CH- 14
FACTORISATION
Prepared By-
Anoop Singh Yadav
TGT Maths
JNV Bhiwani
• PaAV€.FATDRsOFMAviJR›*iwiJhfBmREbAGmBRvucEXR'4S
• #AA :E4MTW DDFcD
* :FAcv
SAeowB
DNFA€TDRS
sronOUre‹+TR
S
• >avrs oac«oes or «<e wcieas y•+
+jç«+ay
e.g. 9O = 2 .x 3 x 3 x 5
Fa c t o r s ofa l e e b ra i c e x p r e s s
i o n s
Te r m s are fo r m e d as procluct of factors.
e.g. S•v = 5 x x x y
1Ox x+2 +3 —2x5xss x+2
x +3
’îrreôuciÄÏe îaùÏars.”TÜen Ëa”ùe out ïËe
common factors of the terms and write the
remalning fact‹ors togetthe
desireBfactorform.
- E.g. Sab+10a
(5xaxb)+
(lOxa)
!
’)
Fa c t e r i s a t i n n b
• Regrouping is re-arra nging the terms with co m m on
terms.
2) 11:‹L - Ei.a + SL - 2
3 at5 b-2) + 1 ( 5 b 2)
(3ae1) (5b-2)
R e g r o u p i n g like t e r m s Ł e finch c o m m o n fac tors
lSpD v 9D v 2Sp mls
3q ( Bp + 3 ) + 5 ( Up + 3
)
Factorisation usin
- Observe the expression.
• If it has a form that fits the right hand side of one of the identities ,
then the
e•pressior› corresponding to the left hancl sicJe of the icJentity
gives the desir
e‹d fa ct or isation.
• (a-b)’ = a’-Zab+b’
- (V-& ) = (a+b)(a-b)
• *) •r+a•' +
as
tt is in the form o7tbe fclerrtity
a’+aab+bi
t h e r e t o
Sfr›co @"w 2wb a@= {a+lag
.
By comparison
p'. + at> -> xs  e + 4/
{ re<tulred
factorisatton”)
. .
Factorise
• A9p“ — 3
6
(7'p)” — (6)“
(7p+6)(7p-6)
-a — 2 a b
+cb- — (a-bc)‘’ —
{a-b-c) (a-b+ c)
Factors of the
f o r m
x + b
• I n g e n e raI , for f actor isin g a n algebr aic ex pressi on of the
t y p e x + p x + q , w e fi n d
t w o fa ct ors a a ncl b of q (i .e. the con
stant
te r m ) such tha t
a b q
a +b p
4o:* 8:x: -
+-
4(+2
4(æ2
in
4[x(x
in -e
n 2 7u 3u -I- Z
1
a a
ț 7) 3(n 7)
Œvłałon at wsonomłal by
another
ø
(zri
1.tSzri -+-Z.r»i 3Z)
[rzi(rzi 1 O) —+—
Z(zrı
1
O)]
Class 8 Maths Chapter 14 Factorisation ppt

Class 8 Maths Chapter 14 Factorisation ppt

  • 1.
    CH- 14 FACTORISATION Prepared By- AnoopSingh Yadav TGT Maths JNV Bhiwani
  • 2.
    • PaAV€.FATDRsOFMAviJR›*iwiJhfBmREbAGmBRvucEXR'4S • #AA:E4MTW DDFcD * :FAcv SAeowB DNFA€TDRS sronOUre‹+TR S • >avrs oac«oes or «<e wcieas y•+ +jç«+ay
  • 3.
    e.g. 9O =2 .x 3 x 3 x 5 Fa c t o r s ofa l e e b ra i c e x p r e s s i o n s Te r m s are fo r m e d as procluct of factors. e.g. S•v = 5 x x x y 1Ox x+2 +3 —2x5xss x+2 x +3
  • 4.
    ’îrreôuciÄÏe îaùÏars.”TÜen Ëa”ùeout ïËe common factors of the terms and write the remalning fact‹ors togetthe desireBfactorform. - E.g. Sab+10a (5xaxb)+ (lOxa) ! ’)
  • 5.
    Fa c te r i s a t i n n b • Regrouping is re-arra nging the terms with co m m on terms. 2) 11:‹L - Ei.a + SL - 2 3 at5 b-2) + 1 ( 5 b 2) (3ae1) (5b-2)
  • 9.
    R e gr o u p i n g like t e r m s Ł e finch c o m m o n fac tors lSpD v 9D v 2Sp mls 3q ( Bp + 3 ) + 5 ( Up + 3 )
  • 10.
    Factorisation usin - Observethe expression. • If it has a form that fits the right hand side of one of the identities , then the e•pressior› corresponding to the left hancl sicJe of the icJentity gives the desir e‹d fa ct or isation. • (a-b)’ = a’-Zab+b’ - (V-& ) = (a+b)(a-b)
  • 11.
    • *) •r+a•'+ as tt is in the form o7tbe fclerrtity a’+aab+bi t h e r e t o Sfr›co @"w 2wb a@= {a+lag . By comparison p'. + at> -> xs e + 4/ { re<tulred factorisatton”) . .
  • 12.
    Factorise • A9p“ —3 6 (7'p)” — (6)“ (7p+6)(7p-6) -a — 2 a b +cb- — (a-bc)‘’ — {a-b-c) (a-b+ c)
  • 13.
    Factors of the fo r m x + b • I n g e n e raI , for f actor isin g a n algebr aic ex pressi on of the t y p e x + p x + q , w e fi n d t w o fa ct ors a a ncl b of q (i .e. the con stant te r m ) such tha t a b q a +b p
  • 15.
  • 17.
    n 2 7u3u -I- Z 1 a a ț 7) 3(n 7)
  • 19.
  • 23.
    ø (zri 1.tSzri -+-Z.r»i 3Z) [rzi(rzi1 O) —+— Z(zrı 1 O)]