SlideShare a Scribd company logo
Leaf	
  physiology	
  response	
  across	
  a	
  disturbance	
  gradient	
  in	
  a	
  temperate	
  deciduous	
  forest:	
  
Implications	
  for	
  earth	
  systems	
  modeling	
  
Rick	
  Beckel1,	
  Chris	
  Vogel2	
  
	
  
Abstract	
  	
  
Light	
  response	
  curves	
  were	
  constructed	
  in	
  situ	
  for	
  117	
  sapling	
  trees	
  (between	
  1	
  and	
  7	
  m	
  in	
  
height)	
  of	
  four	
  common	
  tree	
  species	
  in	
  a	
  disturbed	
  northern	
  Michigan	
  deciduous	
  forest.	
  
Saplings	
  were	
  examined	
  in	
  a	
  manipulated	
  area	
  (University	
  of	
  Michigan	
  Biological	
  Station’s	
  
“Forest	
  Accelerated	
  Succession	
  Experiment)	
  in	
  which	
  >6700	
  Populus	
  (aspen)	
  and	
  Betula	
  
(birch)	
  trees	
  were	
  stem-­‐girdled	
  within	
  a	
  39-­‐ha	
  area	
  to	
  identify	
  mechanisms	
  responsible	
  for	
  
sustaining	
   C	
   uptake	
   through	
   partial	
   canopy	
   defoliation.	
   In	
   this	
   study,	
   physiological	
  
parameters	
  of	
  apparent	
  quantum	
  yield	
  and	
  Amax	
  –	
  measures	
  of	
  photosynthetic	
  efficiency	
  –	
  
were	
   examined	
   across	
   a	
   disturbance	
   gradient	
   that	
   could	
   help	
   explain	
   maintenance	
   of	
  
carbon	
  uptake	
  rates	
  of	
  the	
  manipulated	
  area.	
  Amax	
  was	
  significantly	
  different	
  across	
  species,	
  
and	
   Amax	
   increased	
   significantly	
   over	
   a	
   disturbance	
   gradient	
   (modeled	
   by	
   fraction	
   basal	
  
area	
  senesced)	
  considering	
  all	
  species	
  in	
  aggregate	
  (p	
  <	
  .1).	
  Examining	
  this	
  trend	
  at	
  the	
  
species	
   level	
   revealed	
   significance	
   in	
   red	
   oak	
   and	
   American	
   beech,	
   and	
   was	
   nearly	
  
significant	
  for	
  white	
  pine	
  (p	
  <	
  .15).	
  Red	
  oak	
  had	
  a	
  slightly	
  but	
  significantly	
  lower	
  apparent	
  
quantum	
  yield	
  than	
  the	
  other	
  species,	
  but	
  this	
  parameter	
  did	
  not	
  vary	
  over	
  a	
  disturbance	
  
gradient	
  for	
  any	
  species.	
  The	
  strong	
  physiological	
  response	
  of	
  white	
  pine	
  and	
  particularly	
  
red	
   oak	
   suggests	
   a	
   strong	
   capacity	
   to	
   take	
   advantage	
   of	
   canopy	
   gaps	
   created	
   by	
  
successional	
  patterns	
  or	
  climate-­‐related	
  disturbance	
  events,	
  and	
  may	
  improve	
  chances	
  of	
  
sapling	
   success	
   and	
   allow	
   for	
   greater	
   representation	
   in	
   future	
   forest	
   composition	
   in	
   the	
  
area.	
  The	
  trends	
  suggested	
  by	
  the	
  data	
  may	
  be	
  of	
  use	
  to	
  earth	
  systems	
  modelers	
  interested	
  
refining	
  the	
  physiological	
  parameters	
  of	
  their	
  models	
  in	
  response	
  to	
  disturbance.	
  	
  
	
  
Introduction	
  
	
   Forests	
   worldwide	
   represent	
   a	
   significant	
   terrestrial	
   carbon	
   sink,	
   absorbing	
   a	
  
substantial	
  fraction	
  of	
  carbon	
  dioxide	
  and	
  thereby	
  moderating	
  the	
  extent	
  of	
  global	
  climate	
  
change	
   (Nemani	
   et	
   al.	
   2003,	
   Dixon	
   et	
   al.	
   1994,	
   Purves	
   and	
   Pacala	
   2008).	
   However,	
   the	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1	
  Macalester	
  College	
  	
  
2	
  University	
  of	
  Michigan	
  Biological	
  Station	
  
future	
   trajectory	
   of	
   this	
   carbon	
   sink	
   is	
   uncertain	
   in	
   an	
   era	
   of	
   increasing	
   disturbances	
  
directly	
   and	
   indirectly	
   related	
   to	
   global	
   change:	
   alterations	
   in	
   temperature	
   and	
  
precipitation	
  patterns	
  may	
  render	
  habitat	
  unsuitable	
  for	
  current	
  residents,	
  and	
  increases	
  in	
  
severe	
   weather	
   patterns	
   will	
   lead	
   to	
   changes	
   at	
   the	
   landscape	
   and	
   local	
   levels	
   through	
  
drought,	
  wildfire,	
  and	
  wind	
  damage.	
  Changing	
  climactic	
  conditions	
  may	
  also	
  alter	
  and/or	
  
extend	
   the	
   range	
   of	
   pathogens	
   or	
   other	
   pests	
   that	
   target	
   specific	
   tree	
   species	
   or	
   entire	
  
forests	
   (Dale	
   et	
   al.	
   2001).	
   Emergent	
   dynamic	
   global	
   vegetation	
   models	
   seek	
   to	
   emulate	
  
biogeochemical	
  trends	
  of	
  forests	
  worldwide	
  to	
  elucidate	
  how	
  forest	
  behavior	
  may	
  affect	
  
earth’s	
  response	
  to	
  climate	
  change.	
  However,	
  model	
  predictions	
  are	
  highly	
  uncertain	
  and	
  
frequently	
  contradictory,	
  and	
  better	
  parameters	
  of	
  disturbance	
  and	
  physiology	
  are	
  needed	
  
to	
   forecast	
   forest	
   ecosystems’	
   interactions	
   with	
   a	
   changing	
   climate	
   (Purves	
   and	
   Pacala	
  
2008).	
  	
  	
  
The	
  future	
  contribution	
  of	
  forests	
  in	
  the	
  upper	
  Midwest	
  to	
  the	
  global	
  carbon	
  cycle	
  is	
  
particularly	
  uncertain	
  compared	
  to	
  other	
  older	
  forests	
  worldwide.	
  In	
  most	
  areas	
  across	
  the	
  
globe,	
  forests	
  are	
  in	
  a	
  relatively	
  stable	
  state	
  of	
  production	
  due	
  to	
  their	
  age,	
  whereas	
  forests	
  
in	
  the	
  upper	
  Midwest	
  are	
  undergoing	
  dynamic	
  succession,	
  due	
  to	
  their	
  unique	
  ecological	
  
history.	
  Forests	
  of	
  the	
  upper	
  Midwest,	
  which	
  was	
  widely	
  impacted	
  by	
  clearcuts	
  and	
  fires	
  in	
  
the	
  late	
  19th	
  and	
  early	
  20th	
  centuries,	
  are	
  rapidy	
  changing	
  where	
  early	
  successional	
  species	
  
across	
   the	
   region	
   are	
   beginning	
   to	
   senesce	
   (Hardiman	
   et	
   al.	
   2013,	
   Gough	
   et	
   al.	
   2010).	
  
Though	
   forests	
   of	
   the	
   upper	
   Midwest	
   have	
   acted	
   as	
   a	
   net	
   assimilator	
   of	
   CO2	
   in	
   the	
   past	
  
century	
  and	
  remain	
  so	
  today,	
  their	
  status	
  as	
  a	
  sink	
  or	
  source	
  is	
  uncertain	
  during	
  and	
  after	
  
these	
  expected	
  successional	
  changes	
  (Hardiman	
  et	
  al.	
  2013,	
  Gough	
  et	
  al.	
  in	
  preparation).	
  
The	
   trajectory	
   and	
   magnitude	
   of	
   this	
   area’s	
   potential	
   as	
   a	
   carbon	
   sink	
   is	
   increasingly	
  
important	
  to	
  understand	
  in	
  an	
  era	
  of	
  considerable	
  emissions	
  of	
  carbon	
  dioxide,	
  the	
  nascent	
  
interest	
  in	
  carbon	
  trading	
  schemes	
  both	
  nationally	
  and	
  internationally,	
  and	
  building	
  more	
  
accurate	
  climate	
  and	
  earth	
  systems	
  models.	
  	
  
	
   Our	
  understanding	
  of	
  forest	
  carbon	
  sequestration	
  potential	
  is	
  mostly	
  understood	
  in	
  
terms	
   of	
   disturbance	
   and	
   succession.	
   Classical	
   models	
   suggest	
   that	
   early	
   successional	
  
forests	
  have	
  the	
  highest	
  rates	
  of	
  net	
  ecosystem	
  production,	
  and	
  that	
  as	
  earlier	
  successional	
  
trees	
  decline	
  and	
  die,	
  a	
  steady	
  state	
  old	
  growth	
  forest	
  develops	
  which	
  ceases	
  to	
  accumulate	
  
carbon,	
  and	
  may	
  even	
  become	
  a	
  carbon	
  source	
  (Luyssaert	
  2008).	
  However,	
  this	
  model	
  may	
  
not	
   be	
   applicable	
   worldwide,	
   and	
   there	
   is	
   evidence	
   to	
   suggest	
   that	
   current	
   successional	
  
trends	
   in	
   mixed	
   deciduous	
   forests	
   of	
   the	
   upper	
   Midwest	
   may	
   actually	
   be	
   increasing	
   net	
  
ecosystem	
  production	
  beyond	
  its	
  early	
  successional	
  capacity	
  (Luyssaert	
  2008,	
  Gough	
  et	
  al.,	
  
in	
   preparation).	
   Additional	
   uncertainty	
   is	
   created	
   because	
   our	
   knowledge	
   of	
   how	
  
production	
  responds	
  to	
  disturbance	
  is	
  mostly	
  limited	
  to	
  severe	
  disturbance;	
  less	
  is	
  known	
  
about	
  moderate	
  disturbance	
  that	
  targets	
  a	
  subset	
  of	
  trees	
  in	
  the	
  forest,	
  either	
  by	
  disease,	
  
severe	
  weather,	
  or	
  successional-­‐related	
  senescence	
  (Goodrich-­‐Stuart	
  et	
  al.	
  2014).	
  Further	
  
study	
   is	
   needed	
   on	
   these	
   types	
   of	
   impacts	
   as	
   we	
   move	
   away	
   from	
   direct	
   anthropogenic	
  
disturbance	
   from	
   logging	
   and	
   associated	
   fires	
   into	
   an	
   era	
   of	
   primarily	
   moderate	
  
disturbances	
  resulting	
  from	
  natural	
  processes	
  and	
  human-­‐induced	
  climate	
  change.	
  	
  
	
   In	
   the	
   FASET	
   (Forest	
   Accelerated	
   Succession	
   ExperiemenT)	
   study,	
   ~35%	
   of	
   total	
  
LAI	
   and	
   basal	
   area	
   was	
   removed	
   by	
   stem	
   girdling	
   all	
   early	
   successional	
   trees	
   (>6,700	
  
individuals	
  in	
  a	
  39	
  area)	
  in	
  a	
  northern	
  Michigan	
  forest	
  to	
  evaluate	
  the	
  impacts	
  of	
  moderate	
  
disturbances	
   on	
   carbon	
   storage	
   potential.	
   Researchers	
   hypothesized	
   that	
   NEP	
   would	
  
decrease	
  immediately	
  and	
  temporarily	
  after	
  moderate	
  disturbance	
  and	
  consequently	
  rise	
  
above	
   earlier	
   levels	
   of	
   production	
   as	
   later	
   successional	
   species	
   developed	
   due	
   to	
   the	
  
forest’s	
  increased	
  structural	
  complexity.	
  However,	
  an	
  insignificant	
  dip	
  in	
  production	
  after	
  
the	
  disturbance	
  was	
  observed,	
  and	
  subsequent	
  research	
  has	
  suggested	
  that	
  both	
  the	
  upper	
  
canopy	
   and	
   subcanopy	
   can	
   sustain	
   production	
   following	
   low	
   to	
   moderate	
   levels	
   of	
  
disturbance	
  (Nave	
  et	
  al.	
  2011,	
  Gough	
  et	
  al.	
  2013,	
  Goodrich-­‐Stuart	
  et	
  al.	
  2014)	
  Investigators	
  
are	
   currently	
   studying	
   mechanisms	
   for	
   how	
   forests	
   sustain	
   production	
   immediately	
  
following	
   disturbance.	
   Increased	
   canopy	
   complexity	
   is	
   thought	
   to	
   be	
   a	
   driver	
   in	
  
continuously	
   growing	
   production	
   in	
   older	
   forests,	
   but	
   it	
   is	
   unlikely	
   that	
   complexity	
   will	
  
increase	
   immediately	
   following	
   disturbance	
   to	
   compensate	
   for	
   production	
   losses	
   from	
  
early	
  successional	
  canopy	
  trees	
  (Hardiman	
  et	
  al.	
  2011,	
  Hardiman	
  et	
  al.	
  2013).	
  Increased	
  
nitrogen	
   availability	
   due	
   to	
   reduced	
   competition	
   by	
   recently	
   deceased	
   trees	
   also	
   had	
   an	
  
impact	
   on	
   sustained	
   carbon	
   uptake	
   (Nave	
   et	
   al.	
   2011).	
   But	
   the	
   major	
   reason	
   for	
   this	
  
maintenance	
  may	
  be	
  due	
  to	
  the	
  creation	
  of	
  canopy	
  gaps	
  following	
  senescence,	
  which	
  may	
  
allow	
   for	
   two	
   mechanisms	
   for	
   sustaining	
   production:	
   better	
   light	
   distribution	
   to	
   other	
  
canopy	
   strata	
   due	
   to	
   changing	
   canopy	
   structure,	
   or	
   favorable	
   physiological	
   changes	
   in	
  
response	
  to	
  disturbance.	
  This	
  study	
  focuses	
  in	
  particular	
  on	
  the	
  physiological	
  changes	
  that	
  
may	
  be	
  occurring	
  at	
  the	
  leaf	
  level	
  to	
  compensate	
  for	
  upper	
  canopy	
  losses.	
  Light	
  dynamics	
  in	
  
canopy	
   gap	
   areas	
   are	
   important	
   to	
   explore	
   because	
   it	
   is	
   uncertain	
   to	
   what	
   extent	
  
disturbances	
  in	
  the	
  canopy	
  level	
  influence	
  physiology	
  and	
  morphology	
  at	
  the	
  leaf	
  level,	
  but	
  
studies	
  suggest	
  that	
  light	
  harvesting	
  improves	
  with	
  mortality	
  driven	
  canopy	
  disturbances	
  
(Hardiman	
   et	
   al.	
   2011)	
   and	
   that	
   leaf-­‐level	
   adjustments	
   are	
   proportional	
   to	
   the	
   level	
   of	
  
change	
  in	
  the	
  local	
  light	
  environment	
  from	
  upper	
  canopy	
  gap	
  formation	
  (Goodrich-­‐Stuart	
  et	
  
al.	
  2014).	
  
