SlideShare a Scribd company logo
¿Ciencia ficción o medicina
personalizada? La tecnología
al servicio de la salud
M. Gonzalo Claros
Profesor titular del Dpto. de Biología Molecular y Bioquímica
Plataforma Andaluza de Bioinformática
Universidad de Málaga
#TecnoMed@MGClaros AteneoConCiencia
Se añade como aportación a la imagen y a la marca UNIVERSIDAD DE MÁLAGA
un elemento secundario de identidad, la gráfica uma.es.
El objetivo es enriquecer y actualizar la imagen de la UMA. Ambas pueden ser
usadas conjuntamente en soportes digitales (nueva web, app de la UMA).
Este recurso tipográfico es creación y propiedad de la UMA y su uso ha de regirse por
las directrices que se expecifican en este manual.
La marca uma.es no sustituirá a la marca principal salvo en aquellos casos que por
natulareza del soporte no sea viable su aplicación (superficies pequeñas o de dificil
personalización).
7
D4JUN17
El de la UMA, devoto de Rocío y sus iniciativas
2
#TecnoMed@MGClaros
5. UMA.ES
5.2. Variaciones de la marca uma.es
VERSIÓN DOS TINTAS EN POSITIVO
https://ateneomijas.org/ateneoconciencia
Para que esto no vuelva a ocurrir
3
#TecnoMed@MGClaros
5. UMA.ES
5.2. Variaciones de la marca uma.es
VERSIÓN DOS TINTAS EN POSITIVO
http://magonia.com/2015/12/03/el-archivo-del-misterio-la-homeopatia/
http://www.elconfidencial.com/tecnologia/ciencia/2017-05-27/muere-
un-nino-de-7-anos-por-combatir-una-otitis-con-homeopatia_1389764/
http://elprofedefisica.es/libro_homeopatia.htm
En las pruebas científicas no hay
que creer, del mismo modo que
nadie cuestiona que 2 + 2 = 4
La ciencia ficción nos vaticina el futuro
4
#TecnoMed@MGClaros
5. UMA.ES
5.2. Variaciones de la marca uma.es
VERSIÓN DOS TINTAS EN POSITIVO
http://elpais.com/elpais/2017/02/28/ciencia/1488302719_304944.html
Jules Verne
Georges Méliès
La medicina personalizada también tiene su ficción
5
#TecnoMed@MGClaros
5. UMA.ES
5.2. Variaciones de la marca uma.es
VERSIÓN DOS TINTAS EN POSITIVO
http://www.biotekis.es/2014/10/16/medicina-personalizada-y-cine/
Mary Wollstonecraft
Godwin
2013
2009
Ventaja de la medicina personalizada es clara
6
#TecnoMed@MGClaros
5. UMA.ES
5.2. Variaciones de la marca uma.es
VERSIÓN DOS TINTAS EN POSITIVO
http://cancersystemsbiology.net/predicting.html
Con la medicina personalizada
Ventaja de la medicina personalizada es clara
6
#TecnoMed@MGClaros
5. UMA.ES
5.2. Variaciones de la marca uma.es
VERSIÓN DOS TINTAS EN POSITIVO
http://cancersystemsbiology.net/predicting.html
Con la medicina personalizada
¿Medicina personalizada o privacidad?
7
#TecnoMed@MGClaros
5. UMA.ES
5.2. Variaciones de la marca uma.es
VERSIÓN DOS TINTAS EN POSITIVO
Insuficiente para la medicina personalizada
Insuficiente para proteger la privacidad
Variantes para medicina personalizada
Privacidad
La percepción del riesgo nos hace tomar decisiones erradas
8
#TecnoMed@MGClaros
5. UMA.ES
5.2. Variaciones de la marca uma.es
VERSIÓN DOS TINTAS EN POSITIVO
Antenas de móviles

