This document discusses big data and use cases. It begins by reviewing the history and evolution of big data and advanced analytics. It then explains how technologies like Hadoop, stream processing, and in-memory computing support big data solutions. The document presents two use cases - analyzing credit risk by examining customer transaction data to improve credit offers, and detecting fraud by analyzing financial transactions for unusual patterns that could indicate suspicious activity. It describes how these use cases leverage technologies like Oracle R Connector for Hadoop to run analytics and machine learning algorithms on large datasets.