plastico «a freddo» delle strutture in acciaio
Introduzione al Calcolo Elasto – Plastico «a freddo» delle strutture in acciaio
 
FB - PSA Esercitazione 1_12_18-II parte.pdf
FB - PSA Esercitazione 1_12_18-II parte.pdfFB - PSA Esercitazione 1_12_18-II parte.pdf
FB - PSA Esercitazione 1_12_18-II parte.pdf
 
Gestione di Ponti e Grandi Strutture: Spalle - Pile - Antenne
Gestione di Ponti e Grandi Strutture: Spalle - Pile - AntenneGestione di Ponti e Grandi Strutture: Spalle - Pile - Antenne
Gestione di Ponti e Grandi Strutture: Spalle - Pile - Antenne
 
Esplosioni.
Esplosioni.Esplosioni.
Esplosioni.
 
INCENDIO
INCENDIOINCENDIO
INCENDIO
 
Progettazione Strutturale Antincendio. ROBUSTEZZA
Progettazione Strutturale Antincendio. ROBUSTEZZAProgettazione Strutturale Antincendio. ROBUSTEZZA
Progettazione Strutturale Antincendio. ROBUSTEZZA
 
PGS - lezione B - robustness.pdf
PGS - lezione B - robustness.pdfPGS - lezione B - robustness.pdf
PGS - lezione B - robustness.pdf
 
WINDSOR HOTEL MADRID
WINDSOR HOTEL MADRIDWINDSOR HOTEL MADRID
WINDSOR HOTEL MADRID
 

Recently uploaded

(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Call Girls in Nagpur High Profile
 
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝soniya singh
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...Call Girls in Nagpur High Profile
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxupamatechverse
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINESIVASHANKAR N
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...RajaP95
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingrakeshbaidya232001
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations120cr0395
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
High Profile Call Girls Dahisar Arpita 9907093804 Independent Escort Service ...
High Profile Call Girls Dahisar Arpita 9907093804 Independent Escort Service ...High Profile Call Girls Dahisar Arpita 9907093804 Independent Escort Service ...
High Profile Call Girls Dahisar Arpita 9907093804 Independent Escort Service ...Call girls in Ahmedabad High profile
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 

Recently uploaded (20)

(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writing
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
 
High Profile Call Girls Dahisar Arpita 9907093804 Independent Escort Service ...
High Profile Call Girls Dahisar Arpita 9907093804 Independent Escort Service ...High Profile Call Girls Dahisar Arpita 9907093804 Independent Escort Service ...
High Profile Call Girls Dahisar Arpita 9907093804 Independent Escort Service ...
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 

Comparison of time domain techniques for the evaluation of the response and the stability of long span suspension bridges