Centrales eléctricas

Cables de alta tensión
El genoma humano: 1.er paso a la medicina personalizada
9
#TecnoMed@MGClaros
5. UMA.ES
5.2. Variaciones de la marca uma.es
VERSIÓN DOS TINTAS EN POSITIVO
https://unlockinglifescode.org/timeline
1996: primer
genoma eucariota
(la levadura)
1997:
GATTACA
Ficción biotecnológica: GATTACA (1997)
10
#TecnoMed@MGClaros
5. UMA.ES
5.2. Variaciones de la marca uma.es
VERSIÓN DOS TINTAS EN POSITIVO
¿Qué significa
GATTACA?
http://www.smithsonianmag.com/science-nature/nasa-picks-best-amp-
worst-sci-fi-movies-what-are-yours-41527422
Una de las obras
de ciencia-
ficción con una
base científica
más sólida de la
historia del cine
El ADN está hecho de G, A, T y C (GATTACA)
11
#TecnoMed@MGClaros
5. UMA.ES
5.2. Variaciones de la marca uma.es
VERSIÓN DOS TINTAS EN POSITIVO
GenInicio
Guanina
Adenina
Timina
Citosina
Lo más «ficticio» de
12
#TecnoMed@MGClaros
5. UMA.ES
5.2. Variaciones de la marca uma.es
VERSIÓN DOS TINTAS EN POSITIVO
Hoy la boca es
fuente más simple
de ADN Identificación casi instantánea por el ADN
Las series de televisión han aprendido
13
#TecnoMed@MGClaros
5. UMA.ES
5.2. Variaciones de la marca uma.es
VERSIÓN DOS TINTAS EN POSITIVO
Lo más llamativo de
14
#TecnoMed@MGClaros
5. UMA.ES
5.2. Variaciones de la marca uma.es
VERSIÓN DOS TINTAS EN POSITIVO
Hoy la boca es
fuente más simple
de ADN Identificación casi instantánea por el ADN
Los biochips parecían el futuro en 1997
15
#TecnoMed@MGClaros
5. UMA.ES
5.2. Variaciones de la marca uma.es
VERSIÓN DOS TINTAS EN POSITIVO
Variantes
genéticas
Análisis
forenses
Epidemiología
Citogenética
Investigación Diagnóstico
Medicina personalizada
Identificación
Permitían analizar miles de genes a la vez
Obsolescencia acelerada
16
#TecnoMed@MGClaros
5. UMA.ES
5.2. Variaciones de la marca uma.es
VERSIÓN DOS TINTAS EN POSITIVO
Secuenciación de Sanger
Esto se usó para el genoma humano
s. XX
Ultrasecuenciación
s. XXI
Enorme salto de rendimiento
17
#TecnoMed@MGClaros
5. UMA.ES
5.2. Variaciones de la marca uma.es
VERSIÓN DOS TINTAS EN POSITIVO
http://omicsomics.blogspot.com.es/2017/01/sequencing-technology-outlook-january.html
El
rendimiento
ha pasado a
ser 108
veces mayor
Pirosecuenciación
Más barato. Además, más rápido
18
#TecnoMed@MGClaros
5. UMA.ES
5.2. Variaciones de la marca uma.es
VERSIÓN DOS TINTAS EN POSITIVO
https://www.genome.gov/sequencingcostsdata/
Ya podemos secuenciar un genoma humano por <1300 €
Proyecto
del genoma
humano
Pirosecuenciación
(primer método de NGS)
GA-I de Solexa
(luego Illumina) HiSeq X Ten
https://www.genome.gov/sequencingcosts/
2018:
100 €
5 días
¡¡ ¿100 € un genoma? !!
19
#TecnoMed@MGClaros
5. UMA.ES
5.2. Variaciones de la marca uma.es
VERSIÓN DOS TINTAS EN POSITIVO
http://scopeblog.stanford.edu/2014/01/30/coming-soon-a-genome-
test-that-costs-less-than-a-new-pair-of-shoes/
¡¡ ¿100 € un genoma? !!
19
#TecnoMed@MGClaros
5. UMA.ES
5.2. Variaciones de la marca uma.es
VERSIÓN DOS TINTAS EN POSITIVO
http://scopeblog.stanford.edu/2014/01/30/coming-soon-a-genome-
test-that-costs-less-than-a-new-pair-of-shoes/
¿Te plantea problemas éticos cuando estás
dando permiso a Google, Facebook o Twitter a
investigar tu vida gratis?
Los de Illumina tienen la «culpa»
20
#TecnoMed@MGClaros
5. UMA.ES
5.2. Variaciones de la marca uma.es
VERSIÓN DOS TINTAS EN POSITIVO
Cada HiSeq
X Ten genera
18 TB por
reacción
Una sola máquina de estas
genera 5 TB por reacción
Para hacernos una idea
21
#TecnoMed@MGClaros
5. UMA.ES
5.2. Variaciones de la marca uma.es
VERSIÓN DOS TINTAS EN POSITIVO
http://bitesizebio.com/8378/how-much-information-is-stored-in-the-human-genome/
El genoma de una
persona equivale a
1 500 millones de
caracteres de texto
Para hacernos una idea
21
#TecnoMed@MGClaros
5. UMA.ES
5.2. Variaciones de la marca uma.es
VERSIÓN DOS TINTAS EN POSITIVO
http://bitesizebio.com/8378/how-much-information-is-stored-in-the-human-genome/
El genoma de una
persona equivale a
1 500 millones de
caracteres de texto
Este almacenamiento
también está obsoleto
Acumulamos datos a mansalva
22
#TecnoMed@MGClaros
5. UMA.ES
5.2. Variaciones de la marca uma.es
VERSIÓN DOS TINTAS EN POSITIVO
https://doi.org/10.1371/journal.pbio.1002195
1-17 PB/año
1-17 × 103 TB/año
1-2 TB
1-2 × 103 GB
1-2 EB/año
1-2 × 106 TB/año
1 EB/año
106 TB/año
2-40 EB/año
2-40 × 106 TB/año
55-90 €
Hay «bichitos» con más ADN y más genes
23
#TecnoMed@MGClaros
5. UMA.ES
5.2. Variaciones de la marca uma.es
VERSIÓN DOS TINTAS EN POSITIVO
Protistas
Plantas
Anfibios
Peces
Insectos Mamíferos
El tamaño de
nuestro genoma
¡No somos los
amos de la Tierra!
¿Quienes son más «amos» que nosotros?
24
#TecnoMed@MGClaros
5. UMA.ES
5.2. Variaciones de la marca uma.es
VERSIÓN DOS TINTAS EN POSITIVO
https://s-media-cache-ak0.pinimg.com/originals/ea/
ca/e0/eacae0476d503177b2a54f1db8d44d90.jpg
Humano
3 200 Mpb
La gran mayoría son
borradores
¿Quienes son más «amos» que nosotros?
24
#TecnoMed@MGClaros
5. UMA.ES
5.2. Variaciones de la marca uma.es
VERSIÓN DOS TINTAS EN POSITIVO
https://s-media-cache-ak0.pinimg.com/originals/ea/
ca/e0/eacae0476d503177b2a54f1db8d44d90.jpg
HumanoPino
22 180 Mpb
Abeto
noruego
20 000 Mpb
3 200 Mpb
La gran mayoría son
borradores
~7×
Paris
japonica
150 000 Mpb
45×
Ameba
670 000 Mpb
210×
¿Usaremos ADN en lugar de discos duros?
25
#TecnoMed@MGClaros
5. UMA.ES
5.2. Variaciones de la marca uma.es
VERSIÓN DOS TINTAS EN POSITIVO
http://revistageneticamedica.com/2017/04/19/adn-almacenamiento-datos-digitales/
Researchers Store Computer Operating System and Short Movie on DNA
New Coding Strategy Maximizes Data Storage Capacity of DNA Molecules
New York, NY - March 2, 2017 -- Humanity may soon generate more data than
hard drives or magnetic tape can handle, a problem that has scientists turning to
nature’s age-old solution for information-storage — DNA.
In a new study in Science, a pair of researchers at Columbia University and the
New York Genome Center (NYGC) show that an algorithm designed for streaming
video on a cellphone can unlock DNA’s nearly full storage potential by squeezing
more information into its four base nucleotides. They demonstrate that this
technology is also extremely reliable.
DNA is an ideal storage medium because it’s ultra-compact and can last hundreds
of thousands of years if kept in a cool, dry place, as demonstrated by the recent
recovery of DNA from the bones of a 430,000-year-old human ancestor found in a
cave in Spain.
“DNA won’t degrade over time like cassette tapes and CDs, and it won’t become
obsolete—if it does, we have bigger problems,” said study coauthor Yaniv Erlich,
a computer science professor at Columbia Engineering, a member of Columbia’s
Data Science Institute, and a core member of the NYGC.
Erlich and his colleague Dina Zielinski, an associate scientist at NYGC, chose six
files to encode, or write, into DNA: a full computer operating system, an 1895
French film, “Arrival of a train at La Ciotat,” a $50 Amazon gift card, a computer
virus, a Pioneer plaque and a 1948 study by information theorist Claude Shannon.
They compressed the files into a master file, and then split the data into short
Secuenciación
215 000 TB (2,15 × 108 GB)
de información
1 g de ADN
sin error
PCRparacopiar
1,6 bits por nucleótido
In practice, decoding took ~9 min with a Py-
thon script on a single CPU of a standard laptop
(movie S1). The decoder recovered the informa-
tion with 100% accuracy after observing only
69,870 oligos out of the 72,000 in our library
(fig. S10). To further test the robustness of our
strategy, we down-sampled the raw Illumina data
trieval of information consumes an aliquot of the
material. Copying the oligo library with PCR is
possible, but this procedure introduces noise and
induces oligo dropout. To further test the robust-
ness of our strategy, we created a deep copy of
the file by propagating the sample through nine
serial PCR amplifications (Fig. 2D). The first PCR
from an average of 7.8 perfect calls for each
per million reads (pcpm) to 4.5 pcpm in the
copy. In addition, the deep copy showed m
higher skewed representation with a neg
binomial overdispersion parameter (1/siz
0.76 compared to 0.15 in the master pool. De
the lower quality, the DNA Fountain dec
10ngoutof3µg
25µl
PCR #8PCR #7PCR #6PCR #5PCR #4PCR #3 PCR #9PCR #2PCR #1 10µl1µl1µl1µl1µl1µl1µl1µl1µl
Deepcopy
2.14Mbytetar.gz:
Perfect calls per million reads [pcpm]
Frequency
0 5 10 15 20 25 30
0.0000.0010.0020.0030.004
Mean = 7.8
Overdispersion: 0.15
Frequency
0 10 20 30 40 50 60
0.0000.0020.0040.006
Mean = 4.5
Overdispersion: 0.76
Perfect calls per million reads [pcpm]
Data payloadAdapter AdapterSeed RS5’- -3’
32Byte4Byte 2Byte
16nt24nt 8nt128nt 24nt
200nt0
72,000×
Masterpool
Perfect decoding
Sequencing on
MiSeq
25µl
MiSeq sequencing
Perfect decoding
All reads
Perfect
decoding
Perfect
decoding
All reads
Downsampling
to 5 million reads
PCR(10rounds)
Copying samples
Dilution #1
0.1x
Diluting samples
Masterpool
Masterpool
0.1x 0.1x 0.1x 0.1x 0.1x
Dilution #2 Dilution #3 Dilution #4 Dilution #5 Dilution #6 Dilution #
10ng 1ng 100pg 10pg 1pg 100fg 10fg
(215Tb/g) (2Pb/g) (21Pb/g) (215Pb/g) (2Eb/g) (21Eb/g) (215Eb/
Multiplexed
sequencing
Downsampling
to 750,000 reads
Fig. 2. Experimental setting and results for storing data on DNA.
(A) Input files for encoding, size, and type. The total amount of data was
2.14 Mbytes aftercompression.(B) Structure ofthe oligos.Black labels,length
in bytes; red, length in nucleotides; RS, Reed-Solomon error-correcting code.
(C) Experimental results of the master pool. (D) Experimental procedures
of deep copying of the oligo pool. (C and D) Histograms display the fre-
quency of perfect calls per million sequenced reads (pcpm). Red, mean;
to rescue a sufficient number of oligos. Taken
together, these results inspired us to seek a cod-
ing strategy that can better utilize the information
capacity of DNA storage devices while showing
higher data-retrieval reliability.
We devised a strategy for DNA storage, called
DNA Fountain, that approaches the Shannon ca-
pacity while providing robustness against data
corruption. Our strategy harnesses fountain codes
(18, 19), which have been developed for reliable
and effective unicasting of information over chan-
nels that are subject to dropouts, such as mobile
TV (20). In our design, we carefully adapted the
power of fountain codes to overcome both oligo
dropouts and the biochemical constraints of DNA
storage. Our encoder works in three steps (Fig.
1) (12): First, it preprocesses a binary file into a
series of nonoverlapping segments of a certain
length. Next, it iterates over two computational
steps: Luby transform and screening. The Luby
transform sets the basis for fountain codes. Basi-
cally, it packages data into any desired number
of short messages, called droplets, by selecting a
random subset of segments from the file using a
special distribution (fig. S7) and adding them
bitwise together under a binary field. The drop-
let contains two pieces of information: a data
payload part that holds the result of the addi-
tion procedure and a short, fixed-length seed.
This seed corresponds to the state of the random-
number generator of the transform during the
droplet creation and allows the decoder algo-
rithm to infer the identities of the segments in
the droplet. Theoretically, it is possible to re-
verse the Luby transform using a highly efficient
algorithm by collecting any subset of droplets
as long as the accumulated size of droplets is
slightly bigger than the size of the original file.
For DNA Fountain, our algorithm applies one
round of the transform in each iteration to create
a single droplet. Next, the algorithm moves to
the droplet screening stage. This stage is not
part of the original fountain code design and
allows us to completely realize the coding poten-
tial of each nucleotide. In screening, the algorithm
translates the binary droplet to a DNA sequence
by converting {00,01,10,11} to {A,C,G,T}, respec-
tively. Then, it screens the sequence for the
desired biochemical properties of GC content
and homopolymer runs. If the sequence passes
the screen, it is considered valid and added to
the oligo design file; otherwise, the algorithm
simply trashes the droplet. Since the Luby trans-
form can create any desired number of droplets,
we keep iterating over the droplet creation and
screening steps until a sufficient number of valid
oligos are generated. In practice, we recommend
5 to 10% more oligos than input segments (12).
Searching for valid oligos scales well with the
size of the input file and is economical for var-
ious oligo lengths within and beyond current
synthesis limits (12) (table S4).
We used DNA Fountain to encode a single
compressed file of 2,146,816 bytes in a DNA oligo
pool. The input data were in the form of a tarball
that packaged several files, including a complete
graphical operating system of 1.4 Mbytes, a movie,
and other files (12) (Fig. 2A and fig. S8). We split
the input tarball into 67,088 segments of 32 bytes
and iterated over the steps of DNA Fountain to
create valid oligos. Each droplet was 38 bytes
(304 bits): 4 bytes of the random-number gen-
erator seed, 32 bytes for the data payload, and
2 bytes for an RS error-correcting code, to reject
erroneous oligos in low-coverage conditions. With
this seed length, our strategy supports encoding
files of up to 500 Mbytes (12). The DNA oligos
had a length of 304/2 = 152 nucleotides (nt)
and were screened for homopolymer runs of
≤3 nt and GC content of 45 to 55%. We instructed
DNA Fountain to generate 72,000 oligos, yielding
a redundancy of 72,000/67,088 – 1 = 7%. We se-
lected this number of oligos due to the price
structure offered by the manufacturer, allowing
us to maximize the number of oligos per dollar.
Finally, we added upstream and downstream
annealing sites for Illumina adapters, making
our final oligos 200 nt long (Fig. 2B and fig. S9).
Encoding took 2.5 min on a single central pro-
cessing unit (CPU) of a standard laptop. We
achieved an information density of 1.57 bits/nt,
only 14% from the Shannon capacity of DNA
storage and 60% more than previous studies
with a similar scale of data (Table 1).
Sequencing and decoding the oligo pool fully
recovered the entire input file with zero errors
Fig. 1. DNA Fountain encoding. (Left) Three main algorithmic steps. (Right) Example with a small file of 32 bits. For simplicity, we partitioned the file into
eight segments of 4 bits each. The seeds are represented as 2-bit numbers and are presented for display purposes only. See (12) for the full details of each
algorithmic step.
RESEARCH | REPORT
onMarch2,2017http://science.sciencemag.org/Downloadedfrom
¿Usaremos ADN en lugar de discos duros?
25
#TecnoMed@MGClaros
5. UMA.ES
5.2. Variaciones de la marca uma.es
VERSIÓN DOS TINTAS EN POSITIVO
http://revistageneticamedica.com/2017/04/19/adn-almacenamiento-datos-digitales/
Researchers Store Computer Operating System and Short Movie on DNA
New Coding Strategy Maximizes Data Storage Capacity of DNA Molecules
New York, NY - March 2, 2017 -- Humanity may soon generate more data than
hard drives or magnetic tape can handle, a problem that has scientists turning to
nature’s age-old solution for information-storage — DNA.
In a new study in Science, a pair of researchers at Columbia University and the
New York Genome Center (NYGC) show that an algorithm designed for streaming
video on a cellphone can unlock DNA’s nearly full storage potential by squeezing
more information into its four base nucleotides. They demonstrate that this
technology is also extremely reliable.
DNA is an ideal storage medium because it’s ultra-compact and can last hundreds
of thousands of years if kept in a cool, dry place, as demonstrated by the recent
recovery of DNA from the bones of a 430,000-year-old human ancestor found in a
cave in Spain.
“DNA won’t degrade over time like cassette tapes and CDs, and it won’t become
obsolete—if it does, we have bigger problems,” said study coauthor Yaniv Erlich,
a computer science professor at Columbia Engineering, a member of Columbia’s
Data Science Institute, and a core member of the NYGC.
Erlich and his colleague Dina Zielinski, an associate scientist at NYGC, chose six
files to encode, or write, into DNA: a full computer operating system, an 1895
French film, “Arrival of a train at La Ciotat,” a $50 Amazon gift card, a computer
virus, a Pioneer plaque and a 1948 study by information theorist Claude Shannon.
They compressed the files into a master file, and then split the data into short
Secuenciación
215 000 TB (2,15 × 108 GB)
de información
1 g de ADN
sin error
PCRparacopiar
1,6 bits por nucleótido
In practice, decoding took ~9 min with a Py-
thon script on a single CPU of a standard laptop
(movie S1). The decoder recovered the informa-
tion with 100% accuracy after observing only
69,870 oligos out of the 72,000 in our library
(fig. S10). To further test the robustness of our
strategy, we down-sampled the raw Illumina data
trieval of information consumes an aliquot of the
material. Copying the oligo library with PCR is
possible, but this procedure introduces noise and
induces oligo dropout. To further test the robust-
