SlideShare a Scribd company logo
1 of 26
Bioethanol production from cheese whey
using yeast, a non-Saccharomyces,
Kluyveromyces marxianus
Asmamaw Tesfaw
1
Introduction
Bioethanol
Yeast
Starch
Lignocellulose
s
Wastes
Simple
sugars
Sorting
Hydrolysis
Chemical
Physical
Biological
Agricultural
residues
2
natural ecosystems rich in sugar
Yeast
Fermented
Plant
Soil
Compost
3
Growth factors
temperature
pH
oxygen
initial sugar concentrations
Optimization of multiple variables: single
factor at a time
Limitations
Which one comes first?
You can’t predict for future?
Solution
Response surface methodology (RSM)
4
RSM employ
Statistical and
Mathematical technique
RSM enables to
design experiments
build model
evaluate interactions
look for optimum conditions for responses
reduce the number of experiments
5
Cheese whey
Liquid waste
130millions tons word wide
50% water bodies
High BOD and COD
increasing at a rate of 3% per year
Ethiopia
20, 000 tons
Increasing
Objective
to evaluate ethanol production capability of
K. marxianus ETP87 from crude whey.
6
MATERIALS AND METHODS
Optimizing growth variables
Temperature: 30, 35, 40
pH: 4, 5, 6
Time:24, 48, 72
Where,
Y = ethanol produced in g/L (dependent output)
0 = intercept
β1, β2, and β3= Linear, quadratic and interaction regression
coefficients for temperature, pH and time respectively
X1, X2, and X3 = independent variable for temperature (degree
centigrade), pH, and time (hours) respectively
ε = random experimental error
7
Factor 1
(Temperature, oC)
Factor 2 (pH) Factor 3
(time, hours)
Response (Ethanol
produced, g/L)
35.00 5.00 48.00
30.00 6.00 24.00
30.00 6.00 72.00
26.59 5.00 48.00
35.00 5.00 48.00
35.00 5.00 48.00
40.00 4.00 72.00
35.00 5.00 48.00
35.00 5.00 88.36
30.00 4.00 24.00
43.41 5.00 48.00
40.00 4.00 24.00
35.00 5.00 48.00
40.00 6.00 72.00
35.00 3.32 48.00
40.00 6.00 24.00
30.00 4.00 72.00
35.00 6.68 48.00
35.00 5.00 7.64
35.00 5.00 48.00 8
Experimental design
Crude whey
Yeast: K. marxianus ETP87
Experimental condition: non-deproteinized
and deproteinized by heating
Supplementation of whey with molasses
and nitrogen sources
extract (0.55%), peptone (1%), and ammonium
sulfate (0.33%).
Molasses
100% molasses alone
25% whey and 75% molasses
50% whey and 50% molasses
75% whey and 25% molasses
100% whey
9
Effect of pH and temperature
pH: crude3.9 and adjusted 5.0
Temperature:25, 30, 35, 40, 45, and 50oC
Lactose determination: reducing sugar
Ethanol determination: GC-MS and
Pycnometer methods
10
RESULTS AND DISCUSSION
11
Model diagnostics
12
Design-Expert® Software
Ethanol Produced
Color points by value of
Ethanol Produced:
19.25
4
Externally Studentized Residuals
Normal
%
Probability
Normal Plot of Residuals
-4.00 -3.00 -2.00 -1.00 0.00 1.00 2.00 3.00
1
5
10
20
30
50
70
80
90
95
99
Normality test
No need to transform
13
Design-Expert® Software
Ethanol Produced
Color points by value of
Ethanol Produced:
19.25
4
Run Number
DFFITS
DFFITS vs. Run
-6
-4
-2
0
2
4
6
1 4 7 10 13 16 19
2.12132
-2.12132
0
DFFITS
Diagnostics Case Statistics Report
Internally Externally
Influence
on
Run Actual Predicted
Studentiz
ed
Studentiz
ed
Cook's
Fitted
Value
Standard
Order Value Value Residual Leverage Residual Residual Distance DFFITS Order
1 5.43 10.43 -5.00 0.607 -2.240 -3.009 0.776 -3.7431 11
2 9.30 8.04 1.26 0.670 0.616 0.596 0.077 0.849 2
3 19.25 14.68 4.57 0.670 2.232 2.990 1.0111 4.2581 6
4 15.52 15.29 0.23 0.166 0.070 0.067 0.000 0.030 16
5 15.02 12.07 2.95 0.670 1.440 1.535 0.421 2.1861 7
6 18.46 15.07 3.39 0.670 1.655 1.842 0.555 2.6231 5
7 9.84 12.91 -3.07 0.607 -1.376 -1.450 0.293 -1.803 9
8 9.47 12.35 -2.88 0.607 -1.291 -1.342 0.258 -1.669 10
9 8.56 7.74 0.82 0.670 0.402 0.384 0.033 0.547 4
10 6.70 7.65 -0.95 0.607 -0.427 -0.409 0.028 -0.509 12
11 14.90 15.29 -0.39 0.166 -0.120 -0.114 0.000 -0.051 20
12 15.78 15.29 0.49 0.166 0.150 0.143 0.000 0.064 15
13 8.13 13.54 -5.41 0.607 -2.424 -3.579 0.908 -4.4511 14