  • 1. Fourth M.I.T. Conference on Computational Fluid and Solid Mechanics –Focus: Fluid-Structure InteractionsBoston, June 13-15, 2007Comparison of time domain techniquesfor the evaluation of the response and the stabilityof long span suspension bridges F.Petrini, F.Giuliano, F.Bontempi* *Professor of Structural Analysis and Design University of Rome La Sapienza -ITALY
  • 6. 777 183 3300 183 627 960 3300 m 810 +77.00 m +383.00 +383.00 +54.00 +118.00 +52.00 +63.00 STRUCTURAL MODEL LOADING SYSTEM GEOMETRY AND MATERIAL UNCERTAINTY
  • 7. 777 183 3300 183 627 960 3300 m 810 +77.00 m +383.00 +383.00 +54.00 +118.00 +52.00 +63.00 CONTROL DEVICES SOIL BEHAVIOR MATERIAL NONLINEARITY SOIL/STRUCTURE INTERFACE CONTACT HANGERS TOWERS MAIN CABLES GEOMETRIC NONLINEARITY NONLINEARITY
  • 8. 777 183 3300 183 627 960 3300 m 810 +77.00 m +383.00 +383.00 +54.00 +118.00 +52.00 +63.00 TRAFFIC – STRUCTURE WIND - STRUCTURE SOIL - STRUCTURE INTERACTION GLOBAL/LOCAL STRUCTURAL BEHAVIOUR
  • 9. FB 9 DECISION NEGOTIATION & REFRAMING WIND & TEMPERATURE EARTHQUAKE ANTROPIC ACTIONS (RAILWAY & HIGHWAY) STRUCTURAL BEHAVIOR & PERFORMANCE ASSESSMENT MODEL
  • 10. FB 10 Vento = f(s,t) Vento = f(s,t) Performance level assessing in response problem Wind Vel (m/s) Return Period (years) Performance to be furnished Level of performance 21 50 Complete serviceability (roadway and railway traffic) High 45 200 Partial serviceability (railway traffic) Medium 57 2000 Maintaining the structural integrity Low
  • 11. a) COMPOUND DECK structural complexity
  • 12. FB 12 deck arrangement
  • 13. FB 13 deck arrangement
  • 14. FB 14 highway girder section
  • 15. FB 15 railway girder section
  • 16. FB 16
  • 17. FB 17 transverse element section
  • 18. FB 18
  • 19. FB 19
  • 20. FB 20
  • 21. FB 21
  • 22. FB 22
  • 23. FB 23
  • 24. FB 24
  • 25. FB 25
  • 26. FB 26
  • 27. b) RESTRAINT DEVICES localized nonlinearities
  • 28. FB 28
  • 29. FB 29
  • 30. FB 30
  • 31. FB 31
  • 32. FB 32
  • 33. FB 33
  • 34. FB 34
  • 35. FB 35
  • 36. FB 36
  • 37. FB 37
  • 38. FB 38
  • 39. FB 39
  • 40. FB 40
  • 41. FB 41 WIND HG TG SICILIA’S TOWER LEG WIND SICILIA’S TOWER LEG CALABRIA’S TOWER LEG CALABRIA’S TOWER LEG TS LS Sicilia Calabria RG HG TG LS TS Transversal slack (TS) and longitudinal slack (LS) arrangement along the suspension bridge. (HG: Highway box girder; RG: Railway box girder; TG: Transverse box girder.)
  • 42. FB 42 TRANSVERSAL DISPLACEMENTS-101234567-1921805409001260162019802340270030603420L [m] Uy [m] 0 cm30 cm50 cm
  • 43. FB 43 HORIZONTAL CURVATURE -2.0E-05 0.0E+00 2.0E-05 4.0E-05 6.0E-05 -120 240 600 960 1320 1680 2040 2400 2760 3120 L [m] c [m -1 ] 0 cm 30 cm 50 cm
  • 45. FB 45 STRATEGY #1: SENSITIVITY governance of priorities
  • 46. FB 46 STRATEGY #2: BOUNDING behavior governance p (p)  p  (p) 
  • 47. FB 47 Super Controllore Problema Risultato Solutore #1 Solutore #2 Voting System STRATEGY #3: REDUNDANCY factors governance
  • 48. PART #2 FLUID-STRUCTURE INTERACTIONS
  • 49. FB 49 Equation of dynamic equilibrium By discretizing the body to a finite number of degrees of freedom (DOFs), the equation governing the body motion is the dynamic equilibrium equation: M  q  C  q  K  q  F(body shape ;q,q,q;V;t;n) (1) where M  mass matrix of the system, C  damping matrix of the system, K  stiffness matrix of the system, q, q, q  DOFs of the system and their first an second time derivates, V  incident wind velocity, t  time, n  oscillation frequencies of the system.
