SlideShare a Scribd company logo
A Scalable ETF Factor Model Under
the Black-Litterman Approach to
Portfolio Optimization
Manuel Zapata, CFA & CQF
January 31, 2017
Presentation for discussion purposes
Detail Methodology
2
Table of Contents
Objective 3
Summary 4
Valuation: Equity, L-T Bonds & Commodities 5
Black–Litterman (BL) Approach & Asset Allocation 12
Dynamic Factors and their Risks 17
Revised Asset Allocation: Incorporating Dynamic Factors 22
Appendix 25
Presentation for discussion purposes
3
Objective
• The robust Black-Litterman (BL) approach to portfolio optimization allows to design a
well diversified portfolio in which views on factor (or asset classes) returns can be
incorporated. BL approach avoids corner solutions (extreme long or short positions).
• Factors (static and dynamic) are investment styles that deliver attractive returns
over the long-term. These return premiums have risks (periods of
underperformance); analyzing the historical record (at least 10 years) is a good
place to start understanding these risks.
• The example presented here can be extended to incorporate additional “static
factors” (i.e. non-US equities or bonds in developed or emerging markets).
• The framework allows to incorporate dynamic factors (also called smart beta or style
factors) to enhance equity returns. Here the following dynamic factors are used:
value, momentum and low-volatility.
• The framework can be used in an international context (through ETF’s) and in
particular markets (the example here uses the US market). For markets with few
ETF’s factor portfolios will need to be built from scratch.
• In addition, the approach allows to analyze alternative scenarios (higher or lower
correlations) and their impact in prior (or required) returns.
Presentation for discussion purposes
4
Summary
• Three “static factors” (equity’s, bonds, and commodities) and three “dynamic factors”
(value, momentum and volatility) are used.
• Rich valuations under the BL framework suggest a larger than usual allocation to the
Risk Free Asset.
• The static factor allocation overweights equities and commodities (relative to long-
term bonds) despite the negative correlation of long-term bonds with equities and
commodities.
• In the absence of changes in the asset allocation (driven by changes in prior returns
and/or return expectations), trading will be limited to rebalancing allocations to the
pre-determined percentages (bands can be used to avoid unnecessary trading).
– Rebalancing is a key driver of long-term investment success (buys low & sales
high).
• Dynamic factors can enhance returns but understanding their risks is a prerequisite.
– The low-risk factor will likely deliver the greatest return premium with relative
low risk.
Presentation for discussion purposes
5
Valuations: Equity, L-T Bonds & Commodities
This sections reviews valuations of broad indices (using ETF) as well as the historical
return performance.
• Despite high price-to-earnings valuation ratios (as measured by the CAPE ratio),
equity valuation levels relative to bonds (using the yield ratio often called FED
model) suggests equity valuation levels are not high even assuming interest rate
levels will rise.
• The likely increase in short-term interest rates will affect the long-end of the yield
curve. It will take a relative modest increase in long-term rates to translate into
negative returns of fixed income portfolios with long-term maturities.
• Over long periods of time commodities should provide returns in line with inflation;
however current commodity values (when measured in real terms) suggest real
returns are likely over the next few years.
Presentation for discussion purposes
6
Equity Valuation: CAPE Ratio & Fed-Model
Likely Adjustment in Valuations going forward
• Using the last 30 years, Cambell & Shiller’s Cyclically Adjusted P/E Ratio (CAPE)
suggests valuation levels are likely to decline going forward.
• However, the yield ratio (often called “FED model”) shows that it will take an increase
of 150bps in long-term rates to take the yield ratio differential to its 30 year historical
average.
• At best valuation levels are likely to stay the same and will likely decline going forward.
0
5
10
15
20
25
30
35
40
45
50
Jan-87
Jun-88
Nov-89
Apr-91
Sep-92
Feb-94
Jul-95
Dec-96
May-98
Oct-99
Mar-01
Aug-02
Jan-04
Jun-05
Nov-06
Apr-08
Sep-09
Feb-11
Jul-12
Dec-13
May-15
Oct-16
CAPE Ratio 1987-2016
Average
+1 St. Dev.
-1 St. Dev.
-6%
-4%
-2%
0%
2%
4%
6%
Jan-87
Aug-88
Mar-90
Oct-91
May-93
Dec-94
Jul-96
Feb-98
Sep-99
Apr-01
Nov-02
Jun-04
Jan-06
Aug-07
Mar-09
Oct-10
May-12
Dec-13
Jul-15
Feb-17
YieldDifference
Treasury Bond Yield Minus Cyclically Adjusted
Earnings Yield
Treasury Minus (1/CAPE) 30Y Average
Cheap Bonds
Cheap Stocks
10 year yield
+150bps
Source: Shiller (http://www.econ.yale.edu/~shiller/data.htm), author calculations
7
Equity: Return Decomposition
Considerable Lower Expected Returns (vs. the last 30 years)
• Throughout this exercise a 5% annual expected return from broad equities will be used
(RG refers to Real Earnings Growth).
• SPY ETF (which tracks the S&P 500) will be used as proxy for equities.
Source: Shiller, author calculations
2.6% 2.0%
2.2%
2.1%
3.1%
1.5%
1.4%
-0.8%
-2%
0%
2%
4%
6%
8%
10%
Last 30Y Next 10Y
Nominal Return Decomposition
CPI D/P RG Val. Change
9.3%
4.8%
to
5.6%
8
L-T Fixed Income: Returns Affected by Rate
Increments going Forward
• The relation between changes in long-term rates (i.e. 10 year rates) and the value of
fixed income portfolios with long durations (i.e. 7 to 10 years) is extremely high as can
be appreciated in above chart (left).
• In 2017 between two and three interest rate increments are expected from the FED,
taking the FED funds rate to 1% or 1.25% (50 to 75 bps more than today).
• The decline in interest rates since the mid 2000’s translated into mostly positive returns
in long-term bonds. That trend will reverse in the next few years.
Source: IEF ETF and 10-year Government bond rate changes
-8
-6
-4
-2
0
2
4
6
8
10
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
IEF-ETFMonthlyReturn(%)
10Y Monthly Rate Change (%)
Monthly L-T Bond Returns vs L-T Rate Change (2002-16)
-10%
-5%
0%
5%
10%
15%
20%
Jul-03
Jun-04
May-05
Apr-06
Mar-07
Feb-08
Jan-09
Dec-09
Nov-10
Oct-11
Sep-12
Aug-13
Jul-14
Jun-15
May-16
12MonthRollingReturn
IEF (ETF): 12 Month Rolling Return
9
• The valuation model uses the yield-curve shape (through implied forward rates) to
forecast returns over the next six months of IEF-ETF. This model suggests a modest
positive return over the next 6 months (less than 0.5%). The relationship is positive but
not extremely strong.
• Despite the positive expected return hinted by the model over the next 6 moths; for the
purpose of this exercise the return expectation used will be negative (i.e. -1.0%). This
is based on an expected increase in 10-year rates of 50bps over the next 12 months.
Source: IEF ETF and historical yield curves
L-T Fixed Income: Valuation Using the Yield
Curve
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
1 3 5 7 10 20
Yield(%)
Maturity
Average Yield Curve Shapes and Forward Returns
Lower than -1% -1% to 1% Above 1% Current
-4.0
-3.0
-2.0
-1.0
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
-10.0 -5.0 0.0 5.0 10.0 15.0
6MonthReturnForecast(%)
6 Month Actual Returns (%)
Forecasting Returns: Yield Curve Predicatbility
10
• Although all three index ETF’s (DJP, GSG, and DBC) have different exposures to energy,
agriculture their return performance over the long term is highly correlated.
• The main objective of commodities, within this factor portfolio, is to provide
diversification benefits.
• I will use DBC ETF (which tracks Deutsche Bank Liquid Commodity Index) since it
shows the highest correlation with the other two indices and a better mean return over
the period.
Source: DJP, GSG, and DBC ETF data
Commodity ETF’s: Energy, Agriculture, Metals
-40%
-30%
-20%
-10%
0%
10%
20%
30%
1-Feb-07
1-Aug-07
1-Feb-08
1-Aug-08
1-Feb-09
1-Aug-09
1-Feb-10
1-Aug-10
1-Feb-11
1-Aug-11
1-Feb-12
1-Aug-12
1-Feb-13
1-Aug-13
1-Feb-14
1-Aug-14
1-Feb-15
1-Aug-15
1-Feb-16
1-Aug-16
MonthlyReturns
Commodity Index ETFs (2007-2016)
DJP GSG DBC
Commodity ETF Correlation of Monthly Returns
(2007-2016)
DJP GSG DBC
DJP 100% 91.3% 95.2%
GSG 91.3% 100% 96.4%
DBC 95.2% 96.4% 100%
Mean (r)
annualized
-4.9% -6.0% -1.5%
11
• DBC ETF closely tracks the performance of Deutsche Bank Liquid Commodity Index
(DBLCI). Their correlation of monthly returns (2007-2016) is 97.4%.
• The current low price level suggest positive real returns are possible over the next few
years. Using monthly data since 1989, the real price level has been 10 times within 5%
of its current level of 192.7 (as of the YE2016 setting YE 1988 @ 100). From that level
range the average annual real return over the next three years has averaged 12% with a
minimum of 7%.
• For the purpose of this exercise, and given lower expected future returns in most other
asset classes, we will assume 4% real annual return (6% nominal return) in commodities
over the next few years (given current valuation levels).
Source: DJP, GSG, and DBC ETF data
DBLCI Analysis: Mid-Term Returns Above
Inflation
0
10
20
30
40
50
60
70
133 168 203 238 273 308 343 378 413 448 483 518 553 588 623 658 693 728 763 798
#ofObservations(monthlydata)
Commodity DBLCI Mid-Bin Index Price (real terms)
DBLCI Real Price Distribution (1989-2016)
-30%
-20%
-10%
0%
10%
20%
30%
0
100
200
300
400
500
600