14 15.63 15.29 0.34 0.166 0.104 0.099 0.000 0.044 17
15 7.65 8.01 -0.36 0.670 -0.176 -0.167 0.006 -0.238 3
16 10.22 8.61 1.61 0.670 0.785 0.769 0.125 1.095 8
17 4.00 4.54 -0.54 0.607 -0.243 -0.232 0.009 -0.288 13
18 15.11 15.29 -0.18 0.166 -0.056 -0.053 0.000 -0.024 18
19 7.85 5.25 2.60 0.670 1.272 1.318 0.328 1.876 1
20 15.83 15.29 0.54 0.166 0.166 0.157 0.001 0.070 19
14
15
Central Composite design
Factor 1 Factor 2 Factor 3 Response 1
Std Run
A:Temperatur
e
B:pH C:Time
Ethanol
Produced
11 1 35.00 3.32 48.00 5.43
2 2 40.00 4.00 24.00 9.3
6 3 40.00 4.00 72.00 19.25
16 4 35.00 5.00 48.00 15.52
7 5 30.00 6.00 72.00 15.02
5 6 30.00 4.00 72.00 18.46
9 7 26.59 5.00 48.00 9.84
10 8 43.41 5.00 48.00 9.47
4 9 40.00 6.00 24.00 8.56
12 10 35.00 6.68 48.00 6.7
20 11 35.00 5.00 48.00 14.9
15 12 35.00 5.00 48.00 15.78
14 13 35.00 5.00 88.36 8.13
17 14 35.00 5.00 48.00 15.63
3 15 30.00 6.00 24.00 7.65
8 16 40.00 6.00 72.00 10.22
13 17 35.00 5.00 7.64 4
18 18 35.00 5.00 48.00 15.11
1 19 30.00 4.00 24.00 7.85
19 20 35.00 5.00 48.00 15.83
ANOVA: Model validation
Source
Sum of
Squares df Mean Square F Value p-value Prob > F
Model 258.14 9 28.68 12.81 0.0002
A-Temperature 0.49 1 0.49 0.22 0.6493
B-pH 22.63 1 22.63 10.10 0.0098
C-Time 113.49 1 113.49 50.67 < 0.0001
AB 1.13 1 1.13 0.51 0.4933
AC 5.59 1 5.59 2.50 0.1451
BC 8.51 1 8.51 3.80 0.0799
A2 32.89 1 32.89 14.68 0.0033
B2 45.27 1 45.27 20.21 0.0012
C2 48.95 1 48.95 21.85 0.0009
Residual 22.40 10 2.24
Lack of Fit 21.69 5 4.34 30.64 0.0009
Pure Error 0.71 5 0.14
Cor Total 280.53 19
Std. Dev. 1.50 R-Squared 0.9202
Mean 11.88
Adjusted R-
Squared 0.8483
C.V. % 12.60
Predicted R-
Squared 0.4102
16
17
Where
X1 temperature (oC)
X2 pH
X3 incubation time(hours)
Optimum
temperature (34.2oC),
pH (4.43), and
incubation time (71.93 hours)
18
(B)
(A)
(D)
(C)
K. marxianus ETP87 Response surface
Whey
sample
s pH
Lactose (g/L) Ethanol (g/L) by
Efficie
ncy
(%)
Biomass
(g/L)
Sampling 2 week
later
microflo
ra on
time of
samplin
g
microflora
2 weeks in
refrigerator
Ethanol by
K.
marxianus
ETP87
Tigist
dairy 4.5
34.4±1.3 27.3±1.1
0 1.2±0.09 11.62±0.7
66.23 7.67±0.5
Amanu
al dairy 3.8
28.6±1.2 21.5±0.9
0.6±0.08 1.7±0.08 10.54±0.8
72.26 6.20±0.4
Househ
old 3.1
18.7±0.8 14.4±0.7
2.3±0.1 1.4±0.07 6.43±0.5
67.42 5.48±0.4
Shola
dairy 4.2
27.8±1.2 26.1±1.1
0 0.8±0.08 12.49±0.9
88.09 7.12±0.7
19
Ethanol production from different whey
Ethanol production from non-sterilized and
sterilized whey
Refrigera
tor days
Non Sterilized whey Sterilized whey
Ethanol
produced
% of
reduction
Ethanol
produced
% of
reduction
0 11.71 0 11.68 0
1 11.46 2.13 11.69 +0.09
2 10.34 11.7 11.48 1.71
3 10.97 6.3 10.77 7.79
4 10.01 14.51 11.12 4.79
5 9.22 21.26 10.56 9.59
6 8.61 26.47 10.21 12.59
7 8.18 30.15 9.63 17.55
8 7.54 35.61 9.44 19.18
14 5.67 51.58 8.37 28.34
Average 9.11 10.36
20
Effect of whey pH
21
11.74
10.23
11.99
13.29
11.91
13.87
0
2
4
6
8
10
12
14
16
Tigist dairy Amnual
dairy
Shola dairy
Ethanol
produced
(g/L)
Whey samples
Crude (pH 4.5, 3.8,
and 4.2 for Tigist,
Amanual and Shola
dairies, respectively)
Treated (pH 5.00)
Molasses supplementation to whey
22
10.02
12.49 12.84
17.28
12.38
0
2
4
6
8
10
12
14
16
18
20
100%
molasses
75%
molasses +
25% whey
50%
molasses +
50% whey
25%
molasses
+75% whey
100% whey
Ethanol
concentration
(g/L)
composition of whey versus cane molasses (percentage)
Effects of external nutrient additions to
whey
23
9.37
15.92 15.38
10.24
13.57
10.65
0
2
4
6
8
10
12
14
16
18
Ethanol
concentration
(g/L)
Suppliments
Effect of Temperature
24
0
2
4
6
8
10
12
14
25 30 35 40 45 50
Concentration
(g/L)
Temperature (oC)
Ethanol
Biomass
CONCLUSIONS AND RECOMMENDATIONS
Putting whey sample in refrigerator doesn’t
guarantee the existence of lactose for more
than 5 days without decreasing in its amount
Ethanol could be produced from crude non-
sterilized whey using K. marxianus
25
Thank You
26