The	
  latter	
  study	
  found	
  that	
  maximum	
  photosynthesis	
  potential	
  increases	
  as	
  gap	
  size	
  
increased;	
  all	
  dominant	
  species	
  displayed	
  a	
  direct	
  positive	
  relationship	
  of	
  light	
  saturated	
  
net	
   CO2	
  assimilation	
   (Amax)	
   to	
   disturbance	
   severity.	
   However,	
   it	
   is	
   unclear	
   how	
  quantum	
  
yield	
  (α)	
  –	
  a	
  metric	
  of	
  photosynthetic	
  efficiency	
  that	
  illustrates	
  how	
  quickly	
  a	
  tree	
  can	
  reach	
  
its	
  photosynthetic	
  capacity	
  –	
  changes	
  across	
  a	
  gradient	
  of	
  canopy	
  gap	
  sizes	
  or	
  disturbance	
  
levels.	
   Species	
   with	
   higher	
   quantum	
   yield	
   values	
   could	
   develop	
   more	
   successfully	
   in	
  
disturbed	
  areas	
  and	
  eventually	
  become	
  canopy	
  dominant	
  species.	
  This	
  study	
  thus	
  seeks	
  to	
  
explore	
   how	
   differential	
   structural	
   changes	
   in	
   the	
   forest	
   canopy	
   impact	
   trees	
   at	
   a	
  
physiological	
  level,	
  and	
  how	
  these	
  physiological	
  changes	
  may	
  feedback	
  to	
  influence	
  future	
  
forest	
  structure	
  and	
  composition.	
  We	
  explored	
  how	
  a	
  gradient	
  of	
  disturbance	
  impacts	
  two	
  
important	
   physiological	
   parameters	
   (Amax	
   and	
   apparent	
   quantum	
   yield)	
   for	
   several	
  
common	
   species	
   in	
   the	
   area,	
   and	
   use	
   our	
   findings	
   to	
   make	
   suggestions	
   explaining	
   why	
  
certain	
  species	
  may	
  outcompete	
  others	
  in	
  this	
  ecosystem	
  post-­‐disturbance.	
  Performing	
  our	
  
study	
  in	
  a	
  manipulated	
  area	
  with	
  a	
  gradient	
  of	
  disturbance	
  severity,	
  we	
  sought	
  to	
  test	
  the	
  
following	
   hypotheses:	
   1)	
   That	
   gap	
   size	
   and	
   disturbance	
   level	
  would	
   correlate	
   positively	
  
with	
  Amax	
  2)	
  that	
  as	
  gap	
  size	
  increased,	
  red	
  oak	
  would	
  exhibit	
  a	
  relatively	
  smaller	
  decrease	
  
in	
   quantum	
   yield	
   compared	
   to	
   red	
   maple	
   due	
   to	
   its	
   generally	
   stronger	
   physiological	
  
performance	
  (Sullivan	
  et	
  al.	
  1996).	
  	
  
	
  
Materials	
  and	
  Methods	
  	
  
Study	
  Site	
  	
  
This	
  study	
  took	
  place	
  in	
  a	
  mixed	
  deciduous	
  forest	
  in	
  Northern	
  Lower	
  Michigan	
  (45°	
  
35’	
  N	
  84°	
  43’	
  W).	
  The	
  mean	
  annual	
  temperature	
  is	
  5.58°	
  C	
  and	
  mean	
  annual	
  precipitation	
  is	
  
817	
  mm	
  (1942–2003)	
  (Gough	
  et	
  al	
  2013).	
  Following	
  massive	
  disturbances	
  (clearcuts	
  and	
  
forest	
  fires)	
  in	
  the	
  past	
  two	
  centuries,	
  this	
  region	
  has	
  become	
  primarily	
  dominated	
  by	
  early	
  
the	
  successional	
  species	
  bigtooth	
  aspen	
  (Populus	
  grandidentata),	
  trembling	
  aspen	
  (Populus	
  
tremuloides)	
   and	
   paper	
   birch	
   (Betula	
   papyrifa).	
   Other	
   canopy	
   species	
   include	
   red	
   oak	
  
(Quercus	
  rubra),	
   red	
   maple	
   (Acer	
  rubrum),	
   sugar	
   maple	
   (Acer	
  saccharum),	
   eastern	
   white	
  
pine	
  (Pinus	
  Strobus),	
  and	
  American	
  beech	
  (Fagus	
  grandifolia).	
  Stem	
  density	
  of	
  trees	
  ≥8	
  cm	
  
dbh	
  is	
  700–	
  800	
  individuals/ha,	
  basal	
  area	
  is	
  25	
  m2/ha,	
  and	
  leaf	
  area	
  index	
  (LAI)	
  averages	
  
3.5.	
  Red	
  maple,	
  red	
  oak,	
  eastern	
  white	
  pine,	
  and	
  American	
  beech	
  are	
  the	
  prominent	
  species	
  
composing	
  the	
  subcanopy;	
  they	
  are	
  joined	
  by	
  other	
  shade	
  tolerant	
  species	
  such	
  as	
  sugar	
  
maple,	
   red	
   pine	
   (Pinus	
   resinosa),	
   striped	
   maple	
   (Acer	
   pensylvanicum),	
   American	
  
hophornbeam	
  (Ostrya	
  virginiana),	
  and	
  serviceberry	
  (Amelanchier	
  arborea).	
  	
  
	
   The	
  early	
  successional	
  species	
  defined	
  above	
  are	
  in	
  decline	
  as	
  they	
  reach	
  the	
  end	
  of	
  
their	
  lifespan,	
  leaving	
  room	
  for	
  other	
  species	
  to	
  gain	
  prominence	
  in	
  the	
  canopy.	
  To	
  evaluate	
  
the	
   effects	
   of	
   disturbance	
   and	
   successional	
   changes	
   on	
   carbon	
   pools	
   and	
   fluxes	
   in	
   this	
  
ecosystem	
   type,	
   the	
   University	
   of	
   Michigan	
   Biological	
   Station	
   implemented	
   the	
   FASET	
  
program	
  in	
  2008.	
  This	
  large-­‐scale	
  manipulation	
  has	
  hastened	
  the	
  development	
  of	
  a	
  forest	
  
composition	
  that	
  will	
  dominate	
  the	
  region	
  in	
  the	
  coming	
  decades	
  as	
  succession	
  proceeds	
  
naturally	
  (Gough	
  et	
  al.	
  2013,	
  Nave	
  et	
  al.	
  2011).	
  	
  	
  
	
   To	
   better	
   understand	
   the	
   implications	
   of	
   canopy	
   gaps	
   left	
   by	
   senescing	
   early	
  
successional	
  species,	
  this	
  study	
  examines	
  trees	
  across	
  a	
  gradient	
  of	
  disturbance	
  levels	
  in	
  
FASET.	
  We	
  chose	
  10	
  out	
  of	
  21	
  permanent	
  0.08	
  ha	
  circular	
  plots	
  based	
  on	
  pre-­‐disturbance	
  
production	
  and	
  species	
  composition	
  in	
  order	
  to	
  minimize	
  confounding	
  variables	
  (Goodrich-­‐
Stuart	
  et	
  al.	
  2014).	
  Plots	
  ranged	
  in	
  disturbance	
  severity	
  from	
  .09	
  to	
  .64	
  fraction	
  basal	
  area	
  
senesced,	
  a	
  range	
  representative	
  of	
  the	
  differential	
  early	
  successional	
  die-­‐off	
  expected	
  in	
  
the	
  region.	
  Four	
  non-­‐overlapping	
  5	
  m	
  radius	
  subplots	
  were	
  established	
  on	
  the	
  cardinal	
  axis	
  
of	
  each	
  plot.	
  We	
  sampled	
  three	
  saplings	
  in	
  each	
  plot	
  to	
  measure	
  apparent	
  quantum	
  yield	
  
and	
  Amax.	
  	
  
	
  
Leaf	
  Physiology	
  Analysis	
  	
  	
  
To	
   establish	
   the	
   impact	
   of	
   canopy	
   openness	
   on	
   leaf	
   physiology,	
   we	
   constructed	
   a	
   light	
  
response	
   curve	
   for	
   three	
   species	
   within	
   each	
   subplot,	
   measuring	
   carbon	
   dioxide	
  
assimilation	
  rates	
  at	
  a	
  range	
  of	
  irradiance	
  levels.	
  We	
  studied	
  common	
  saplings	
  species	
  that	
  
had	
  the	
  potential	
  to	
  eventually	
  extend	
  into	
  the	
  canopy.	
  Eligible	
  saplings	
  were	
  between	
  1	
  
and	
   6.5	
   m	
   tall	
   and	
   under	
   3	
   cm	
   dbh;	
   their	
   size	
   suggests	
   that	
   these	
   trees	
   were	
   in	
   the	
  
subcanopy	
  prior	
  to	
  the	
  stem-­‐girdling	
  disturbance.	
  Three	
  saplings	
  were	
  randomly	
  selected	
  
in	
  each	
  subplot	
  for	
  measurement	
  with	
  descending	
  priority	
  of	
  oak,	
  maple,	
  pine	
  and	
  beach..	
  	
  
A	
   leaf	
   at	
   the	
   top	
   of	
   each	
   sapling	
   was	
   selected	
   for	
   measuring	
   photosynthesislight	
  
response	
  curves	
  using	
  a	
  LiCor	
  LI-­‐6400	
  Portable	
  Photosynthesis	
  System	
  (model	
  LI-­‐6400,	
  LI-­‐
COR,	
  Lincoln,	
  NE,	
  USA).	
  Leaves	
  were	
  subjected	
  to	
  varying	
  irradiance	
  levels	
  (1500,	
  750,	
  500,	
  
250,	
  75,	
  50,	
  30,	
  10,	
  0	
  μmol	
  photons/m2/s)	
  using	
  a	
  6400-­‐02	
  red-­‐blue	
  LED	
  light	
  source	
  (LI-­‐
COR,	
   Lincoln,	
   NE,	
   USA)	
   –	
   special	
   emphasis	
   was	
   placed	
   on	
   the	
   initial	
   slope	
   of	
   the	
   light	
  
response	
   curve	
   (i.e.	
   5	
   points	
   under	
   100	
   μmol	
   photons/m2/s)	
   to	
   allow	
   for	
   precise	
  
computation	
  of	
  apparent	
  quantum	
  yield.	
  For	
  each	
  broadleaf,	
  a	
  2	
  by	
  3	
  cm	
  area	
  was	
  enclosed	
  
in	
  the	
  LiCor-­‐6400	
  chamber	
  to	
  monitor	
  its	
  carbon	
  assimilation	
  rate	
  at	
  a	
  constant	
  area.	
  For	
  
examination	
  of	
  Pinus	
  strobus,	
  we	
  used	
  three	
  five-­‐needle	
  fascicles	
  from	
  the	
  previous	
  year's	
  
growth,	
   laid	
   across	
   the	
   cuvette	
   in	
   a	
   non-­‐overlapping	
   manner.	
   Pine	
   photosynthesis	
  
measurements	
  were	
  post-­‐processed	
  to	
  correct	
  for	
  area	
  since	
  15	
  needles	
  never	
  completely	
  
filled	
  the	
  cuvette.	
  	
  
We	
  controlled	
  immediate	
  environmental	
  conditions	
  in	
  the	
  chamber	
  by	
  setting	
  the	
  
LiCor-­‐6400’s	
  CO2	
  mixer	
  to	
  380	
  ppm,	
  and	
  made	
  an	
  effort	
  to	
  stabilize	
  relative	
  humidity	
  of	
  the	
  
sample	
   between	
   60	
   and	
   70%	
   and	
   maintain	
   a	
   leaf	
   temperature	
   of	
   24	
   +/-­‐	
   1.5	
   degrees	
   C.	
  
IRGAs	
   were	
   matched	
   and	
   conditions	
   were	
   allowed	
   to	
   stabilize	
   in	
   the	
   chamber	
   before	
  
photosynthesis	
  readings	
  were	
  taken	
  at	
  each	
  light	
  level	
  (minimum	
  2	
  minute	
  stabilization	
  
period).	
  	