700
800
900
Dec-88
May-90
Oct-91
Mar-93
Aug-94
Jan-96
Jun-97
Nov-98
Apr-00
Sep-01
Feb-03
Jul-04
Dec-05
May-07
Oct-08
Mar-10
Aug-11
Jan-13
Jun-14
Nov-15
RealReturn
RealIndexLevel
DBLCI Real Price Index (1989-2016)
Real DBLCI (LH) Average Index (LH) 3Y Forward Returns (RH)
Current level
12
Black–Litterman (BL) Framework
A Very Brief Overview*
B&L framework overcomes the problems of implementing portfolio optimization using
historical return data (i.e. corner solutions or highly concentrated portfolios). The
following is a brief overview*:
Benchmark portfolio weights are first assumed to be optimal and prior (or market)
returns are derived using a covariance matrix. In other words, the derived returns
(together with the covariance matrix) will produce the benchmark portfolio weights.
Expectations on assets (or factors) returns are then incorporated which together
with the covariance matrix produces a different set of factor (or assets) weights
(relative to the market benchmark weights).
The Black-Litterman framework works with excess returns, as a result the final
allocation includes an allocation to the risk-free asset.
* For a detail explanation review: A Step-by-Step guide to the Black-Litterman Model by Thomas Idzorek.
* For a simplified review: Ch13 “The Black-Litterman Approcah”, Financial Modeling by Simon Benninga
Presentation for discussion purposes
13
The tables above uses the base case scenario (correlations and volatilities) to derive the
base case covariance matrix. In addition, the appendix derived the inputs for two additional
correlation scenarios:
• Low (absolute) correlations. The increase in interest rates is slow and gradual resulting in
a marginal negative impact in the valuation of L-T bonds while at the same time there is
a positive performance in equities and commodities.
• High (absolute) correlations: i) The increase in interest rates takes place over a shorter
period of time. Valuations of L-T bonds affected to a larger extent translating into a
relative underperformance (vs. equities and commodities); ii) A scenario similar to that
of the GFC will result in increase absolute correlations; however in this case the
performance of equities will be negatively affected relative to bonds and commodities.
Source: DJP, GSG, and DBC ETF data
Covariance Scenario(s)
Refer to the Appendix for Details (correlations and volatility inputs)
Correlations
Base case SPY DBC IEF
SPY 1.0 0.4 -0.3
DBC 0.4 1.0 -0.2
IEF -0.3 -0.2 1.0
Covariance Matrix
Base case SPY DBC IEF
SPY 0.010 0.006 -0.002
DBC 0.006 0.023 -0.002
IEF -0.002 -0.002 0.004
St. Dev
Last Fcst
10.0%
15.0%
5.5%
14
The following assumptions are made to derive the “equilibrium excess returns”:
1. Market weights for each of the asset classes are derived from ETF’s total market
capitalizations for those asset classes.
2. The 3 different scenarios (covariance matrices) mentioned in the previous slide are
used (for details please refer to the appendix).
3. The risk free rate is assumed to be the short-term (1 month) government rate over the
next twelve months (0.75% assumed).
4. To derive Lambda (market risk aversion) a Sharpe Ratio of 0.5 is used. This is
equivalent to expecting an average equilibrium excess return from the proposed
portfolio of 3.7%.
BL Prior (Market) Returns Under Different
Scenarios
Prior (Market) Annualized Returns
SPY DBC IEF Scenario
5.7% 4.3% 0.3% Base
5.7% 3.2% 0.9% Low (abs)
5.7% 5.4% -0.3% High (abs)
Asset Weight (%)
SPY 75.0%
DBC 3.5%
IEF 21.5%
Total 100.0%
Covariance Matrix
Scenario
Base
Low (abs)
High (Abs)
15
IEF. The long-term (10 years) interest rate increment that will likely produce the annual
prior (market) returns over the next three years under each scenario is:
― Base case: An increase in the 10Y rate of around 30 bps per year will produce a similar
annual return (0.3%).
― Low (abs): An increase in the 10Y rate of around 20 to 25 bps per year will produce a
similar annual return (0.9%).
― High (abs): An increase in the 10Y rate of around 40 bps per year will produce a similar
annual return (-0.3%).
SPY. The 5.9% prior (market) return seems achievable assuming no change in market
valuation multiples (refer to slides 6 and 7).
DBC. The range of prior (market) returns seems achievable (refer to slides 10 and 11)
Prior (Market) Returns: Implied Expectations
SPY DBC IEF
5.7% 5.7% 5.7% 4.3% 3.2% 5.4% 0.3% 0.9% -0.3%
B L H B L H B L H
Prior (Market) Annualized Returns
Return level
Correl. scenario: Base (B), Low (L), High (H)
16
Revised Asset Allocation: Incorporating Views
Large Allocation to the Risk Free Asset (RFA)
Asset Mkt. Cap
Weight
(%) (A)
Prior (Market)
Return (Base
Case)
Forecasted
Returns
B&L Revised
Allocation*
B&L Revised
Allocation no
Short Selling*
Base 100
Allocation (B) no
short positions
Difference vs
Market
Weights (B-A)
SPY 75.0% 5.7% 5.0% 58% 53% 87% +12.3%
DBC 3.5% 4.3% 6.0% 8% 8% 13% +9.2%
IEF 21.5% 0.3% -1.0% -6% 0% 0% -21.5%
Total 100.0% 60% 60% 100% 0%
RFA 40% 40%
*Assuming S-T risk free rate goes to 0.75% over the next twelve months
• The table above shows the change in asset allocations after return expectations
(forecasted returns) are incorporated.
• The large allocation to the risk-free asset (RFA) is driven by the low forecasted returns in
equity and fixed income (relative to prior-market returns)
• Among risky assets (SPY, DBC and IEF) equities and commodities are overweighted while
long-term bonds are underweighted.
17
Dynamic Factors and their Risks
Also Called: Smart Beta, Style Factors or Investment Factors
Dynamic factors become an integral part of the overall allocation to equities, which
under the base case scenario is 53% (please refer to the previous slide).
Value factor. Long Value (IVE ETF) and Short Growth (IVW ETF).
Momentum factor (Up Minus Down). Uses SPDR sector ETF’s to go long (short)
ETF’s with positive (negative) momentum.
Low-Volatility factor. Uses SPDR sector ETF’s to go long (short) ETF’s with low (high)
volatility.
Presentation for discussion purposes
18
Value Factor: Characteristics & Risks
• Characteristics. The strategy is Long (IVE S&P500 Value ETF) and Short (IVW S&P 500
Growth ETF). The average annualized return is modest (40 bps per year). The average
beta is close to zero but positive (0.08 on average) and fluctuates slightly over time.
• Risk. Since 2001 the minimum return (over a period of 12 months) has been -11%
(which reversed back to zero over the next 12 months)
-20%
-15%
-10%
-5%
0%
5%
10%
15%
20%
85
90
95
100
105
110
115
120
Jan-01
Jan-02
Jan-03
Jan-04
Jan-05
Jan-06
Jan-07
Jan-08
Jan-09
Jan-10
Jan-11
Jan-12
Jan-13
Jan-14
Jan-15
Jan-16
12MonthRollingReturn
ValueIndexStrategy
Long Value (Short Growth) Strategy
12 Month Rolling (r) RH Strategy Index (LH)
Average annualized return RH
-0.8
-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8
3YearBeta
3 Year Rolling Beta & Average
Annualized Return Characteristics
Mean Premium St. Dev. Kurt. Skew.
0.4% 3.5% 4.7 -0.4
19
Momentum Factor: Characteristics & Risks
• Characteristics. The strategy uses 9 sector ETF’s and computes their return over the last 6
months. It goes long ETF’s with positive momentum (past 6 month returns above the
median) and short ETF with negative momentum. The average annualized return is 1.1%.
The average beta is close to zero (-0.07 on average) and fluctuates slightly over time.
• Risk. Since 2001 the minimum return (over a period of 12 months) has been -8% (which
reverse back to zero over the next 5 months)
Annualized Return Characteristics
Mean Premium St. Dev. Kurt. Skew.
1.1% 5.6% 3.7 -0.01
-10%
-8%
-6%
-4%
-2%
0%
2%
4%
6%
8%
10%
90
95
100
105
110
115
Nov-06
Jun-07
Jan-08
Aug-08
Mar-09
Oct-09
May-10
Dec-10
Jul-11
Feb-12
Sep-12
Apr-13
Nov-13
Jun-14
Jan-15
Aug-15
Mar-16
Oct-16
12MonthRollingreturn
StrategyIndex
Momentum Strategy
12 Month Rolling (r) RH Momentum Index (LH)
Average annualized return (RH)
-0.8
-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8
Oct-09
Mar-10
Aug-10
Jan-11
Jun-11
Nov-11
Apr-12
Sep-12
Feb-13
Jul-13
Dec-13
May-14
Oct-14
Mar-15
Aug-15
Jan-16
Jun-16
Nov-16
Beta(3YearRolling)
3 Year Rolling Beta & Average Beta
20
Low-Risk Factor: Rationale
• The chart above uses 7 sector ETF and ranks them by historical volatility. The mean return
(over the next month) is showed along the Sharpe ratio. There is a large difference in
Sharpe ratios
• The low-risk anomaly takes advantage of the negative relation of realized volatility and
future returns. Despite the theoretical framework which suggests expected returns are
driven by how returns co-vary among assets (and not by their volatility levels).
• This behavior may be explained by leverage constrain investors, which are pushed to take
additional risks by overweighting stocks with built in leverage (higher volatility and/or
higher beta)
-
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
-5%
0%
5%
10%
15%
20%
25%
30%
35%
7 Low 6 5 4 3 2 1 High
RawSharpeRatio
Mean&StandardDeviation
Volatility Portfolios
Return Next Month St Dev (hist) SR (RH)
21
Low-Risk Factor: Characteristics & Risks
By Far the Largest Risk-Adjusted Premium with + skewness
• Characteristic: Relative to the historical median volatility level, long (short) positions are
taken in those ETF’s with lower (higher) volatility. The relative weight (in the long and
short positions) is scaled by the volatility ratio of each ETF to the median volatility level.
• The low volatility strategy is not market neutral (and its beta is different from zero); long