More Related Content

Similar to Bioethanol production from cheese whey.pptx

BR-70346-Research-Production-Biofuel-BR70346-EN
BR-70346-Research-Production-Biofuel-BR70346-ENBR-70346-Research-Production-Biofuel-BR70346-EN
BR-70346-Research-Production-Biofuel-BR70346-EN
dmend129
 
BR-70346-Research-Production-Biofuel-BR70346-EN
BR-70346-Research-Production-Biofuel-BR70346-ENBR-70346-Research-Production-Biofuel-BR70346-EN
BR-70346-Research-Production-Biofuel-BR70346-EN
dmend129
 
Vitamin D in Serum-MicroLiter
Vitamin D in Serum-MicroLiterVitamin D in Serum-MicroLiter
Vitamin D in Serum-MicroLiter
Rick Youngblood
 
Vitamin D in Serum-MicroLiter
Vitamin D in Serum-MicroLiterVitamin D in Serum-MicroLiter
Vitamin D in Serum-MicroLiter
Rick Youngblood
 

Similar to Bioethanol production from cheese whey.pptx (20)

Posterviena
PostervienaPosterviena
Posterviena
 
Posterviena
PostervienaPosterviena
Posterviena
 
Change of Peptides and Free -Amino Acids Contents during Nanjing Dry-Cured Du...
Change of Peptides and Free -Amino Acids Contents during Nanjing Dry-Cured Du...Change of Peptides and Free -Amino Acids Contents during Nanjing Dry-Cured Du...
Change of Peptides and Free -Amino Acids Contents during Nanjing Dry-Cured Du...
 
Change of Peptides and Free -Amino Acids Contents during Nanjing Dry-Cured Du...
Change of Peptides and Free -Amino Acids Contents during Nanjing Dry-Cured Du...Change of Peptides and Free -Amino Acids Contents during Nanjing Dry-Cured Du...
Change of Peptides and Free -Amino Acids Contents during Nanjing Dry-Cured Du...
 