  
	
  
Data	
  processing	
  and	
  statistical	
  analysis	
  
	
   Light	
   curves	
   were	
   constructed	
   using	
   the	
   physiology	
   data	
   collected	
   using	
   the	
  
rectangular	
  hyperbolic	
  function::	
  	
  
P	
  =	
  (α*Amax*I)/	
  (Amax	
  +	
  α*I)	
  
(adapted	
  from	
  Gough	
  et	
  al.	
  2013).	
  	
  
Where	
  P	
  is	
  photosynthesis	
  (µmol	
  CO2·m-­‐2·s-­‐1,	
  α	
  is	
  apparent	
  quantum	
  yield	
  (mol	
  CO2/mol	
  
quanta)	
  and	
  I	
  is	
  the	
  irradiance	
  level	
  (µmol	
  quanta·m-­‐2·s-­‐1).	
  Apparent	
  quantum	
  yield	
  is	
  the	
  
0	
  
0.02	
  
0.04	
  
0.06	
  
0.08	
  
0.1	
  
Red	
  Maple	
  American	
  
Beech	
  	
  
White	
  
Pine	
  	
  
Red	
  Oak	
  	
  
Apparent	
  Quantum	
  Yield	
  	
  
(µmol	
  CO2/m2/s)	
  
	
  
0	
  
2	
  
4	
  
6	
  
8	
  
10	
  
12	
  
Red	
  
Maple	
  
American	
  
Beech	
  	
  
White	
  
Pine	
  	
  
Red	
  Oak	
  	
  
Amax	
  (µmol	
  
	
  CO2/m2/s)	
  
Figure	
  2:	
  A
max
	
  by	
  species.	
  Different	
  letters	
  denote	
  
significance	
   at	
   p	
   <	
   .1.	
   Error	
   bars	
   represent	
   +/-­‐	
   1	
  
standard	
  error
Figure	
   3:	
   Quantum	
   yield	
   by	
   species.	
   Different	
  
letters	
  denote	
   significance	
   at	
  p	
   <	
   .1.	
   Error	
  bars	
  
represent	
  +/-­‐	
  1	
  standard	
  error	
  
b
ab
a
ab
a
b
b
a b
a
ab
a
b
parameter	
  describing	
  the	
  initial	
  slope	
  of	
  the	
  rectangular	
  hyperbolic	
  function,	
  and	
  Amax	
  is	
  
where	
  the	
  function	
  plateaus.	
  	
  
Regression	
   analysis	
   was	
   used	
   to	
   determine	
   relationships	
   of	
   α	
   and	
   Amax	
   across	
  
disturbance	
   gradients	
   and	
   analysis	
   of	
   variance	
   with	
   Tukey’s	
   HSD	
   test	
   to	
   determine	
  
differences	
  between	
  species	
  (SAS	
  Institute	
  2012).	
  	
  
	
  
Results	
  	
  	
  
118	
   saplings	
   were	
   sampled	
   in	
  
the	
   field,	
   117	
   viable	
   light	
   response	
  
curves	
   were	
   used	
   in	
   the	
   following	
  
analysis.	
   Although	
   prioritized	
   during	
  
field	
   tests,	
   there	
   was	
   a	
   dearth	
   of	
   oak	
  
saplings	
  in	
  the	
  plots	
  sampled,	
  and	
  total	
  
sample	
  size	
  across	
  the	
  40	
  subplots	
  was	
  
16.	
   White	
   pine	
   was	
   sampled	
   most	
  
frequently	
   at	
   n	
   =	
   37,	
   followed	
   by	
   red	
  
maple	
  (n	
  =	
  37)	
  and	
  American	
  beech	
  (n	
  
=	
  22).	
  	
  	
  
When	
  examining	
  the	
  average	
  light	
  response	
  curves	
  for	
  each	
  species,	
  we	
  found	
  red	
  
oak	
  to	
  have	
  significantly	
  higher	
  Amax	
  values	
  than	
  beech	
  and	
  red	
  maple	
  (p	
  <	
  .1),	
  although	
  not	
  
significantly	
  higher	
  than	
  white	
  pine	
  (figure	
  2).	
  Red	
  oak	
  had	
  a	
  significantly	
  lower	
  quantum	
  
yield	
  than	
  all	
  species	
  except	
  beech.	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Figure	
   1:	
   Average	
   light	
   response	
   curves	
   across	
   all	
  
disturbance	
  levels	
  for	
  the	
  four	
  species	
  of	
  saplings	
  sampled	
  
in	
  the	
  study	
  area.	
  
-­‐2	
  
0	
  
2	
  
4	
  
6	
  
8	
  
10	
  
12	
  
0	
   500	
   1000	
   1500	
  
Photo	
  (µmol	
  CO2/m2/s)	
  
Irradiance	
  (µmol	
  photons/m2/s)	
  
Red	
  Oak	
   Red	
  Maple	
   White	
  Pine	
   American	
  Beech	
  
R²	
  =	
  0.0086	
  
0	
  
5	
  
10	
  
15	
  
20	
  
0	
   0.2	
   0.4	
   0.6	
   0.8	
  
Fraction	
  Basal	
  Area	
  Senesced	
  
Red	
  Maple	
  
R²	
  =	
  0.32156	
  
0	
  
5	
  
10	
  
15	
  
20	
  
0	
   0.2	
   0.4	
   0.6	
   0.8	
  
American	
  Beech**	
  
R²	
  =	
  0.13859	
  
0	
  
5	
  
10	
  
15	
  
20	
  
0	
   0.2	
   0.4	
   0.6	
   0.8	
  
Amax	
  
(µmol	
  CO2/m2/s)	
  
	
  
Fraction	
  Basal	
  Area	
  Senesced	
  
White	
  Pine*	
  
R²	
  =	
  0.19529	
  
0	
  
5	
  
10	
  
15	
  
20	
  
0	
   0.2	
   0.4	
   0.6	
   0.8	
  
Amax	
  (µmol	
  CO2/m2/s)	
  
Red	
  Oak**	
  
Fig.	
  4:	
  Regression	
  analysis	
  of	
  A
max
	
  versus	
  fraction	
  basal	
  area	
  senesced.	
  Regressions	
  for	
  red	
  oak	
  and	
  American	
  beech	
  were	
  
significant	
  at	
  p	
  <	
  .1;	
  white	
  pine	
  was	
  significant	
  at	
  p	
  <	
  .15
	
  
	
  
Examining	
   these	
   parameters	
   across	
   the	
   disturbance	
   gradient	
   yielded	
   interesting	
   results.	
  
According	
  to	
  a	
  regression	
  analysis,	
  there	
  was	
  significant	
  positive	
  relationship	
  between	
  Amax	
  
versus	
   fraction	
   of	
   basal	
   area	
   senesced	
   for	
   all	
   species	
   (p	
   <	
   .1,	
   R2	
   =	
   .205).	
   This	
   positive	
  
relationship	
  –	
  increasing	
  Amax	
  values	
  with	
  increasing	
  disturbance	
  –	
  held	
  across	
  all	
  species	
  
but	
  red	
  maple	
  to	
  a	
  significant	
  degree	
  (p	
  <	
  .1	
  for	
  red	
  oak	
  and	
  American	
  Beech,	
  p	
  <	
  .15	
  for	
  
white	
   pine,	
   see	
   figure	
   4).	
   Regression	
   analysis	
   indicated	
   no	
   significant	
   trend	
   between	
   α	
  
versus	
  fraction	
  of	
  basal	
  area	
  senesced	
  (figure	
  5).	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
R²	
  =	
  0.0815	
  0	
  
0.02	
  
0.04	
  
0.06	
  
0.08	
  
0.1	
  
0.12	
  
0	
   0.2	
   0.4	
   0.6	
   0.8	
  
Quantum	
  Yield	
  	
  
(µmol	
  CO2/m2/s)	
  
Red	
  Oak	
  
R²	
  =	
  0.17119	
  0	
  
0.02	
  
0.04	
  
0.06	
  
0.08	
  
0.1	
  
0.12	
  
0	
   0.2	
   0.4	
   0.6	
   0.8	
  
American	
  Beech	
  
R²	
  =	
  0.02045	
  
0	
  
0.02	
  
0.04	
  
0.06	
  
0.08	
  
0.1	
  
0.12	
  
0	
   0.2	
   0.4	
   0.6	
   0.8	
  
Quantum	
  Yield	
  	
  
(µmol	
  CO2/m2/s)	
  
Fraction	
  Basal	
  Area	
  Senesced	
  
White	
  Pine	
  	
  
R²	
  =	
  0.067	
  
0	
  
0.02	
  
0.04	
  
0.06	
  
0.08	
  
0.1	
  
0.12	
  
0	
   0.2	
   0.4	
   0.6	
   0.8	
  
Fraction	
  Basal	
  Area	
  Senesced	
  
Red	
  Maple	
  
Fig.	
  5:	
  Regression	
  analysis	
  of	
  quantum	
  yield	
  versus	
  fraction	
  basal	
  area	
  senesced.	
  Regressions	
  were	
  not	
  significant	
  (p	
  >	
  .15)
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Discussion	
  
Investigators	
  at	
  this	
  site	
  have	
  noted	
  that	
  production	
  has	
  been	
  sustained	
  despite	
  the	
  
loss	
  of	
  all	
  canopy-­‐dominant	
  early	
  successional	
  species	
  (Nave	
  et	
  al.	
  2011,	
  Gough	
  et	
  al.	
  2013)	
  
and	
  the	
  purpose	
  of	
  this	
  study	
  was	
  to	
  explore	
  possible	
  physiological	
  mechanisms	
  driving	
  
this	
  trend.	
  The	
  physiological	
  response	
  to	
  disturbance	
  has	
  implications	
  for	
  the	
  viability	
  of	
  
individual	
  species	
  as	
  the	
  ecosystem	
  develops	
  into	
  a	
  later	
  successional	
  forest,	
  as	
  well	
  as	
  the	
  
overall	
  trend	
  of	
  the	
  forest	
  as	
  a	
  carbon	
  sink	
  or	
  source.	
  	
  
Trees	
  species	
  with	
  physiologies	
  better	
  adapted	
  to	
  taking	
  advantage	
  of	
  canopy	
  gaps	
  
are	
  at	
  a	
  competitive	
  advantage	
  relative	
  to	
  other	
  species.	
  Areas	
  of	
  the	
  forest	
  that	
  are	
  affected	
  
by	
  gap-­‐forming	
  disturbance	
  experience	
  an	
  influx	
  of	
  light,	
  and	
  those	
  species	
  that	
  are	
  best	
  
able	
  to	
  harvest	
  this	
  incoming	
  light	
  will	
  be	
  most	
  successful	
  in	
  the	
  gap,	
  growing	
  from	
  saplings	
  
to	
   canopy	
   trees	
   as	
   the	
   forest	
   ages.	
   This	
   study	
   suggests	
   that	
   Red	
   Oak	
   may	
   be	
   at	
   a	
  
comparative	
   advantage	
   over	
   other	
   major	
   subcanopy	
   trees.	
   Red	
   Oak	
   had	
   a	
   significantly	
  
higher	
  Amax	
  and	
  lower	
  quantum	
  yield	
  than	
  other	
  species.	
  This	
  combination	
  is	
  illustrative	
  of	
  
a	
  typical	
  sun-­‐adapted	
  leaf,	
  and	
  similar	
  relationships	
  between	
  high	
  Amax	
  and	
  low	
  apparent	
  
quantum	
  yield	
  (and	
  vice	
  versa)	
  have	
  been	
  well	
  documented	
  (Muraoka	
  et	
  al.	
  2003,	
  Kubiske	
  
and	
  Pregitzer	
  1996).	
  Even	
  in	
  areas	
  where	
  the	
  seedling	
  is	
  not	
  in	
  a	
  large	
  canopy	
  gap,	
  high	
  A-­‐
max	
  values	
  allow	
  the	
  leaf	
  to	
  assimilate	
  large	
  amounts	
  of	
  carbon	
  during	
  sunflecks	
  (Muraoka	
  
et	
  al.	
  2003).	
  This	
  physiological	
  capability	
  of	
  oak	
  may	
  allow	
  the	
  species	
  to	
  take	
  advantage	
  of	
  
canopy	
   gaps	
   most	
   effectively.	
   The	
   claim	
   that	
   red	
   oaks	
   may	
   be	
   most	
   poised	
   to	
   take	
  
advantage	
   of	
   disturbance	
   may	
   seem	
   inconsistent	
   with	
   the	
   sampling	
   done	
   in	
   this	
   study,	
  
since	
   only	
   16	
   eligible	
   saplings	
   were	
   found	
   out	
   of	
   117	
   total	
   trees.	
   The	
   reason	
   for	
   this	
  
discrepancy	
  is	
  that	
  all	
  of	
  the	
  saplings	
  studied	
  were	
  alive	
  at	
  the	
  time	
  of	
  the	
  manipulation	
  in	
  
2008;	
   the	
   distribution	
   and	
   abundance	
   of	
   trees	
   eligible	
   for	
   study	
   (1-­‐6.5	
   m	
   tall)	
   was	
   not	
  
impacted	
  by	
  the	
  disturbance.	
  It	
  remains	
  to	
  be	
  seen	
  how	
  younger	
  trees	
  –	
  not	
  yet	
  sprouted	
  at	
  
the	
  time	
  of	
  disturbance	
  –	
  respond	
  to	
  the	
  treatment.	
  This	
  study	
  suggests	
  that	
  oaks	
  may	
  be	
  
most	
  successful	
  in	
  harvesting	
  the	
  light	
  made	
  available	
  by	
  formation	
  of	
  canopy	
  gaps.	
  Species	
  
that	
  are	
  less	
  adept	
  at	
  attaining	
  a	
  higher	
  Amax	
  –	
  such	
  as	
  red	
  maple,	
  whose	
  Amax	
  was	
  relatively	
  
flat	
   across	
   the	
   disturbance	
   gradient	
   –	
   will	
   be	
   at	
   a	
   disadvantage	
   during	
   disturbance.	
  