and short weights do not add to zero (in the time period analyzed, 2006-2016, the market
weight averaged 50%). This shortcoming will be addressed in the next section.
Annualized Return Characteristics
Mean Premium St. Dev. Kurt. Skew.
7.7% 9.3% 4.2 0.5
-15%
-10%
-5%
0%
5%
10%
15%
20%
25%
30%
35%
0
50
100
150
200
250
300
May-06
Dec-06
Jul-07
Feb-08
Sep-08
Apr-09
Nov-09
Jun-10
Jan-11
Aug-11
Mar-12
Oct-12
May-13
Dec-13
Jul-14
Feb-15
Sep-15
Apr-16
Nov-16
12MonthRollingReturn
LowRiskFactorIndex
Low Volatility Strategy
12 Month Rolling Return (RH) Low Volatility Index
Average Annualized Return
-0.8
-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8
Jun-08
Dec-08
Jun-09
Dec-09
Jun-10
Dec-10
Jun-11
Dec-11
Jun-12
Dec-12
Jun-13
Dec-13
Jun-14
Dec-14
Jun-15
Dec-15
Jun-16
Dec-16
Beta(3yearRolling)
3 Year Rolling Beta & Average Beta
22
Incorporating Dynamic Factors into BL
Start From Static Factor Allocation with Views (same as slide 16)
Asset Mkt. Cap
Weight
(%) (A)
Prior (Market)
Return (Base
Case)
Forecasted
Returns
B&L Revised
Allocation*
B&L Revised
Allocation no
Short Selling*
Base 100
Allocation (B) no
short positions
Difference vs
Market
Weights (B-A)
SPY 75.0% 5.7% 5.0% 58% 53% 87% +12.3%
DBC 3.5% 4.3% 6.0% 8% 8% 13% +9.2%
IEF 21.5% 0.3% -1.0% -6% 0% 0% -21.5%
Total 100.0% 60% 60% 100% 0%
RFA 40% 40%
*Assuming S-T risk free rate goes to 0.75% over the next twelve months
• Start from the asset allocation with no short-selling, which assigns a 53% allocation to
equities.
• Then complement the equity allocation with the dynamic factors (momentum, value and
volatility) as explained in the next few slides.
Presentation for discussion purposes
23
BL Dynamic Factor: Momentum Example
Implementation using SPY Sector ETF’s
• The table above shows how to implement a 20% tilt (or loading) to the momentum
strategy.
• The different sector ETF’s (appropriately weighted) will make a 100% exposure to SPY.
The resulting allocation overweights (underweights) ETF’s with positive (negative)
momentum.
• The resulting allocation has the same weight to equities (and the same beta) and will
capture the momentum premium over the long-term.
• A similar approach used to incorporate value factor exposure
ETF ETF Sector Weight* Momentum (long-
short position)
Momentum
Tilt
Revised
Allocation
Equity Allocation
@53%
XLY
Consumer
Discretionary 13% Short (-) momentum
20%
6% 3%
: : : : : :
XLF Financials 18% Long (+) momentum 27% 14%
: : : : : :
XLK Technology 18% Short (-) momentum 9% 5%
Total 100% 100% 53%
*The weight of each sector ETF can be derived from the SPY sector breakdown or from a regression of returns vs SPY
24
BL Dynamic Factor: Low-Volatility Example
Implementation using SPY Sector ETF’s
• The table above shows the mechanics of a 20% tilt (or loading) to the low-volatility
strategy.
• The different sector ETF’s (appropriately weighted) make a 100% exposure to SPY. The
resulting allocation overweights (underweights) ETF’s with low (high) volatility (relative
to the median volatility).
• Unfortunately, this strategy usually produces allocations that are not market neutral, in
this case the revised equity allocation increases to 58.8% (vs. the 53% initially allocated
to equities).
ETF ETF Sector Weight* Standard Deviation
(annualized)
Low-Vol.
Tilt
Revised
Allocation
Equity Allocation
@53%
XLE Energy 13.0% 24.2% (short)
20%
10.0% 5.3%
: : : : : :
XLF Financials 12.7% 10.9% (median value) 12.7% 6.7%
: : : : : :
XLY
Consumer
Discretionary 10.7% 8.8% (long) 19.0% 10.1%
Total 100% 100% 58.8%
*The weight of each sector ETF used in this strategy was derived from a regression of returns vs SPY
25
Appendix: Covariance Matrix Inputs
• Detail construction of the variance-covariance matrix
• Correlations among factors
• Standard deviation forecast (GARCH and GJR)
Presentation for discussion purposes
26
• There has been a negative correlation between the S&P500 (SPY) and L-T government
bonds (IEF) since the early 2000’s. The relation is not particularly strong however.
• For the purpose of building the variance-covariance matrix (under the Black-Litterman
approach) three scenarios are suggested: base case, a low (absolute) correlation
scenario and a high (absolute) correlation scenario.
• Correlation scenarios: base (-30%), low-absolute (-13%) and high-absolute (-48%)
Correlations: Pearson vs Spearman (Rank)
SPY – IEF Analysis
-50%
-40%
-30%
-20%
-10%
0%
10%
20%
30%
40%
50%
D-98
N-99
O-00
S-01
A-02
J-03
J-04
M-05
A-06
M-07
F-08
J-09
D-09
N-10
O-11
S-12
A-13
J-14
J-15
M-16
CorrelationCoefficient
10Y Rolling Correlations: SPY - IEF
Pearson Correl Spearman (Rank)
0
20
40
60
80
100
120
140
0 20 40 60 80 100 120 140
Last 10Y Rank Correlation SPY-IEF
27
• There has been a positive and increasing correlation between the S&P500 (SPY) and
commodities (DBC) since 2009.
• For the purpose of building the variance-covariance matrix (under the Black-Litterman
approach) three scenarios are suggested: base case, a low (absolute) correlation
scenario and a high (absolute) correlation scenario.
• Correlation scenarios: base (43%), low-absolute (26%) and high-absolute (59%)
Correlations: Pearson vs Spearman (Rank)
SPY – DBC Analysis
-30%
-20%
-10%
0%
10%
20%
30%
40%
50%
60%
D-98
N-99
O-00
S-01
A-02
J-03
J-04
M-05
A-06
M-07
F-08
J-09
D-09
N-10
O-11
S-12
A-13
J-14
J-15
M-16
CorrelationCoefficient
10Y Rolling Correlations: SPY - DBC
Pearson Spearman
0
20
40
60
80
100
120
140
0 20 40 60 80 100 120 140
Last 10Y Rank Correlation SPY-DBC
28
• There has been a positive and increasing correlation between the S&P500 (SPY) and
commodities (DBC) since 2009.
• For the purpose of building the variance-covariance matrix (under the Black-Litterman
approach) three scenarios are suggested: base case, a low (absolute) correlation
scenario and a high (absolute) correlation scenario.
• Correlation scenarios: base (-19%), low-absolute (-2%) and high-absolute (-37%)
Correlations: Pearson vs Spearman (Rank)
IEF – DBC Analysis
-25%
-20%
-15%
-10%
-5%
0%
5%
10%
15%
D-98
N-99
O-00
S-01
A-02
J-03
J-04
M-05
A-06
M-07
F-08
J-09
D-09
N-10
O-11
S-12
A-13
J-14
J-15
M-16
CorrelationCoeficient
10Y Rolling Correlations: IEF - DBC
Pearson Speraman
0
20
40
60
80
100
120
140
0 20 40 60 80 100 120 140
Last 10Y Rank Correlation IEF-DBC
29
• The correlation between the forecasted volatility at the beginning of the period and the
realized volatility (using daily returns over the last 30 days) is 78% for the S&P 500
(SPY).
• GJR incorporates the asymmetric behavior of investors (losses trigger higher volatility
levels than equal magnitude gains).
• The high variability in volatility could translate into excessive trading (under the Black-
Litterman framework), as a result a confidence volatility range (if volatility remains
between 8% - 11% use a 10% level) can be used.
SPY Volatility Forecast: GJR (1,1)
0
20
40
60
80
100
120
Feb-06
Aug-06
Feb-07
Aug-07
Feb-08
Aug-08
Feb-09
Aug-09
Feb-10
Aug-10
Feb-11
Aug-11
Feb-12
Aug-12
Feb-13
Aug-13
Feb-14
Aug-14
Feb-15
Aug-15
Feb-16
Aug-16
AnnualizedStandardDeviation(%)
Forecast vs Realized Vol. (Standard Deviation)
GJR-GARCH(1,1) Realized-Last 30 days
Variable Level
Current Vol. Forecast 8.8%
Average since 2006 16.8%
BL Vol. Input 10.0%
Min 7.7%
Max 101.2%
30
• The correlation between the forecasted volatility at the beginning of the period and the
realized volatility (using daily returns over the last 30 days) is also 78% for
commodities.
• The GJR framework does not provide evidence of asymmetric behavior and therefore a
GARCH (1,1) is used instead.
• The high variability in volatility could translate into excessive trading (under the Black-
Litterman framework), as a result a confidence volatility range (if volatility remains
between 13% - 17% use a 15% level) can be used.
DBC Volatility Forecast: GARCH (1,1)
Variable Level
Current Vol. Forecast 15.2%
Average since 2006 19.2%
BL Vol. Input 15.0%
Min 8.0%
Max 51.4%0
10
20
30
40
50
60
Feb-06
Aug-06
Feb-07
Aug-07
Feb-08
Aug-08
Feb-09
Aug-09
Feb-10
Aug-10
Feb-11
Aug-11
Feb-12
Aug-12
Feb-13
Aug-13
Feb-14
Aug-14
Feb-15
Aug-15
Feb-16
Aug-16
StandardDeviation(%)
Forecast vs Realized Vol. (Standard Deviation)
GARCH(1,1) Realized-Last 30 days
31
• The correlation between the forecasted volatility at the beginning of the period and the
realized volatility (using daily returns over the last 30 days) is 68% for L-T government
bonds. Is lower than for the S&P 500 (SPY) and commodities (DBC) but also significant.
• Here too the GJR framework does not provide evidence of asymmetric behavior and
therefore a GARCH (1,1) is used instead. IEF has a considerable lower average level of
volatility.
• The high variability in volatility could translate into excessive trading (under the Black-
Litterman framework), as a result a confidence volatility range (if volatility remains
between 4.0% - 7.0% use a 5.5% level) can be used.
IEF Volatility Forecast: GARCH (1,1)
Variable Level
Current Vol. Forecast 5.5%
Average since 2006 6.7%
BL Vol. Input 5.5%
Min 3.9%
Max 14.6%0
2
4
6
8
10
12
14
16
18
Feb-06
Aug-06
Feb-07
Aug-07
Feb-08
Aug-08
Feb-09
Aug-09
Feb-10
Aug-10
Feb-11
Aug-11
Feb-12
Aug-12
Feb-13
Aug-13
Feb-14
Aug-14
Feb-15
Aug-15
Feb-16
Aug-16
StandardDeviation(%)
Forecast vs Realized Vol. (Standard Deviation)
GARCH(1,1) Realized-Last 30 days
A Scalable ETF Factor Model Under
the Black-Litterman Approach to
Portfolio Optimization
Manuel Zapata, CFA & CQF
January 31, 2017
Presentation for discussion purposes
Detail Methodology