Determination of Carbohydrates in Various Matrices by Capillary High-Performa...
Determination of Carbohydrates in Various Matrices by Capillary High-Performa...Determination of Carbohydrates in Various Matrices by Capillary High-Performa...
Determination of Carbohydrates in Various Matrices by Capillary High-Performa...
 
Determination of Carbohydrates in Various Matrices by Capillary High-Performa...
Determination of Carbohydrates in Various Matrices by Capillary High-Performa...Determination of Carbohydrates in Various Matrices by Capillary High-Performa...
Determination of Carbohydrates in Various Matrices by Capillary High-Performa...
 
Method 8260C by Purge and Trap Gas Chromatography Mass Spectrometry using the...
Method 8260C by Purge and Trap Gas Chromatography Mass Spectrometry using the...Method 8260C by Purge and Trap Gas Chromatography Mass Spectrometry using the...
Method 8260C by Purge and Trap Gas Chromatography Mass Spectrometry using the...
 
Method 8260C by Purge and Trap Gas Chromatography Mass Spectrometry using the...
Method 8260C by Purge and Trap Gas Chromatography Mass Spectrometry using the...Method 8260C by Purge and Trap Gas Chromatography Mass Spectrometry using the...
Method 8260C by Purge and Trap Gas Chromatography Mass Spectrometry using the...
 
BR-70346-Research-Production-Biofuel-BR70346-EN
BR-70346-Research-Production-Biofuel-BR70346-ENBR-70346-Research-Production-Biofuel-BR70346-EN
BR-70346-Research-Production-Biofuel-BR70346-EN
 
BR-70346-Research-Production-Biofuel-BR70346-EN
BR-70346-Research-Production-Biofuel-BR70346-ENBR-70346-Research-Production-Biofuel-BR70346-EN
BR-70346-Research-Production-Biofuel-BR70346-EN
 
Pesticides
PesticidesPesticides
Pesticides
 
Pesticides
PesticidesPesticides
Pesticides
 
Vitamin D in Serum-MicroLiter
Vitamin D in Serum-MicroLiterVitamin D in Serum-MicroLiter
Vitamin D in Serum-MicroLiter
 
Vitamin D in Serum-MicroLiter
Vitamin D in Serum-MicroLiterVitamin D in Serum-MicroLiter
Vitamin D in Serum-MicroLiter
 
Presentation2
Presentation2Presentation2
Presentation2
 
Presentation2
Presentation2Presentation2
Presentation2
 
Saiqa amjad
Saiqa amjadSaiqa amjad
Saiqa amjad
 
Saiqa amjad
Saiqa amjadSaiqa amjad
Saiqa amjad
 
Yeast fermentation in bioreactor
Yeast fermentation in bioreactorYeast fermentation in bioreactor
Yeast fermentation in bioreactor
 
Yeast fermentation in bioreactor
Yeast fermentation in bioreactorYeast fermentation in bioreactor
Yeast fermentation in bioreactor
 

More from AsmamawTesfaw1

More from AsmamawTesfaw1 (8)

Chapter 3 Enzyme Mode of Action How enzyme works.pptx
Chapter 3 Enzyme Mode of Action How enzyme works.pptxChapter 3 Enzyme Mode of Action How enzyme works.pptx
Chapter 3 Enzyme Mode of Action How enzyme works.pptx
 
Chapter 2 Biocatalysts and Non-biological Catalysts.pptx
Chapter 2 Biocatalysts and Non-biological Catalysts.pptxChapter 2 Biocatalysts and Non-biological Catalysts.pptx
Chapter 2 Biocatalysts and Non-biological Catalysts.pptx
 
Chapter 1 Introduction to Enzyme Technology.pptx
Chapter 1 Introduction to Enzyme Technology.pptxChapter 1 Introduction to Enzyme Technology.pptx
Chapter 1 Introduction to Enzyme Technology.pptx
 
Chapter 5 Application of microbes in agro-biotechnology.pptx
Chapter 5 Application of microbes in agro-biotechnology.pptxChapter 5 Application of microbes in agro-biotechnology.pptx
Chapter 5 Application of microbes in agro-biotechnology.pptx
 
Chapter 6 Application of microbes in medical biotechnology.pptx
Chapter  6 Application of microbes in medical biotechnology.pptxChapter  6 Application of microbes in medical biotechnology.pptx
Chapter 6 Application of microbes in medical biotechnology.pptx
 