ness of our strategy, we created a deep copy of
the file by propagating the sample through nine
serial PCR amplifications (Fig. 2D). The first PCR
from an average of 7.8 perfect calls for each
per million reads (pcpm) to 4.5 pcpm in the
copy. In addition, the deep copy showed m
higher skewed representation with a neg
binomial overdispersion parameter (1/siz
0.76 compared to 0.15 in the master pool. De
the lower quality, the DNA Fountain dec
10ngoutof3µg
25µl
PCR #8PCR #7PCR #6PCR #5PCR #4PCR #3 PCR #9PCR #2PCR #1 10µl1µl1µl1µl1µl1µl1µl1µl1µl
Deepcopy
2.14Mbytetar.gz:
Perfect calls per million reads [pcpm]
Frequency
0 5 10 15 20 25 30
0.0000.0010.0020.0030.004
Mean = 7.8
Overdispersion: 0.15
Frequency
0 10 20 30 40 50 60
0.0000.0020.0040.006
Mean = 4.5
Overdispersion: 0.76
Perfect calls per million reads [pcpm]
Data payloadAdapter AdapterSeed RS5’- -3’
32Byte4Byte 2Byte
16nt24nt 8nt128nt 24nt
200nt0
72,000×
Masterpool
Perfect decoding
Sequencing on
MiSeq
25µl
MiSeq sequencing
Perfect decoding
All reads
Perfect
decoding
Perfect
decoding
All reads
Downsampling
to 5 million reads
PCR(10rounds)
Copying samples
Dilution #1
0.1x
Diluting samples
Masterpool
Masterpool
0.1x 0.1x 0.1x 0.1x 0.1x
Dilution #2 Dilution #3 Dilution #4 Dilution #5 Dilution #6 Dilution #
10ng 1ng 100pg 10pg 1pg 100fg 10fg
(215Tb/g) (2Pb/g) (21Pb/g) (215Pb/g) (2Eb/g) (21Eb/g) (215Eb/
Multiplexed
sequencing
Downsampling
to 750,000 reads
Fig. 2. Experimental setting and results for storing data on DNA.
(A) Input files for encoding, size, and type. The total amount of data was
2.14 Mbytes aftercompression.(B) Structure ofthe oligos.Black labels,length
in bytes; red, length in nucleotides; RS, Reed-Solomon error-correcting code.
(C) Experimental results of the master pool. (D) Experimental procedures
of deep copying of the oligo pool. (C and D) Histograms display the fre-
quency of perfect calls per million sequenced reads (pcpm). Red, mean;
to rescue a sufficient number of oligos. Taken
together, these results inspired us to seek a cod-
ing strategy that can better utilize the information
capacity of DNA storage devices while showing
higher data-retrieval reliability.
We devised a strategy for DNA storage, called
DNA Fountain, that approaches the Shannon ca-
pacity while providing robustness against data
corruption. Our strategy harnesses fountain codes
(18, 19), which have been developed for reliable
and effective unicasting of information over chan-
nels that are subject to dropouts, such as mobile
TV (20). In our design, we carefully adapted the
power of fountain codes to overcome both oligo
dropouts and the biochemical constraints of DNA
storage. Our encoder works in three steps (Fig.
1) (12): First, it preprocesses a binary file into a
series of nonoverlapping segments of a certain
length. Next, it iterates over two computational
steps: Luby transform and screening. The Luby
transform sets the basis for fountain codes. Basi-
cally, it packages data into any desired number
of short messages, called droplets, by selecting a
random subset of segments from the file using a
special distribution (fig. S7) and adding them
bitwise together under a binary field. The drop-
let contains two pieces of information: a data
payload part that holds the result of the addi-
tion procedure and a short, fixed-length seed.
This seed corresponds to the state of the random-
number generator of the transform during the
droplet creation and allows the decoder algo-
rithm to infer the identities of the segments in
the droplet. Theoretically, it is possible to re-
verse the Luby transform using a highly efficient
algorithm by collecting any subset of droplets
as long as the accumulated size of droplets is
slightly bigger than the size of the original file.
For DNA Fountain, our algorithm applies one
round of the transform in each iteration to create
a single droplet. Next, the algorithm moves to
the droplet screening stage. This stage is not
part of the original fountain code design and
allows us to completely realize the coding poten-
tial of each nucleotide. In screening, the algorithm
translates the binary droplet to a DNA sequence
by converting {00,01,10,11} to {A,C,G,T}, respec-
tively. Then, it screens the sequence for the
desired biochemical properties of GC content
and homopolymer runs. If the sequence passes
the screen, it is considered valid and added to
the oligo design file; otherwise, the algorithm
simply trashes the droplet. Since the Luby trans-
form can create any desired number of droplets,
we keep iterating over the droplet creation and
screening steps until a sufficient number of valid
oligos are generated. In practice, we recommend
5 to 10% more oligos than input segments (12).
Searching for valid oligos scales well with the
size of the input file and is economical for var-
ious oligo lengths within and beyond current
synthesis limits (12) (table S4).
We used DNA Fountain to encode a single
compressed file of 2,146,816 bytes in a DNA oligo
pool. The input data were in the form of a tarball
that packaged several files, including a complete
graphical operating system of 1.4 Mbytes, a movie,
and other files (12) (Fig. 2A and fig. S8). We split
the input tarball into 67,088 segments of 32 bytes
and iterated over the steps of DNA Fountain to
create valid oligos. Each droplet was 38 bytes
(304 bits): 4 bytes of the random-number gen-
erator seed, 32 bytes for the data payload, and
2 bytes for an RS error-correcting code, to reject
erroneous oligos in low-coverage conditions. With
this seed length, our strategy supports encoding
files of up to 500 Mbytes (12). The DNA oligos
had a length of 304/2 = 152 nucleotides (nt)
and were screened for homopolymer runs of
≤3 nt and GC content of 45 to 55%. We instructed
DNA Fountain to generate 72,000 oligos, yielding
a redundancy of 72,000/67,088 – 1 = 7%. We se-
lected this number of oligos due to the price
structure offered by the manufacturer, allowing
us to maximize the number of oligos per dollar.
Finally, we added upstream and downstream
annealing sites for Illumina adapters, making
our final oligos 200 nt long (Fig. 2B and fig. S9).
Encoding took 2.5 min on a single central pro-
cessing unit (CPU) of a standard laptop. We
achieved an information density of 1.57 bits/nt,
only 14% from the Shannon capacity of DNA
storage and 60% more than previous studies
with a similar scale of data (Table 1).
Sequencing and decoding the oligo pool fully
recovered the entire input file with zero errors
Fig. 1. DNA Fountain encoding. (Left) Three main algorithmic steps. (Right) Example with a small file of 32 bits. For simplicity, we partitioned the file into
eight segments of 4 bits each. The seeds are represented as 2-bit numbers and are presented for display purposes only. See (12) for the full details of each
algorithmic step.
RESEARCH | REPORT
onMarch2,2017http://science.sciencemag.org/Downloadedfrom
Problema: cuesta
10 000 $
Paradoja: ¿podremos guardar información
de 1,6 nucleótidos en tan solo 1 nt?
Explosión genómica
26
#TecnoMed@MGClaros
5. UMA.ES
5.2. Variaciones de la marca uma.es
VERSIÓN DOS TINTAS EN POSITIVO
https://www.achieversdaily.com/personalized-medicine-are-we-there-yet/
3 000
millones de €
1300 €
15 años
15 días
De paso, se impulsa la medicina personalizada
Menos costes no explican
este enorme incremento
El proceso también es más fácil
27
#TecnoMed@MGClaros
5. UMA.ES
5.2. Variaciones de la marca uma.es
VERSIÓN DOS TINTAS EN POSITIVO
https://www.genome.gov/sequencingcosts/
Human Genome Sequencing
Generating a Reference
Genome Sequence
(e.g., Human Genome Project)
Generating a Person’s
Genome Sequence
(e.g., Circa ~2016)
Genomic DNA Genomic DNA
Break genome into
large fragments and
insert into clones
Order clones
Break individual
clones into
small pieces
Generate thousands
of sequence reads
and assemble
sequence of clone
Assemble sequences
of overlapping clones
to establish
reference sequence
Break genome
into small pieces
Generate millions
of sequence reads
Align sequence reads
to established
reference sequence
Deduce starting
sequence and identify
differences from
reference sequence
Reference Sequence
Reference Sequence
....TATGCGATGCGTATTTCGTAAA....
El proyecto del genoma humano Cualquier otro humano
La referencia
No todo son ventajas: inseguridad
28
#TecnoMed@MGClaros
5. UMA.ES
5.2. Variaciones de la marca uma.es
VERSIÓN DOS TINTAS EN POSITIVO
Absolutamente dependiente de
los ordenadores
Hoy solo se publican borradores llenos de agujeros
Lo que nos gustaría tener
Lo que realmente tenemos
Un borrador es mucho mejor que nada
29
#TecnoMed@MGClaros
5. UMA.ES
5.2. Variaciones de la marca uma.es
VERSIÓN DOS TINTAS EN POSITIVO
Traslocaciones
Explica los
cambios benignos
y las
enfermedades
Polimorfismo
mononucleotídico
Sabemos que todos nos parecemos
30
#TecnoMed@MGClaros
5. UMA.ES
5.2. Variaciones de la marca uma.es
VERSIÓN DOS TINTAS EN POSITIVO
Por eso experimentamos con animales
31
#TecnoMed@MGClaros
5. UMA.ES
5.2. Variaciones de la marca uma.es
VERSIÓN DOS TINTAS EN POSITIVO
Y extrapolamos los resultados a los humanos
En el genoma cada vez quedan menos secretos
32
#TecnoMed@MGClaros
5. UMA.ES
5.2. Variaciones de la marca uma.es
VERSIÓN DOS TINTAS EN POSITIVO
http://book.bionumbers.org/how-many-genes-are-in-a-genome/
Los genomas contienen más
ADN superfluo que útil
Ya conocíamos alguna relación gen-enfermedad
33
#TecnoMed@MGClaros
5. UMA.ES
5.2. Variaciones de la marca uma.es
VERSIÓN DOS TINTAS EN POSITIVO
https://es.wikipedia.org/wiki/Enfermedad_genética
Síndrome de Down
Síndrome de Huntington
Fibrosis quística
Cáncer
Hemofilia
Diabetes de tipo 1
…
Descubrimos más genes relacionados con enfermedades
34
#TecnoMed@MGClaros
5. UMA.ES
5.2. Variaciones de la marca uma.es
VERSIÓN DOS TINTAS EN POSITIVO
https://clinicalscientist.wordpress.com/tag/human-genome-project/
Hay millones de variaciones
La mayoría de las
enfermedades son poligénicas
Genoterapia: más personalizado, imposible
35
#TecnoMed@MGClaros
5. UMA.ES
5.2. Variaciones de la marca uma.es
VERSIÓN DOS TINTAS EN POSITIVO
URL
Lentiviral vector–
mediated addition of an
antisickling β-globin
gene into autologous
hematopoietic stem
cells
Anemia
falciforme
Genoterapia: más personalizado, imposible
35
#TecnoMed@MGClaros
5. UMA.ES
5.2. Variaciones de la marca uma.es
VERSIÓN DOS TINTAS EN POSITIVO
URL
Lentiviral vector–
mediated addition of an
antisickling β-globin
gene into autologous
hematopoietic stem
cells
Anemia
falciforme
Este individuo sano es transgénico
Pero nos queda mucho por conocer
36
#TecnoMed@MGClaros
5. UMA.ES
5.2. Variaciones de la marca uma.es
VERSIÓN DOS TINTAS EN POSITIVO
http://www.seminoncol.org/article/S0093-7754(13)00216-9/pdf
Adenocarcinoma
de pulmón
Carcinoma
epidermoide
>30% del cáncer se debe a mutaciones imprevisibles
37
#TecnoMed@MGClaros
5. UMA.ES
5.2. Variaciones de la marca uma.es
VERSIÓN DOS TINTAS EN POSITIVO
Tomasetti et al., Science 355, 1330–1334 (2017)
No lo estamos
haciendo tan mal
Se pueden analizar muchos genomas a la vez
38
#TecnoMed@MGClaros
5. UMA.ES
5.2. Variaciones de la marca uma.es
VERSIÓN DOS TINTAS EN POSITIVO
URL
Sequencing thousands of single-cell genomes with combinatorial indexing
Sarah A Vitak, Kristof A Torkenczy, Jimi L Rosenkrantz, Andrew J Fields, Lena
Christiansen, Melissa H Wong, Lucia Carbone, Frank J Steemers & Andrew Adey
Nature Methods 14, 302–308 (2017) doi:10.1038/nmeth.4154
Adenocarcinoma pancreático (PDAC) en estadio III
Se analizaron más de
16.500 células normales y
tumorales
Se diferenciaron cuatro poblaciones
diferentes en el mismo tumor, cada
una con sus variantes específicas
La capacidad predictiva va mejorando
39
#TecnoMed@MGClaros
5. UMA.ES
5.2. Variaciones de la marca uma.es
VERSIÓN DOS TINTAS EN POSITIVO
Un número
significativo de
variantes del
paciente le
predisponen a
una
enfermedad
Sus variantes
no están
asociadas a
ninguna
enfermedad ni
al riesgo de
padecerla
Se han aprobado unos pocos kits predictivos
40
#TecnoMed@MGClaros
5. UMA.ES
5.2. Variaciones de la marca uma.es
VERSIÓN DOS TINTAS EN POSITIVO
https://www.fda.gov/MedicalDevices/
ProductsandMedicalProcedures/InVitroDiagnostics/ucm330711.htm
Es terreno abonado para
los charlatanes
La mayoría, para el cáncer
41
#TecnoMed@MGClaros
5. UMA.ES
5.2. Variaciones de la marca uma.es
VERSIÓN DOS TINTAS EN POSITIVO
http://francis.naukas.com/2014/01/06/francis-en-rosavientos-noticias-para-manana-sabado-2/
41
#TecnoMed@MGClaros
5. UMA.ES
5.2. Variaciones de la marca uma.es
VERSIÓN DOS TINTAS EN POSITIVO
http://francis.naukas.com/2014/01/06/francis-en-rosavientos-noticias-para-manana-sabado-2/
Gen saltarín
Neuron 81, 306–313, January 22, 2014
http://dx.doi.org/10.1016/j.neuron.2013.10.053
Síndrome de Rett
Ataxia telangiectasia
Cáncer de próstata
LINE1 (L1) está relacionado
con más enfermedades
41
#TecnoMed@MGClaros
5. UMA.ES
5.2. Variaciones de la marca uma.es
VERSIÓN DOS TINTAS EN POSITIVO
http://francis.naukas.com/2014/01/06/francis-en-rosavientos-noticias-para-manana-sabado-2/
Gen saltarín
Neuron 81, 306–313, January 22, 2014
http://dx.doi.org/10.1016/j.neuron.2013.10.053
Síndrome de Rett
Ataxia telangiectasia
Cáncer de próstata
LINE1 (L1) está relacionado
con más enfermedades
Lo que te da la vida,
también te la podría quitar
Nuestro genoma es una bomba de relojería
42
#TecnoMed@MGClaros
5. UMA.ES
5.2. Variaciones de la marca uma.es
VERSIÓN DOS TINTAS EN POSITIVO
¡Tenemos más
transposones
que genes!
Procura no darle al interruptor de la cuenta atrás
Genoma nuclear humano
Tampoco es que todo sea NUESTRO genoma
43
#TecnoMed@MGClaros
5. UMA.ES
5.2. Variaciones de la marca uma.es
VERSIÓN DOS TINTAS EN POSITIVO
https://www.snpedia.com/index.php/Obesity
Variantes relacionadas
con la obesidad
Epigenética
Ambiente y microbiota siguen contando
44
#TecnoMed@MGClaros
5. UMA.ES
5.2. Variaciones de la marca uma.es
VERSIÓN DOS TINTAS EN POSITIVO
Microbiota: conjunto de
microorganismos que
viven en el interior de un
ser vivo normal
El experimento revelador
45
#TecnoMed@MGClaros
5. UMA.ES
5.2. Variaciones de la marca uma.es
VERSIÓN DOS TINTAS EN POSITIVO
URL
Gemelo obeso
Gemelo delgado
Ratón delgado
Ratón obeso
Ratón normal
Trasplante de
microbiota
Dieta con poca grasa
y mucha fibra
Extracción de
microbiota
Ratón delgadoRatón obeso
La microbiota altera los tratamientos
46
#TecnoMed@MGClaros
5. UMA.ES
5.2. Variaciones de la marca uma.es
VERSIÓN DOS TINTAS EN POSITIVO
Article
Host-Microbe Co-metabolism Dictates Cancer Drug
Efficacy in C. elegans
Graphical Abstract
Highlights
d Drug-microbe-host high-throughput screens reveal new
mechanisms for cancer drugs
d Microbes integrate nutritional and drug cues regulating
treatment efficacy in the host
d Ribonucleotide co-metabolism of cancer pro-drugs exists
between host and microbe
d Imbalanced bacterial deoxynucleotides synergize 5-FU-
induced autophagic cell death
Authors
Timothy A. Scott, Leonor M. Quintaneiro,
Povilas Norvaisas, ..., Athanasios Typas,
Nicholas D.E. Greene, Filipe Cabreiro
Correspondence
f.cabreiro@ucl.ac.uk
In Brief
A three-way high-throughput screen
involving host-microbe-drug interactions
reveals that the beneficial impact of some
drugs can be due to effects of drug-
dependent alterations by gut microbe
composition rather than direct action of
the therapeutic itself.
HOLOBIONT
C. elegans
E. coli
Microbiota
Host
Drugconversion
Cancer survival
ImprovedUnaltered
DRUG
5-FU
Ribonucleotide
metabolism
Microbiota
conversionDrDugc
dRibonucleotide
metabolism
NUTRITION
Vitamin B6/B9
UMP precursors
Scott et al., 2017, Cell 169, 442–456
April 20, 2017 ª 2017 The Author(s). Published by Elsevier Inc.
http://dx.doi.org/10.1016/j.cell.2017.03.040
Scott et al., 2017, Cell 169, 442–456
Organismo modelo
Fármaco
Las diferencias en la
población de bacterias
del intestino explicaría
que algunos
quimioterápicos no
funcionen en ciertos
pacientes
Estamos llenos de bacterias que tienen su propio genoma
47
#TecnoMed@MGClaros
5. UMA.ES
5.2. Variaciones de la marca uma.es
VERSIÓN DOS TINTAS EN POSITIVO
URL
Por dentro… …y por fuera
Nature Reviews Microbiology 9, 244-253 (April 2011)
Nature 449, 811-818 (18 October 2007)
Estamos llenos de bacterias que tienen su propio genoma
47
#TecnoMed@MGClaros
5. UMA.ES
5.2. Variaciones de la marca uma.es
VERSIÓN DOS TINTAS EN POSITIVO
URL
Por dentro… …y por fuera
Nature Reviews Microbiology 9, 244-253 (April 2011)
Nature 449, 811-818 (18 October 2007)
Responsables, entre otras
muchas cosas, del olor corporal
Lo sabemos gracias a la metagenómica
48
#TecnoMed@MGClaros
5. UMA.ES
5.2. Variaciones de la marca uma.es
VERSIÓN DOS TINTAS EN POSITIVO
https://bacpathgenomics.wordpress.com/tag/science/
Lo sabemos gracias a la metagenómica
48
#TecnoMed@MGClaros
5. UMA.ES
5.2. Variaciones de la marca uma.es
VERSIÓN DOS TINTAS EN POSITIVO
https://bacpathgenomics.wordpress.com/tag/science/
Debemos abandonar la idea de enfermedades
poligénicas para convencernos que, en realidad,
las enfermedades son poligenómicas
Conocemos una cantidad ridícula
de especies de microorganismos
Futuro: curar los genes de «algún» genoma
49
#TecnoMed@MGClaros
5. UMA.ES
5.2. Variaciones de la marca uma.es
VERSIÓN DOS TINTAS EN POSITIVO
D4JUN17
http://about.me/mgclaros/
AteneoConCiencia