More Related Content

What's hot

"Portfolio Optimisation When You Don’t Know the Future (or the Past)" by Rob...
"Portfolio Optimisation When You Don’t Know the Future (or the Past)" by Rob..."Portfolio Optimisation When You Don’t Know the Future (or the Past)" by Rob...
"Portfolio Optimisation When You Don’t Know the Future (or the Past)" by Rob...
Quantopian
 
Inheritance, Retirement & Cash Flow
Inheritance, Retirement & Cash FlowInheritance, Retirement & Cash Flow
Inheritance, Retirement & Cash Flow
Place2Give Foundation/Karma & Cents Inc.
 
USING FINANCIAL STATEMENTS INFORMATION
USING FINANCIAL STATEMENTS INFORMATIONUSING FINANCIAL STATEMENTS INFORMATION
USING FINANCIAL STATEMENTS INFORMATION
Doulat panah
 
The Asset Return - Funding Cost Paradox: The Case for LDI
The Asset Return - Funding Cost Paradox: The Case for LDIThe Asset Return - Funding Cost Paradox: The Case for LDI
The Asset Return - Funding Cost Paradox: The Case for LDI
Norman Ehrentreich
 
Market Volatility - Fight or Flight
Market Volatility - Fight or FlightMarket Volatility - Fight or Flight
Market Volatility - Fight or Flight
Ian Po
 
マーケットニュートラル
マーケットニュートラルマーケットニュートラル
マーケットニュートラル
Masa Yoshida
 
Multi Asset Endowment Investment Strategy
Multi Asset Endowment Investment StrategyMulti Asset Endowment Investment Strategy
Multi Asset Endowment Investment Strategy
Taposh Roy
 
"Enhancing Statistical Significance of Backtests" by Dr. Ernest Chan, Managin...
"Enhancing Statistical Significance of Backtests" by Dr. Ernest Chan, Managin..."Enhancing Statistical Significance of Backtests" by Dr. Ernest Chan, Managin...
"Enhancing Statistical Significance of Backtests" by Dr. Ernest Chan, Managin...
Quantopian
 
Retirement saving with contribution payments and labor income as a benchmark ...
Retirement saving with contribution payments and labor income as a benchmark ...Retirement saving with contribution payments and labor income as a benchmark ...
Retirement saving with contribution payments and labor income as a benchmark ...
Nicha Tatsaneeyapan
 
MR Trading
MR TradingMR Trading
MR Trading
Donny Lee
 
Superior performance by combining Rsik Parity with Momentum?
Superior performance by combining Rsik Parity with Momentum?Superior performance by combining Rsik Parity with Momentum?
Superior performance by combining Rsik Parity with Momentum?
Wilhelm Fritsche
 
Ratio Analysis
Ratio AnalysisRatio Analysis
Ratio Analysisyashpal01
 
Basics of market linked products
Basics of market linked productsBasics of market linked products
Basics of market linked productssudhanshuarora1
 
Risk Return Basics for Investing
Risk Return Basics for InvestingRisk Return Basics for Investing
Risk Return Basics for Investing
Fortuna Favi et Fortus Ltd.
 
FIRC Fixed Inocme, Rates, and Credit
FIRC Fixed Inocme, Rates, and CreditFIRC Fixed Inocme, Rates, and Credit
FIRC Fixed Inocme, Rates, and Credit
Minyanville Media
 
Does High Risk Mean High Return
Does High Risk Mean High ReturnDoes High Risk Mean High Return
Does High Risk Mean High Return
Andrew Stotz, PhD, CFA
 
A Sampling of Investment Ideas #2
A Sampling of Investment Ideas #2A Sampling of Investment Ideas #2
A Sampling of Investment Ideas #2
David Williams
 
Forecasting
ForecastingForecasting
Forecasting
Vikash Kumar
 
Ratio analysis of a Clearing Agency, chennai
Ratio analysis of a Clearing Agency, chennaiRatio analysis of a Clearing Agency, chennai
Ratio analysis of a Clearing Agency, chennai
Nishant Shah
 

What's hot (20)

"Portfolio Optimisation When You Don’t Know the Future (or the Past)" by Rob...
"Portfolio Optimisation When You Don’t Know the Future (or the Past)" by Rob..."Portfolio Optimisation When You Don’t Know the Future (or the Past)" by Rob...
"Portfolio Optimisation When You Don’t Know the Future (or the Past)" by Rob...
 
Inheritance, Retirement & Cash Flow
Inheritance, Retirement & Cash FlowInheritance, Retirement & Cash Flow
Inheritance, Retirement & Cash Flow
 
USING FINANCIAL STATEMENTS INFORMATION
USING FINANCIAL STATEMENTS INFORMATIONUSING FINANCIAL STATEMENTS INFORMATION
USING FINANCIAL STATEMENTS INFORMATION
 
The Asset Return - Funding Cost Paradox: The Case for LDI
The Asset Return - Funding Cost Paradox: The Case for LDIThe Asset Return - Funding Cost Paradox: The Case for LDI
The Asset Return - Funding Cost Paradox: The Case for LDI
 
Market Volatility - Fight or Flight
Market Volatility - Fight or FlightMarket Volatility - Fight or Flight
Market Volatility - Fight or Flight
 
マーケットニュートラル
マーケットニュートラルマーケットニュートラル
マーケットニュートラル
 
Interest rate
Interest rateInterest rate
Interest rate
 
Multi Asset Endowment Investment Strategy
Multi Asset Endowment Investment StrategyMulti Asset Endowment Investment Strategy
Multi Asset Endowment Investment Strategy
 
"Enhancing Statistical Significance of Backtests" by Dr. Ernest Chan, Managin...
"Enhancing Statistical Significance of Backtests" by Dr. Ernest Chan, Managin..."Enhancing Statistical Significance of Backtests" by Dr. Ernest Chan, Managin...
"Enhancing Statistical Significance of Backtests" by Dr. Ernest Chan, Managin...
 
Retirement saving with contribution payments and labor income as a benchmark ...
Retirement saving with contribution payments and labor income as a benchmark ...Retirement saving with contribution payments and labor income as a benchmark ...
Retirement saving with contribution payments and labor income as a benchmark ...
 
MR Trading
MR TradingMR Trading
MR Trading
 
Superior performance by combining Rsik Parity with Momentum?
Superior performance by combining Rsik Parity with Momentum?Superior performance by combining Rsik Parity with Momentum?
Superior performance by combining Rsik Parity with Momentum?
 
Ratio Analysis
Ratio AnalysisRatio Analysis
Ratio Analysis
 
Basics of market linked products
Basics of market linked productsBasics of market linked products
Basics of market linked products
 
Risk Return Basics for Investing
Risk Return Basics for InvestingRisk Return Basics for Investing
Risk Return Basics for Investing
 
FIRC Fixed Inocme, Rates, and Credit
FIRC Fixed Inocme, Rates, and CreditFIRC Fixed Inocme, Rates, and Credit
FIRC Fixed Inocme, Rates, and Credit
 
Does High Risk Mean High Return
Does High Risk Mean High ReturnDoes High Risk Mean High Return
Does High Risk Mean High Return
 
A Sampling of Investment Ideas #2
A Sampling of Investment Ideas #2A Sampling of Investment Ideas #2
A Sampling of Investment Ideas #2
 
Forecasting
ForecastingForecasting
Forecasting
 
Ratio analysis of a Clearing Agency, chennai
Ratio analysis of a Clearing Agency, chennaiRatio analysis of a Clearing Agency, chennai
Ratio analysis of a Clearing Agency, chennai
 

Viewers also liked

Cuestionario de computacion del primer quimestre
Cuestionario de computacion del primer quimestreCuestionario de computacion del primer quimestre
Cuestionario de computacion del primer quimestrewilychisa
 
Presentación expoenergía 2012
Presentación expoenergía 2012Presentación expoenergía 2012
Presentación expoenergía 2012
Ductobarra
 
Cuestionario de computacion del primer quimestre
Cuestionario de computacion del primer quimestreCuestionario de computacion del primer quimestre
Cuestionario de computacion del primer quimestrewilychisa
 
Redbank Plaza Upgrade - Street Lighting
Redbank Plaza Upgrade - Street LightingRedbank Plaza Upgrade - Street Lighting
Redbank Plaza Upgrade - Street LightingGary Hayes
 
Instructivo aprendiz sena
Instructivo aprendiz senaInstructivo aprendiz sena
Instructivo aprendiz senaMaria Ardila
 
Computadoras
ComputadorasComputadoras
Computadorasabmazat
 
Trampas psicologias en la toma de decisiones copia
Trampas psicologias en la toma de decisiones   copiaTrampas psicologias en la toma de decisiones   copia
Trampas psicologias en la toma de decisiones copiauftalexander
 
BU econ professor runs for president, hopes to mobilize young voters
BU econ professor runs for president, hopes to mobilize young votersBU econ professor runs for president, hopes to mobilize young voters
BU econ professor runs for president, hopes to mobilize young votersKalina Newman
 
Eduardo calle
Eduardo calleEduardo calle
Eduardo calleCHURUDO
 
el visor magico
el visor magico el visor magico
el visor magico
nicohernandez14
 

Viewers also liked (15)

Cuestionario de computacion del primer quimestre
Cuestionario de computacion del primer quimestreCuestionario de computacion del primer quimestre
Cuestionario de computacion del primer quimestre
 
Cuadro
Cuadro Cuadro
Cuadro
 
Presentación expoenergía 2012
Presentación expoenergía 2012Presentación expoenergía 2012
Presentación expoenergía 2012
 
Cuestionario de computacion del primer quimestre
Cuestionario de computacion del primer quimestreCuestionario de computacion del primer quimestre
Cuestionario de computacion del primer quimestre
 
Redbank Plaza Upgrade - Street Lighting
Redbank Plaza Upgrade - Street LightingRedbank Plaza Upgrade - Street Lighting
Redbank Plaza Upgrade - Street Lighting
 
Proceso de reforma
Proceso de reformaProceso de reforma
Proceso de reforma
 
Instructivo aprendiz sena
Instructivo aprendiz senaInstructivo aprendiz sena
Instructivo aprendiz sena
 
Computadoras
ComputadorasComputadoras
Computadoras
 
El tren de la vida
El tren de la vidaEl tren de la vida
El tren de la vida
 
Trampas psicologias en la toma de decisiones copia
Trampas psicologias en la toma de decisiones   copiaTrampas psicologias en la toma de decisiones   copia
Trampas psicologias en la toma de decisiones copia
 