  • 50. FB 50 Classification (I): Collar
  • 51. FB 51 Classification (II): Naudascher / Rockwell FLOW-INDUCED VIBRATIONS caused by fluctuations in flow velocity or pressures that are independent of any flow instability originating from the structure considered and independent of structural movements except for added-mass and fluid-damping effects brought about by a flow instability that is intrinsic to the flow system; in other words, the flow instability is inherent to the flow created by the structure considered due to fluctuating forces that arise from movements of the vibrating body; a dynamic instability of the body oscillator can gives rise to energy transfer from the main flow to the oscillator EIE Extraneously induced excitation MIE Movement-induced excitation IIE Instability-induced excitation es. TURBULENCE BUFFETING es. VORTEX SHEDDING es. FLUTTER
  • 52. FB 52 if F(t) contains negative flow-induced damping FLOW-INDUCED FORCES ON STATIONARY BODY MOVEMENT-INDUCED FORCES IN STAGNANT FLUID Fmean mean value F'(t) due to fluctuating fluid F''(t) due to vibrating body Extraneous source Flow instability In phase with body velocity In phase with body displacement or acceleration Mean loading system EIE IIE MIE Alteration of body dynamic characteristics
  • 54. FB 54 Vento = f(t) Vento = f(s,t) LAMINAR / TURBOLENT
  • 55. FB 55 Atmosferic turbulence Time variation Spatial variation Three spatial component Mean component Turbulent component
  • 56. FB 56 Componente verticale -15 -10 -5 0 5 10 15 0 500 1000 1500 T (secondi) Vz (m/s) Velocity time         j   k k j k j k k (t) 2     cos tR sin tI mc k 1       j j Y Time Histories generation by harmonic functions superposition Checking the spectral compatibility Wind velocity time histories generation (III)
  • 57. FB 57
  • 58. FB 58
  • 59. FB 59
  • 60. FB 60 Vento = f(s,t) Vento = f(s,t) Wind velocity field Aeroelastic theories From the wind velocities to the sectional forces ( )  ( ) 2 1 ( ) 2 D t V t B c t a D       ( ) *  ( ) 2 1 ( ) 2 L t V t B c t a L       ( ) *  ( ) 2 1 ( ) 2 2 M t V t B c t a M       a) Laminar b) Turbulent t1 t2 Computing of instantaneous wind forces Velocities are stationary Velocities are uniform at the same altitude Velocities are non stationary and non uniform Loading system
  • 62. FB 62 LES–Flow around Nude Section
  • 63. FB 63 LES–Flow around a RealisticSection
  • 64. FB 64 Aeroelastic theories: F q q q n P t n q Q t n q R t n q se ( , , ; )  ( , )   ( , )    ( , )  Approximated Formulation for Aeroelastic Forces (1) Non aeroelastic (NO)
  • 65. FB 65 (NO) AEROELASTIC THEORY Umean U’(t) W’(t) α(t) α(t) α(t) undeformed configuration E ( )  ( ) 2 1 ( ) 2 D t V t B c t a D       ( )  ( ) 2 1 ( ) 0 2 L t V t B K t a L       ( )  ( ) 2 1 ( ) 0 2 2 M t V t B K t a M      
  • 66. FB 66 (t) t 0 no influence NO STRUCTURAL MOTION
  • 67. FB 67 STEADY THEORY (ST) Umean U’(t) W’(t) α(t) α(t) α(t) θ(t) θ(t) γ(t) γ(t) undeformed configuration E E ( )  ( ) 2 1 ( ) 2 D t V t B c t a D       ( )  ( ) 2 1 ( ) 2 L t V t B c t a L       ( )  ( ) 2 1 ( ) 2 2 M t V t B c t a M      