More Related Content

Similar to ¿Ciencia ficción o medicina personalizada? La tecnología al servicio de la salud 170604

Processing Amplicon Sequence Data for the Analysis of Microbial Communities
Processing Amplicon Sequence Data for the Analysis of Microbial CommunitiesProcessing Amplicon Sequence Data for the Analysis of Microbial Communities
Processing Amplicon Sequence Data for the Analysis of Microbial Communities
Martin Hartmann
 
Newsletter 224
Newsletter 224Newsletter 224
Newsletter 224
ESTHHUB
 
Modern biotechnology Dr Nataporn Chanvarasuth
Modern biotechnology  Dr Nataporn ChanvarasuthModern biotechnology  Dr Nataporn Chanvarasuth
Modern biotechnology Dr Nataporn Chanvarasuth
costi2014
 
Nanotek & Expo
Nanotek & ExpoNanotek & Expo
"Biosystematics, informatics and genomics of the big 4 insect groups: trainin...
"Biosystematics, informatics and genomics of the big 4 insect groups: trainin..."Biosystematics, informatics and genomics of the big 4 insect groups: trainin...
"Biosystematics, informatics and genomics of the big 4 insect groups: trainin...
Agencia Andaluza del Conocimiento
 
Ctechpresentation
CtechpresentationCtechpresentation
Ctechpresentation
K Munshi
 
Big data in biology
Big data in biologyBig data in biology
Big data in biology
Omkar Reddy
 
The age of gene editing - Workshop on innovations in food and agriculture sys...
The age of gene editing - Workshop on innovations in food and agriculture sys...The age of gene editing - Workshop on innovations in food and agriculture sys...
The age of gene editing - Workshop on innovations in food and agriculture sys...
OECD Environment
 
The 10 companies with most innovative nanotechnology solutions
The 10 companies with most innovative nanotechnology solutionsThe 10 companies with most innovative nanotechnology solutions
The 10 companies with most innovative nanotechnology solutions
Insights success media and technology pvt ltd
 
Eugenia valsami jones university of birmingham
Eugenia valsami jones   university of birminghamEugenia valsami jones   university of birmingham
Eugenia valsami jones university of birmingham
The Advanced Materials Show
 
Nano Safety: What Workers Need to Know
Nano Safety: What Workers Need to KnowNano Safety: What Workers Need to Know
Nano Safety: What Workers Need to Know
HORIBA Particle
 
20 years of evolution in data production in health and life sciences
20 years of evolution in data production in health and life sciences20 years of evolution in data production in health and life sciences
20 years of evolution in data production in health and life sciences
slecrom
 
KSPE_Medical_Apps_July_20_2016_Busan Print Ver
KSPE_Medical_Apps_July_20_2016_Busan Print VerKSPE_Medical_Apps_July_20_2016_Busan Print Ver
KSPE_Medical_Apps_July_20_2016_Busan Print Ver
Guy J. Ofek
 
Next Generation Sequencing in Big Data
Next Generation Sequencing in Big DataNext Generation Sequencing in Big Data
Next Generation Sequencing in Big Data
ijtsrd
 
New tech trends 2016 - How new tech is impacting society around the world
New tech trends 2016 - How new tech is impacting society around the worldNew tech trends 2016 - How new tech is impacting society around the world
New tech trends 2016 - How new tech is impacting society around the world
Minter Dial
 
CTECH Labs by Warsito P. Taruno
CTECH Labs by Warsito P. TarunoCTECH Labs by Warsito P. Taruno
CTECH Labs by Warsito P. Taruno
ppibelanda
 
The Future of Life Sciences 2013 for Max Planck Institute
The Future of Life Sciences 2013 for Max Planck InstituteThe Future of Life Sciences 2013 for Max Planck Institute
The Future of Life Sciences 2013 for Max Planck Institute
Melanie Swan
 
Arab Health Congress 2016 - 3D Medical Printing Conference Brochure
Arab Health Congress 2016 - 3D Medical Printing Conference BrochureArab Health Congress 2016 - 3D Medical Printing Conference Brochure
Arab Health Congress 2016 - 3D Medical Printing Conference Brochure
Cheryl Prior
 
Copia reducida health4.0
Copia reducida health4.0Copia reducida health4.0
Copia reducida health4.0
Unesco Telemedicine
 
Introduction of Product Management
Introduction of Product ManagementIntroduction of Product Management
Introduction of Product Management
Davie Mae
 

Similar to ¿Ciencia ficción o medicina personalizada? La tecnología al servicio de la salud 170604 (20)

Processing Amplicon Sequence Data for the Analysis of Microbial Communities
Processing Amplicon Sequence Data for the Analysis of Microbial CommunitiesProcessing Amplicon Sequence Data for the Analysis of Microbial Communities
Processing Amplicon Sequence Data for the Analysis of Microbial Communities
 
Newsletter 224
Newsletter 224Newsletter 224
Newsletter 224
 
Modern biotechnology Dr Nataporn Chanvarasuth
Modern biotechnology  Dr Nataporn ChanvarasuthModern biotechnology  Dr Nataporn Chanvarasuth
Modern biotechnology Dr Nataporn Chanvarasuth
 
Nanotek & Expo
Nanotek & ExpoNanotek & Expo
Nanotek & Expo
 
"Biosystematics, informatics and genomics of the big 4 insect groups: trainin...
"Biosystematics, informatics and genomics of the big 4 insect groups: trainin..."Biosystematics, informatics and genomics of the big 4 insect groups: trainin...
"Biosystematics, informatics and genomics of the big 4 insect groups: trainin...
 
Ctechpresentation
CtechpresentationCtechpresentation
Ctechpresentation
 
Big data in biology
Big data in biologyBig data in biology
Big data in biology
 
The age of gene editing - Workshop on innovations in food and agriculture sys...
The age of gene editing - Workshop on innovations in food and agriculture sys...The age of gene editing - Workshop on innovations in food and agriculture sys...
The age of gene editing - Workshop on innovations in food and agriculture sys...
 
The 10 companies with most innovative nanotechnology solutions
The 10 companies with most innovative nanotechnology solutionsThe 10 companies with most innovative nanotechnology solutions
The 10 companies with most innovative nanotechnology solutions
 
Eugenia valsami jones university of birmingham
Eugenia valsami jones   university of birminghamEugenia valsami jones   university of birmingham
Eugenia valsami jones university of birmingham
 
Nano Safety: What Workers Need to Know
Nano Safety: What Workers Need to KnowNano Safety: What Workers Need to Know
Nano Safety: What Workers Need to Know
 
20 years of evolution in data production in health and life sciences
20 years of evolution in data production in health and life sciences20 years of evolution in data production in health and life sciences
20 years of evolution in data production in health and life sciences
 
KSPE_Medical_Apps_July_20_2016_Busan Print Ver
KSPE_Medical_Apps_July_20_2016_Busan Print VerKSPE_Medical_Apps_July_20_2016_Busan Print Ver
KSPE_Medical_Apps_July_20_2016_Busan Print Ver
 
Next Generation Sequencing in Big Data
Next Generation Sequencing in Big DataNext Generation Sequencing in Big Data
Next Generation Sequencing in Big Data
 
New tech trends 2016 - How new tech is impacting society around the world
New tech trends 2016 - How new tech is impacting society around the worldNew tech trends 2016 - How new tech is impacting society around the world
New tech trends 2016 - How new tech is impacting society around the world
 
CTECH Labs by Warsito P. Taruno
CTECH Labs by Warsito P. TarunoCTECH Labs by Warsito P. Taruno
CTECH Labs by Warsito P. Taruno
 
The Future of Life Sciences 2013 for Max Planck Institute
The Future of Life Sciences 2013 for Max Planck InstituteThe Future of Life Sciences 2013 for Max Planck Institute
The Future of Life Sciences 2013 for Max Planck Institute
 
Arab Health Congress 2016 - 3D Medical Printing Conference Brochure
Arab Health Congress 2016 - 3D Medical Printing Conference BrochureArab Health Congress 2016 - 3D Medical Printing Conference Brochure
Arab Health Congress 2016 - 3D Medical Printing Conference Brochure
 
Copia reducida health4.0
Copia reducida health4.0Copia reducida health4.0
Copia reducida health4.0
 
Introduction of Product Management
Introduction of Product ManagementIntroduction of Product Management
Introduction of Product Management
 

More from M. Gonzalo Claros

Manuscritos-a-bioinfo Olimipadas.pdf
Manuscritos-a-bioinfo Olimipadas.pdfManuscritos-a-bioinfo Olimipadas.pdf
Manuscritos-a-bioinfo Olimipadas.pdf
M. Gonzalo Claros
 
Genoma humano con fósiles.pdf
Genoma humano con fósiles.pdfGenoma humano con fósiles.pdf
Genoma humano con fósiles.pdf
M. Gonzalo Claros
 
Genes, genomas y ordenadores.pdf
Genes, genomas y ordenadores.pdfGenes, genomas y ordenadores.pdf
Genes, genomas y ordenadores.pdf
M. Gonzalo Claros
 
210531 Covid-19 and bioinformatics
210531 Covid-19 and bioinformatics210531 Covid-19 and bioinformatics
210531 Covid-19 and bioinformatics
M. Gonzalo Claros
 
Redacta, corrige y traduce textos científicos sin morir en el intento
Redacta, corrige y traduce textos científicos sin morir en el intentoRedacta, corrige y traduce textos científicos sin morir en el intento
Redacta, corrige y traduce textos científicos sin morir en el intento
M. Gonzalo Claros
 
191129 aeter19 mgc slideshare
191129 aeter19 mgc slideshare191129 aeter19 mgc slideshare
191129 aeter19 mgc slideshare
M. Gonzalo Claros
 
191128 corrigere2 slideshare
191128 corrigere2 slideshare191128 corrigere2 slideshare
191128 corrigere2 slideshare
M. Gonzalo Claros
 
181214 Bioinformática vegetal
181214 Bioinformática vegetal181214 Bioinformática vegetal
181214 Bioinformática vegetal
M. Gonzalo Claros
 
180425 Bioinformatic workflows to discover transposon/gene biomarkers in cancer
180425 Bioinformatic workflows to discover transposon/gene biomarkers in cancer180425 Bioinformatic workflows to discover transposon/gene biomarkers in cancer
180425 Bioinformatic workflows to discover transposon/gene biomarkers in cancer
M. Gonzalo Claros
 
180427 Traducir, redactar y corregir: no solo de ciencia vive la ciencia
180427 Traducir, redactar y corregir: no solo de ciencia vive la ciencia180427 Traducir, redactar y corregir: no solo de ciencia vive la ciencia
180427 Traducir, redactar y corregir: no solo de ciencia vive la ciencia
M. Gonzalo Claros
 
Cómo traducir y redactar textos científicos en español
Cómo traducir y redactar textos científicos en españolCómo traducir y redactar textos científicos en español
Cómo traducir y redactar textos científicos en español
M. Gonzalo Claros
 
Vengo a hablar de mi libro
Vengo a hablar de mi libroVengo a hablar de mi libro
Vengo a hablar de mi libro
M. Gonzalo Claros
 
170602 Traducir química sin saber química
170602 Traducir química sin saber química170602 Traducir química sin saber química
170602 Traducir química sin saber química
M. Gonzalo Claros
 
160620 sole nomics v2
160620 sole nomics v2160620 sole nomics v2
160620 sole nomics v2
M. Gonzalo Claros
 
150522 bioinfo gis lr
150522 bioinfo gis lr150522 bioinfo gis lr
150522 bioinfo gis lr
M. Gonzalo Claros
 
Mi bioinformática para el IBIMA
Mi bioinformática para el IBIMAMi bioinformática para el IBIMA
Mi bioinformática para el IBIMA
M. Gonzalo Claros
 
Bioinformatics and the logic of life
Bioinformatics and the logic of lifeBioinformatics and the logic of life
Bioinformatics and the logic of life
M. Gonzalo Claros
 
Calidad de las traducciones. Reunión Red Vértice en Málaga 140606
Calidad de las traducciones. Reunión Red Vértice en Málaga 140606Calidad de las traducciones. Reunión Red Vértice en Málaga 140606
Calidad de las traducciones. Reunión Red Vértice en Málaga 140606
M. Gonzalo Claros
 
Bioinformática: desde las proteínas mitocondriales a la genómica
Bioinformática: desde las proteínas mitocondriales a la genómicaBioinformática: desde las proteínas mitocondriales a la genómica
Bioinformática: desde las proteínas mitocondriales a la genómica
M. Gonzalo Claros
 
Razones por las que estudiar ciencias cuando acabas el bachillerato
Razones por las que estudiar ciencias cuando acabas el bachilleratoRazones por las que estudiar ciencias cuando acabas el bachillerato
Razones por las que estudiar ciencias cuando acabas el bachillerato
M. Gonzalo Claros
 

More from M. Gonzalo Claros (20)

Manuscritos-a-bioinfo Olimipadas.pdf
Manuscritos-a-bioinfo Olimipadas.pdfManuscritos-a-bioinfo Olimipadas.pdf
Manuscritos-a-bioinfo Olimipadas.pdf
 