BU econ professor runs for president, hopes to mobilize young voters
BU econ professor runs for president, hopes to mobilize young votersBU econ professor runs for president, hopes to mobilize young voters
BU econ professor runs for president, hopes to mobilize young voters
 
Eduardo calle
Eduardo calleEduardo calle
Eduardo calle
 
Como hacerte saber
Como hacerte saberComo hacerte saber
Como hacerte saber
 
General Presentation Polo 2017 EN FINAL
General Presentation Polo 2017 EN FINALGeneral Presentation Polo 2017 EN FINAL
General Presentation Polo 2017 EN FINAL
 
el visor magico
el visor magico el visor magico
el visor magico
 

Similar to B&L Factor Model Jan 2017

SBI Dynamic Asset Allocation Fund: A Hybrid Mutual Fund Scheme - Aug 16
SBI Dynamic Asset Allocation Fund: A Hybrid Mutual Fund Scheme - Aug 16SBI Dynamic Asset Allocation Fund: A Hybrid Mutual Fund Scheme - Aug 16
SBI Dynamic Asset Allocation Fund: A Hybrid Mutual Fund Scheme - Aug 16
SBI Mutual Fund
 
SBI Dynamic Asset Allocation Fund: An Open-ended Dynamic Asset Allocation Sch...
SBI Dynamic Asset Allocation Fund: An Open-ended Dynamic Asset Allocation Sch...SBI Dynamic Asset Allocation Fund: An Open-ended Dynamic Asset Allocation Sch...
SBI Dynamic Asset Allocation Fund: An Open-ended Dynamic Asset Allocation Sch...
SBI Mutual Fund
 
SBI Dynamic Asset Allocation Fund: An Open-ended Dynamic Asset Allocation Sch...
SBI Dynamic Asset Allocation Fund: An Open-ended Dynamic Asset Allocation Sch...SBI Dynamic Asset Allocation Fund: An Open-ended Dynamic Asset Allocation Sch...
SBI Dynamic Asset Allocation Fund: An Open-ended Dynamic Asset Allocation Sch...
SBI Mutual Fund
 
Agf market outlook
Agf market outlookAgf market outlook
Agf market outlook
Kevin Cheng, CFA
 
Momentum and Trend Following for Global REITs. ARES 2015
Momentum and Trend Following for Global REITs. ARES 2015Momentum and Trend Following for Global REITs. ARES 2015
Momentum and Trend Following for Global REITs. ARES 2015
Consiliacapital
 
UTI FOCUSSED EQUITY FUND(S1)V2.pdf
UTI FOCUSSED EQUITY FUND(S1)V2.pdfUTI FOCUSSED EQUITY FUND(S1)V2.pdf
UTI FOCUSSED EQUITY FUND(S1)V2.pdfgoutamraiganj
 
A dynamic Nelson-Siegel model with forward-looking indicators for the yield c...
A dynamic Nelson-Siegel model with forward-looking indicators for the yield c...A dynamic Nelson-Siegel model with forward-looking indicators for the yield c...
A dynamic Nelson-Siegel model with forward-looking indicators for the yield c...
FGV Brazil
 
KB Star Funds - Factsheet (20160630)
KB Star Funds - Factsheet (20160630)KB Star Funds - Factsheet (20160630)
KB Star Funds - Factsheet (20160630)
kbasset
 
Bateleur
BateleurBateleur
Whats In Play November 23rd 2015 - SP1500 -
Whats In Play November 23rd 2015 - SP1500 -Whats In Play November 23rd 2015 - SP1500 -
Whats In Play November 23rd 2015 - SP1500 -Steve Cossettini, CFA
 
Pokfulam investments:A Model of Equity Market Pricing
Pokfulam investments:A Model of Equity Market PricingPokfulam investments:A Model of Equity Market Pricing
Pokfulam investments:A Model of Equity Market Pricing
Peter Rice
 
Marketing materials factsheet
Marketing materials factsheetMarketing materials factsheet
Marketing materials factsheet
kbasset
 
"Snake Oil, Swamp Land, and Factor-Based Investing" by Gary Antonacci, author...
"Snake Oil, Swamp Land, and Factor-Based Investing" by Gary Antonacci, author..."Snake Oil, Swamp Land, and Factor-Based Investing" by Gary Antonacci, author...
"Snake Oil, Swamp Land, and Factor-Based Investing" by Gary Antonacci, author...
Quantopian
 
Planning Strategies Q410
Planning Strategies Q410Planning Strategies Q410
Planning Strategies Q410
Barry Mendelson
 
Sage Fact Sheet Jun 2015
Sage Fact Sheet Jun 2015Sage Fact Sheet Jun 2015
Sage Fact Sheet Jun 2015
Alan Chu
 
SBI Dynamic Bond Fund : Debt Mutual Fund - Apr 2016
SBI Dynamic Bond Fund : Debt Mutual Fund - Apr 2016SBI Dynamic Bond Fund : Debt Mutual Fund - Apr 2016
SBI Dynamic Bond Fund : Debt Mutual Fund - Apr 2016
SBI Mutual Fund
 
SBI Magnum Income Fund (MIF): An Income Mutual Fund Scheme - Aug 16
SBI Magnum Income Fund (MIF): An Income Mutual Fund Scheme - Aug 16SBI Magnum Income Fund (MIF): An Income Mutual Fund Scheme - Aug 16
SBI Magnum Income Fund (MIF): An Income Mutual Fund Scheme - Aug 16
SBI Mutual Fund
 
[CH] The use of convertible bonds in the asset allocation process
[CH] The use of convertible bonds in the asset allocation process[CH] The use of convertible bonds in the asset allocation process
[CH] The use of convertible bonds in the asset allocation process
NN Investment Partners
 
[JP] The use of convertible bonds in the asset allocation process
[JP] The use of convertible bonds in the asset allocation process[JP] The use of convertible bonds in the asset allocation process
[JP] The use of convertible bonds in the asset allocation process
NN Investment Partners
 
[EN] The use of convertible bonds in the asset allocation process
[EN] The use of convertible bonds in the asset allocation process[EN] The use of convertible bonds in the asset allocation process
[EN] The use of convertible bonds in the asset allocation process
NN Investment Partners
 

Similar to B&L Factor Model Jan 2017 (20)

SBI Dynamic Asset Allocation Fund: A Hybrid Mutual Fund Scheme - Aug 16
SBI Dynamic Asset Allocation Fund: A Hybrid Mutual Fund Scheme - Aug 16SBI Dynamic Asset Allocation Fund: A Hybrid Mutual Fund Scheme - Aug 16
SBI Dynamic Asset Allocation Fund: A Hybrid Mutual Fund Scheme - Aug 16
 
SBI Dynamic Asset Allocation Fund: An Open-ended Dynamic Asset Allocation Sch...
SBI Dynamic Asset Allocation Fund: An Open-ended Dynamic Asset Allocation Sch...SBI Dynamic Asset Allocation Fund: An Open-ended Dynamic Asset Allocation Sch...
SBI Dynamic Asset Allocation Fund: An Open-ended Dynamic Asset Allocation Sch...
 
SBI Dynamic Asset Allocation Fund: An Open-ended Dynamic Asset Allocation Sch...
SBI Dynamic Asset Allocation Fund: An Open-ended Dynamic Asset Allocation Sch...SBI Dynamic Asset Allocation Fund: An Open-ended Dynamic Asset Allocation Sch...
SBI Dynamic Asset Allocation Fund: An Open-ended Dynamic Asset Allocation Sch...
 
Agf market outlook
Agf market outlookAgf market outlook
Agf market outlook
 
Momentum and Trend Following for Global REITs. ARES 2015
Momentum and Trend Following for Global REITs. ARES 2015Momentum and Trend Following for Global REITs. ARES 2015
Momentum and Trend Following for Global REITs. ARES 2015
 
UTI FOCUSSED EQUITY FUND(S1)V2.pdf
UTI FOCUSSED EQUITY FUND(S1)V2.pdfUTI FOCUSSED EQUITY FUND(S1)V2.pdf
UTI FOCUSSED EQUITY FUND(S1)V2.pdf
 
A dynamic Nelson-Siegel model with forward-looking indicators for the yield c...
A dynamic Nelson-Siegel model with forward-looking indicators for the yield c...A dynamic Nelson-Siegel model with forward-looking indicators for the yield c...
A dynamic Nelson-Siegel model with forward-looking indicators for the yield c...
 
KB Star Funds - Factsheet (20160630)
KB Star Funds - Factsheet (20160630)KB Star Funds - Factsheet (20160630)
KB Star Funds - Factsheet (20160630)
 
Bateleur
BateleurBateleur
Bateleur
 
Whats In Play November 23rd 2015 - SP1500 -
Whats In Play November 23rd 2015 - SP1500 -Whats In Play November 23rd 2015 - SP1500 -
Whats In Play November 23rd 2015 - SP1500 -
 
Pokfulam investments:A Model of Equity Market Pricing
Pokfulam investments:A Model of Equity Market PricingPokfulam investments:A Model of Equity Market Pricing
Pokfulam investments:A Model of Equity Market Pricing
 
Marketing materials factsheet
Marketing materials factsheetMarketing materials factsheet
Marketing materials factsheet
 
"Snake Oil, Swamp Land, and Factor-Based Investing" by Gary Antonacci, author...
"Snake Oil, Swamp Land, and Factor-Based Investing" by Gary Antonacci, author..."Snake Oil, Swamp Land, and Factor-Based Investing" by Gary Antonacci, author...
"Snake Oil, Swamp Land, and Factor-Based Investing" by Gary Antonacci, author...
 