Chapter 3 Application of microbes in industrial biotechnology.pptx
Chapter 3 Application of microbes in industrial biotechnology.pptxChapter 3 Application of microbes in industrial biotechnology.pptx
Chapter 3 Application of microbes in industrial biotechnology.pptx
 
Chapter 4 Application of microbes in food biotechnology.pptx
Chapter 4 Application of microbes in food biotechnology.pptxChapter 4 Application of microbes in food biotechnology.pptx
Chapter 4 Application of microbes in food biotechnology.pptx
 
Chapter 7 Energy transduction in cells.pptx
Chapter 7 Energy transduction in cells.pptxChapter 7 Energy transduction in cells.pptx
Chapter 7 Energy transduction in cells.pptx
 

Recently uploaded

Chemistry Data Delivery from the US-EPA Center for Computational Toxicology a...
Chemistry Data Delivery from the US-EPA Center for Computational Toxicology a...Chemistry Data Delivery from the US-EPA Center for Computational Toxicology a...
Chemistry Data Delivery from the US-EPA Center for Computational Toxicology a...
US Environmental Protection Agency (EPA), Center for Computational Toxicology and Exposure
 
Nanoparticles for the Treatment of Alzheimer’s Disease_102718.pptx
Nanoparticles for the Treatment of Alzheimer’s Disease_102718.pptxNanoparticles for the Treatment of Alzheimer’s Disease_102718.pptx
Nanoparticles for the Treatment of Alzheimer’s Disease_102718.pptx
ssusera4ec7b
 

Recently uploaded (20)

GBSN - Microbiology (Unit 4) Concept of Asepsis
GBSN - Microbiology (Unit 4) Concept of AsepsisGBSN - Microbiology (Unit 4) Concept of Asepsis
GBSN - Microbiology (Unit 4) Concept of Asepsis
 
SaffronCrocusGenomicsThessalonikiOnlineMay2024TalkOnline.pptx
SaffronCrocusGenomicsThessalonikiOnlineMay2024TalkOnline.pptxSaffronCrocusGenomicsThessalonikiOnlineMay2024TalkOnline.pptx
SaffronCrocusGenomicsThessalonikiOnlineMay2024TalkOnline.pptx
 
Information science research with large language models: between science and ...
Information science research with large language models: between science and ...Information science research with large language models: between science and ...
Information science research with large language models: between science and ...
 
Film Coated Tablet and Film Coating raw materials.pdf
Film Coated Tablet and Film Coating raw materials.pdfFilm Coated Tablet and Film Coating raw materials.pdf
Film Coated Tablet and Film Coating raw materials.pdf
 
Polyethylene and its polymerization.pptx
Polyethylene and its polymerization.pptxPolyethylene and its polymerization.pptx
Polyethylene and its polymerization.pptx
 
NUMERICAL Proof Of TIme Electron Theory.
NUMERICAL Proof Of TIme Electron Theory.NUMERICAL Proof Of TIme Electron Theory.
NUMERICAL Proof Of TIme Electron Theory.
 
GBSN - Microbiology (Unit 5) Concept of isolation
GBSN - Microbiology (Unit 5) Concept of isolationGBSN - Microbiology (Unit 5) Concept of isolation
GBSN - Microbiology (Unit 5) Concept of isolation
 
Terpineol and it's characterization pptx
Terpineol and it's characterization pptxTerpineol and it's characterization pptx
Terpineol and it's characterization pptx
 
Chemistry Data Delivery from the US-EPA Center for Computational Toxicology a...
Chemistry Data Delivery from the US-EPA Center for Computational Toxicology a...Chemistry Data Delivery from the US-EPA Center for Computational Toxicology a...
Chemistry Data Delivery from the US-EPA Center for Computational Toxicology a...
 