Genoma humano con fósiles.pdf
Genoma humano con fósiles.pdfGenoma humano con fósiles.pdf
Genoma humano con fósiles.pdf
 
Genes, genomas y ordenadores.pdf
Genes, genomas y ordenadores.pdfGenes, genomas y ordenadores.pdf
Genes, genomas y ordenadores.pdf
 
210531 Covid-19 and bioinformatics
210531 Covid-19 and bioinformatics210531 Covid-19 and bioinformatics
210531 Covid-19 and bioinformatics
 
Redacta, corrige y traduce textos científicos sin morir en el intento
Redacta, corrige y traduce textos científicos sin morir en el intentoRedacta, corrige y traduce textos científicos sin morir en el intento
Redacta, corrige y traduce textos científicos sin morir en el intento
 
191129 aeter19 mgc slideshare
191129 aeter19 mgc slideshare191129 aeter19 mgc slideshare
191129 aeter19 mgc slideshare
 
191128 corrigere2 slideshare
191128 corrigere2 slideshare191128 corrigere2 slideshare
191128 corrigere2 slideshare
 
181214 Bioinformática vegetal
181214 Bioinformática vegetal181214 Bioinformática vegetal
181214 Bioinformática vegetal
 
180425 Bioinformatic workflows to discover transposon/gene biomarkers in cancer
180425 Bioinformatic workflows to discover transposon/gene biomarkers in cancer180425 Bioinformatic workflows to discover transposon/gene biomarkers in cancer
180425 Bioinformatic workflows to discover transposon/gene biomarkers in cancer
 
180427 Traducir, redactar y corregir: no solo de ciencia vive la ciencia
180427 Traducir, redactar y corregir: no solo de ciencia vive la ciencia180427 Traducir, redactar y corregir: no solo de ciencia vive la ciencia
180427 Traducir, redactar y corregir: no solo de ciencia vive la ciencia
 
Cómo traducir y redactar textos científicos en español
Cómo traducir y redactar textos científicos en españolCómo traducir y redactar textos científicos en español
Cómo traducir y redactar textos científicos en español
 
Vengo a hablar de mi libro
Vengo a hablar de mi libroVengo a hablar de mi libro
Vengo a hablar de mi libro
 
170602 Traducir química sin saber química
170602 Traducir química sin saber química170602 Traducir química sin saber química
170602 Traducir química sin saber química
 
160620 sole nomics v2
160620 sole nomics v2160620 sole nomics v2
160620 sole nomics v2
 
150522 bioinfo gis lr
150522 bioinfo gis lr150522 bioinfo gis lr
150522 bioinfo gis lr
 
Mi bioinformática para el IBIMA
Mi bioinformática para el IBIMAMi bioinformática para el IBIMA
Mi bioinformática para el IBIMA
 
Bioinformatics and the logic of life
Bioinformatics and the logic of lifeBioinformatics and the logic of life
Bioinformatics and the logic of life
 
Calidad de las traducciones. Reunión Red Vértice en Málaga 140606
Calidad de las traducciones. Reunión Red Vértice en Málaga 140606Calidad de las traducciones. Reunión Red Vértice en Málaga 140606
Calidad de las traducciones. Reunión Red Vértice en Málaga 140606
 
Bioinformática: desde las proteínas mitocondriales a la genómica
Bioinformática: desde las proteínas mitocondriales a la genómicaBioinformática: desde las proteínas mitocondriales a la genómica
Bioinformática: desde las proteínas mitocondriales a la genómica
 
Razones por las que estudiar ciencias cuando acabas el bachillerato
Razones por las que estudiar ciencias cuando acabas el bachilleratoRazones por las que estudiar ciencias cuando acabas el bachillerato
Razones por las que estudiar ciencias cuando acabas el bachillerato
 

Recently uploaded

Skin Diseases That Happen During Summer.
 Skin Diseases That Happen During Summer. Skin Diseases That Happen During Summer.
Skin Diseases That Happen During Summer.
Gokuldas Hospital
 
Cervical Disc Arthroplasty ORSI 2024.pptx
Cervical Disc Arthroplasty ORSI 2024.pptxCervical Disc Arthroplasty ORSI 2024.pptx
Cervical Disc Arthroplasty ORSI 2024.pptx
LEFLOT Jean-Louis
 
KENT'S REPERTORY by dr niranjan mohanty.pptx
KENT'S REPERTORY by dr niranjan mohanty.pptxKENT'S REPERTORY by dr niranjan mohanty.pptx
KENT'S REPERTORY by dr niranjan mohanty.pptx
SravsPandu1
 
All about shoulder Joint ..
All about shoulder Joint .. All about shoulder Joint ..
All about shoulder Joint ..
Aswan University Hospital
 
pharmacology for dummies free pdf download.pdf
pharmacology for dummies free pdf download.pdfpharmacology for dummies free pdf download.pdf
pharmacology for dummies free pdf download.pdf
KerlynIgnacio
 
NARCOTICS- POLICY AND PROCEDURES FOR ITS USE
NARCOTICS- POLICY AND PROCEDURES FOR ITS USENARCOTICS- POLICY AND PROCEDURES FOR ITS USE
NARCOTICS- POLICY AND PROCEDURES FOR ITS USE
Dr. Ahana Haroon
 
Full Handwritten notes of RA by Ayush Kumar M pharm - Al ameen college of pha...
Full Handwritten notes of RA by Ayush Kumar M pharm - Al ameen college of pha...Full Handwritten notes of RA by Ayush Kumar M pharm - Al ameen college of pha...
Full Handwritten notes of RA by Ayush Kumar M pharm - Al ameen college of pha...
ayushrajshrivastava7
 
PGx Analysis in VarSeq: A User’s Perspective
PGx Analysis in VarSeq: A User’s PerspectivePGx Analysis in VarSeq: A User’s Perspective
PGx Analysis in VarSeq: A User’s Perspective
Golden Helix
 
Local anesthetics 2024/ Medicinal Chemistry pdf
Local anesthetics 2024/ Medicinal Chemistry pdfLocal anesthetics 2024/ Medicinal Chemistry pdf
Local anesthetics 2024/ Medicinal Chemistry pdf
NarminHamaaminHussen
 
Ageing, the Elderly, Gerontology and Public Health
Ageing, the Elderly, Gerontology and Public HealthAgeing, the Elderly, Gerontology and Public Health
Ageing, the Elderly, Gerontology and Public Health
phuakl
 
Pharmacology of 5-hydroxytryptamine and Antagonist
Pharmacology of 5-hydroxytryptamine and AntagonistPharmacology of 5-hydroxytryptamine and Antagonist
Pharmacology of 5-hydroxytryptamine and Antagonist
Dr. Nikhilkumar Sakle
 
RESPIRATORY DISEASES by bhavya kelavadiya
RESPIRATORY DISEASES by bhavya kelavadiyaRESPIRATORY DISEASES by bhavya kelavadiya
RESPIRATORY DISEASES by bhavya kelavadiya
Bhavyakelawadiya
 
Recent advances on Cervical cancer .pptx
Recent advances on Cervical cancer .pptxRecent advances on Cervical cancer .pptx
Recent advances on Cervical cancer .pptx
DrGirishJHoogar
 
Giloy in Ayurveda - Classical Categorization and Synonyms
Giloy in Ayurveda - Classical Categorization and SynonymsGiloy in Ayurveda - Classical Categorization and Synonyms
Giloy in Ayurveda - Classical Categorization and Synonyms
Planet Ayurveda
 
Demystifying Fallopian Tube Blockage- Grading the Differences and Implication...
Demystifying Fallopian Tube Blockage- Grading the Differences and Implication...Demystifying Fallopian Tube Blockage- Grading the Differences and Implication...
Demystifying Fallopian Tube Blockage- Grading the Differences and Implication...
FFragrant
 
Ophthalmic drugs latest. Xxxxxxzxxxxxx.pdf
Ophthalmic drugs latest. Xxxxxxzxxxxxx.pdfOphthalmic drugs latest. Xxxxxxzxxxxxx.pdf
Ophthalmic drugs latest. Xxxxxxzxxxxxx.pdf
MuhammadMuneer49
 
How to Control Your Asthma Tips by gokuldas hospital.
How to Control Your Asthma Tips by gokuldas hospital.How to Control Your Asthma Tips by gokuldas hospital.
How to Control Your Asthma Tips by gokuldas hospital.
Gokuldas Hospital
 
Nutritional deficiency disorder in Child
Nutritional deficiency disorder in ChildNutritional deficiency disorder in Child
Nutritional deficiency disorder in Child
Bhavyakelawadiya
 
Spontaneous Bacterial Peritonitis - Pathogenesis , Clinical Features & Manage...
Spontaneous Bacterial Peritonitis - Pathogenesis , Clinical Features & Manage...Spontaneous Bacterial Peritonitis - Pathogenesis , Clinical Features & Manage...
Spontaneous Bacterial Peritonitis - Pathogenesis , Clinical Features & Manage...
Jim Jacob Roy
 
What are the different types of Dental implants.
What are the different types of Dental implants.What are the different types of Dental implants.
What are the different types of Dental implants.
Gokuldas Hospital
 

Recently uploaded (20)

Skin Diseases That Happen During Summer.
 Skin Diseases That Happen During Summer. Skin Diseases That Happen During Summer.
Skin Diseases That Happen During Summer.
 
Cervical Disc Arthroplasty ORSI 2024.pptx
Cervical Disc Arthroplasty ORSI 2024.pptxCervical Disc Arthroplasty ORSI 2024.pptx
Cervical Disc Arthroplasty ORSI 2024.pptx
 
KENT'S REPERTORY by dr niranjan mohanty.pptx
KENT'S REPERTORY by dr niranjan mohanty.pptxKENT'S REPERTORY by dr niranjan mohanty.pptx
KENT'S REPERTORY by dr niranjan mohanty.pptx
 
All about shoulder Joint ..
All about shoulder Joint .. All about shoulder Joint ..
All about shoulder Joint ..
 
pharmacology for dummies free pdf download.pdf
pharmacology for dummies free pdf download.pdfpharmacology for dummies free pdf download.pdf
pharmacology for dummies free pdf download.pdf
 
NARCOTICS- POLICY AND PROCEDURES FOR ITS USE
NARCOTICS- POLICY AND PROCEDURES FOR ITS USENARCOTICS- POLICY AND PROCEDURES FOR ITS USE
NARCOTICS- POLICY AND PROCEDURES FOR ITS USE
 
Full Handwritten notes of RA by Ayush Kumar M pharm - Al ameen college of pha...
Full Handwritten notes of RA by Ayush Kumar M pharm - Al ameen college of pha...Full Handwritten notes of RA by Ayush Kumar M pharm - Al ameen college of pha...
Full Handwritten notes of RA by Ayush Kumar M pharm - Al ameen college of pha...
 
PGx Analysis in VarSeq: A User’s Perspective
PGx Analysis in VarSeq: A User’s PerspectivePGx Analysis in VarSeq: A User’s Perspective
PGx Analysis in VarSeq: A User’s Perspective
 
Local anesthetics 2024/ Medicinal Chemistry pdf
Local anesthetics 2024/ Medicinal Chemistry pdfLocal anesthetics 2024/ Medicinal Chemistry pdf
Local anesthetics 2024/ Medicinal Chemistry pdf
 
Ageing, the Elderly, Gerontology and Public Health
Ageing, the Elderly, Gerontology and Public HealthAgeing, the Elderly, Gerontology and Public Health
Ageing, the Elderly, Gerontology and Public Health
 
Pharmacology of 5-hydroxytryptamine and Antagonist
Pharmacology of 5-hydroxytryptamine and AntagonistPharmacology of 5-hydroxytryptamine and Antagonist
Pharmacology of 5-hydroxytryptamine and Antagonist
 
RESPIRATORY DISEASES by bhavya kelavadiya
RESPIRATORY DISEASES by bhavya kelavadiyaRESPIRATORY DISEASES by bhavya kelavadiya
RESPIRATORY DISEASES by bhavya kelavadiya
 
Recent advances on Cervical cancer .pptx
Recent advances on Cervical cancer .pptxRecent advances on Cervical cancer .pptx
Recent advances on Cervical cancer .pptx
 
Giloy in Ayurveda - Classical Categorization and Synonyms
Giloy in Ayurveda - Classical Categorization and SynonymsGiloy in Ayurveda - Classical Categorization and Synonyms
Giloy in Ayurveda - Classical Categorization and Synonyms
 
Demystifying Fallopian Tube Blockage- Grading the Differences and Implication...
Demystifying Fallopian Tube Blockage- Grading the Differences and Implication...Demystifying Fallopian Tube Blockage- Grading the Differences and Implication...
Demystifying Fallopian Tube Blockage- Grading the Differences and Implication...
 
Ophthalmic drugs latest. Xxxxxxzxxxxxx.pdf
Ophthalmic drugs latest. Xxxxxxzxxxxxx.pdfOphthalmic drugs latest. Xxxxxxzxxxxxx.pdf
Ophthalmic drugs latest. Xxxxxxzxxxxxx.pdf
 
How to Control Your Asthma Tips by gokuldas hospital.
How to Control Your Asthma Tips by gokuldas hospital.How to Control Your Asthma Tips by gokuldas hospital.
How to Control Your Asthma Tips by gokuldas hospital.
 
Nutritional deficiency disorder in Child
Nutritional deficiency disorder in ChildNutritional deficiency disorder in Child
Nutritional deficiency disorder in Child
 
Spontaneous Bacterial Peritonitis - Pathogenesis , Clinical Features & Manage...
Spontaneous Bacterial Peritonitis - Pathogenesis , Clinical Features & Manage...Spontaneous Bacterial Peritonitis - Pathogenesis , Clinical Features & Manage...
Spontaneous Bacterial Peritonitis - Pathogenesis , Clinical Features & Manage...
 