Considering	
   all	
   the	
   trees	
   studied	
   in	
   aggregate,	
   Amax	
   increased	
   significantly	
   across	
   the	
  
disturbance	
  gradient,	
  which	
  suggests	
  that	
  this	
  parameter	
  adjusts	
  to	
  differing	
  light	
  levels	
  in	
  
the	
  subcanopy.	
  This	
  corroborates	
  other	
  recent	
  studies	
  at	
  this	
  location	
  suggesting	
  a	
  direct	
  
positive	
  relationship	
  between	
  disturbance	
  level	
  and	
  Amax	
  (Goodrich-­‐Stuart	
  et	
  al.	
  2014).	
  	
  
Although	
  Amax	
  changes	
  in	
  response	
  to	
  disturbance	
  (becoming	
  more	
  like	
  sun-­‐leaves)	
  
to	
  assimilate	
  more	
  carbon	
  dioxide	
  from	
  the	
  atmosphere,	
  the	
  other	
  physiological	
  parameter	
  
examined,	
   apparent	
   quantum	
   yield,	
   showed	
   no	
   relationship	
   with	
   fraction	
   of	
   basal	
   area	
  
senesced.	
  This	
  lack	
  of	
  response	
  to	
  disturbance	
  suggests	
  that	
  this	
  parameter	
  does	
  not	
  help	
  
to	
  explain	
  the	
  maintenance	
  of	
  production	
  post-­‐disturbance.	
  Since	
  quantum	
  yield	
  did	
  not	
  
respond	
   to	
   disturbance	
   and	
   Amax	
   does	
   not	
   explain	
   all	
   of	
   the	
   variation	
   found	
   in	
  
photosynthesis	
  rates	
  at	
  the	
  leaf	
  level,	
  other	
  factors	
  must	
  explain	
  the	
  overall	
  compensation	
  
for	
  production	
  losses	
  due	
  to	
  disturbance.	
  Much	
  of	
  this	
  can	
  likely	
  be	
  attributed	
  to	
  structural	
  
and	
  light	
  distribution	
  patterns,	
  rather	
  than	
  physiological	
  changes.	
  Light	
  that	
  is	
  primarily	
  
captured	
  by	
  the	
  top	
  layers	
  of	
  the	
  canopy	
  is	
  used	
  inefficiently	
  because	
  many	
  of	
  the	
  leaves	
  
receiving	
   direct	
   sunlight	
   are	
   unable	
   to	
   assimilate	
   more	
   CO2	
   than	
   is	
   allowed	
   by	
   their	
  
saturation	
   level	
   (Amax).	
   As	
   individuals	
   composing	
   the	
   canopy	
   senesce,	
   canopy	
   gaps	
   are	
  
created	
  which	
  allow	
  light	
  to	
  penetrate	
  the	
  forest	
  in	
  novel	
  ways	
  and	
  reach	
  formerly	
  light	
  
limited	
  strata	
  (Gough	
  et	
  al.	
  2010).	
  Shade-­‐adapted	
  leaves	
  in	
  lower	
  levels	
  of	
  the	
  canopy	
  are	
  
able	
   to	
   take	
   advantage	
   of	
   these	
   small	
   increases	
   in	
   light	
   levels	
   and	
   move	
   along	
   their	
  
response	
   curves	
   toward	
   their	
   Amax,	
   which	
   causes	
   an	
   overall	
   increase	
   in	
   carbon	
   dioxide	
  
assimilated	
  by	
  the	
  forest.	
  	
  
Discussion	
  of	
  the	
  future	
  trajectory	
  of	
  growth	
  and	
  carbon	
  storages	
  of	
  forests	
  in	
  the	
  
upper	
   Midwest	
   may	
   be	
   of	
   interest	
   to	
   earth	
   systems	
   modelers,	
   forest	
   managers,	
   and	
  
policymakers.	
   Earth	
   systems	
   modelers	
   are	
   interested	
   in	
   refining	
   their	
   models	
   to	
   better	
  
predict	
  the	
  behaviors	
  of	
  carbon	
  fluxes	
  and	
  pools,	
  so	
  it	
  is	
  therefore	
  important	
  to	
  investigate	
  
parameters	
  and	
  ecosystems	
  that	
  present	
  uncertainty	
  in	
  their	
  models.	
  Disturbances	
  in	
  the	
  
upper	
  Midwest	
  due	
  to	
  dynamic	
  succession	
  may	
  lead	
  to	
  changes	
  in	
  forest	
  physiology	
  and	
  
structure,	
  which	
  in	
  turn	
  impact	
  rates	
  of	
  CO2	
  uptake.	
  Establishing	
  the	
  extent	
  to	
  which	
  these	
  
factors	
  are	
  changing	
  is	
  important	
  so	
  modelers	
  can	
  decide	
  whether	
  or	
  not	
  to	
  incorporate	
  
these	
   changes	
   into	
   already	
   complex	
   models.	
   For	
   example,	
   the	
   Biome-­‐BGC	
   Terrestrial	
  
Ecosystem	
   Process	
   Model,	
   which	
   estimates	
   fluxes	
   and	
   storage	
   of	
   energy	
   and	
  
macronutrients	
  for	
  terrestrial	
  ecosystems,	
  assumes	
  a	
  fixed	
  apparent	
  quantum	
  yield	
  over	
  
the	
  course	
  of	
  forest	
  development	
  (Gough,	
  personal	
  communication,	
  August	
  8,	
  2014).	
  The	
  
present	
   study	
   suggests	
   that	
   this	
   is	
   appropriate	
   since	
   no	
   change	
   in	
   quantum	
   yield	
   was	
  
observed	
   across	
   a	
   disturbance	
   gradient	
   for	
   any	
   species.	
   This	
   same	
   model,	
   however,	
  
predicted	
   a	
   decline	
   of	
   production	
   in	
   FASET,	
   so	
   the	
   model	
   is	
   not	
   complete	
   –	
   there	
   are	
  
mechanisms	
  yet	
  to	
  be	
  explained,	
  and	
  further	
  study	
  of	
  physiological	
  and	
  structural	
  changes	
  
of	
  forests	
  are	
  necessary	
  to	
  forecast	
  an	
  accurate	
  global	
  trajectory	
  of	
  atmospheric	
  CO2.	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Acknowledgements	
  
I	
  would	
  first	
  and	
  foremost	
  like	
  to	
  thank	
  the	
  National	
  Science	
  Foundation	
  for	
  the	
  funding	
  of	
  
this	
  project	
  through	
  the	
  “Biosphere-­‐Atmosphere-­‐Hydrosphere	
  Interactions	
  in	
  a	
  Changing	
  
Global	
  Environment”	
  Research	
  Experience	
  for	
  Undergraduates	
  program.	
  Special	
  thanks	
  to	
  
Dave	
   Karowe	
   and	
   Mary	
   Anne	
   Carroll	
   for	
   directing	
   this	
   program	
   and	
   offering	
   advice	
   on	
  
experimental	
  design.	
  Chris	
  Vogel	
  acted	
  as	
  the	
  mentor	
  for	
  this	
  REU	
  experience,	
  with	
  Chris	
  
Gough	
  also	
  playing	
  an	
  important	
  advisor	
  role.	
  Thanks	
  to	
  Jason	
  Tallant	
  and	
  Adam	
  Levick	
  for	
  
their	
   help	
   with	
   data	
   processing.	
   Thanks	
   to	
   the	
   staff	
   at	
   University	
   of	
   Michigan	
   Biological	
  
station	
  for	
  providing	
  the	
  resources	
  and	
  facilities	
  that	
  made	
  this	
  research	
  possible.	
  Thanks	
  
to	
   the	
   eight	
   other	
   undergraduates	
   that	
   make	
   up	
   the	
   REU	
   cohort	
   at	
   UMBS	
   who	
   offered	
  
support	
  throughout	
  the	
  project.	
  	
  
	
  
Literature	
  Cited	
  	
  
Dale,	
  V.H.,	
  L.A.	
  Joyce,	
  S.	
  McNulty,	
  R.P.	
  Neilson,	
  M.P.	
  Ayres,	
  M.D.	
  Flannigan,	
  P.J.	
  Hanson,	
  et	
  al.	
  
2001.	
  Climate	
  Change	
  And	
  Forest	
  Disturbances.	
  Bioscience,	
  51:	
  723-­‐734.	
  
Dixon,	
   R.K.,	
   A.M.	
   Solomon,	
   S.	
   Brown,	
   R.A.	
   Houghton,	
   M.C.	
   Trexier,	
   J.	
   Wisniewski.	
   1994.	
  
Carbon	
  pools	
  and	
  flux	
  of	
  global	
  forest	
  ecosystems.	
  Science,	
  263,	
  5144,	
  185-­‐90.	
  
Goodrich-­‐Stuart,	
  E,	
  P.S.	
  Curtis,	
  R.T.	
  Fahey,	
  C.S.	
  Vogel,	
  C.M.	
  Gough.	
  2014.	
  	
  Forest	
  net	
  primary	
  
production	
   resistance	
   across	
   a	
   gradient	
   of	
   moderate	
   disturbance.	
   Masters	
   Thesis,	
  
Virginia	
  Commonwealth	
  University.	
  Paper	
  627.	
  
Gough,	
  C.M.,	
  B.S.	
  Hardiman,	
  L.E.	
  Nave,	
  G.	
  Bohrer,	
  K.D.	
  Maurer,	
  C.S.	
  Vogel,	
  K.J.	
  Nadelhoffer,	
  
P.S.	
   Curtis.	
   2013.	
   Sustained	
   carbon	
   uptake	
   and	
   storage	
   following	
   moderate	
  
disturbance	
  in	
  a	
  Great	
  Lakes	
  forest.	
  Ecological	
  Applications,	
  23:	
  12012-­‐1215.	
  
Gough,	
  C.M.,	
  B.S.	
  Hardiman,	
  P.S.	
  Curtis.	
  2010. Wood	
  net	
  primary	
  production	
  resilience	
  in	
  an	
  
unmanaged	
  forest	
  transitioning	
  from	
  early	
  to	
  middle	
  succession.	
  Forest	
  Ecology	
  and	
  
Management,	
  260:	
  36-­‐41.	
  	
  
Gough,	
   C.M.,	
   P.S.	
   Curtis,	
   B.S.	
   Hardiman,	
   C.M.	
   Scheuermann.	
   Carbon	
   storage	
   across	
   stand	
  
development	
   in	
   North	
   America’s	
   temperate	
   deciduous	
   forests:	
   shifting	
   paradigms	
  
and	
  management	
  options.	
  Frontiers	
  in	
  Ecology	
  and	
  the	
  Environment,	
  in	
  preparation.	
  	
  
Hardiman,	
  B.S.,	
  G.	
  Bohrer,	
  C.M	
  Gough,	
  C.S.	
  Vogel,	
  P.S.	
  Curtis.	
  2011.	
  The	
  role	
  of	
  canopy	
  	
  
structural	
   complexity	
   in	
   wood	
   net	
   primary	
   production	
   of	
   a	
   maturing	
   northern	
  
deciduous	
  forest.	
  Ecology,	
  92:	
  1818-­‐1827.	
  
Hardiman,	
  B.S.,	
  C.M.	
  Gough,	
  B.	
  Halperin.	
  2013.	
  Maintaining	
  high	
  rates	
  of	
  carbon	
  storage	
  	
  
in	
   old	
   forests:	
   A	
   mechanism	
   linking	
   canopy	
   structure	
   to	
   forest	
   function.	
   Forest	
  
Ecology	
  and	
  Management,	
  298:	
  111-­‐119.	
  
Kubiske,	
  M.E.	
  and	
  K.S.	
  Pregitzer.	
  1996.	
  Effects	
  of	
  elevated	
  CO2	
  and	
  light	
  availability	
  on	
  the	
  
photosynthetic	
   light	
   response	
   of	
   trees	
   of	
   contrasting	
   shade	
   tolerance.	
   Tree	
  
Physiology,	
  16:	
  351-­‐358.	
  	
  
Luyssaert,	
  S.,	
  E.D.	
  Schulze,	
  A.	
  Börner,	
  A.	
  Knohl,	
  D.	
  Hessenmöller,	
  B.	
  E.	
  Law,	
  P.	
  Ciais,	
  and	
  J.	
  
Grace.	
  2008.	
  Old	
  growth	
  forests	
  as	
  global	
  carbon	
  sinks,	
  Nature,	
  455:	
  213–215.	
  
Muraoka,	
   H,	
   H.	
   Koizumi,	
   R.W.	
   Pearcy.	
   2003.	
   Leaf	
   display	
   and	
   photosynthesis	
   of	
   tree	
  
seedlings	
  in	
  a	
  cool	
  temperate	
  deciduous	
  broadleaf	
  forest	
  understorey.	
  Oecologica,	
  
135:	
  500-­‐509.	
  	
  
Nave,	
   L.	
   E.,	
   et	
   al.	
   2011.	
   Disturbance	
   and	
   the	
   resilience	
   of	
   coupled	
   carbon	
   and	
   nitrogen	
  
cycling	
  in	
  a	
  north	
  temperate	
  forest.	
  Journal	
  of	
  Geophysical	
  Research:	
  Biogeosciences	
  
116.	
  
Nemani,	
  R.	
  R.,	
  C.D.	
  Keeling,	
  H.	
  Hashimoto,	
  W.M.	
  Jolly,	
  S.C.	
  Piper,	
  C.J.	
  Tucker,	
  R.B.	
  Myneni,	
  
S.W.	
   Running.	
   2003.	
   Climate-­‐driven	
   increases	
   in	
   global	
   terrestrial	
   net	
   primary	
  
production	
  from	
  1982	
  to	
  1999.	
  Science,	
  300:	
  1560-­‐3.	
  