Planning Strategies Q410
Planning Strategies Q410Planning Strategies Q410
Planning Strategies Q410
 
Sage Fact Sheet Jun 2015
Sage Fact Sheet Jun 2015Sage Fact Sheet Jun 2015
Sage Fact Sheet Jun 2015
 
SBI Dynamic Bond Fund : Debt Mutual Fund - Apr 2016
SBI Dynamic Bond Fund : Debt Mutual Fund - Apr 2016SBI Dynamic Bond Fund : Debt Mutual Fund - Apr 2016
SBI Dynamic Bond Fund : Debt Mutual Fund - Apr 2016
 
SBI Magnum Income Fund (MIF): An Income Mutual Fund Scheme - Aug 16
SBI Magnum Income Fund (MIF): An Income Mutual Fund Scheme - Aug 16SBI Magnum Income Fund (MIF): An Income Mutual Fund Scheme - Aug 16
SBI Magnum Income Fund (MIF): An Income Mutual Fund Scheme - Aug 16
 
[CH] The use of convertible bonds in the asset allocation process
[CH] The use of convertible bonds in the asset allocation process[CH] The use of convertible bonds in the asset allocation process
[CH] The use of convertible bonds in the asset allocation process
 
[JP] The use of convertible bonds in the asset allocation process
[JP] The use of convertible bonds in the asset allocation process[JP] The use of convertible bonds in the asset allocation process
[JP] The use of convertible bonds in the asset allocation process
 
[EN] The use of convertible bonds in the asset allocation process
[EN] The use of convertible bonds in the asset allocation process[EN] The use of convertible bonds in the asset allocation process
[EN] The use of convertible bonds in the asset allocation process
 