What are the different types of Dental implants.
What are the different types of Dental implants.What are the different types of Dental implants.
What are the different types of Dental implants.
 

¿Ciencia ficción o medicina personalizada? La tecnología al servicio de la salud 170604

  • 1. ¿Ciencia ficción o medicina personalizada? La tecnología al servicio de la salud M. Gonzalo Claros Profesor titular del Dpto. de Biología Molecular y Bioquímica Plataforma Andaluza de Bioinformática Universidad de Málaga #TecnoMed@MGClaros AteneoConCiencia Se añade como aportación a la imagen y a la marca UNIVERSIDAD DE MÁLAGA un elemento secundario de identidad, la gráfica uma.es. El objetivo es enriquecer y actualizar la imagen de la UMA. Ambas pueden ser usadas conjuntamente en soportes digitales (nueva web, app de la UMA). Este recurso tipográfico es creación y propiedad de la UMA y su uso ha de regirse por las directrices que se expecifican en este manual. La marca uma.es no sustituirá a la marca principal salvo en aquellos casos que por natulareza del soporte no sea viable su aplicación (superficies pequeñas o de dificil personalización). 7 D4JUN17
  • 2. El de la UMA, devoto de Rocío y sus iniciativas 2 #TecnoMed@MGClaros 5. UMA.ES 5.2. Variaciones de la marca uma.es VERSIÓN DOS TINTAS EN POSITIVO https://ateneomijas.org/ateneoconciencia
  • 3. Para que esto no vuelva a ocurrir 3 #TecnoMed@MGClaros 5. UMA.ES 5.2. Variaciones de la marca uma.es VERSIÓN DOS TINTAS EN POSITIVO http://magonia.com/2015/12/03/el-archivo-del-misterio-la-homeopatia/ http://www.elconfidencial.com/tecnologia/ciencia/2017-05-27/muere- un-nino-de-7-anos-por-combatir-una-otitis-con-homeopatia_1389764/ http://elprofedefisica.es/libro_homeopatia.htm En las pruebas científicas no hay que creer, del mismo modo que nadie cuestiona que 2 + 2 = 4
  • 4. La ciencia ficción nos vaticina el futuro 4 #TecnoMed@MGClaros 5. UMA.ES 5.2. Variaciones de la marca uma.es VERSIÓN DOS TINTAS EN POSITIVO http://elpais.com/elpais/2017/02/28/ciencia/1488302719_304944.html Jules Verne Georges Méliès
  • 5. La medicina personalizada también tiene su ficción 5 #TecnoMed@MGClaros 5. UMA.ES 5.2. Variaciones de la marca uma.es VERSIÓN DOS TINTAS EN POSITIVO http://www.biotekis.es/2014/10/16/medicina-personalizada-y-cine/ Mary Wollstonecraft Godwin 2013 2009
  • 6. Ventaja de la medicina personalizada es clara 6 #TecnoMed@MGClaros 5. UMA.ES 5.2. Variaciones de la marca uma.es VERSIÓN DOS TINTAS EN POSITIVO http://cancersystemsbiology.net/predicting.html Con la medicina personalizada
  • 7. Ventaja de la medicina personalizada es clara 6 #TecnoMed@MGClaros 5. UMA.ES 5.2. Variaciones de la marca uma.es VERSIÓN DOS TINTAS EN POSITIVO http://cancersystemsbiology.net/predicting.html Con la medicina personalizada
  • 8. ¿Medicina personalizada o privacidad? 7 #TecnoMed@MGClaros 5. UMA.ES 5.2. Variaciones de la marca uma.es VERSIÓN DOS TINTAS EN POSITIVO Insuficiente para la medicina personalizada Insuficiente para proteger la privacidad Variantes para medicina personalizada Privacidad
  • 9. La percepción del riesgo nos hace tomar decisiones erradas 8 #TecnoMed@MGClaros 5. UMA.ES 5.2. Variaciones de la marca uma.es VERSIÓN DOS TINTAS EN POSITIVO Antenas de móviles Centrales eléctricas Cables de alta tensión
  • 10. El genoma humano: 1.er paso a la medicina personalizada 9 #TecnoMed@MGClaros 5. UMA.ES 5.2. Variaciones de la marca uma.es VERSIÓN DOS TINTAS EN POSITIVO https://unlockinglifescode.org/timeline 1996: primer genoma eucariota (la levadura) 1997: GATTACA
  • 11. Ficción biotecnológica: GATTACA (1997) 10 #TecnoMed@MGClaros 5. UMA.ES 5.2. Variaciones de la marca uma.es VERSIÓN DOS TINTAS EN POSITIVO ¿Qué significa GATTACA? http://www.smithsonianmag.com/science-nature/nasa-picks-best-amp- worst-sci-fi-movies-what-are-yours-41527422 Una de las obras de ciencia- ficción con una base científica más sólida de la historia del cine
  • 12. El ADN está hecho de G, A, T y C (GATTACA) 11 #TecnoMed@MGClaros 5. UMA.ES 5.2. Variaciones de la marca uma.es VERSIÓN DOS TINTAS EN POSITIVO GenInicio Guanina Adenina Timina Citosina
  • 13. Lo más «ficticio» de 12 #TecnoMed@MGClaros 5. UMA.ES 5.2. Variaciones de la marca uma.es VERSIÓN DOS TINTAS EN POSITIVO Hoy la boca es fuente más simple de ADN Identificación casi instantánea por el ADN
  • 14. Las series de televisión han aprendido 13 #TecnoMed@MGClaros 5. UMA.ES 5.2. Variaciones de la marca uma.es VERSIÓN DOS TINTAS EN POSITIVO
  • 15. Lo más llamativo de 14 #TecnoMed@MGClaros 5. UMA.ES 5.2. Variaciones de la marca uma.es VERSIÓN DOS TINTAS EN POSITIVO Hoy la boca es fuente más simple de ADN Identificación casi instantánea por el ADN
  • 16. Los biochips parecían el futuro en 1997 15 #TecnoMed@MGClaros 5. UMA.ES 5.2. Variaciones de la marca uma.es VERSIÓN DOS TINTAS EN POSITIVO Variantes genéticas Análisis forenses Epidemiología Citogenética Investigación Diagnóstico Medicina personalizada Identificación Permitían analizar miles de genes a la vez
  • 17. Obsolescencia acelerada 16 #TecnoMed@MGClaros 5. UMA.ES 5.2. Variaciones de la marca uma.es VERSIÓN DOS TINTAS EN POSITIVO Secuenciación de Sanger Esto se usó para el genoma humano s. XX Ultrasecuenciación s. XXI
  • 18. Enorme salto de rendimiento 17 #TecnoMed@MGClaros 5. UMA.ES 5.2. Variaciones de la marca uma.es VERSIÓN DOS TINTAS EN POSITIVO http://omicsomics.blogspot.com.es/2017/01/sequencing-technology-outlook-january.html El rendimiento ha pasado a ser 108 veces mayor Pirosecuenciación
  • 19. Más barato. Además, más rápido 18 #TecnoMed@MGClaros 5. UMA.ES 5.2. Variaciones de la marca uma.es VERSIÓN DOS TINTAS EN POSITIVO https://www.genome.gov/sequencingcostsdata/ Ya podemos secuenciar un genoma humano por <1300 € Proyecto del genoma humano Pirosecuenciación (primer método de NGS) GA-I de Solexa (luego Illumina) HiSeq X Ten https://www.genome.gov/sequencingcosts/ 2018: 100 € 5 días
  • 20. ¡¡ ¿100 € un genoma? !! 19 #TecnoMed@MGClaros 5. UMA.ES 5.2. Variaciones de la marca uma.es VERSIÓN DOS TINTAS EN POSITIVO http://scopeblog.stanford.edu/2014/01/30/coming-soon-a-genome- test-that-costs-less-than-a-new-pair-of-shoes/
  • 21. ¡¡ ¿100 € un genoma? !! 19 #TecnoMed@MGClaros 5. UMA.ES 5.2. Variaciones de la marca uma.es VERSIÓN DOS TINTAS EN POSITIVO http://scopeblog.stanford.edu/2014/01/30/coming-soon-a-genome- test-that-costs-less-than-a-new-pair-of-shoes/ ¿Te plantea problemas éticos cuando estás dando permiso a Google, Facebook o Twitter a investigar tu vida gratis?
  • 22. Los de Illumina tienen la «culpa» 20 #TecnoMed@MGClaros 5. UMA.ES 5.2. Variaciones de la marca uma.es VERSIÓN DOS TINTAS EN POSITIVO Cada HiSeq X Ten genera 18 TB por reacción Una sola máquina de estas genera 5 TB por reacción
  • 23. Para hacernos una idea 21 #TecnoMed@MGClaros 5. UMA.ES 5.2. Variaciones de la marca uma.es VERSIÓN DOS TINTAS EN POSITIVO http://bitesizebio.com/8378/how-much-information-is-stored-in-the-human-genome/ El genoma de una persona equivale a 1 500 millones de caracteres de texto
  • 24. Para hacernos una idea 21 #TecnoMed@MGClaros 5. UMA.ES 5.2. Variaciones de la marca uma.es VERSIÓN DOS TINTAS EN POSITIVO http://bitesizebio.com/8378/how-much-information-is-stored-in-the-human-genome/ El genoma de una persona equivale a 1 500 millones de caracteres de texto Este almacenamiento también está obsoleto
  • 25. Acumulamos datos a mansalva 22 #TecnoMed@MGClaros 5. UMA.ES 5.2. Variaciones de la marca uma.es VERSIÓN DOS TINTAS EN POSITIVO https://doi.org/10.1371/journal.pbio.1002195 1-17 PB/año 1-17 × 103 TB/año 1-2 TB 1-2 × 103 GB 1-2 EB/año 1-2 × 106 TB/año 1 EB/año 106 TB/año 2-40 EB/año 2-40 × 106 TB/año 55-90 €
  • 26. Hay «bichitos» con más ADN y más genes 23 #TecnoMed@MGClaros 5. UMA.ES 5.2. Variaciones de la marca uma.es VERSIÓN DOS TINTAS EN POSITIVO Protistas Plantas Anfibios Peces Insectos Mamíferos El tamaño de nuestro genoma ¡No somos los amos de la Tierra!
  • 27. ¿Quienes son más «amos» que nosotros? 24 #TecnoMed@MGClaros 5. UMA.ES 5.2. Variaciones de la marca uma.es VERSIÓN DOS TINTAS EN POSITIVO https://s-media-cache-ak0.pinimg.com/originals/ea/ ca/e0/eacae0476d503177b2a54f1db8d44d90.jpg Humano 3 200 Mpb La gran mayoría son borradores
  • 28. ¿Quienes son más «amos» que nosotros? 24 #TecnoMed@MGClaros 5. UMA.ES 5.2. Variaciones de la marca uma.es VERSIÓN DOS TINTAS EN POSITIVO https://s-media-cache-ak0.pinimg.com/originals/ea/ ca/e0/eacae0476d503177b2a54f1db8d44d90.jpg HumanoPino 22 180 Mpb Abeto noruego 20 000 Mpb 3 200 Mpb La gran mayoría son borradores ~7× Paris japonica 150 000 Mpb 45× Ameba 670 000 Mpb 210×
  • 29. ¿Usaremos ADN en lugar de discos duros? 25 #TecnoMed@MGClaros 5. UMA.ES 5.2. Variaciones de la marca uma.es VERSIÓN DOS TINTAS EN POSITIVO http://revistageneticamedica.com/2017/04/19/adn-almacenamiento-datos-digitales/ Researchers Store Computer Operating System and Short Movie on DNA New Coding Strategy Maximizes Data Storage Capacity of DNA Molecules New York, NY - March 2, 2017 -- Humanity may soon generate more data than hard drives or magnetic tape can handle, a problem that has scientists turning to nature’s age-old solution for information-storage — DNA. In a new study in Science, a pair of researchers at Columbia University and the New York Genome Center (NYGC) show that an algorithm designed for streaming video on a cellphone can unlock DNA’s nearly full storage potential by squeezing more information into its four base nucleotides. They demonstrate that this technology is also extremely reliable. DNA is an ideal storage medium because it’s ultra-compact and can last hundreds of thousands of years if kept in a cool, dry place, as demonstrated by the recent recovery of DNA from the bones of a 430,000-year-old human ancestor found in a cave in Spain. “DNA won’t degrade over time like cassette tapes and CDs, and it won’t become obsolete—if it does, we have bigger problems,” said study coauthor Yaniv Erlich, a computer science professor at Columbia Engineering, a member of Columbia’s Data Science Institute, and a core member of the NYGC. Erlich and his colleague Dina Zielinski, an associate scientist at NYGC, chose six files to encode, or write, into DNA: a full computer operating system, an 1895 French film, “Arrival of a train at La Ciotat,” a $50 Amazon gift card, a computer virus, a Pioneer plaque and a 1948 study by information theorist Claude Shannon. They compressed the files into a master file, and then split the data into short Secuenciación 215 000 TB (2,15 × 108 GB) de información 1 g de ADN sin error PCRparacopiar 1,6 bits por nucleótido In practice, decoding took ~9 min with a Py- thon script on a single CPU of a standard laptop (movie S1). The decoder recovered the informa- tion with 100% accuracy after observing only 69,870 oligos out of the 72,000 in our library (fig. S10). To further test the robustness of our strategy, we down-sampled the raw Illumina data trieval of information consumes an aliquot of the material. Copying the oligo library with PCR is possible, but this procedure introduces noise and induces oligo dropout. To further test the robust- ness of our strategy, we created a deep copy of the file by propagating the sample through nine serial PCR amplifications (Fig. 2D). The first PCR from an average of 7.8 perfect calls for each per million reads (pcpm) to 4.5 pcpm in the copy. In addition, the deep copy showed m higher skewed representation with a neg binomial overdispersion parameter (1/siz 0.76 compared to 0.15 in the master pool. De the lower quality, the DNA Fountain dec 10ngoutof3µg 25µl PCR #8PCR #7PCR #6PCR #5PCR #4PCR #3 PCR #9PCR #2PCR #1 10µl1µl1µl1µl1µl1µl1µl1µl1µl Deepcopy 2.14Mbytetar.gz: Perfect calls per million reads [pcpm] Frequency 0 5 10 15 20 25 30 0.0000.0010.0020.0030.004 Mean = 7.8 Overdispersion: 0.15 Frequency 0 10 20 30 40 50 60 0.0000.0020.0040.006 Mean = 4.5 Overdispersion: 0.76 Perfect calls per million reads [pcpm] Data payloadAdapter AdapterSeed RS5’- -3’ 32Byte4Byte 2Byte 16nt24nt 8nt128nt 24nt 200nt0 72,000× Masterpool Perfect decoding Sequencing on MiSeq 25µl MiSeq sequencing Perfect decoding All reads Perfect decoding Perfect decoding All reads Downsampling to 5 million reads PCR(10rounds) Copying samples Dilution #1 0.1x Diluting samples Masterpool Masterpool 0.1x 0.1x 0.1x 0.1x 0.1x Dilution #2 Dilution #3 Dilution #4 Dilution #5 Dilution #6 Dilution # 10ng 1ng 100pg 10pg 1pg 100fg 10fg (215Tb/g) (2Pb/g) (21Pb/g) (215Pb/g) (2Eb/g) (21Eb/g) (215Eb/ Multiplexed sequencing Downsampling to 750,000 reads Fig. 2. Experimental setting and results for storing data on DNA. (A) Input files for encoding, size, and type. The total amount of data was 2.14 Mbytes aftercompression.