Purves,	
  D.,	
  and	
  S.	
  Pacala.	
  2008.	
  Predictive	
  Models	
  of	
  Forest	
  Dynamics.	
  Science,	
  320:	
  1452-­‐
1453.	
  	
  
Sullivan,	
  N.H.,	
  P.V	
  Bolstad,	
  J.M.	
  Vose.	
  1996.	
  Estimates	
  of	
  net	
  photosynthetic	
  parameters	
  for	
  
twelve	
  tree	
  species	
  in	
  mature	
  forests	
  of	
  the	
  southern	
  Appalachians.	
  Tree	
  Physiology,	
  
16:	
  397-­‐406.	
  	
  
	
  
	
  

More Related Content

What's hot

Climate change threats to southeastern coastal plain forests: an ecosystem se...
Climate change threats to southeastern coastal plain forests: an ecosystem se...Climate change threats to southeastern coastal plain forests: an ecosystem se...
Climate change threats to southeastern coastal plain forests: an ecosystem se...
Northern Institute of Applied Climate Science
 
Environmental zoning
Environmental zoningEnvironmental zoning
Environmental zoning
Julius Manolong
 
Parameters of primary productivity
Parameters of primary productivityParameters of primary productivity
Parameters of primary productivity
Mujeeb Shami
 
MeganArcher_EVS_FinalReport
MeganArcher_EVS_FinalReportMeganArcher_EVS_FinalReport
MeganArcher_EVS_FinalReportMegan Archer
 
The influence of Vegetation and Built Environments on Midday Summer Thermal C...
The influence of Vegetation and Built Environments on Midday Summer Thermal C...The influence of Vegetation and Built Environments on Midday Summer Thermal C...
The influence of Vegetation and Built Environments on Midday Summer Thermal C...
Zo Cayetano
 
Longleaf Pine Final Paper
Longleaf Pine Final PaperLongleaf Pine Final Paper
Longleaf Pine Final PaperKevin Willson
 
Hb2015 barner
Hb2015 barnerHb2015 barner
Hb2015 barner
melnhe
 
SoilBioHedge
SoilBioHedgeSoilBioHedge
SoilBioHedge
Chris Collins
 
Esa2013
Esa2013Esa2013
Creating Climate-informed Practices for Local Conservation Efforts
Creating Climate-informed Practices for Local Conservation EffortsCreating Climate-informed Practices for Local Conservation Efforts
Creating Climate-informed Practices for Local Conservation Efforts
Northern Institute of Applied Climate Science
 
Biomass partitioning, leaf area index, and canopy greenness: the Good, the BA...
Biomass partitioning, leaf area index, and canopy greenness: the Good, the BA...Biomass partitioning, leaf area index, and canopy greenness: the Good, the BA...
Biomass partitioning, leaf area index, and canopy greenness: the Good, the BA...
remkoduursma
 
Hb2015 sadutto-calcium
Hb2015 sadutto-calciumHb2015 sadutto-calcium
Hb2015 sadutto-calcium
melnhe
 
Capstone_Presentation_2015.pptx
Capstone_Presentation_2015.pptxCapstone_Presentation_2015.pptx
Capstone_Presentation_2015.pptxKelsey Calvez
 
Jerry Franklin - Early seral forest: a diminishing resource?
Jerry Franklin - Early seral forest: a diminishing resource?Jerry Franklin - Early seral forest: a diminishing resource?
Jerry Franklin - Early seral forest: a diminishing resource?
Ecoshare
 
Growth formula of crops
Growth formula of cropsGrowth formula of crops
Climate change
Climate changeClimate change
Climate change
SrutiSudha Mohanty
 

What's hot (20)

Climate change threats to southeastern coastal plain forests: an ecosystem se...
Climate change threats to southeastern coastal plain forests: an ecosystem se...Climate change threats to southeastern coastal plain forests: an ecosystem se...
Climate change threats to southeastern coastal plain forests: an ecosystem se...
 
Environmental zoning
Environmental zoningEnvironmental zoning
Environmental zoning
 
Parameters of primary productivity
Parameters of primary productivityParameters of primary productivity
Parameters of primary productivity
 
MeganArcher_EVS_FinalReport
MeganArcher_EVS_FinalReportMeganArcher_EVS_FinalReport
MeganArcher_EVS_FinalReport
 
The influence of Vegetation and Built Environments on Midday Summer Thermal C...
The influence of Vegetation and Built Environments on Midday Summer Thermal C...The influence of Vegetation and Built Environments on Midday Summer Thermal C...
The influence of Vegetation and Built Environments on Midday Summer Thermal C...
 
Longleaf Pine Final Paper
Longleaf Pine Final PaperLongleaf Pine Final Paper
Longleaf Pine Final Paper
 
Hb2015 barner
Hb2015 barnerHb2015 barner
Hb2015 barner
 
SoilBioHedge
SoilBioHedgeSoilBioHedge
SoilBioHedge
 
Esa2013
Esa2013Esa2013
Esa2013
 
Creating Climate-informed Practices for Local Conservation Efforts
Creating Climate-informed Practices for Local Conservation EffortsCreating Climate-informed Practices for Local Conservation Efforts
Creating Climate-informed Practices for Local Conservation Efforts
 
Rosenzweig, 2016
Rosenzweig, 2016Rosenzweig, 2016
Rosenzweig, 2016
 
Fahey_et_al_2013
Fahey_et_al_2013Fahey_et_al_2013
Fahey_et_al_2013
 
AvalonPosterFinal
AvalonPosterFinalAvalonPosterFinal
AvalonPosterFinal
 
Biomass partitioning, leaf area index, and canopy greenness: the Good, the BA...
Biomass partitioning, leaf area index, and canopy greenness: the Good, the BA...Biomass partitioning, leaf area index, and canopy greenness: the Good, the BA...
Biomass partitioning, leaf area index, and canopy greenness: the Good, the BA...
 
Hb2015 sadutto-calcium
Hb2015 sadutto-calciumHb2015 sadutto-calcium
Hb2015 sadutto-calcium
 
Capstone_Presentation_2015.pptx
Capstone_Presentation_2015.pptxCapstone_Presentation_2015.pptx
Capstone_Presentation_2015.pptx
 
Jerry Franklin - Early seral forest: a diminishing resource?
Jerry Franklin - Early seral forest: a diminishing resource?Jerry Franklin - Early seral forest: a diminishing resource?
Jerry Franklin - Early seral forest: a diminishing resource?
 
Growth formula of crops
Growth formula of cropsGrowth formula of crops
Growth formula of crops
 
Lindner et-al-2010-fem
Lindner et-al-2010-femLindner et-al-2010-fem
Lindner et-al-2010-fem
 
Climate change
Climate changeClimate change
Climate change
 

Viewers also liked

BCM Security Services on track for Indy 500
BCM Security Services on track for Indy 500BCM Security Services on track for Indy 500
BCM Security Services on track for Indy 500Tim Westhoff
 
Costs sensitivity
Costs sensitivityCosts sensitivity
Costs sensitivitymykel1111
 
Communication
CommunicationCommunication
Communication
Mohammad Sayem
 
Yoga 2015
Yoga 2015Yoga 2015
Yoga 2015
NeMaria
 
Extreme methods of Weight loss
Extreme methods of Weight lossExtreme methods of Weight loss
Extreme methods of Weight loss
Mount carmel college
 
What Makes You DO Stuff? The Psychology of Motivation
What Makes You DO Stuff? The Psychology of MotivationWhat Makes You DO Stuff? The Psychology of Motivation
What Makes You DO Stuff? The Psychology of Motivation
Arthur Doler
 
адреса консультационных групп для объявления
адреса консультационных групп для объявленияадреса консультационных групп для объявления
адреса консультационных групп для объявления
supportfranco
 
ICC Abstract Doument_English Rev.2
ICC Abstract Doument_English Rev.2ICC Abstract Doument_English Rev.2
ICC Abstract Doument_English Rev.2Mohammad Chamanpara
 
ADF Sales Meeting - Vail 2012
ADF Sales Meeting - Vail 2012ADF Sales Meeting - Vail 2012
ADF Sales Meeting - Vail 2012Maite Sardinas
 
Deň energie: úspory a život v budovách
Deň energie: úspory a život v budováchDeň energie: úspory a život v budovách
Deň energie: úspory a život v budovách
nzebsk
 
โครงงานคอมพิวเตอร์
โครงงานคอมพิวเตอร์โครงงานคอมพิวเตอร์
โครงงานคอมพิวเตอร์Ploymnr
 
CoalitionWILD: How the NextGen Will Change the World
CoalitionWILD: How the NextGen Will Change the WorldCoalitionWILD: How the NextGen Will Change the World
CoalitionWILD: How the NextGen Will Change the World
amy lewis
 
Amalan Ringan
Amalan RinganAmalan Ringan
Amalan Ringan
Deky Belajar
 

Viewers also liked (19)

BCM Security Services on track for Indy 500
BCM Security Services on track for Indy 500BCM Security Services on track for Indy 500
BCM Security Services on track for Indy 500
 
Costs sensitivity
Costs sensitivityCosts sensitivity
Costs sensitivity
 
Communication
CommunicationCommunication
Communication
 
Yoga 2015
Yoga 2015Yoga 2015
Yoga 2015
 
Extreme methods of Weight loss
Extreme methods of Weight lossExtreme methods of Weight loss
Extreme methods of Weight loss
 
Resume y-axis- TL
Resume y-axis- TLResume y-axis- TL
Resume y-axis- TL
 
What Makes You DO Stuff? The Psychology of Motivation
What Makes You DO Stuff? The Psychology of MotivationWhat Makes You DO Stuff? The Psychology of Motivation
What Makes You DO Stuff? The Psychology of Motivation
 
адреса консультационных групп для объявления
адреса консультационных групп для объявленияадреса консультационных групп для объявления
адреса консультационных групп для объявления
 
STONE COLD FOX
STONE COLD FOXSTONE COLD FOX
STONE COLD FOX
 
ICC Abstract Doument_English Rev.2
ICC Abstract Doument_English Rev.2ICC Abstract Doument_English Rev.2
ICC Abstract Doument_English Rev.2
 
ADF Sales Meeting - Vail 2012
ADF Sales Meeting - Vail 2012ADF Sales Meeting - Vail 2012
ADF Sales Meeting - Vail 2012
 
SPE-172504-PA
SPE-172504-PASPE-172504-PA
SPE-172504-PA
 
Deň energie: úspory a život v budovách
Deň energie: úspory a život v budováchDeň energie: úspory a život v budovách
Deň energie: úspory a život v budovách
 
โครงงานคอมพิวเตอร์
โครงงานคอมพิวเตอร์โครงงานคอมพิวเตอร์
โครงงานคอมพิวเตอร์
 
CoalitionWILD: How the NextGen Will Change the World
CoalitionWILD: How the NextGen Will Change the WorldCoalitionWILD: How the NextGen Will Change the World
CoalitionWILD: How the NextGen Will Change the World
 
UDG - PHP osnove
UDG - PHP osnoveUDG - PHP osnove
UDG - PHP osnove
 
Hi welcome!!!
Hi welcome!!!Hi welcome!!!
Hi welcome!!!
 
Amalan Ringan
Amalan RinganAmalan Ringan
Amalan Ringan
 
Visi
VisiVisi
Visi
 

Similar to Beckel - Leaf physiology response across a disturbance gradient in a temperate deciduous forest- Implications for earth systems modeling

Climate Change and Forest Management: Adaptation of Geospatial Technologies
Climate Change and Forest Management: Adaptation of Geospatial TechnologiesClimate Change and Forest Management: Adaptation of Geospatial Technologies
Climate Change and Forest Management: Adaptation of Geospatial Technologies
rsmahabir
 
Biomass accumulation and Carbon Sequestration Potential of Shorea robusta and...
Biomass accumulation and Carbon Sequestration Potential of Shorea robusta and...Biomass accumulation and Carbon Sequestration Potential of Shorea robusta and...
Biomass accumulation and Carbon Sequestration Potential of Shorea robusta and...Gautam Mandal
 
Peatnet - 2nd International Symposium Peatlands in the Global Carbon Cycle (2...
Peatnet - 2nd International Symposium Peatlands in the Global Carbon Cycle (2...Peatnet - 2nd International Symposium Peatlands in the Global Carbon Cycle (2...
Peatnet - 2nd International Symposium Peatlands in the Global Carbon Cycle (2...
Courtney Miller
 
Ecological Forestry in Douglas-Fir (Pseudotsuga menziesii) Forests of the Pac...
Ecological Forestry in Douglas-Fir (Pseudotsuga menziesii) Forests of the Pac...Ecological Forestry in Douglas-Fir (Pseudotsuga menziesii) Forests of the Pac...
Ecological Forestry in Douglas-Fir (Pseudotsuga menziesii) Forests of the Pac...
Lily Tidwell
 
Climate change and forest diseases
Climate change and forest diseasesClimate change and forest diseases
Climate change and forest diseases
João Soares
 
Tree regeneration, Fenner School July 2009
Tree regeneration, Fenner School July 2009Tree regeneration, Fenner School July 2009
Tree regeneration, Fenner School July 2009
joernfischer
 
Continuous cover forestry and harvest event analysis
Continuous cover forestry and harvest event analysisContinuous cover forestry and harvest event analysis
Continuous cover forestry and harvest event analysis
Premier Publishers
 
Selecting and applying modelling tools to evaluate forest management strategi...
Selecting and applying modelling tools to evaluate forest management strategi...Selecting and applying modelling tools to evaluate forest management strategi...
Selecting and applying modelling tools to evaluate forest management strategi...
CIFOR-ICRAF
 