B&L Factor Model Jan 2017

  • 1. A Scalable ETF Factor Model Under the Black-Litterman Approach to Portfolio Optimization Manuel Zapata, CFA & CQF January 31, 2017 Presentation for discussion purposes Detail Methodology
  • 2. 2 Table of Contents Objective 3 Summary 4 Valuation: Equity, L-T Bonds & Commodities 5 Black–Litterman (BL) Approach & Asset Allocation 12 Dynamic Factors and their Risks 17 Revised Asset Allocation: Incorporating Dynamic Factors 22 Appendix 25 Presentation for discussion purposes
  • 3. 3 Objective • The robust Black-Litterman (BL) approach to portfolio optimization allows to design a well diversified portfolio in which views on factor (or asset classes) returns can be incorporated. BL approach avoids corner solutions (extreme long or short positions). • Factors (static and dynamic) are investment styles that deliver attractive returns over the long-term. These return premiums have risks (periods of underperformance); analyzing the historical record (at least 10 years) is a good place to start understanding these risks. • The example presented here can be extended to incorporate additional “static factors” (i.e. non-US equities or bonds in developed or emerging markets). • The framework allows to incorporate dynamic factors (also called smart beta or style factors) to enhance equity returns. Here the following dynamic factors are used: value, momentum and low-volatility. • The framework can be used in an international context (through ETF’s) and in particular markets (the example here uses the US market). For markets with few ETF’s factor portfolios will need to be built from scratch. • In addition, the approach allows to analyze alternative scenarios (higher or lower correlations) and their impact in prior (or required) returns. Presentation for discussion purposes
  • 4. 4 Summary • Three “static factors” (equity’s, bonds, and commodities) and three “dynamic factors” (value, momentum and volatility) are used. • Rich valuations under the BL framework suggest a larger than usual allocation to the Risk Free Asset. • The static factor allocation overweights equities and commodities (relative to long- term bonds) despite the negative correlation of long-term bonds with equities and commodities. • In the absence of changes in the asset allocation (driven by changes in prior returns and/or return expectations), trading will be limited to rebalancing allocations to the pre-determined percentages (bands can be used to avoid unnecessary trading). – Rebalancing is a key driver of long-term investment success (buys low & sales high). • Dynamic factors can enhance returns but understanding their risks is a prerequisite. – The low-risk factor will likely deliver the greatest return premium with relative low risk. Presentation for discussion purposes
  • 5. 5 Valuations: Equity, L-T Bonds & Commodities This sections reviews valuations of broad indices (using ETF) as well as the historical return performance. • Despite high price-to-earnings valuation ratios (as measured by the CAPE ratio), equity valuation levels relative to bonds (using the yield ratio often called FED model) suggests equity valuation levels are not high even assuming interest rate levels will rise. • The likely increase in short-term interest rates will affect the long-end of the yield curve. It will take a relative modest increase in long-term rates to translate into negative returns of fixed income portfolios with long-term maturities. • Over long periods of time commodities should provide returns in line with inflation; however current commodity values (when measured in real terms) suggest real returns are likely over the next few years. Presentation for discussion purposes
  • 6. 6 Equity Valuation: CAPE Ratio & Fed-Model Likely Adjustment in Valuations going forward • Using the last 30 years, Cambell & Shiller’s Cyclically Adjusted P/E Ratio (CAPE) suggests valuation levels are likely to decline going forward. • However, the yield ratio (often called “FED model”) shows that it will take an increase of 150bps in long-term rates to take the yield ratio differential to its 30 year historical average. • At best valuation levels are likely to stay the same and will likely decline going forward. 0 5 10 15 20 25 30 35 40 45 50 Jan-87 Jun-88 Nov-89 Apr-91 Sep-92 Feb-94 Jul-95 Dec-96 May-98 Oct-99 Mar-01 Aug-02 Jan-04 Jun-05 Nov-06 Apr-08 Sep-09 Feb-11 Jul-12 Dec-13 May-15 Oct-16 CAPE Ratio 1987-2016 Average +1 St. Dev. -1 St. Dev. -6% -4% -2% 0% 2% 4% 6% Jan-87 Aug-88 Mar-90 Oct-91 May-93 Dec-94 Jul-96 Feb-98 Sep-99 Apr-01 Nov-02 Jun-04 Jan-06 Aug-07 Mar-09 Oct-10 May-12 Dec-13 Jul-15 Feb-17 YieldDifference Treasury Bond Yield Minus Cyclically Adjusted Earnings Yield Treasury Minus (1/CAPE) 30Y Average Cheap Bonds Cheap Stocks 10 year yield +150bps Source: Shiller (http://www.econ.yale.edu/~shiller/data.htm), author calculations
  • 7. 7 Equity: Return Decomposition Considerable Lower Expected Returns (vs. the last 30 years) • Throughout this exercise a 5% annual expected return from broad equities will be used (RG refers to Real Earnings Growth). • SPY ETF (which tracks the S&P 500) will be used as proxy for equities. Source: Shiller, author calculations 2.6% 2.0% 2.2% 2.1% 3.1% 1.5% 1.4% -0.8% -2% 0% 2% 4% 6% 8% 10% Last 30Y Next 10Y Nominal Return Decomposition CPI D/P RG Val. Change 9.3% 4.8% to 5.6%
  • 8. 8 L-T Fixed Income: Returns Affected by Rate Increments going Forward • The relation between changes in long-term rates (i.e. 10 year rates) and the value of fixed income portfolios with long durations (i.e. 7 to 10 years) is extremely high as can be appreciated in above chart (left). • In 2017 between two and three interest rate increments are expected from the FED, taking the FED funds rate to 1% or 1.25% (50 to 75 bps more than today). • The decline in interest rates since the mid 2000’s translated into mostly positive returns in long-term bonds. That trend will reverse in the next few years. Source: IEF ETF and 10-year Government bond rate changes -8 -6 -4 -2 0 2 4 6 8 10 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 IEF-ETFMonthlyReturn(%) 10Y Monthly Rate Change (%) Monthly L-T Bond Returns vs L-T Rate Change (2002-16) -10% -5% 0% 5% 10% 15% 20% Jul-03 Jun-04 May-05 Apr-06 Mar-07 Feb-08 Jan-09 Dec-09 Nov-10 Oct-11 Sep-12 Aug-13 Jul-14 Jun-15 May-16 12MonthRollingReturn IEF (ETF): 12 Month Rolling Return
  • 9. 9 • The valuation model uses the yield-curve shape (through implied forward rates) to forecast returns over the next six months of IEF-ETF. This model suggests a modest positive return over the next 6 months (less than 0.5%). The relationship is positive but not extremely strong. • Despite the positive expected return hinted by the model over the next 6 moths; for the purpose of this exercise the return expectation used will be negative (i.e. -1.0%). This is based on an expected increase in 10-year rates of 50bps over the next 12 months. Source: IEF ETF and historical yield curves L-T Fixed Income: Valuation Using the Yield Curve 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 1 3 5 7 10 20 Yield(%) Maturity Average Yield Curve Shapes and Forward Returns Lower than -1% -1% to 1% Above 1% Current -4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 -10.0 -5.0 0.0 5.0 10.0 15.0 6MonthReturnForecast(%) 6 Month Actual Returns (%) Forecasting Returns: Yield Curve Predicatbility
  • 10. 10 • Although all three index ETF’s (DJP, GSG, and DBC) have different exposures to energy, agriculture their return performance over the long term is highly correlated. • The main objective of commodities, within this factor portfolio, is to provide diversification benefits. • I will use DBC ETF (which tracks Deutsche Bank Liquid Commodity Index) since it shows the highest correlation with the other two indices and a better mean return over the period. Source: DJP, GSG, and DBC ETF data Commodity ETF’s: Energy, Agriculture, Metals -40% -30% -20% -10% 0% 10% 20% 30% 1-Feb-07 1-Aug-07 1-Feb-08 1-Aug-08 1-Feb-09 1-Aug-09 1-Feb-10 1-Aug-10 1-Feb-11 1-Aug-11 1-Feb-12 1-Aug-12 1-Feb-13 1-Aug-13 1-Feb-14 1-Aug-14 1-Feb-15 1-Aug-15 1-Feb-16 1-Aug-16 MonthlyReturns Commodity Index ETFs (2007-2016) DJP GSG DBC Commodity ETF Correlation of Monthly Returns (2007-2016) DJP GSG DBC DJP 100% 91.3% 95.2% GSG 91.3% 100% 96.4% DBC 95.2% 96.4% 100% Mean (r) annualized -4.9% -6.0% -1.5%
  • 11. 11 • DBC ETF closely tracks the performance of Deutsche Bank Liquid Commodity Index (DBLCI). Their correlation of monthly returns (2007-2016) is 97.4%. • The current low price level suggest positive real returns are possible over the next few years. Using monthly data since 1989, the real price level has been 10 times within 5% of its current level of 192.7 (as of the YE2016 setting YE 1988 @ 100). From that level range the average annual real return over the next three years has averaged 12% with a minimum of 7%. • For the purpose of this exercise, and given lower expected future returns in most other asset classes, we will assume 4% real annual return (6% nominal return) in commodities over the next few years (given current valuation levels). Source: DJP, GSG, and DBC ETF data DBLCI Analysis: Mid-Term Returns Above Inflation 0 10 20 30 40 50 60 70 133 168 203 238 273 308 343 378 413 448 483 518 553 588 623 658 693 728 763 798 #ofObservations(monthlydata) Commodity DBLCI Mid-Bin Index Price (real terms) DBLCI Real Price Distribution (1989-2016) -30% -20% -10% 0% 10% 20% 30% 0 100 200 300 400 500 600 700 800 900 Dec-88 May-90 Oct-91 Mar-93 Aug-94 Jan-96 Jun-97 Nov-98 Apr-00 Sep-01 Feb-03 Jul-04 Dec-05 May-07 Oct-08 Mar-10 Aug-11 Jan-13 Jun-14 Nov-15 RealReturn RealIndexLevel DBLCI Real Price Index (1989-2016) Real DBLCI (LH) Average Index (LH) 3Y Forward Returns (RH) Current level
  • 12. 12 Black–Litterman (BL) Framework A Very Brief Overview* B&L framework overcomes the problems of implementing portfolio optimization using historical return data (i.e. corner solutions or highly concentrated portfolios). The following is a brief overview*: Benchmark portfolio weights are first assumed to be optimal and prior (or market) returns are derived using a covariance matrix. In other words, the derived returns (together with the covariance matrix) will produce the benchmark portfolio weights. Expectations on assets (or factors) returns are then incorporated which together with the covariance matrix produces a different set of factor (or assets) weights (relative to the market benchmark weights). The Black-Litterman framework works with excess returns, as a result the final allocation includes an allocation to the risk-free asset. * For a detail explanation review: A Step-by-Step guide to the Black-Litterman Model by Thomas Idzorek. * For a simplified review: Ch13 “The Black-Litterman Approcah”, Financial Modeling by Simon Benninga Presentation for discussion purposes
  • 13. 13 The tables above uses the base case scenario (correlations and volatilities) to derive the base case covariance matrix. In addition, the appendix derived the inputs for two additional correlation scenarios: • Low (absolute) correlations. The increase in interest rates is slow and gradual resulting in a marginal negative impact in the valuation of L-T bonds while at the same time there is a positive performance in equities and commodities. • High (absolute) correlations: i) The increase in interest rates takes place over a shorter period of time. Valuations of L-T bonds affected to a larger extent translating into a relative underperformance (vs. equities and commodities); ii) A scenario similar to that of the GFC will result in increase absolute correlations; however in this case the performance of equities will be negatively affected relative to bonds and commodities. Source: DJP, GSG, and DBC ETF data Covariance Scenario(s) Refer to the Appendix for Details (correlations and volatility inputs) Correlations Base case SPY DBC IEF SPY 1.0 0.4 -0.3 DBC 0.4 1.0 -0.2 IEF -0.3 -0.2 1.0 Covariance Matrix Base case SPY DBC IEF SPY 0.010 0.006 -0.002 DBC 0.006 0.023 -0.002 IEF -0.002 -0.002 0.004 St. Dev Last Fcst 10.0% 15.0% 5.5%
  • 14. 14 The following assumptions are made to derive the “equilibrium excess returns”: 1. Market weights for each of the asset classes are derived from ETF’s total market capitalizations for those asset classes. 2. The 3 different scenarios (covariance matrices) mentioned in the previous slide are used (for details please refer to the appendix). 3. The risk free rate is assumed to be the short-term (1 month) government rate over the next twelve months (0.75% assumed). 4. To derive Lambda (market risk aversion) a Sharpe Ratio of 0.5 is used. This is equivalent to expecting an average equilibrium excess return from the proposed portfolio of 3.7%. BL Prior (Market) Returns Under Different Scenarios Prior (Market) Annualized Returns SPY DBC IEF Scenario 5.7% 4.3% 0.3% Base 5.7% 3.2% 0.9% Low (abs) 5.7% 5.4% -0.3% High (abs) Asset Weight (%) SPY 75.0% DBC 3.5% IEF 21.5% Total 100.0% Covariance Matrix Scenario Base Low (abs) High (Abs)
  • 15. 15 IEF. The long-term (10 years) interest rate increment that will likely produce the annual prior (market) returns over the next three years under each scenario is: ― Base case: An increase in the 10Y rate of around 30 bps per year will produce a similar annual return (0.3%). ― Low (abs): An increase in the 10Y rate of around 20 to 25 bps per year will produce a similar annual return (0.9%). ― High (abs): An increase in the 10Y rate of around 40 bps per year will produce a similar annual return (-0.3%). SPY. The 5.9% prior (market) return seems achievable assuming no change in market valuation multiples (refer to slides 6 and 7). DBC. The range of prior (market) returns seems achievable (refer to slides 10 and 11) Prior (Market) Returns: Implied Expectations SPY DBC IEF 5.7% 5.7% 5.7% 4.3% 3.2% 5.4% 0.3% 0.9% -0.3% B L H B L H B L H Prior (Market) Annualized Returns Return level Correl. scenario: Base (B), Low (L), High (H)