(B) Structure ofthe oligos.Black labels,length in bytes; red, length in nucleotides; RS, Reed-Solomon error-correcting code. (C) Experimental results of the master pool. (D) Experimental procedures of deep copying of the oligo pool. (C and D) Histograms display the fre- quency of perfect calls per million sequenced reads (pcpm). Red, mean; to rescue a sufficient number of oligos. Taken together, these results inspired us to seek a cod- ing strategy that can better utilize the information capacity of DNA storage devices while showing higher data-retrieval reliability. We devised a strategy for DNA storage, called DNA Fountain, that approaches the Shannon ca- pacity while providing robustness against data corruption. Our strategy harnesses fountain codes (18, 19), which have been developed for reliable and effective unicasting of information over chan- nels that are subject to dropouts, such as mobile TV (20). In our design, we carefully adapted the power of fountain codes to overcome both oligo dropouts and the biochemical constraints of DNA storage. Our encoder works in three steps (Fig. 1) (12): First, it preprocesses a binary file into a series of nonoverlapping segments of a certain length. Next, it iterates over two computational steps: Luby transform and screening. The Luby transform sets the basis for fountain codes. Basi- cally, it packages data into any desired number of short messages, called droplets, by selecting a random subset of segments from the file using a special distribution (fig. S7) and adding them bitwise together under a binary field. The drop- let contains two pieces of information: a data payload part that holds the result of the addi- tion procedure and a short, fixed-length seed. This seed corresponds to the state of the random- number generator of the transform during the droplet creation and allows the decoder algo- rithm to infer the identities of the segments in the droplet. Theoretically, it is possible to re- verse the Luby transform using a highly efficient algorithm by collecting any subset of droplets as long as the accumulated size of droplets is slightly bigger than the size of the original file. For DNA Fountain, our algorithm applies one round of the transform in each iteration to create a single droplet. Next, the algorithm moves to the droplet screening stage. This stage is not part of the original fountain code design and allows us to completely realize the coding poten- tial of each nucleotide. In screening, the algorithm translates the binary droplet to a DNA sequence by converting {00,01,10,11} to {A,C,G,T}, respec- tively. Then, it screens the sequence for the desired biochemical properties of GC content and homopolymer runs. If the sequence passes the screen, it is considered valid and added to the oligo design file; otherwise, the algorithm simply trashes the droplet. Since the Luby trans- form can create any desired number of droplets, we keep iterating over the droplet creation and screening steps until a sufficient number of valid oligos are generated. In practice, we recommend 5 to 10% more oligos than input segments (12). Searching for valid oligos scales well with the size of the input file and is economical for var- ious oligo lengths within and beyond current synthesis limits (12) (table S4). We used DNA Fountain to encode a single compressed file of 2,146,816 bytes in a DNA oligo pool. The input data were in the form of a tarball that packaged several files, including a complete graphical operating system of 1.4 Mbytes, a movie, and other files (12) (Fig. 2A and fig. S8). We split the input tarball into 67,088 segments of 32 bytes and iterated over the steps of DNA Fountain to create valid oligos. Each droplet was 38 bytes (304 bits): 4 bytes of the random-number gen- erator seed, 32 bytes for the data payload, and 2 bytes for an RS error-correcting code, to reject erroneous oligos in low-coverage conditions. With this seed length, our strategy supports encoding files of up to 500 Mbytes (12). The DNA oligos had a length of 304/2 = 152 nucleotides (nt) and were screened for homopolymer runs of ≤3 nt and GC content of 45 to 55%. We instructed DNA Fountain to generate 72,000 oligos, yielding a redundancy of 72,000/67,088 – 1 = 7%. We se- lected this number of oligos due to the price structure offered by the manufacturer, allowing us to maximize the number of oligos per dollar. Finally, we added upstream and downstream annealing sites for Illumina adapters, making our final oligos 200 nt long (Fig. 2B and fig. S9). Encoding took 2.5 min on a single central pro- cessing unit (CPU) of a standard laptop. We achieved an information density of 1.57 bits/nt, only 14% from the Shannon capacity of DNA storage and 60% more than previous studies with a similar scale of data (Table 1). Sequencing and decoding the oligo pool fully recovered the entire input file with zero errors Fig. 1. DNA Fountain encoding. (Left) Three main algorithmic steps. (Right) Example with a small file of 32 bits. For simplicity, we partitioned the file into eight segments of 4 bits each. The seeds are represented as 2-bit numbers and are presented for display purposes only. See (12) for the full details of each algorithmic step. RESEARCH | REPORT onMarch2,2017http://science.sciencemag.org/Downloadedfrom
  • 30. ¿Usaremos ADN en lugar de discos duros? 25 #TecnoMed@MGClaros 5. UMA.ES 5.2. Variaciones de la marca uma.es VERSIÓN DOS TINTAS EN POSITIVO http://revistageneticamedica.com/2017/04/19/adn-almacenamiento-datos-digitales/ Researchers Store Computer Operating System and Short Movie on DNA New Coding Strategy Maximizes Data Storage Capacity of DNA Molecules New York, NY - March 2, 2017 -- Humanity may soon generate more data than hard drives or magnetic tape can handle, a problem that has scientists turning to nature’s age-old solution for information-storage — DNA. In a new study in Science, a pair of researchers at Columbia University and the New York Genome Center (NYGC) show that an algorithm designed for streaming video on a cellphone can unlock DNA’s nearly full storage potential by squeezing more information into its four base nucleotides. They demonstrate that this technology is also extremely reliable. DNA is an ideal storage medium because it’s ultra-compact and can last hundreds of thousands of years if kept in a cool, dry place, as demonstrated by the recent recovery of DNA from the bones of a 430,000-year-old human ancestor found in a cave in Spain. “DNA won’t degrade over time like cassette tapes and CDs, and it won’t become obsolete—if it does, we have bigger problems,” said study coauthor Yaniv Erlich, a computer science professor at Columbia Engineering, a member of Columbia’s Data Science Institute, and a core member of the NYGC. Erlich and his colleague Dina Zielinski, an associate scientist at NYGC, chose six files to encode, or write, into DNA: a full computer operating system, an 1895 French film, “Arrival of a train at La Ciotat,” a $50 Amazon gift card, a computer virus, a Pioneer plaque and a 1948 study by information theorist Claude Shannon. They compressed the files into a master file, and then split the data into short Secuenciación 215 000 TB (2,15 × 108 GB) de información 1 g de ADN sin error PCRparacopiar 1,6 bits por nucleótido In practice, decoding took ~9 min with a Py- thon script on a single CPU of a standard laptop (movie S1). The decoder recovered the informa- tion with 100% accuracy after observing only 69,870 oligos out of the 72,000 in our library (fig. S10). To further test the robustness of our strategy, we down-sampled the raw Illumina data trieval of information consumes an aliquot of the material. Copying the oligo library with PCR is possible, but this procedure introduces noise and induces oligo dropout. To further test the robust- ness of our strategy, we created a deep copy of the file by propagating the sample through nine serial PCR amplifications (Fig. 2D). The first PCR from an average of 7.8 perfect calls for each per million reads (pcpm) to 4.5 pcpm in the copy. In addition, the deep copy showed m higher skewed representation with a neg binomial overdispersion parameter (1/siz 0.76 compared to 0.15 in the master pool. De the lower quality, the DNA Fountain dec 10ngoutof3µg 25µl PCR #8PCR #7PCR #6PCR #5PCR #4PCR #3 PCR #9PCR #2PCR #1 10µl1µl1µl1µl1µl1µl1µl1µl1µl Deepcopy 2.14Mbytetar.gz: Perfect calls per million reads [pcpm] Frequency 0 5 10 15 20 25 30 0.0000.0010.0020.0030.004 Mean = 7.8 Overdispersion: 0.15 Frequency 0 10 20 30 40 50 60 0.0000.0020.0040.006 Mean = 4.5 Overdispersion: 0.76 Perfect calls per million reads [pcpm] Data payloadAdapter AdapterSeed RS5’- -3’ 32Byte4Byte 2Byte 16nt24nt 8nt128nt 24nt 200nt0 72,000× Masterpool Perfect decoding Sequencing on MiSeq 25µl MiSeq sequencing Perfect decoding All reads Perfect decoding Perfect decoding All reads Downsampling to 5 million reads PCR(10rounds) Copying samples Dilution #1 0.1x Diluting samples Masterpool Masterpool 0.1x 0.1x 0.1x 0.1x 0.1x Dilution #2 Dilution #3 Dilution #4 Dilution #5 Dilution #6 Dilution # 10ng 1ng 100pg 10pg 1pg 100fg 10fg (215Tb/g) (2Pb/g) (21Pb/g) (215Pb/g) (2Eb/g) (21Eb/g) (215Eb/ Multiplexed sequencing Downsampling to 750,000 reads Fig. 2. Experimental setting and results for storing data on DNA. (A) Input files for encoding, size, and type. The total amount of data was 2.14 Mbytes aftercompression.(B) Structure ofthe oligos.Black labels,length in bytes; red, length in nucleotides; RS, Reed-Solomon error-correcting code. (C) Experimental results of the master pool. (D) Experimental procedures of deep copying of the oligo pool. (C and D) Histograms display the fre- quency of perfect calls per million sequenced reads (pcpm). Red, mean; to rescue a sufficient number of oligos. Taken together, these results inspired us to seek a cod- ing strategy that can better utilize the information capacity of DNA storage devices while showing higher data-retrieval reliability. We devised a strategy for DNA storage, called DNA Fountain, that approaches the Shannon ca- pacity while providing robustness against data corruption. Our strategy harnesses fountain codes (18, 19), which have been developed for reliable and effective unicasting of information over chan- nels that are subject to dropouts, such as mobile TV (20). In our design, we carefully adapted the power of fountain codes to overcome both oligo dropouts and the biochemical constraints of DNA storage. Our encoder works in three steps (Fig. 1) (12): First, it preprocesses a binary file into a series of nonoverlapping segments of a certain length. Next, it iterates over two computational steps: Luby transform and screening. The Luby transform sets the basis for fountain codes. Basi- cally, it packages data into any desired number of short messages, called droplets, by selecting a random subset of segments from the file using a special distribution (fig. S7) and adding them bitwise together under a binary field. The drop- let contains two pieces of information: a data payload part that holds the result of the addi- tion procedure and a short, fixed-length seed. This seed corresponds to the state of the random- number generator of the transform during the droplet creation and allows the decoder algo- rithm to infer the identities of the segments in the droplet. Theoretically, it is possible to re- verse the Luby transform using a highly efficient algorithm by collecting any subset of droplets as long as the accumulated size of droplets is slightly bigger than the size of the original file. For DNA Fountain, our algorithm applies one round of the transform in each iteration to create a single droplet. Next, the algorithm moves to the droplet screening stage. This stage is not part of the original fountain code design and allows us to completely realize the coding poten- tial of each nucleotide. In screening, the algorithm translates the binary droplet to a DNA sequence by converting {00,01,10,11} to {A,C,G,T}, respec- tively. Then, it screens the sequence for the desired biochemical properties of GC content and homopolymer runs. If the sequence passes the screen, it is considered valid and added to the oligo design file; otherwise, the algorithm simply trashes the droplet. Since the Luby trans- form can create any desired number of droplets, we keep iterating over the droplet creation and screening steps until a sufficient number of valid oligos are generated. In practice, we recommend 5 to 10% more oligos than input segments (12). Searching for valid oligos scales well