2015_LRP_FireEcology_PosterFinal
2015_LRP_FireEcology_PosterFinal2015_LRP_FireEcology_PosterFinal
2015_LRP_FireEcology_PosterFinalRyan Suttle
 
NISAR NASA-ISRO Synthetic Aperture Radar (NISAR) Ecosystems
NISAR NASA-ISRO Synthetic Aperture Radar (NISAR) EcosystemsNISAR NASA-ISRO Synthetic Aperture Radar (NISAR) Ecosystems
NISAR NASA-ISRO Synthetic Aperture Radar (NISAR) Ecosystems
Dr. Pankaj Dhussa
 
Impacts Of Air Pollution And Climate Change On Forest Ecosystems--Emerging Re...
Impacts Of Air Pollution And Climate Change On Forest Ecosystems--Emerging Re...Impacts Of Air Pollution And Climate Change On Forest Ecosystems--Emerging Re...
Impacts Of Air Pollution And Climate Change On Forest Ecosystems--Emerging Re...
Jill Crawford
 
WOODY PLANT RICHNESS AND NDVI RESPONSE TO DROUGHT EVENTS IN CATALONIAN (NORT...
WOODY PLANT RICHNESS AND NDVI RESPONSE TO DROUGHT EVENTS  IN CATALONIAN (NORT...WOODY PLANT RICHNESS AND NDVI RESPONSE TO DROUGHT EVENTS  IN CATALONIAN (NORT...
WOODY PLANT RICHNESS AND NDVI RESPONSE TO DROUGHT EVENTS IN CATALONIAN (NORT...Hibrids
 
Strategic Framework for Responding to Climate Change_Ver1.0_081002
Strategic Framework for Responding to Climate Change_Ver1.0_081002Strategic Framework for Responding to Climate Change_Ver1.0_081002
Strategic Framework for Responding to Climate Change_Ver1.0_081002Loren Ford
 
Karlov_GIS_Mapping_Final (2)
Karlov_GIS_Mapping_Final (2)Karlov_GIS_Mapping_Final (2)
Karlov_GIS_Mapping_Final (2)Rachel Karlov
 
Paul D. Anderson - Trends in Early Seral Forest at the Stand and Landscape Sc...
Paul D. Anderson - Trends in Early Seral Forest at the Stand and Landscape Sc...Paul D. Anderson - Trends in Early Seral Forest at the Stand and Landscape Sc...
Paul D. Anderson - Trends in Early Seral Forest at the Stand and Landscape Sc...
Ecoshare
 

Similar to Beckel - Leaf physiology response across a disturbance gradient in a temperate deciduous forest- Implications for earth systems modeling (20)

Climate Change and Forest Management: Adaptation of Geospatial Technologies
Climate Change and Forest Management: Adaptation of Geospatial TechnologiesClimate Change and Forest Management: Adaptation of Geospatial Technologies
Climate Change and Forest Management: Adaptation of Geospatial Technologies
 
Biomass accumulation and Carbon Sequestration Potential of Shorea robusta and...
Biomass accumulation and Carbon Sequestration Potential of Shorea robusta and...Biomass accumulation and Carbon Sequestration Potential of Shorea robusta and...
Biomass accumulation and Carbon Sequestration Potential of Shorea robusta and...
 
Climate change adaptation for forestry: learning from recurrent droughts - Ri...
Climate change adaptation for forestry: learning from recurrent droughts - Ri...Climate change adaptation for forestry: learning from recurrent droughts - Ri...
Climate change adaptation for forestry: learning from recurrent droughts - Ri...
 
Peatnet - 2nd International Symposium Peatlands in the Global Carbon Cycle (2...
Peatnet - 2nd International Symposium Peatlands in the Global Carbon Cycle (2...Peatnet - 2nd International Symposium Peatlands in the Global Carbon Cycle (2...
Peatnet - 2nd International Symposium Peatlands in the Global Carbon Cycle (2...
 
Ecological Forestry in Douglas-Fir (Pseudotsuga menziesii) Forests of the Pac...
Ecological Forestry in Douglas-Fir (Pseudotsuga menziesii) Forests of the Pac...Ecological Forestry in Douglas-Fir (Pseudotsuga menziesii) Forests of the Pac...
Ecological Forestry in Douglas-Fir (Pseudotsuga menziesii) Forests of the Pac...
 
10.1007_s12223-014-0374-7
10.1007_s12223-014-0374-710.1007_s12223-014-0374-7
10.1007_s12223-014-0374-7
 
Climate change and forest diseases
Climate change and forest diseasesClimate change and forest diseases
Climate change and forest diseases
 
Tree regeneration, Fenner School July 2009
Tree regeneration, Fenner School July 2009Tree regeneration, Fenner School July 2009
Tree regeneration, Fenner School July 2009
 
SeniorThesis
SeniorThesisSeniorThesis
SeniorThesis
 
Continuous cover forestry and harvest event analysis
Continuous cover forestry and harvest event analysisContinuous cover forestry and harvest event analysis
Continuous cover forestry and harvest event analysis
 
Selecting and applying modelling tools to evaluate forest management strategi...
Selecting and applying modelling tools to evaluate forest management strategi...Selecting and applying modelling tools to evaluate forest management strategi...
Selecting and applying modelling tools to evaluate forest management strategi...
 
Carter_et_al_2015
Carter_et_al_2015Carter_et_al_2015
Carter_et_al_2015
 
poster final
poster finalposter final
poster final
 
2015_LRP_FireEcology_PosterFinal
2015_LRP_FireEcology_PosterFinal2015_LRP_FireEcology_PosterFinal
2015_LRP_FireEcology_PosterFinal
 
NISAR NASA-ISRO Synthetic Aperture Radar (NISAR) Ecosystems
NISAR NASA-ISRO Synthetic Aperture Radar (NISAR) EcosystemsNISAR NASA-ISRO Synthetic Aperture Radar (NISAR) Ecosystems
NISAR NASA-ISRO Synthetic Aperture Radar (NISAR) Ecosystems
 
Impacts Of Air Pollution And Climate Change On Forest Ecosystems--Emerging Re...
Impacts Of Air Pollution And Climate Change On Forest Ecosystems--Emerging Re...Impacts Of Air Pollution And Climate Change On Forest Ecosystems--Emerging Re...
Impacts Of Air Pollution And Climate Change On Forest Ecosystems--Emerging Re...
 
WOODY PLANT RICHNESS AND NDVI RESPONSE TO DROUGHT EVENTS IN CATALONIAN (NORT...
WOODY PLANT RICHNESS AND NDVI RESPONSE TO DROUGHT EVENTS  IN CATALONIAN (NORT...WOODY PLANT RICHNESS AND NDVI RESPONSE TO DROUGHT EVENTS  IN CATALONIAN (NORT...
WOODY PLANT RICHNESS AND NDVI RESPONSE TO DROUGHT EVENTS IN CATALONIAN (NORT...
 
Strategic Framework for Responding to Climate Change_Ver1.0_081002
Strategic Framework for Responding to Climate Change_Ver1.0_081002Strategic Framework for Responding to Climate Change_Ver1.0_081002
Strategic Framework for Responding to Climate Change_Ver1.0_081002
 
Karlov_GIS_Mapping_Final (2)
Karlov_GIS_Mapping_Final (2)Karlov_GIS_Mapping_Final (2)
Karlov_GIS_Mapping_Final (2)
 
Paul D. Anderson - Trends in Early Seral Forest at the Stand and Landscape Sc...
Paul D. Anderson - Trends in Early Seral Forest at the Stand and Landscape Sc...Paul D. Anderson - Trends in Early Seral Forest at the Stand and Landscape Sc...
Paul D. Anderson - Trends in Early Seral Forest at the Stand and Landscape Sc...
 

Beckel - Leaf physiology response across a disturbance gradient in a temperate deciduous forest- Implications for earth systems modeling