Nanoparticles for the Treatment of Alzheimer’s Disease_102718.pptx
Nanoparticles for the Treatment of Alzheimer’s Disease_102718.pptxNanoparticles for the Treatment of Alzheimer’s Disease_102718.pptx
Nanoparticles for the Treatment of Alzheimer’s Disease_102718.pptx
 
A Scientific PowerPoint on Albert Einstein
A Scientific PowerPoint on Albert EinsteinA Scientific PowerPoint on Albert Einstein
A Scientific PowerPoint on Albert Einstein
 
X-rays from a Central “Exhaust Vent” of the Galactic Center Chimney
X-rays from a Central “Exhaust Vent” of the Galactic Center ChimneyX-rays from a Central “Exhaust Vent” of the Galactic Center Chimney
X-rays from a Central “Exhaust Vent” of the Galactic Center Chimney
 
FORENSIC CHEMISTRY ARSON INVESTIGATION.pdf
FORENSIC CHEMISTRY ARSON INVESTIGATION.pdfFORENSIC CHEMISTRY ARSON INVESTIGATION.pdf
FORENSIC CHEMISTRY ARSON INVESTIGATION.pdf
 
MSCII_ FCT UNIT 5 TOXICOLOGY.pdf
MSCII_              FCT UNIT 5 TOXICOLOGY.pdfMSCII_              FCT UNIT 5 TOXICOLOGY.pdf
MSCII_ FCT UNIT 5 TOXICOLOGY.pdf
 
MSC IV_Forensic medicine - Mechanical injuries.pdf
MSC IV_Forensic medicine - Mechanical injuries.pdfMSC IV_Forensic medicine - Mechanical injuries.pdf
MSC IV_Forensic medicine - Mechanical injuries.pdf
 
Adaptive Restore algorithm & importance Monte Carlo
Adaptive Restore algorithm & importance Monte CarloAdaptive Restore algorithm & importance Monte Carlo
Adaptive Restore algorithm & importance Monte Carlo
 
Heads-Up Multitasker: CHI 2024 Presentation.pdf
Heads-Up Multitasker: CHI 2024 Presentation.pdfHeads-Up Multitasker: CHI 2024 Presentation.pdf
Heads-Up Multitasker: CHI 2024 Presentation.pdf
 
EU START PROJECT. START-Newsletter_Issue_4.pdf
EU START PROJECT. START-Newsletter_Issue_4.pdfEU START PROJECT. START-Newsletter_Issue_4.pdf
EU START PROJECT. START-Newsletter_Issue_4.pdf
 
Costs to heap leach gold ore tailings in Karamoja region of Uganda
Costs to heap leach gold ore tailings in Karamoja region of UgandaCosts to heap leach gold ore tailings in Karamoja region of Uganda
Costs to heap leach gold ore tailings in Karamoja region of Uganda
 
Taphonomy and Quality of the Fossil Record
Taphonomy and Quality of the  Fossil RecordTaphonomy and Quality of the  Fossil Record
Taphonomy and Quality of the Fossil Record
 