  • 68. FB 68 (t) t  t influence for instantaneous effects of generalized displacements STRUCTURAL MOTION
  • 69. FB 69 QUASI STEADY THEORY (QS) - 1 Umean U’(t) W’(t) β(t) α(t) β(t) θ(t) θ(t) γ(t) γ(t) undeformed configuration E E -p(t) -hA(t) ( )  ( ) 2 1 ( ) 2 D t V t B c t ai D       ( )  ( ) 2 1 ( ) 2 L t V t B c t ai L       ( )  ( ) 2 1 ( ) 2 2 M t V t B c t ai M      
  • 70. FB 70 QUASI STEADY THEORY (QS) - 2 θ(t) θ(t) undeformed configuration E E p p(t) hA(t) A A B biB hA(t)=h(t)+biBθ(t) h(t) p(t)
  • 71. FB 71 (t) t  t influence for instantaneous effects of generalized (t) displacements and velocities  STRUCTURAL MOTION
  • 72. FB 72 MODIFIED QS THEORY (QSM) - 1 In respect to the QS theory, the only changes concern the aerodynamic coefficients for the Lift and the Moment, which become dynamic as measured by wind tunnel tests. Aeroelastic forces are expressed by the following expressions: ( )  ( ) 2 1 ( ) 2 D t V t B c t aL D       ( ) *  ( ) 2 1 ( ) 2 L t V t B c t aL L       (10) ( ) *  ( ) 2 1 ( ) 2 2 M t V t B c t aM M       where (t) i  , 2 V (t) ai ( i  L,M ) and D c , have the same meaning as the previous expressions included in QS theory.
  • 73. FB 73 MODIFIED QS THEORY (QSM) -2 In the expressions (10), aerodynamic coefficients Lc* and Mc* are dynamic and they are computed like below:           00)(* )(* 00dKccdKccMMMLLL (11) where )(0Lc e )(0Mc are the static aerodynamic coefficients computed in the mean equilibrium configuration (0), and LK, MK are the “dynamic derivatives” computed like below:                     MMLLcaKchK33 (12) where3h and 3a are the Zasso’s theory coefficients [15], assessed by dynamic wind tunnel tests. These coefficients are similar to the Scanlan’s motion derivatives (2), and they depend both from the rotation deck angle and the “reduced wind velocity” BVVred (depending from, which is the motion frequency).
  • 74. FB 74 (t) t t influence of delay/memory effects STRUCTURAL MOTION
  • 75. FB 75 Complexity Aeroelastic theories F q q q n P t n q Q t n q R t n q se ( , , ; )  ( , )   ( , )    ( , )  Approximated formulation for aeroelastic forces (2)
  • 77. (iv) STABILITY RESULTSfor non turbulent wind Vento = f(t)
  • 78. FB 78 0,500 0,505 0,510 0,515 0,520 600 650 700 750 800 850 900 950 1000 t (sec) stable (positive damping) 0,500 0,505 0,510 0,515 0,520 0,525 600 650 700 750 800 850 900 950 1000 t (sec) critical (zero damping) 0,300 0,400 0,500 0,600 0,700 600 650 700 750 800 850 900 950 1000 t (sec) unstable (negative damping) V<Vcrit – δ>0 V~Vcrit – δ~0 V>Vcrit – δ<0
  • 79. FB 79 Uz Theta start final V<Vcrit – δ>0
  • 80. FB 80 V~Vcrit –δ~0 Uz Theta startfinalUz startfinal
  • 81. FB 81 V>Vcrit –δ<0 Uz Theta startfinalUz startfinalstartfinal
  • 82. FB 82 Mid span oscillation envelope to evaluate damping 0,5000,5050,5100,5150,5200,5256006507007508008509009501000t (sec) teqqq 0Uz; Thetaqq+q00,5000,5050,5100,5150,5200,5256006507007508008509009501000t q0 V<Vcrit 0
  • 83. FB 83 Damping and Vcrit -1,5 -1,0 -0,5 0,0 0,5 1,0 1,5 0 10 20 30 40 50 60 70 80 Wind Velocity (m/s) Damping (%) Total Structural Aerodynamic -1,5 -1,0 -0,5 0,0 0,5 1,0 1,5 0 10 20 30 40 50 60 70 80 Wind Velocity (m/s) Damping (%) Total Structural Aerodynamic