  • 1. Leaf  physiology  response  across  a  disturbance  gradient  in  a  temperate  deciduous  forest:   Implications  for  earth  systems  modeling   Rick  Beckel1,  Chris  Vogel2     Abstract     Light  response  curves  were  constructed  in  situ  for  117  sapling  trees  (between  1  and  7  m  in   height)  of  four  common  tree  species  in  a  disturbed  northern  Michigan  deciduous  forest.   Saplings  were  examined  in  a  manipulated  area  (University  of  Michigan  Biological  Station’s   “Forest  Accelerated  Succession  Experiment)  in  which  >6700  Populus  (aspen)  and  Betula   (birch)  trees  were  stem-­‐girdled  within  a  39-­‐ha  area  to  identify  mechanisms  responsible  for   sustaining   C   uptake   through   partial   canopy   defoliation.   In   this   study,   physiological   parameters  of  apparent  quantum  yield  and  Amax  –  measures  of  photosynthetic  efficiency  –   were   examined   across   a   disturbance   gradient   that   could   help   explain   maintenance   of   carbon  uptake  rates  of  the  manipulated  area.  Amax  was  significantly  different  across  species,   and   Amax   increased   significantly   over   a   disturbance   gradient   (modeled   by   fraction   basal   area  senesced)  considering  all  species  in  aggregate  (p  <  .1).  Examining  this  trend  at  the   species   level   revealed   significance   in   red   oak   and   American   beech,   and   was   nearly   significant  for  white  pine  (p  <  .15).  Red  oak  had  a  slightly  but  significantly  lower  apparent   quantum  yield  than  the  other  species,  but  this  parameter  did  not  vary  over  a  disturbance   gradient  for  any  species.  The  strong  physiological  response  of  white  pine  and  particularly   red   oak   suggests   a   strong   capacity   to   take   advantage   of   canopy   gaps   created   by   successional  patterns  or  climate-­‐related  disturbance  events,  and  may  improve  chances  of   sapling   success   and   allow   for   greater   representation   in   future   forest   composition   in   the   area.  The  trends  suggested  by  the  data  may  be  of  use  to  earth  systems  modelers  interested   refining  the  physiological  parameters  of  their  models  in  response  to  disturbance.       Introduction     Forests   worldwide   represent   a   significant   terrestrial   carbon   sink,   absorbing   a   substantial  fraction  of  carbon  dioxide  and  thereby  moderating  the  extent  of  global  climate   change   (Nemani   et   al.   2003,   Dixon   et   al.   1994,   Purves   and   Pacala   2008).   However,   the                                                                                                                   1  Macalester  College     2  University  of  Michigan  Biological  Station  
  • 2. future   trajectory   of   this   carbon   sink   is   uncertain   in   an   era   of   increasing   disturbances   directly   and   indirectly   related   to   global   change:   alterations   in   temperature   and   precipitation  patterns  may  render  habitat  unsuitable  for  current  residents,  and  increases  in   severe   weather   patterns   will   lead   to   changes   at   the   landscape   and   local   levels   through   drought,  wildfire,  and  wind  damage.  Changing  climactic  conditions  may  also  alter  and/or   extend   the   range   of   pathogens   or   other   pests   that   target   specific   tree   species   or   entire   forests   (Dale   et   al.   2001).   Emergent   dynamic   global   vegetation   models   seek   to   emulate   biogeochemical  trends  of  forests  worldwide  to  elucidate  how  forest  behavior  may  affect   earth’s  response  to  climate  change.  However,  model  predictions  are  highly  uncertain  and   frequently  contradictory,  and  better  parameters  of  disturbance  and  physiology  are  needed   to   forecast   forest   ecosystems’   interactions   with   a   changing   climate   (Purves   and   Pacala   2008).       The  future  contribution  of  forests  in  the  upper  Midwest  to  the  global  carbon  cycle  is   particularly  uncertain  compared  to  other  older  forests  worldwide.  In  most  areas  across  the   globe,  forests  are  in  a  relatively  stable  state  of  production  due  to  their  age,  whereas  forests   in  the  upper  Midwest  are  undergoing  dynamic  succession,  due  to  their  unique  ecological   history.  Forests  of  the  upper  Midwest,  which  was  widely  impacted  by  clearcuts  and  fires  in   the  late  19th  and  early  20th  centuries,  are  rapidy  changing  where  early  successional  species   across   the   region   are   beginning   to   senesce   (Hardiman   et   al.   2013,   Gough   et   al.   2010).   Though   forests   of   the   upper   Midwest   have   acted   as   a   net   assimilator   of   CO2   in   the   past   century  and  remain  so  today,  their  status  as  a  sink  or  source  is  uncertain  during  and  after   these  expected  successional  changes  (Hardiman  et  al.  2013,  Gough  et  al.  in  preparation).   The   trajectory   and   magnitude   of   this   area’s   potential   as   a   carbon   sink   is   increasingly   important  to  understand  in  an  era  of  considerable  emissions  of  carbon  dioxide,  the  nascent   interest  in  carbon  trading  schemes  both  nationally  and  internationally,  and  building  more   accurate  climate  and  earth  systems  models.       Our  understanding  of  forest  carbon  sequestration  potential  is  mostly  understood  in   terms   of   disturbance   and   succession.   Classical   models   suggest   that   early   successional   forests  have  the  highest  rates  of  net  ecosystem  production,  and  that  as  earlier  successional   trees  decline  and  die,  a  steady  state  old  growth  forest  develops  which  ceases  to  accumulate   carbon,  and  may  even  become  a  carbon  source  (Luyssaert  2008).  However,  this  model  may  
  • 3. not   be   applicable   worldwide,   and   there   is   evidence   to   suggest   that   current   successional   trends   in   mixed   deciduous   forests   of   the   upper   Midwest   may   actually   be   increasing   net   ecosystem  production  beyond  its  early  successional  capacity  (Luyssaert  2008,  Gough  et  al.,   in   preparation).   Additional   uncertainty   is   created   because   our   knowledge   of   how   production  responds  to  disturbance  is  mostly  limited  to  severe  disturbance;  less  is  known   about  moderate  disturbance  that  targets  a  subset  of  trees  in  the  forest,  either  by  disease,   severe  weather,  or  successional-­‐related  senescence  (Goodrich-­‐Stuart  et  al.  2014).  Further   study   is   needed   on   these   types   of   impacts   as   we   move   away   from   direct   anthropogenic   disturbance   from   logging   and   associated   fires   into   an   era   of   primarily   moderate   disturbances  resulting  from  natural  processes  and  human-­‐induced  climate  change.       In   the   FASET   (Forest   Accelerated   Succession   ExperiemenT)   study,   ~35%   of   total   LAI   and   basal   area   was   removed   by   stem   girdling   all   early   successional   trees   (>6,700   individuals  in  a  39  area)  in  a  northern  Michigan  forest  to  evaluate  the  impacts  of  moderate   disturbances   on   carbon   storage   potential.   Researchers   hypothesized   that   NEP   would   decrease  immediately  and  temporarily  after  moderate  disturbance  and  consequently  rise   above   earlier   levels   of   production   as   later   successional   species   developed   due   to   the   forest’s  increased  structural  complexity.  However,  an  insignificant  dip  in  production  after   the  disturbance  was  observed,  and  subsequent  research  has  suggested  that  both  the  upper   canopy   and   subcanopy   can   sustain   production   following   low   to   moderate   levels   of   disturbance  (Nave  et  al.  2011,  Gough  et  al.  2013,  Goodrich-­‐Stuart  et  al.  2014)  Investigators   are   currently   studying   mechanisms   for   how   forests   sustain   production   immediately   following   disturbance.   Increased   canopy   complexity   is   thought   to   be   a   driver   in   continuously   growing   production   in   older   forests,   but   it   is   unlikely   that   complexity   will   increase   immediately   following   disturbance   to   compensate   for   production   losses   from   early  successional  canopy  trees  (Hardiman  et  al.  2011,  Hardiman  et  al.  2013).  Increased   nitrogen   availability   due   to   reduced   competition   by   recently   deceased   trees   also   had   an   impact   on   sustained   carbon   uptake   (Nave   et   al.   2011).   But   the   major   reason   for   this   maintenance  may  be  due  to  the  creation  of  canopy  gaps  following  senescence,  which  may   allow   for   two   mechanisms   for   sustaining   production:   better   light   distribution   to   other   canopy   strata   due   to   changing   canopy   structure,   or   favorable   physiological   changes   in   response  to  disturbance.  This  study  focuses  in  particular  on  the  physiological  changes  that  
  • 4. may  be  occurring  at  the  leaf  level  to  compensate  for  upper  canopy  losses.  Light  dynamics  in   canopy   gap   areas   are   important   to   explore   because   it   is   uncertain   to   what   extent   disturbances  in  the  canopy  level  influence  physiology  and  morphology  at  the  leaf  level,  but   studies  suggest  that  light  harvesting  improves  with  mortality  driven  canopy  disturbances   (Hardiman   et   al.   2011)   and   that   leaf-­‐level   adjustments   are   proportional   to   the   level   of   change  in  the  local  light  environment  from  upper  canopy  gap  formation  (Goodrich-­‐Stuart  et   al.  2014).   The  latter  study  found  that  maximum  photosynthesis  potential  increases  as  gap  size   increased;  all  dominant  species  displayed  a  direct  positive  relationship  of  light  saturated   net   CO2  assimilation   (Amax)   to   disturbance   severity.   However,   it   is   unclear   how  quantum   yield  (α)  –  a  metric  of  photosynthetic  efficiency  that  illustrates  how  quickly  a  tree  can  reach   its  photosynthetic  capacity  –  changes  across  a  gradient  of  canopy  gap  sizes  or  disturbance   levels.   Species   with   higher   quantum   yield   values   could   develop   more   successfully   in   disturbed  areas  and  eventually  become  canopy  dominant  species.  This  study  thus  seeks  to   explore   how   differential   structural   changes   in   the   forest   canopy   impact   trees   at   a   physiological  level,  and  how  these  physiological  changes  may  feedback  to  influence  future   forest  structure  and  composition.  We  explored  how  a  gradient  of  disturbance  impacts  two   important   physiological   parameters   (Amax   and   apparent   quantum   yield)   for   several   common   species   in   the   area,   and   use   our   findings   to   make   suggestions   explaining   why   certain  species  may  outcompete  others  in  this  ecosystem  post-­‐disturbance.  Performing  our   study  in  a  manipulated  area  with  a  gradient  of  disturbance  severity,  we  sought  to  test  the   following   hypotheses:   1)   That   gap   size   and   disturbance   level  would   correlate   positively   with  Amax  2)  that  as  gap  size  increased,  red  oak  would  exhibit  a  relatively  smaller  decrease   in   quantum   yield   compared   to   red   maple   due   to   its   generally   stronger   physiological   performance  (Sullivan  et  al.  1996).       Materials  and  Methods     Study  Site     This  study  took  place  in  a  mixed  deciduous  forest  in  Northern  Lower  Michigan  (45°   35’  N  84°  43’  W).  The  mean  annual  temperature  is  5.58°  C  and  mean  annual  precipitation  is   817  mm  (1942–2003)  (Gough  et  al  2013).  Following  massive  disturbances  (clearcuts  and  
  • 5. forest  fires)  in  the  past  two  centuries,  this  region  has  become  primarily  dominated  by  early   the  successional  species  bigtooth  aspen  (Populus  grandidentata),  trembling  aspen  (Populus   tremuloides)   and   paper   birch   (Betula   papyrifa).   Other   canopy   species   include   red   oak   (Quercus  rubra),   red   maple   (Acer  rubrum),   sugar   maple   (Acer  saccharum),   eastern   white   pine  (Pinus  Strobus),  and  American  beech  (Fagus  grandifolia).  Stem  density  of  trees  ≥8  cm   dbh  is  700–  800  individuals/ha,  basal  area  is  25  m2/ha,  and  leaf  area  index  (LAI)  averages   3.5.  Red  maple,  red  oak,  eastern  white  pine,  and  American  beech  are  the  prominent  species   composing  the  subcanopy;  they  are  joined  by  other  shade  tolerant  species  such  as  sugar   maple,   red   pine   (Pinus   resinosa),   striped   maple   (Acer   pensylvanicum),   American   hophornbeam  (Ostrya  virginiana),  and  serviceberry  (Amelanchier  arborea).       The  early  successional  species  defined  above  are  in  decline  as  they  reach  the  end  of   their  lifespan,  leaving  room  for  other  species  to  gain  prominence  in  the  canopy.  To  evaluate   the   effects   of   disturbance   and   successional   changes   on   carbon   pools   and   fluxes   in   this   ecosystem   type,   the   University   of   Michigan   Biological   Station   implemented   the   FASET   program  in  2008.  This  large-­‐scale  manipulation  has  hastened  the  development  of  a  forest   composition  that  will  dominate  the  region  in  the  coming  decades  as  succession  proceeds   naturally  (Gough  et  al.  2013,  Nave  et  al.  2011).         To   better   understand   the   implications   of   canopy   gaps   left   by   senescing   early   successional  species,  this  study  examines  trees  across  a  gradient  of  disturbance  levels  in   FASET.  We  chose  10  out  of  21  permanent  0.08  ha  circular  plots  based  on  pre-­‐disturbance   production  and  species  composition  in  order  to  minimize  confounding  variables  (Goodrich-­‐ Stuart  et  al.  2014).  Plots  ranged  in  disturbance  severity  from  .09  to  .64  fraction  basal  area   senesced,  a  range  representative  of  the  differential  early  successional  die-­‐off  expected  in   the  region.  Four  non-­‐overlapping  5  m  radius  subplots  were  established  on  the  cardinal  axis   of  each  plot.  We  sampled  three  saplings  in  each  plot  to  measure  apparent  quantum  yield   and  Amax.       Leaf  Physiology  Analysis       To   establish   the   impact   of   canopy   openness   on   leaf   physiology,   we   constructed   a   light   response   curve   for   three   species   within   each   subplot,   measuring   carbon   dioxide   assimilation  rates  at  a  range  of  irradiance  levels.  We  studied  common  saplings  species  that  
  • 6. had  the  potential  to  eventually  extend  into  the  canopy.  Eligible  saplings  were  between  1   and   6.5   m   tall   and   under   3   cm   dbh;   their   size   suggests   that   these   trees   were   in   the   subcanopy  prior  to  the  stem-­‐girdling  disturbance.  Three  saplings  were  randomly  selected   in  each  subplot  for  measurement  with  descending  priority  of  oak,  maple,  pine  and  beach..     A   leaf   at   the   top   of   each   sapling   was   selected   for   measuring   photosynthesislight   response  curves  using  a  LiCor  LI-­‐6400  Portable  Photosynthesis  System  (model  LI-­‐6400,  LI-­‐ COR,  Lincoln,  NE,  USA).  Leaves  were  subjected  to  varying  irradiance  levels  (1500,  750,  500,   250,  75,  50,  30,  10,  0  μmol  photons/m2/s)  using  a  6400-­‐02  red-­‐blue  LED  light  source  (LI-­‐ COR,   Lincoln,   NE,   USA)   –   special   emphasis   was   placed   on   the   initial   slope   of   the   light   response   curve   (i.e.   5   points   under   100   μmol   photons/m2/s)   to   allow   for   precise   computation  of  apparent  quantum  yield.  For  each  broadleaf,  a  2  by  3  cm  area  was  enclosed   in  the  LiCor-­‐6400  chamber  to  monitor  its  carbon  assimilation  rate  at  a  constant  area.  For   examination  of  Pinus  strobus,  we  used  three  five-­‐needle  fascicles  from  the  previous  year's   growth,   laid   across   the   cuvette   in   a   non-­‐overlapping   manner.   Pine   photosynthesis   measurements  were  post-­‐processed  to  correct  for  area  since  15  needles  never  completely   filled  the  cuvette.     We  controlled  immediate  environmental  conditions  in  the  chamber  by  setting  the   LiCor-­‐6400’s  CO2  mixer  to  380  ppm,  and  made  an  effort  to  stabilize  relative  humidity  of  the   sample   between   60   and   70%   and   maintain   a   leaf   temperature   of   24   +/-­‐   1.5   degrees   C.   IRGAs   were   matched   and   conditions   were   allowed   to   stabilize   in   the   chamber   before   photosynthesis  readings  were  taken  at  each  light  level  (minimum  2  minute  stabilization   period).       Data  processing  and  statistical  analysis     Light   curves   were   constructed   using   the   physiology   data   collected   using   the   rectangular  hyperbolic  function::     P  =  (α*Amax*I)/  (Amax  +  α*I)   (adapted  from  Gough  et  al.  2013).     Where  P  is  photosynthesis  (µmol  CO2·m-­‐2·s-­‐1,  α  is  apparent  quantum  yield  (mol  CO2/mol   quanta)  and  I  is  the  irradiance  level  (µmol  quanta·m-­‐2·s-­‐1).  Apparent  quantum  yield  is  the  