Bioethanol production from cheese whey.pptx

  • 1. Bioethanol production from cheese whey using yeast, a non-Saccharomyces, Kluyveromyces marxianus Asmamaw Tesfaw 1
  • 3. natural ecosystems rich in sugar Yeast Fermented Plant Soil Compost 3
  • 4. Growth factors temperature pH oxygen initial sugar concentrations Optimization of multiple variables: single factor at a time Limitations Which one comes first? You can’t predict for future? Solution Response surface methodology (RSM) 4
  • 5. RSM employ Statistical and Mathematical technique RSM enables to design experiments build model evaluate interactions look for optimum conditions for responses reduce the number of experiments 5
  • 6. Cheese whey Liquid waste 130millions tons word wide 50% water bodies High BOD and COD increasing at a rate of 3% per year Ethiopia 20, 000 tons Increasing Objective to evaluate ethanol production capability of K. marxianus ETP87 from crude whey. 6
  • 7. MATERIALS AND METHODS Optimizing growth variables Temperature: 30, 35, 40 pH: 4, 5, 6 Time:24, 48, 72 Where, Y = ethanol produced in g/L (dependent output) 0 = intercept β1, β2, and β3= Linear, quadratic and interaction regression coefficients for temperature, pH and time respectively X1, X2, and X3 = independent variable for temperature (degree centigrade), pH, and time (hours) respectively ε = random experimental error 7
  • 8. Factor 1 (Temperature, oC) Factor 2 (pH) Factor 3 (time, hours) Response (Ethanol produced, g/L) 35.00 5.00 48.00 30.00 6.00 24.00 30.00 6.00 72.00 26.59 5.00 48.00 35.00 5.00 48.00 35.00 5.00 48.00 40.00 4.00 72.00 35.00 5.00 48.00 35.00 5.00 88.36 30.00 4.00 24.00 43.41 5.00 48.00 40.00 4.00 24.00 35.00 5.00 48.00 40.00 6.00 72.00 35.00 3.32 48.00 40.00 6.00 24.00 30.00 4.00 72.00 35.00 6.68 48.00 35.00 5.00 7.64 35.00 5.00 48.00 8 Experimental design
  • 9. Crude whey Yeast: K. marxianus ETP87 Experimental condition: non-deproteinized and deproteinized by heating Supplementation of whey with molasses and nitrogen sources extract (0.55%), peptone (1%), and ammonium sulfate (0.33%). Molasses 100% molasses alone 25% whey and 75% molasses 50% whey and 50% molasses 75% whey and 25% molasses 100% whey 9
  • 10. Effect of pH and temperature pH: crude3.9 and adjusted 5.0 Temperature:25, 30, 35, 40, 45, and 50oC Lactose determination: reducing sugar Ethanol determination: GC-MS and Pycnometer methods 10
  • 12. Model diagnostics 12 Design-Expert® Software Ethanol Produced Color points by value of Ethanol Produced: 19.25 4 Externally Studentized Residuals Normal % Probability Normal Plot of Residuals -4.00 -3.00 -2.00 -1.00 0.00 1.00 2.00 3.00 1 5 10 20 30 50 70 80 90 95 99 Normality test No need to transform
  • 13. 13 Design-Expert® Software Ethanol Produced Color points by value of Ethanol Produced: 19.25 4 Run Number DFFITS DFFITS vs. Run -6 -4 -2 0 2 4 6 1 4 7 10 13 16 19 2.12132 -2.12132 0 DFFITS
  • 14. Diagnostics Case Statistics Report Internally Externally Influence on Run Actual Predicted Studentiz ed Studentiz ed Cook's Fitted Value Standard Order Value Value Residual Leverage Residual Residual Distance DFFITS Order 1 5.43 10.43 -5.00 0.607 -2.240 -3.009 0.776 -3.7431 11 2 9.30 8.04 1.26 0.670 0.616 0.596 0.077 0.849 2 3 19.25 14.68 4.57 0.670 2.232 2.990 1.0111 4.2581 6 4 15.52 15.29 0.23 0.166 0.070 0.067 0.000 0.030 16 5 15.02 12.07 2.95 0.670 1.440 1.535 0.421 2.1861 7 6 18.46 15.07 3.39 0.670 1.655 1.842 0.555 2.6231 5 7 9.84 12.91 -3.07 0.607 -1.376 -1.450 0.293 -1.803 9 8 9.47 12.35 -2.88 0.607 -1.291 -1.342 0.258 -1.669 10 9 8.56 7.74 0.82 0.670 0.402 0.384 0.033 0.547 4 10 6.70 7.65 -0.95 0.607 -0.427 -0.409 0.028 -0.509 12 11 14.90 15.29 -0.39 0.166 -0.120 -0.114 0.000 -0.051 20 12 15.78 15.29 0.49 0.166 0.150 0.143 0.000 0.064 15 13 8.13 13.54 -5.41 0.607 -2.424 -3.579 0.908 -4.4511 14 14 15.63 15.29 0.34 0.166 0.104 0.099 0.000 0.044 17 15 7.65 8.01 -0.36 0.670 -0.176 -0.167 0.006 -0.238 3 16 10.22 8.61 1.61 0.670 0.785 0.769 0.125 1.095 8 17 4.00 4.54 -0.54 0.607 -0.243 -0.232 0.009 -0.288 13 18 15.11 15.29 -0.18 0.166 -0.056 -0.053 0.000 -0.024 18 19 7.85 5.25 2.60 0.670 1.272 1.318 0.328 1.876 1 20 15.83 15.29 0.54 0.166 0.166 0.157 0.001 0.070 19 14