  • 16. 16 Revised Asset Allocation: Incorporating Views Large Allocation to the Risk Free Asset (RFA) Asset Mkt. Cap Weight (%) (A) Prior (Market) Return (Base Case) Forecasted Returns B&L Revised Allocation* B&L Revised Allocation no Short Selling* Base 100 Allocation (B) no short positions Difference vs Market Weights (B-A) SPY 75.0% 5.7% 5.0% 58% 53% 87% +12.3% DBC 3.5% 4.3% 6.0% 8% 8% 13% +9.2% IEF 21.5% 0.3% -1.0% -6% 0% 0% -21.5% Total 100.0% 60% 60% 100% 0% RFA 40% 40% *Assuming S-T risk free rate goes to 0.75% over the next twelve months • The table above shows the change in asset allocations after return expectations (forecasted returns) are incorporated. • The large allocation to the risk-free asset (RFA) is driven by the low forecasted returns in equity and fixed income (relative to prior-market returns) • Among risky assets (SPY, DBC and IEF) equities and commodities are overweighted while long-term bonds are underweighted.
  • 17. 17 Dynamic Factors and their Risks Also Called: Smart Beta, Style Factors or Investment Factors Dynamic factors become an integral part of the overall allocation to equities, which under the base case scenario is 53% (please refer to the previous slide). Value factor. Long Value (IVE ETF) and Short Growth (IVW ETF). Momentum factor (Up Minus Down). Uses SPDR sector ETF’s to go long (short) ETF’s with positive (negative) momentum. Low-Volatility factor. Uses SPDR sector ETF’s to go long (short) ETF’s with low (high) volatility. Presentation for discussion purposes
  • 18. 18 Value Factor: Characteristics & Risks • Characteristics. The strategy is Long (IVE S&P500 Value ETF) and Short (IVW S&P 500 Growth ETF). The average annualized return is modest (40 bps per year). The average beta is close to zero but positive (0.08 on average) and fluctuates slightly over time. • Risk. Since 2001 the minimum return (over a period of 12 months) has been -11% (which reversed back to zero over the next 12 months) -20% -15% -10% -5% 0% 5% 10% 15% 20% 85 90 95 100 105 110 115 120 Jan-01 Jan-02 Jan-03 Jan-04 Jan-05 Jan-06 Jan-07 Jan-08 Jan-09 Jan-10 Jan-11 Jan-12 Jan-13 Jan-14 Jan-15 Jan-16 12MonthRollingReturn ValueIndexStrategy Long Value (Short Growth) Strategy 12 Month Rolling (r) RH Strategy Index (LH) Average annualized return RH -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 3YearBeta 3 Year Rolling Beta & Average Annualized Return Characteristics Mean Premium St. Dev. Kurt. Skew. 0.4% 3.5% 4.7 -0.4
  • 19. 19 Momentum Factor: Characteristics & Risks • Characteristics. The strategy uses 9 sector ETF’s and computes their return over the last 6 months. It goes long ETF’s with positive momentum (past 6 month returns above the median) and short ETF with negative momentum. The average annualized return is 1.1%. The average beta is close to zero (-0.07 on average) and fluctuates slightly over time. • Risk. Since 2001 the minimum return (over a period of 12 months) has been -8% (which reverse back to zero over the next 5 months) Annualized Return Characteristics Mean Premium St. Dev. Kurt. Skew. 1.1% 5.6% 3.7 -0.01 -10% -8% -6% -4% -2% 0% 2% 4% 6% 8% 10% 90 95 100 105 110 115 Nov-06 Jun-07 Jan-08 Aug-08 Mar-09 Oct-09 May-10 Dec-10 Jul-11 Feb-12 Sep-12 Apr-13 Nov-13 Jun-14 Jan-15 Aug-15 Mar-16 Oct-16 12MonthRollingreturn StrategyIndex Momentum Strategy 12 Month Rolling (r) RH Momentum Index (LH) Average annualized return (RH) -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 Oct-09 Mar-10 Aug-10 Jan-11 Jun-11 Nov-11 Apr-12 Sep-12 Feb-13 Jul-13 Dec-13 May-14 Oct-14 Mar-15 Aug-15 Jan-16 Jun-16 Nov-16 Beta(3YearRolling) 3 Year Rolling Beta & Average Beta
  • 20. 20 Low-Risk Factor: Rationale • The chart above uses 7 sector ETF and ranks them by historical volatility. The mean return (over the next month) is showed along the Sharpe ratio. There is a large difference in Sharpe ratios • The low-risk anomaly takes advantage of the negative relation of realized volatility and future returns. Despite the theoretical framework which suggests expected returns are driven by how returns co-vary among assets (and not by their volatility levels). • This behavior may be explained by leverage constrain investors, which are pushed to take additional risks by overweighting stocks with built in leverage (higher volatility and/or higher beta) - 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 -5% 0% 5% 10% 15% 20% 25% 30% 35% 7 Low 6 5 4 3 2 1 High RawSharpeRatio Mean&StandardDeviation Volatility Portfolios Return Next Month St Dev (hist) SR (RH)
  • 21. 21 Low-Risk Factor: Characteristics & Risks By Far the Largest Risk-Adjusted Premium with + skewness • Characteristic: Relative to the historical median volatility level, long (short) positions are taken in those ETF’s with lower (higher) volatility. The relative weight (in the long and short positions) is scaled by the volatility ratio of each ETF to the median volatility level. • The low volatility strategy is not market neutral (and its beta is different from zero); long and short weights do not add to zero (in the time period analyzed, 2006-2016, the market weight averaged 50%). This shortcoming will be addressed in the next section. Annualized Return Characteristics Mean Premium St. Dev. Kurt. Skew. 7.7% 9.3% 4.2 0.5 -15% -10% -5% 0% 5% 10% 15% 20% 25% 30% 35% 0 50 100 150 200 250 300 May-06 Dec-06 Jul-07 Feb-08 Sep-08 Apr-09 Nov-09 Jun-10 Jan-11 Aug-11 Mar-12 Oct-12 May-13 Dec-13 Jul-14 Feb-15 Sep-15 Apr-16 Nov-16 12MonthRollingReturn LowRiskFactorIndex Low Volatility Strategy 12 Month Rolling Return (RH) Low Volatility Index Average Annualized Return -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 Jun-08 Dec-08 Jun-09 Dec-09 Jun-10 Dec-10 Jun-11 Dec-11 Jun-12 Dec-12 Jun-13 Dec-13 Jun-14 Dec-14 Jun-15 Dec-15 Jun-16 Dec-16 Beta(3yearRolling) 3 Year Rolling Beta & Average Beta
  • 22. 22 Incorporating Dynamic Factors into BL Start From Static Factor Allocation with Views (same as slide 16) Asset Mkt. Cap Weight (%) (A) Prior (Market) Return (Base Case) Forecasted Returns B&L Revised Allocation* B&L Revised Allocation no Short Selling* Base 100 Allocation (B) no short positions Difference vs Market Weights (B-A) SPY 75.0% 5.7% 5.0% 58% 53% 87% +12.3% DBC 3.5% 4.3% 6.0% 8% 8% 13% +9.2% IEF 21.5% 0.3% -1.0% -6% 0% 0% -21.5% Total 100.0% 60% 60% 100% 0% RFA 40% 40% *Assuming S-T risk free rate goes to 0.75% over the next twelve months • Start from the asset allocation with no short-selling, which assigns a 53% allocation to equities. • Then complement the equity allocation with the dynamic factors (momentum, value and volatility) as explained in the next few slides. Presentation for discussion purposes
  • 23. 23 BL Dynamic Factor: Momentum Example Implementation using SPY Sector ETF’s • The table above shows how to implement a 20% tilt (or loading) to the momentum strategy. • The different sector ETF’s (appropriately weighted) will make a 100% exposure to SPY. The resulting allocation overweights (underweights) ETF’s with positive (negative) momentum. • The resulting allocation has the same weight to equities (and the same beta) and will capture the momentum premium over the long-term. • A similar approach used to incorporate value factor exposure ETF ETF Sector Weight* Momentum (long- short position) Momentum Tilt Revised Allocation Equity Allocation @53% XLY Consumer Discretionary 13% Short (-) momentum 20% 6% 3% : : : : : : XLF Financials 18% Long (+) momentum 27% 14% : : : : : : XLK Technology 18% Short (-) momentum 9% 5% Total 100% 100% 53% *The weight of each sector ETF can be derived from the SPY sector breakdown or from a regression of returns vs SPY
  • 24. 24 BL Dynamic Factor: Low-Volatility Example Implementation using SPY Sector ETF’s • The table above shows the mechanics of a 20% tilt (or loading) to the low-volatility strategy. • The different sector ETF’s (appropriately weighted) make a 100% exposure to SPY. The resulting allocation overweights (underweights) ETF’s with low (high) volatility (relative to the median volatility). • Unfortunately, this strategy usually produces allocations that are not market neutral, in this case the revised equity allocation increases to 58.8% (vs. the 53% initially allocated to equities). ETF ETF Sector Weight* Standard Deviation (annualized) Low-Vol. Tilt Revised Allocation Equity Allocation @53% XLE Energy 13.0% 24.2% (short) 20% 10.0% 5.3% : : : : : : XLF Financials 12.7% 10.9% (median value) 12.7% 6.7% : : : : : : XLY Consumer Discretionary 10.7% 8.8% (long) 19.0% 10.1% Total 100% 100% 58.8% *The weight of each sector ETF used in this strategy was derived from a regression of returns vs SPY
  • 25. 25 Appendix: Covariance Matrix Inputs • Detail construction of the variance-covariance matrix • Correlations among factors • Standard deviation forecast (GARCH and GJR) Presentation for discussion purposes
  • 26. 26 • There has been a negative correlation between the S&P500 (SPY) and L-T government bonds (IEF) since the early 2000’s. The relation is not particularly strong however. • For the purpose of building the variance-covariance matrix (under the Black-Litterman approach) three scenarios are suggested: base case, a low (absolute) correlation scenario and a high (absolute) correlation scenario. • Correlation scenarios: base (-30%), low-absolute (-13%) and high-absolute (-48%) Correlations: Pearson vs Spearman (Rank) SPY – IEF Analysis -50% -40% -30% -20% -10% 0% 10% 20% 30% 40% 50% D-98 N-99 O-00 S-01 A-02 J-03 J-04 M-05 A-06 M-07 F-08 J-09 D-09 N-10 O-11 S-12 A-13 J-14 J-15 M-16 CorrelationCoefficient 10Y Rolling Correlations: SPY - IEF Pearson Correl Spearman (Rank) 0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140 Last 10Y Rank Correlation SPY-IEF
  • 27. 27 • There has been a positive and increasing correlation between the S&P500 (SPY) and commodities (DBC) since 2009. • For the purpose of building the variance-covariance matrix (under the Black-Litterman approach) three scenarios are suggested: base case, a low (absolute) correlation scenario and a high (absolute) correlation scenario. • Correlation scenarios: base (43%), low-absolute (26%) and high-absolute (59%) Correlations: Pearson vs Spearman (Rank) SPY – DBC Analysis -30% -20% -10% 0% 10% 20% 30% 40% 50% 60% D-98 N-99 O-00 S-01 A-02 J-03 J-04 M-05 A-06 M-07 F-08 J-09 D-09 N-10 O-11 S-12 A-13 J-14 J-15 M-16 CorrelationCoefficient 10Y Rolling Correlations: SPY - DBC Pearson Spearman 0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140 Last 10Y Rank Correlation SPY-DBC
  • 28. 28 • There has been a positive and increasing correlation between the S&P500 (SPY) and commodities (DBC) since 2009. • For the purpose of building the variance-covariance matrix (under the Black-Litterman approach) three scenarios are suggested: base case, a low (absolute) correlation scenario and a high (absolute) correlation scenario. • Correlation scenarios: base (-19%), low-absolute (-2%) and high-absolute (-37%) Correlations: Pearson vs Spearman (Rank) IEF – DBC Analysis -25% -20% -15% -10% -5% 0% 5% 10% 15% D-98 N-99 O-00 S-01 A-02 J-03 J-04 M-05 A-06 M-07 F-08 J-09 D-09 N-10 O-11 S-12 A-13 J-14 J-15 M-16 CorrelationCoeficient 10Y Rolling Correlations: IEF - DBC Pearson Speraman 0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140 Last 10Y Rank Correlation IEF-DBC
  • 29. 29 • The correlation between the forecasted volatility at the beginning of the period and the realized volatility (using daily returns over the last 30 days) is 78% for the S&P 500 (SPY). • GJR incorporates the asymmetric behavior of investors (losses trigger higher volatility levels than equal magnitude gains). • The high variability in volatility could translate into excessive trading (under the Black- Litterman framework), as a result a confidence volatility range (if volatility remains between 8% - 11% use a 10% level) can be used. SPY Volatility Forecast: GJR (1,1) 0 20 40 60 80 100 120 Feb-06 Aug-06 Feb-07 Aug-07 Feb-08 Aug-08 Feb-09 Aug-09 Feb-10 Aug-10 Feb-11 Aug-11 Feb-12 Aug-12 Feb-13 Aug-13 Feb-14 Aug-14 Feb-15 Aug-15 Feb-16 Aug-16 AnnualizedStandardDeviation(%) Forecast vs Realized Vol. (Standard Deviation) GJR-GARCH(1,1) Realized-Last 30 days Variable Level Current Vol. Forecast 8.8% Average since 2006 16.8% BL Vol. Input 10.0% Min 7.7% Max 101.2%
  • 30. 30 • The correlation between the forecasted volatility at the beginning of the period and the realized volatility (using daily returns over the last 30 days) is also 78% for commodities. • The GJR framework does not provide evidence of asymmetric behavior and therefore a GARCH (1,1) is used instead. • The high variability in volatility could translate into excessive trading (under the Black- Litterman framework), as a result a confidence volatility range (if volatility remains between 13% - 17% use a 15% level) can be used. DBC Volatility Forecast: GARCH (1,1) Variable Level Current Vol. Forecast 15.2% Average since 2006 19.2% BL Vol. Input 15.0% Min 8.0% Max 51.4%0 10 20 30 40 50 60 Feb-06 Aug-06 Feb-07 Aug-07 Feb-08 Aug-08 Feb-09 Aug-09 Feb-10 Aug-10 Feb-11 Aug-11 Feb-12 Aug-12 Feb-13 Aug-13 Feb-14 Aug-14 Feb-15 Aug-15 Feb-16 Aug-16 StandardDeviation(%) Forecast vs Realized Vol. (Standard Deviation) GARCH(1,1) Realized-Last 30 days
  • 31. 31 • The correlation between the forecasted volatility at the beginning of the period and the realized volatility (using daily returns over the last 30 days) is 68% for L-T government bonds. Is lower than for the S&P 500 (SPY) and commodities (DBC) but also significant. • Here too the GJR framework does not provide evidence of asymmetric behavior and therefore a GARCH (1,1) is used instead. IEF has a considerable lower average level of volatility. • The high variability in volatility could translate into excessive trading (under the Black- Litterman framework), as a result a confidence volatility range (if volatility remains between 4.0% - 7.0% use a 5.5% level) can be used. IEF Volatility Forecast: GARCH (1,1) Variable Level Current Vol. Forecast 5.5% Average since 2006 6.7% BL Vol. Input 5.5% Min 3.9% Max 14.6%0 2 4 6 8 10 12 14 16 18 Feb-06 Aug-06 Feb-07 Aug-07 Feb-08 Aug-08 Feb-09 Aug-09 Feb-10 Aug-10 Feb-11 Aug-11 Feb-12 Aug-12 Feb-13 Aug-13 Feb-14 Aug-14 Feb-15 Aug-15 Feb-16 Aug-16 StandardDeviation(%) Forecast vs Realized Vol. (Standard Deviation) GARCH(1,1) Realized-Last 30 days
  • 32. A Scalable ETF Factor Model Under the Black-Litterman Approach to Portfolio Optimization Manuel Zapata, CFA & CQF January 31, 2017 Presentation for discussion purposes Detail Methodology