  • 7. 0   0.02   0.04   0.06   0.08   0.1   Red  Maple  American   Beech     White   Pine     Red  Oak     Apparent  Quantum  Yield     (µmol  CO2/m2/s)     0   2   4   6   8   10   12   Red   Maple   American   Beech     White   Pine     Red  Oak     Amax  (µmol    CO2/m2/s)   Figure  2:  A max  by  species.  Different  letters  denote   significance   at   p   <   .1.   Error   bars   represent   +/-­‐   1   standard  error Figure   3:   Quantum   yield   by   species.   Different   letters  denote   significance   at  p   <   .1.   Error  bars   represent  +/-­‐  1  standard  error   b ab a ab a b b a b a ab a b parameter  describing  the  initial  slope  of  the  rectangular  hyperbolic  function,  and  Amax  is   where  the  function  plateaus.     Regression   analysis   was   used   to   determine   relationships   of   α   and   Amax   across   disturbance   gradients   and   analysis   of   variance   with   Tukey’s   HSD   test   to   determine   differences  between  species  (SAS  Institute  2012).       Results       118   saplings   were   sampled   in   the   field,   117   viable   light   response   curves   were   used   in   the   following   analysis.   Although   prioritized   during   field   tests,   there   was   a   dearth   of   oak   saplings  in  the  plots  sampled,  and  total   sample  size  across  the  40  subplots  was   16.   White   pine   was   sampled   most   frequently   at   n   =   37,   followed   by   red   maple  (n  =  37)  and  American  beech  (n   =  22).       When  examining  the  average  light  response  curves  for  each  species,  we  found  red   oak  to  have  significantly  higher  Amax  values  than  beech  and  red  maple  (p  <  .1),  although  not   significantly  higher  than  white  pine  (figure  2).  Red  oak  had  a  significantly  lower  quantum   yield  than  all  species  except  beech.                       Figure   1:   Average   light   response   curves   across   all   disturbance  levels  for  the  four  species  of  saplings  sampled   in  the  study  area.   -­‐2   0   2   4   6   8   10   12   0   500   1000   1500   Photo  (µmol  CO2/m2/s)   Irradiance  (µmol  photons/m2/s)   Red  Oak   Red  Maple   White  Pine   American  Beech  
  • 8. R²  =  0.0086   0   5   10   15   20   0   0.2   0.4   0.6   0.8   Fraction  Basal  Area  Senesced   Red  Maple   R²  =  0.32156   0   5   10   15   20   0   0.2   0.4   0.6   0.8   American  Beech**   R²  =  0.13859   0   5   10   15   20   0   0.2   0.4   0.6   0.8   Amax   (µmol  CO2/m2/s)     Fraction  Basal  Area  Senesced   White  Pine*   R²  =  0.19529   0   5   10   15   20   0   0.2   0.4   0.6   0.8   Amax  (µmol  CO2/m2/s)   Red  Oak**   Fig.  4:  Regression  analysis  of  A max  versus  fraction  basal  area  senesced.  Regressions  for  red  oak  and  American  beech  were   significant  at  p  <  .1;  white  pine  was  significant  at  p  <  .15     Examining   these   parameters   across   the   disturbance   gradient   yielded   interesting   results.   According  to  a  regression  analysis,  there  was  significant  positive  relationship  between  Amax   versus   fraction   of   basal   area   senesced   for   all   species   (p   <   .1,   R2   =   .205).   This   positive   relationship  –  increasing  Amax  values  with  increasing  disturbance  –  held  across  all  species   but  red  maple  to  a  significant  degree  (p  <  .1  for  red  oak  and  American  Beech,  p  <  .15  for   white   pine,   see   figure   4).   Regression   analysis   indicated   no   significant   trend   between   α   versus  fraction  of  basal  area  senesced  (figure  5).                                                
  • 9. R²  =  0.0815  0   0.02   0.04   0.06   0.08   0.1   0.12   0   0.2   0.4   0.6   0.8   Quantum  Yield     (µmol  CO2/m2/s)   Red  Oak   R²  =  0.17119  0   0.02   0.04   0.06   0.08   0.1   0.12   0   0.2   0.4   0.6   0.8   American  Beech   R²  =  0.02045   0   0.02   0.04   0.06   0.08   0.1   0.12   0   0.2   0.4   0.6   0.8   Quantum  Yield     (µmol  CO2/m2/s)   Fraction  Basal  Area  Senesced   White  Pine     R²  =  0.067   0   0.02   0.04   0.06   0.08   0.1   0.12   0   0.2   0.4   0.6   0.8   Fraction  Basal  Area  Senesced   Red  Maple   Fig.  5:  Regression  analysis  of  quantum  yield  versus  fraction  basal  area  senesced.  Regressions  were  not  significant  (p  >  .15)                                       Discussion   Investigators  at  this  site  have  noted  that  production  has  been  sustained  despite  the   loss  of  all  canopy-­‐dominant  early  successional  species  (Nave  et  al.  2011,  Gough  et  al.  2013)   and  the  purpose  of  this  study  was  to  explore  possible  physiological  mechanisms  driving   this  trend.  The  physiological  response  to  disturbance  has  implications  for  the  viability  of   individual  species  as  the  ecosystem  develops  into  a  later  successional  forest,  as  well  as  the   overall  trend  of  the  forest  as  a  carbon  sink  or  source.     Trees  species  with  physiologies  better  adapted  to  taking  advantage  of  canopy  gaps   are  at  a  competitive  advantage  relative  to  other  species.  Areas  of  the  forest  that  are  affected   by  gap-­‐forming  disturbance  experience  an  influx  of  light,  and  those  species  that  are  best   able  to  harvest  this  incoming  light  will  be  most  successful  in  the  gap,  growing  from  saplings   to   canopy   trees   as   the   forest   ages.   This   study   suggests   that   Red   Oak   may   be   at   a  
  • 10. comparative   advantage   over   other   major   subcanopy   trees.   Red   Oak   had   a   significantly   higher  Amax  and  lower  quantum  yield  than  other  species.  This  combination  is  illustrative  of   a  typical  sun-­‐adapted  leaf,  and  similar  relationships  between  high  Amax  and  low  apparent   quantum  yield  (and  vice  versa)  have  been  well  documented  (Muraoka  et  al.  2003,  Kubiske   and  Pregitzer  1996).  Even  in  areas  where  the  seedling  is  not  in  a  large  canopy  gap,  high  A-­‐ max  values  allow  the  leaf  to  assimilate  large  amounts  of  carbon  during  sunflecks  (Muraoka   et  al.  2003).  This  physiological  capability  of  oak  may  allow  the  species  to  take  advantage  of   canopy   gaps   most   effectively.   The   claim   that   red   oaks   may   be   most   poised   to   take   advantage   of   disturbance   may   seem   inconsistent   with   the   sampling   done   in   this   study,   since   only   16   eligible   saplings   were   found   out   of   117   total   trees.   The   reason   for   this   discrepancy  is  that  all  of  the  saplings  studied  were  alive  at  the  time  of  the  manipulation  in   2008;   the   distribution   and   abundance   of   trees   eligible   for   study   (1-­‐6.5   m   tall)   was   not   impacted  by  the  disturbance.  It  remains  to  be  seen  how  younger  trees  –  not  yet  sprouted  at   the  time  of  disturbance  –  respond  to  the  treatment.  This  study  suggests  that  oaks  may  be   most  successful  in  harvesting  the  light  made  available  by  formation  of  canopy  gaps.  Species   that  are  less  adept  at  attaining  a  higher  Amax  –  such  as  red  maple,  whose  Amax  was  relatively   flat   across   the   disturbance   gradient   –   will   be   at   a   disadvantage   during   disturbance.   Considering   all   the   trees   studied   in   aggregate,   Amax   increased   significantly   across   the   disturbance  gradient,  which  suggests  that  this  parameter  adjusts  to  differing  light  levels  in   the  subcanopy.  This  corroborates  other  recent  studies  at  this  location  suggesting  a  direct   positive  relationship  between  disturbance  level  and  Amax  (Goodrich-­‐Stuart  et  al.  2014).     Although  Amax  changes  in  response  to  disturbance  (becoming  more  like  sun-­‐leaves)   to  assimilate  more  carbon  dioxide  from  the  atmosphere,  the  other  physiological  parameter   examined,   apparent   quantum   yield,   showed   no   relationship   with   fraction   of   basal   area   senesced.  This  lack  of  response  to  disturbance  suggests  that  this  parameter  does  not  help   to  explain  the  maintenance  of  production  post-­‐disturbance.  Since  quantum  yield  did  not   respond   to   disturbance   and   Amax   does   not   explain   all   of   the   variation   found   in   photosynthesis  rates  at  the  leaf  level,  other  factors  must  explain  the  overall  compensation   for  production  losses  due  to  disturbance.  Much  of  this  can  likely  be  attributed  to  structural   and  light  distribution  patterns,  rather  than  physiological  changes.  Light  that  is  primarily   captured  by  the  top  layers  of  the  canopy  is  used  inefficiently  because  many  of  the  leaves  
  • 11. receiving   direct   sunlight   are   unable   to   assimilate   more   CO2   than   is   allowed   by   their   saturation   level   (Amax).   As   individuals   composing   the   canopy   senesce,   canopy   gaps   are   created  which  allow  light  to  penetrate  the  forest  in  novel  ways  and  reach  formerly  light   limited  strata  (Gough  et  al.  2010).  Shade-­‐adapted  leaves  in  lower  levels  of  the  canopy  are   able   to   take   advantage   of   these   small   increases   in   light   levels   and   move   along   their   response   curves   toward   their   Amax,   which   causes   an   overall   increase   in   carbon   dioxide   assimilated  by  the  forest.     Discussion  of  the  future  trajectory  of  growth  and  carbon  storages  of  forests  in  the   upper   Midwest   may   be   of   interest   to   earth   systems   modelers,   forest   managers,   and   policymakers.   Earth   systems   modelers   are   interested   in   refining   their   models   to   better   predict  the  behaviors  of  carbon  fluxes  and  pools,  so  it  is  therefore  important  to  investigate   parameters  and  ecosystems  that  present  uncertainty  in  their  models.  Disturbances  in  the   upper  Midwest  due  to  dynamic  succession  may  lead  to  changes  in  forest  physiology  and   structure,  which  in  turn  impact  rates  of  CO2  uptake.  Establishing  the  extent  to  which  these   factors  are  changing  is  important  so  modelers  can  decide  whether  or  not  to  incorporate   these   changes   into   already   complex   models.   For   example,   the   Biome-­‐BGC   Terrestrial   Ecosystem   Process   Model,   which   estimates   fluxes   and   storage   of   energy   and   macronutrients  for  terrestrial  ecosystems,  assumes  a  fixed  apparent  quantum  yield  over   the  course  of  forest  development  (Gough,  personal  communication,  August  8,  2014).  The   present   study   suggests   that   this   is   appropriate   since   no   change   in   quantum   yield   was   observed   across   a   disturbance   gradient   for   any   species.   This   same   model,   however,   predicted   a   decline   of   production   in   FASET,   so   the   model   is   not   complete   –   there   are   mechanisms  yet  to  be  explained,  and  further  study  of  physiological  and  structural  changes   of  forests  are  necessary  to  forecast  an  accurate  global  trajectory  of  atmospheric  CO2.                  
  • 12. Acknowledgements   I  would  first  and  foremost  like  to  thank  the  National  Science  Foundation  for  the  funding  of   this  project  through  the  “Biosphere-­‐Atmosphere-­‐Hydrosphere  Interactions  in  a  Changing   Global  Environment”  Research  Experience  for  Undergraduates  program.  Special  thanks  to   Dave   Karowe   and   Mary   Anne   Carroll   for   directing   this   program   and   offering   advice   on   experimental  design.  Chris  Vogel  acted  as  the  mentor  for  this  REU  experience,  with  Chris   Gough  also  playing  an  important  advisor  role.  Thanks  to  Jason  Tallant  and  Adam  Levick  for   their   help   with   data   processing.   Thanks   to   the   staff   at   University   of   Michigan   Biological   station  for  providing  the  resources  and  facilities  that  made  this  research  possible.  Thanks   to   the   eight   other   undergraduates   that   make   up   the   REU   cohort   at   UMBS   who   offered   support  throughout  the  project.       Literature  Cited     Dale,  V.H.,  L.A.  Joyce,  S.  McNulty,  R.P.  Neilson,  M.P.  Ayres,  M.D.  Flannigan,  P.J.  Hanson,  et  al.   2001.  Climate  Change  And  Forest  Disturbances.  Bioscience,  51:  723-­‐734.   Dixon,   R.K.,   A.M.   Solomon,   S.   Brown,   R.A.   Houghton,   M.C.   Trexier,   J.   Wisniewski.   1994.   Carbon  pools  and  flux  of  global  forest  ecosystems.  Science,  263,  5144,  185-­‐90.   Goodrich-­‐Stuart,  E,  P.S.  Curtis,  R.T.  Fahey,  C.S.  Vogel,  C.M.  Gough.  2014.    Forest  net  primary   production   resistance   across   a   gradient   of   moderate   disturbance.   Masters   Thesis,   Virginia  Commonwealth  University.  Paper  627.   Gough,  C.M.,  B.S.  Hardiman,  L.E.  Nave,  G.  Bohrer,  K.D.  Maurer,  C.S.  Vogel,  K.J.  Nadelhoffer,   P.S.   Curtis.   2013.   Sustained   carbon   uptake   and   storage   following   moderate   disturbance  in  a  Great  Lakes  forest.  Ecological  Applications,  23:  12012-­‐1215.   Gough,  C.M.,  B.S.  Hardiman,  P.S.  Curtis.  2010. Wood  net  primary  production  resilience  in  an   unmanaged  forest  transitioning  from  early  to  middle  succession.  Forest  Ecology  and   Management,  260:  36-­‐41.     Gough,   C.M.,   P.S.   Curtis,   B.S.   Hardiman,   C.M.   Scheuermann.   Carbon   storage   across   stand   development   in   North   America’s   temperate   deciduous   forests:   shifting   paradigms   and  management  options.  Frontiers  in  Ecology  and  the  Environment,  in  preparation.     Hardiman,  B.S.,  G.  Bohrer,  C.M  Gough,  C.S.  Vogel,  P.S.  Curtis.  2011.  The  role  of  canopy     structural   complexity   in   wood   net   primary   production   of   a   maturing   northern   deciduous  forest.  Ecology,  92:  1818-­‐1827.   Hardiman,  B.S.,  C.M.  Gough,  B.  Halperin.  2013.  Maintaining  high  rates  of  carbon  storage    
  • 13. in   old   forests:   A   mechanism   linking   canopy   structure   to   forest   function.   Forest   Ecology  and  Management,  298:  111-­‐119.   Kubiske,  M.E.  and  K.S.  Pregitzer.  1996.  Effects  of  elevated  CO2  and  light  availability  on  the   photosynthetic   light   response   of   trees   of   contrasting   shade   tolerance.   Tree   Physiology,  16:  351-­‐358.     Luyssaert,  S.,  E.D.  Schulze,  A.  Börner,  A.  Knohl,  D.  Hessenmöller,  B.  E.  Law,  P.  Ciais,  and  J.   Grace.  2008.  Old  growth  forests  as  global  carbon  sinks,  Nature,  455:  213–215.   Muraoka,   H,   H.   Koizumi,   R.W.   Pearcy.   2003.   Leaf   display   and   photosynthesis   of   tree   seedlings  in  a  cool  temperate  deciduous  broadleaf  forest  understorey.  Oecologica,   135:  500-­‐509.     Nave,   L.   E.,   et   al.   2011.   Disturbance   and   the   resilience   of   coupled   carbon   and   nitrogen   cycling  in  a  north  temperate  forest.  Journal  of  Geophysical  Research:  Biogeosciences   116.   Nemani,  R.  R.,  C.D.  Keeling,  H.  Hashimoto,  W.M.  Jolly,  S.C.  Piper,  C.J.  Tucker,  R.B.  Myneni,   S.W.   Running.   2003.   Climate-­‐driven   increases   in   global   terrestrial   net   primary   production  from  1982  to  1999.  Science,  300:  1560-­‐3.   Purves,  D.,  and  S.  Pacala.  2008.  Predictive  Models  of  Forest  Dynamics.  Science,  320:  1452-­‐ 1453.     Sullivan,  N.H.,  P.V  Bolstad,  J.M.  Vose.  1996.  Estimates  of  net  photosynthetic  parameters  for   twelve  tree  species  in  mature  forests  of  the  southern  Appalachians.  Tree  Physiology,   16:  397-­‐406.