  • 15. 15 Central Composite design Factor 1 Factor 2 Factor 3 Response 1 Std Run A:Temperatur e B:pH C:Time Ethanol Produced 11 1 35.00 3.32 48.00 5.43 2 2 40.00 4.00 24.00 9.3 6 3 40.00 4.00 72.00 19.25 16 4 35.00 5.00 48.00 15.52 7 5 30.00 6.00 72.00 15.02 5 6 30.00 4.00 72.00 18.46 9 7 26.59 5.00 48.00 9.84 10 8 43.41 5.00 48.00 9.47 4 9 40.00 6.00 24.00 8.56 12 10 35.00 6.68 48.00 6.7 20 11 35.00 5.00 48.00 14.9 15 12 35.00 5.00 48.00 15.78 14 13 35.00 5.00 88.36 8.13 17 14 35.00 5.00 48.00 15.63 3 15 30.00 6.00 24.00 7.65 8 16 40.00 6.00 72.00 10.22 13 17 35.00 5.00 7.64 4 18 18 35.00 5.00 48.00 15.11 1 19 30.00 4.00 24.00 7.85 19 20 35.00 5.00 48.00 15.83
  • 16. ANOVA: Model validation Source Sum of Squares df Mean Square F Value p-value Prob > F Model 258.14 9 28.68 12.81 0.0002 A-Temperature 0.49 1 0.49 0.22 0.6493 B-pH 22.63 1 22.63 10.10 0.0098 C-Time 113.49 1 113.49 50.67 < 0.0001 AB 1.13 1 1.13 0.51 0.4933 AC 5.59 1 5.59 2.50 0.1451 BC 8.51 1 8.51 3.80 0.0799 A2 32.89 1 32.89 14.68 0.0033 B2 45.27 1 45.27 20.21 0.0012 C2 48.95 1 48.95 21.85 0.0009 Residual 22.40 10 2.24 Lack of Fit 21.69 5 4.34 30.64 0.0009 Pure Error 0.71 5 0.14 Cor Total 280.53 19 Std. Dev. 1.50 R-Squared 0.9202 Mean 11.88 Adjusted R- Squared 0.8483 C.V. % 12.60 Predicted R- Squared 0.4102 16
  • 17. 17 Where X1 temperature (oC) X2 pH X3 incubation time(hours) Optimum temperature (34.2oC), pH (4.43), and incubation time (71.93 hours)
  • 19. Whey sample s pH Lactose (g/L) Ethanol (g/L) by Efficie ncy (%) Biomass (g/L) Sampling 2 week later microflo ra on time of samplin g microflora 2 weeks in refrigerator Ethanol by K. marxianus ETP87 Tigist dairy 4.5 34.4±1.3 27.3±1.1 0 1.2±0.09 11.62±0.7 66.23 7.67±0.5 Amanu al dairy 3.8 28.6±1.2 21.5±0.9 0.6±0.08 1.7±0.08 10.54±0.8 72.26 6.20±0.4 Househ old 3.1 18.7±0.8 14.4±0.7 2.3±0.1 1.4±0.07 6.43±0.5 67.42 5.48±0.4 Shola dairy 4.2 27.8±1.2 26.1±1.1 0 0.8±0.08 12.49±0.9 88.09 7.12±0.7 19 Ethanol production from different whey
  • 20. Ethanol production from non-sterilized and sterilized whey Refrigera tor days Non Sterilized whey Sterilized whey Ethanol produced % of reduction Ethanol produced % of reduction 0 11.71 0 11.68 0 1 11.46 2.13 11.69 +0.09 2 10.34 11.7 11.48 1.71 3 10.97 6.3 10.77 7.79 4 10.01 14.51 11.12 4.79 5 9.22 21.26 10.56 9.59 6 8.61 26.47 10.21 12.59 7 8.18 30.15 9.63 17.55 8 7.54 35.61 9.44 19.18 14 5.67 51.58 8.37 28.34 Average 9.11 10.36 20
  • 21. Effect of whey pH 21 11.74 10.23 11.99 13.29 11.91 13.87 0 2 4 6 8 10 12 14 16 Tigist dairy Amnual dairy Shola dairy Ethanol produced (g/L) Whey samples Crude (pH 4.5, 3.8, and 4.2 for Tigist, Amanual and Shola dairies, respectively) Treated (pH 5.00)
  • 22. Molasses supplementation to whey 22 10.02 12.49 12.84 17.28 12.38 0 2 4 6 8 10 12 14 16 18 20 100% molasses 75% molasses + 25% whey 50% molasses + 50% whey 25% molasses +75% whey 100% whey Ethanol concentration (g/L) composition of whey versus cane molasses (percentage)
  • 23. Effects of external nutrient additions to whey 23 9.37 15.92 15.38 10.24 13.57 10.65 0 2 4 6 8 10 12 14 16 18 Ethanol concentration (g/L) Suppliments
  • 24. Effect of Temperature 24 0 2 4 6 8 10 12 14 25 30 35 40 45 50 Concentration (g/L) Temperature (oC) Ethanol Biomass
  • 25. CONCLUSIONS AND RECOMMENDATIONS Putting whey sample in refrigerator doesn’t guarantee the existence of lactose for more than 5 days without decreasing in its amount Ethanol could be produced from crude non- sterilized whey using K. marxianus 25