with the size of the input file and is economical for var- ious oligo lengths within and beyond current synthesis limits (12) (table S4). We used DNA Fountain to encode a single compressed file of 2,146,816 bytes in a DNA oligo pool. The input data were in the form of a tarball that packaged several files, including a complete graphical operating system of 1.4 Mbytes, a movie, and other files (12) (Fig. 2A and fig. S8). We split the input tarball into 67,088 segments of 32 bytes and iterated over the steps of DNA Fountain to create valid oligos. Each droplet was 38 bytes (304 bits): 4 bytes of the random-number gen- erator seed, 32 bytes for the data payload, and 2 bytes for an RS error-correcting code, to reject erroneous oligos in low-coverage conditions. With this seed length, our strategy supports encoding files of up to 500 Mbytes (12). The DNA oligos had a length of 304/2 = 152 nucleotides (nt) and were screened for homopolymer runs of ≤3 nt and GC content of 45 to 55%. We instructed DNA Fountain to generate 72,000 oligos, yielding a redundancy of 72,000/67,088 – 1 = 7%. We se- lected this number of oligos due to the price structure offered by the manufacturer, allowing us to maximize the number of oligos per dollar. Finally, we added upstream and downstream annealing sites for Illumina adapters, making our final oligos 200 nt long (Fig. 2B and fig. S9). Encoding took 2.5 min on a single central pro- cessing unit (CPU) of a standard laptop. We achieved an information density of 1.57 bits/nt, only 14% from the Shannon capacity of DNA storage and 60% more than previous studies with a similar scale of data (Table 1). Sequencing and decoding the oligo pool fully recovered the entire input file with zero errors Fig. 1. DNA Fountain encoding. (Left) Three main algorithmic steps. (Right) Example with a small file of 32 bits. For simplicity, we partitioned the file into eight segments of 4 bits each. The seeds are represented as 2-bit numbers and are presented for display purposes only. See (12) for the full details of each algorithmic step. RESEARCH | REPORT onMarch2,2017http://science.sciencemag.org/Downloadedfrom Problema: cuesta 10 000 $ Paradoja: ¿podremos guardar información de 1,6 nucleótidos en tan solo 1 nt?
  • 31. Explosión genómica 26 #TecnoMed@MGClaros 5. UMA.ES 5.2. Variaciones de la marca uma.es VERSIÓN DOS TINTAS EN POSITIVO https://www.achieversdaily.com/personalized-medicine-are-we-there-yet/ 3 000 millones de € 1300 € 15 años 15 días De paso, se impulsa la medicina personalizada Menos costes no explican este enorme incremento
  • 32. El proceso también es más fácil 27 #TecnoMed@MGClaros 5. UMA.ES 5.2. Variaciones de la marca uma.es VERSIÓN DOS TINTAS EN POSITIVO https://www.genome.gov/sequencingcosts/ Human Genome Sequencing Generating a Reference Genome Sequence (e.g., Human Genome Project) Generating a Person’s Genome Sequence (e.g., Circa ~2016) Genomic DNA Genomic DNA Break genome into large fragments and insert into clones Order clones Break individual clones into small pieces Generate thousands of sequence reads and assemble sequence of clone Assemble sequences of overlapping clones to establish reference sequence Break genome into small pieces Generate millions of sequence reads Align sequence reads to established reference sequence Deduce starting sequence and identify differences from reference sequence Reference Sequence Reference Sequence ....TATGCGATGCGTATTTCGTAAA.... El proyecto del genoma humano Cualquier otro humano La referencia
  • 33. No todo son ventajas: inseguridad 28 #TecnoMed@MGClaros 5. UMA.ES 5.2. Variaciones de la marca uma.es VERSIÓN DOS TINTAS EN POSITIVO Absolutamente dependiente de los ordenadores Hoy solo se publican borradores llenos de agujeros Lo que nos gustaría tener Lo que realmente tenemos
  • 34. Un borrador es mucho mejor que nada 29 #TecnoMed@MGClaros 5. UMA.ES 5.2. Variaciones de la marca uma.es VERSIÓN DOS TINTAS EN POSITIVO Traslocaciones Explica los cambios benignos y las enfermedades Polimorfismo mononucleotídico
  • 35. Sabemos que todos nos parecemos 30 #TecnoMed@MGClaros 5. UMA.ES 5.2. Variaciones de la marca uma.es VERSIÓN DOS TINTAS EN POSITIVO
  • 36. Por eso experimentamos con animales 31 #TecnoMed@MGClaros 5. UMA.ES 5.2. Variaciones de la marca uma.es VERSIÓN DOS TINTAS EN POSITIVO Y extrapolamos los resultados a los humanos
  • 37. En el genoma cada vez quedan menos secretos 32 #TecnoMed@MGClaros 5. UMA.ES 5.2. Variaciones de la marca uma.es VERSIÓN DOS TINTAS EN POSITIVO http://book.bionumbers.org/how-many-genes-are-in-a-genome/ Los genomas contienen más ADN superfluo que útil
  • 38. Ya conocíamos alguna relación gen-enfermedad 33 #TecnoMed@MGClaros 5. UMA.ES 5.2. Variaciones de la marca uma.es VERSIÓN DOS TINTAS EN POSITIVO https://es.wikipedia.org/wiki/Enfermedad_genética Síndrome de Down Síndrome de Huntington Fibrosis quística Cáncer Hemofilia Diabetes de tipo 1 …
  • 39. Descubrimos más genes relacionados con enfermedades 34 #TecnoMed@MGClaros 5. UMA.ES 5.2. Variaciones de la marca uma.es VERSIÓN DOS TINTAS EN POSITIVO https://clinicalscientist.wordpress.com/tag/human-genome-project/ Hay millones de variaciones La mayoría de las enfermedades son poligénicas
  • 40. Genoterapia: más personalizado, imposible 35 #TecnoMed@MGClaros 5. UMA.ES 5.2. Variaciones de la marca uma.es VERSIÓN DOS TINTAS EN POSITIVO URL Lentiviral vector– mediated addition of an antisickling β-globin gene into autologous hematopoietic stem cells Anemia falciforme
  • 41. Genoterapia: más personalizado, imposible 35 #TecnoMed@MGClaros 5. UMA.ES 5.2. Variaciones de la marca uma.es VERSIÓN DOS TINTAS EN POSITIVO URL Lentiviral vector– mediated addition of an antisickling β-globin gene into autologous hematopoietic stem cells Anemia falciforme Este individuo sano es transgénico
  • 42. Pero nos queda mucho por conocer 36 #TecnoMed@MGClaros 5. UMA.ES 5.2. Variaciones de la marca uma.es VERSIÓN DOS TINTAS EN POSITIVO http://www.seminoncol.org/article/S0093-7754(13)00216-9/pdf Adenocarcinoma de pulmón Carcinoma epidermoide
  • 43. >30% del cáncer se debe a mutaciones imprevisibles 37 #TecnoMed@MGClaros 5. UMA.ES 5.2. Variaciones de la marca uma.es VERSIÓN DOS TINTAS EN POSITIVO Tomasetti et al., Science 355, 1330–1334 (2017) No lo estamos haciendo tan mal
  • 44. Se pueden analizar muchos genomas a la vez 38 #TecnoMed@MGClaros 5. UMA.ES 5.2. Variaciones de la marca uma.es VERSIÓN DOS TINTAS EN POSITIVO URL Sequencing thousands of single-cell genomes with combinatorial indexing Sarah A Vitak, Kristof A Torkenczy, Jimi L Rosenkrantz, Andrew J Fields, Lena Christiansen, Melissa H Wong, Lucia Carbone, Frank J Steemers & Andrew Adey Nature Methods 14, 302–308 (2017) doi:10.1038/nmeth.4154 Adenocarcinoma pancreático (PDAC) en estadio III Se analizaron más de 16.500 células normales y tumorales Se diferenciaron cuatro poblaciones diferentes en el mismo tumor, cada una con sus variantes específicas
  • 45. La capacidad predictiva va mejorando 39 #TecnoMed@MGClaros 5. UMA.ES 5.2. Variaciones de la marca uma.es VERSIÓN DOS TINTAS EN POSITIVO Un número significativo de variantes del paciente le predisponen a una enfermedad Sus variantes no están asociadas a ninguna enfermedad ni al riesgo de padecerla
  • 46. Se han aprobado unos pocos kits predictivos 40 #TecnoMed@MGClaros 5. UMA.ES 5.2. Variaciones de la marca uma.es VERSIÓN DOS TINTAS EN POSITIVO https://www.fda.gov/MedicalDevices/ ProductsandMedicalProcedures/InVitroDiagnostics/ucm330711.htm Es terreno abonado para los charlatanes La mayoría, para el cáncer
  • 47. 41 #TecnoMed@MGClaros 5. UMA.ES 5.2. Variaciones de la marca uma.es VERSIÓN DOS TINTAS EN POSITIVO http://francis.naukas.com/2014/01/06/francis-en-rosavientos-noticias-para-manana-sabado-2/
  • 48. 41 #TecnoMed@MGClaros 5. UMA.ES 5.2. Variaciones de la marca uma.es VERSIÓN DOS TINTAS EN POSITIVO http://francis.naukas.com/2014/01/06/francis-en-rosavientos-noticias-para-manana-sabado-2/ Gen saltarín Neuron 81, 306–313, January 22, 2014 http://dx.doi.org/10.1016/j.neuron.2013.10.053 Síndrome de Rett Ataxia telangiectasia Cáncer de próstata LINE1 (L1) está relacionado con más enfermedades
  • 49. 41 #TecnoMed@MGClaros 5. UMA.ES 5.2. Variaciones de la marca uma.es VERSIÓN DOS TINTAS EN POSITIVO http://francis.naukas.com/2014/01/06/francis-en-rosavientos-noticias-para-manana-sabado-2/ Gen saltarín Neuron 81, 306–313, January 22, 2014 http://dx.doi.org/10.1016/j.neuron.2013.10.053 Síndrome de Rett Ataxia telangiectasia Cáncer de próstata LINE1 (L1) está relacionado con más enfermedades Lo que te da la vida, también te la podría quitar
  • 50. Nuestro genoma es una bomba de relojería 42 #TecnoMed@MGClaros 5. UMA.ES 5.2. Variaciones de la marca uma.es VERSIÓN DOS TINTAS EN POSITIVO ¡Tenemos más transposones que genes! Procura no darle al interruptor de la cuenta atrás Genoma nuclear humano
  • 51. Tampoco es que todo sea NUESTRO genoma 43 #TecnoMed@MGClaros 5. UMA.ES 5.2. Variaciones de la marca uma.es VERSIÓN DOS TINTAS EN POSITIVO https://www.snpedia.com/index.php/Obesity Variantes relacionadas con la obesidad Epigenética
  • 52. Ambiente y microbiota siguen contando 44 #TecnoMed@MGClaros 5. UMA.ES 5.2. Variaciones de la marca uma.es VERSIÓN DOS TINTAS EN POSITIVO Microbiota: conjunto de microorganismos que viven en el interior de un ser vivo normal
  • 53. El experimento revelador 45 #TecnoMed@MGClaros 5. UMA.ES 5.2. Variaciones de la marca uma.es VERSIÓN DOS TINTAS EN POSITIVO URL Gemelo obeso Gemelo delgado Ratón delgado Ratón obeso Ratón normal Trasplante de microbiota Dieta con poca grasa y mucha fibra Extracción de microbiota Ratón delgadoRatón obeso
  • 54. La microbiota altera los tratamientos 46 #TecnoMed@MGClaros 5. UMA.ES 5.2. Variaciones de la marca uma.es VERSIÓN DOS TINTAS EN POSITIVO Article Host-Microbe Co-metabolism Dictates Cancer Drug Efficacy in C. elegans Graphical Abstract Highlights d Drug-microbe-host high-throughput screens reveal new mechanisms for cancer drugs d Microbes integrate nutritional and drug cues regulating treatment efficacy in the host d Ribonucleotide co-metabolism of cancer pro-drugs exists between host and microbe d Imbalanced bacterial deoxynucleotides synergize 5-FU- induced autophagic cell death Authors Timothy A. Scott, Leonor M. Quintaneiro, Povilas Norvaisas, ..., Athanasios Typas, Nicholas D.E. Greene, Filipe Cabreiro Correspondence f.cabreiro@ucl.ac.uk In Brief A three-way high-throughput screen involving host-microbe-drug interactions reveals that the beneficial impact of some drugs can be due to effects of drug- dependent alterations by gut microbe composition rather than direct action of the therapeutic itself. HOLOBIONT C. elegans E. coli Microbiota Host Drugconversion Cancer survival ImprovedUnaltered DRUG 5-FU Ribonucleotide metabolism Microbiota conversionDrDugc dRibonucleotide metabolism NUTRITION Vitamin B6/B9 UMP precursors Scott et al., 2017, Cell 169, 442–456 April 20, 2017 ª 2017 The Author(s). Published by Elsevier Inc. http://dx.doi.org/10.1016/j.cell.2017.03.040 Scott et al., 2017, Cell 169, 442–456 Organismo modelo Fármaco Las diferencias en la población de bacterias del intestino explicaría que algunos quimioterápicos no funcionen en ciertos pacientes
  • 55. Estamos llenos de bacterias que tienen su propio genoma 47 #TecnoMed@MGClaros 5. UMA.ES 5.2. Variaciones de la marca uma.es VERSIÓN DOS TINTAS EN POSITIVO URL Por dentro… …y por fuera Nature Reviews Microbiology 9, 244-253 (April 2011) Nature 449, 811-818 (18 October 2007)
  • 56. Estamos llenos de bacterias que tienen su propio genoma 47 #TecnoMed@MGClaros 5. UMA.ES 5.2. Variaciones de la marca uma.es VERSIÓN DOS TINTAS EN POSITIVO URL Por dentro… …y por fuera Nature Reviews Microbiology 9, 244-253 (April 2011) Nature 449, 811-818 (18 October 2007) Responsables, entre otras muchas cosas, del olor corporal
  • 57. Lo sabemos gracias a la metagenómica 48 #TecnoMed@MGClaros 5. UMA.ES 5.2. Variaciones de la marca uma.es VERSIÓN DOS TINTAS EN POSITIVO https://bacpathgenomics.wordpress.com/tag/science/
  • 58. Lo sabemos gracias a la metagenómica 48 #TecnoMed@MGClaros 5. UMA.ES 5.2. Variaciones de la marca uma.es VERSIÓN DOS TINTAS EN POSITIVO https://bacpathgenomics.wordpress.com/tag/science/ Debemos abandonar la idea de enfermedades poligénicas para convencernos que, en realidad, las enfermedades son poligenómicas Conocemos una cantidad ridícula de especies de microorganismos
  • 59. Futuro: curar los genes de «algún» genoma 49 #TecnoMed@MGClaros 5. UMA.ES 5.2. Variaciones de la marca uma.es VERSIÓN DOS TINTAS EN POSITIVO D4JUN17 http://about.me/mgclaros/ AteneoConCiencia