  • 84. FB 84 66m/s 70m/s 85m/s0102030405060708090NOSTQSQSM V (m/s) NO FLUTTER
  • 85. (v) RESPONSE RESULTSfor turbulent wind Vento = f(s,t)
  • 86. FB 86
  • 87. FB 87 Time history Frequencies Probability density NO 0 2 4 6 8 10 12 14 400 900 1400 1900 2400 2900 time (sec) Uy (m) 0 200 400 600 800 1000 1200 2,41 3,91 5,42 6,92 8,43 9,93 11,43 12,94 Class Frequency ST 0 2 4 6 8 10 12 14 400 900 1400 1900 2400 2900 time (sec) Uy (m) 0 200 400 600 800 1000 1200 2,41 3,91 5,42 6,92 8,43 9,93 11,43 12,94 Class Frequency QS 0 2 4 6 8 10 12 14 400 900 1400 1900 2400 2900 time (sec) Uy (m) 0 200 400 600 800 1000 1200 2,41 3,91 5,42 6,92 8,43 9,93 11,43 12,94 Class Frequency QSM 0 2 4 6 8 10 12 14 400 900 1400 1900 2400 2900 time (sec) Uy (m) 0 200 400 600 800 1000 1200 2,41 3,91 5,42 6,92 8,43 9,93 11,43 12,94 Class Frequency Mean wind velocity = 45 m/s
  • 88. FB 88 Time history Frequencies Probability density NO -3,5 -2,5 -1,5 -0,5 0,5 1,5 2,5 3,5 400 900 1400 1900 2400 2900 time (sec) Uz (m) 0 200 400 600 800 1000 1200 -1,79 -1,02 -0,25 0,53 1,30 2,07 2,84 3,61 Class Frequency ST -3,5 -2,5 -1,5 -0,5 0,5 1,5 2,5 3,5 400 900 1400 1900 2400 2900 time (sec) Uz (m) 0 200 400 600 800 1000 1200 -1,79 -1,02 -0,25 0,53 1,30 2,07 2,84 3,61 Class Frequency QS -3,5 -2,5 -1,5 -0,5 0,5 1,5 2,5 3,5 400 900 1400 1900 2400 2900 time (sec) Uz (m) 0 200 400 600 800 1000 1200 1400 1600 1800 -1,79 -1,02 -0,25 0,53 1,30 2,07 2,84 3,61 Class Frequency QSM -3,5 -2,5 -1,5 -0,5 0,5 1,5 2,5 3,5 400 900 1400 1900 2400 2900 time (sec) Uz (m) 0 500 1000 1500 2000 2500 3000 3500 -1,79 -1,02 -0,25 0,53 1,30 2,07 2,84 3,61 Class Frequency Mean wind velocity = 45 m/s
  • 89. FB 89 Time history Frequencies Probability density NO -0,055 -0,045 -0,035 -0,025 -0,015 -0,005 0,005 0,015 0,025 400 900 1400 1900 2400 2900 time (sec) Rot (RAD) 0 200 400 600 800 1000 1200 -0,047 -0,036 -0,025 -0,014 -0,003 0,008 0,019 0,030 Class Frequency ST -0,055 -0,045 -0,035 -0,025 -0,015 -0,005 0,005 0,015 0,025 400 900 1400 1900 2400 2900 time (sec) Rot (RAD) 0 200 400 600 800 1000 1200 -0,047 -0,036 -0,025 -0,014 -0,003 0,008 0,019 0,030 Class Frequency QS -0,055 -0,045 -0,035 -0,025 -0,015 -0,005 0,005 0,015 0,025 400 900 1400 1900 2400 2900 time (sec) Rot (RAD) 0 200 400 600 800 1000 1200 1400 1600 1800 2000 -0,047 -0,036 -0,025 -0,014 -0,003 0,008 0,019 0,030 Class Frequency QSM -0,055 -0,045 -0,035 -0,025 -0,015 -0,005 0,005 0,015 0,025 400 900 1400 1900 2400 2900 time (sec) Rot (RAD) 0 200 400 600 800 1000 1200 1400 1600 1800 2000 -0,047 -0,036 -0,025 -0,014 -0,003 0,008 0,019 0,030 Class Frequency Mean wind velocity = 45 m/s
  • 90. FB 90 Time history Probability density Mean values 900 1400 1900 2400 2900 time (sec) NO_V45 ST_V45 QS_V45 QSM_V45 0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 NO ST QS QSM Experim 900 1400 1900 2400 2900 time (sec) NO_V45 ST_V45 QS_V45 QSM_V45 -0,4 -0,3 -0,2 -0,1 0,0 NO ST QS QSM Experim 900 1400 1900 2400 2900 time (sec) NO_V45 ST_V45 QS_V45 QSM_V45 -0,6 -0,5 -0,4 -0,3 -0,2 -0,1 0,0 NO ST QS QSM Experim Rotation(DEG) Mean wind velocity = 45 m/s
  • 91.
  • 92.
  • 93.
  • 94.
