Application of Pascal's Triangle in
¹H-NMR Spectroscopy
MPhil Chemistry | Hajira Bibi
Introduction
• ¹H-NMR reveals hydrogen environments in molecules.
• Multiplets appear due to spin-spin splitting.
• Peak intensities follow Pascal’s Triangle.
What is Pascal’s Triangle?
• Triangular array of binomial coefficients.
• Each row represents (a + b)^n.
• Used in NMR to determine relative intensities of multiplets.
Pascal’s Triangle: Multiplet Patterns
n=0 → Singlet → 1
n=1 → Doublet → 1:1
n=2 → Triplet → 1:2:1
n=3 → Quartet → 1:3:3:1
n=4 → Quintet → 1:4:6:4:1
n=5 → Sextet → 1:5:10:10:5:1
Spin-Spin Coupling and Multiplets
• Neighboring non-equivalent protons cause splitting.
• n neighbors → (n+1) multiplet peaks.
• Intensities align with Pascal’s Triangle.
Role of Pascal’s Triangle in NMR
• Predicts number of peaks (n+1 rule).
• Guides intensity distribution.
• Helps identify neighboring proton environments.
Application in Structural Elucidation
• CH₃ next to CH₂ → Quartet (1:3:3:1)
• CH₂ next to CH₃ → Triplet (1:2:1)
• Deconvolutes overlapping multiplets.
• Supports accurate molecular structure analysis.
Limitations
• Valid for first-order spectra only.
• Not for aromatic/second-order cases.
• Equivalent protons must be correctly identified.
Conclusion
• Pascal’s Triangle simplifies multiplet analysis.
• Essential for interpreting splitting in ¹H-NMR.
• Crucial in organic structure elucidation.
References
1. Pavia et al., Introduction to Spectroscopy
2. Silverstein et al., Spectrometric Identification
3. Claridge, High-Resolution NMR Techniques
4. Atkins & de Paula, Physical Chemistry
5. Gunther, NMR Spectroscopy

Colorful_Pascals_Triangle_NMR_Presentation.pptx

  • 1.
    Application of Pascal'sTriangle in ¹H-NMR Spectroscopy MPhil Chemistry | Hajira Bibi
  • 2.
    Introduction • ¹H-NMR revealshydrogen environments in molecules. • Multiplets appear due to spin-spin splitting. • Peak intensities follow Pascal’s Triangle.
  • 3.
    What is Pascal’sTriangle? • Triangular array of binomial coefficients. • Each row represents (a + b)^n. • Used in NMR to determine relative intensities of multiplets.
  • 4.
    Pascal’s Triangle: MultipletPatterns n=0 → Singlet → 1 n=1 → Doublet → 1:1 n=2 → Triplet → 1:2:1 n=3 → Quartet → 1:3:3:1 n=4 → Quintet → 1:4:6:4:1 n=5 → Sextet → 1:5:10:10:5:1
  • 5.
    Spin-Spin Coupling andMultiplets • Neighboring non-equivalent protons cause splitting. • n neighbors → (n+1) multiplet peaks. • Intensities align with Pascal’s Triangle.
  • 6.
    Role of Pascal’sTriangle in NMR • Predicts number of peaks (n+1 rule). • Guides intensity distribution. • Helps identify neighboring proton environments.
  • 7.
    Application in StructuralElucidation • CH₃ next to CH₂ → Quartet (1:3:3:1) • CH₂ next to CH₃ → Triplet (1:2:1) • Deconvolutes overlapping multiplets. • Supports accurate molecular structure analysis.
  • 8.
    Limitations • Valid forfirst-order spectra only. • Not for aromatic/second-order cases. • Equivalent protons must be correctly identified.
  • 9.
    Conclusion • Pascal’s Trianglesimplifies multiplet analysis. • Essential for interpreting splitting in ¹H-NMR. • Crucial in organic structure elucidation.
  • 10.
    References 1. Pavia etal., Introduction to Spectroscopy 2. Silverstein et al., Spectrometric Identification 3. Claridge, High-Resolution NMR Techniques 4. Atkins & de Paula, Physical Chemistry 5. Gunther, NMR Spectroscopy