  • 95. FB 95 Envelope transv. velocity NO_V45 ST_V45 QS_V45 QSM_V45 -1,8 -0,8 0,2 1,2 0 500 1000 1500 2000 2500 3000 3500 abscissa (m) Vy (m/s) NO_V45 ST_V45 QS_V45 QSM_V45
  • 96. FB 96 Envelope transv. accelerationNO_V45ST_V45QS_V45QSM_V45-0,9-0,5-0,10,30,70500100015002000250030003500abscissa (m) ay (m/s^2) NO_V45ST_V45QS_V45QSM_V45
  • 97. FB 97 Envelope vert. velocity NO_V45ST_V45QS_V45QSM_V45-2,5-1,5-0,50,51,52,50500100015002000250030003500abscissa (m) Vy (m/s) NO_V45ST_V45QS_V45QSM_V45
  • 98. FB 98 Envelope vert. acceleration NO_V45ST_V45QS_V45QSM_V45-1,5-0,50,51,50500100015002000250030003500abscissa (m) az (m/s^2) NO_V45ST_V45QS_V45QSM_V45
  • 99. FB 99 Tiro cavi all'ancoraggio 115000 120000 125000 130000 135000 140000 600 1100 1600 2100 2600 3100 Tempo (s) Tiro (Ton) Sponda siciliana, lato nord Sponda calabrese, lato nord Sponda siciliana, lato sud Sponda calabrese, lato sud AXIAL FORCE IN THE MAIN CABLES (1) Vento = f(s,t) Vento = f(s,t)
  • 100. FB 100 Tiro cavi all'ancoraggio 115000 120000 125000 130000 135000 140000 600 1100 1600 2100 2600 3100 Tempo (s) Tiro (Ton) Sponda siciliana, lato nord Sponda calabrese, lato nord Sponda siciliana, lato sud Sponda calabrese, lato sud AXIAL FORCE IN THE MAIN CABLES (2) Vento = f(s,t) Vento = f(s,t)
  • 101. FB 101 CONCLUSIONS -stability 1.NO formulation can not compute the flutter phenomenon, while the other formulations can; 2.increasing the complexity of the aeroelastic forces representation, the value of the critical velocity increases; 3.the variation of aeroelastic damping with the wind incident velocity has been assessed using QS formulation, where the aerodynamic damping increases its value from zero velocity to a certain value of the wind velocity; beyond this value it starts to decrease and finally it becomes negative.
  • 102. FB 102 CONCLUSIONS -response 1.with non turbulent wind, the QS and QSM formulations have a damping greater than linear; concerning the time envelopes of deck displacements, the results obtained from different formulations are very similar; 2.with turbulent incident wind, the differences between the oscillations amplitude computed by different formulations become significant. In general, increasing the complexity of the aeroelastic forces representation (following the succession NO, ST, QS, QSM), the maximum response decrease. These differences increase with the increase of the wind mean velocity.
  • 103. FB 103 ACKNOWLEDGMENTS •The authors thank Professors R. Calzona, P.G. Malerba, and K.J. Bathe for fundamental supports related to this study. •Thanks to the Reviewers of the present paper. •The financial supports of University of Rome “La Sapienza”, COFIN2004 and Stretto di Messina S.p.A. are acknowledged. •Nevertheless, the opinions and the results presented here are responsibility of the authors and cannot be assumed to reflect the ones of University of Rome “La Sapienza” or of Stretto di Messina S.p.A.
  • 104. Fourth M.I.T. Conference on Computational Fluid and Solid Mechanics –Focus: Fluid-Structure InteractionsBoston, June 13-15, 2007Comparison of time domain techniquesfor the evaluation of the response and the stabilityof long span suspension bridges F.Petrini, F.Giuliano, F.Bontempi* *Professor of Structural Analysis and Design University of Rome La Sapienza -ITALY
  • 105. FB 105