ήʔϜཧ࿦#4*$ԋश
ਓήʔϜͷγϟʔϓϨΠ஋Λ‫ٻ‬ΊΔ
γϟʔϓϨΠ஋ͷఆٛ
 ͭͷެཧ
 ਓήʔϜʹ͓͚Δ‫ج‬ఈͱͳΔಛੑؔ਺
 γϟʔϓϨΠ஋Λ‫ٻ‬ΊΔ
γϟʔϓϨΠ஋ͷఆٛ
ఆٛɿγϟʔϓϨΠ஋


ಛੑؔ਺‫ܗ‬ήʔϜ ʹ͓͍ͯ
ਓͣͭϓϨΠϠʔ͕ՃΘΓશମఏ‫ܗ͕ܞ‬੒͞ΕΔ ‫ݸ‬ͷఏ‫ܗܞ‬੒͕


͢΂ͯಉ֬͡཰Ͱ‫͜ى‬Δͱ͢Δ͜ͷͱ͖ͷ֤ϓϨΠϠʔͷߩ‫౓ݙ‬ͷ‫ظ‬଴஋Λ ʹ͓͚Δ


֤ϓϨΠϠʔͷγϟʔϓϨΠ஋ͱ͍͏ϓϨΠϠʔ ͷγϟʔϓϨΠ஋Λ ͱ͢Δͱ





Λ୯ʹγϟʔϓϨΠ஋ͱ͍͏




ผද‫ݱ‬


(N, v) n!
(N, v)
i ϕi(v)
ϕi(v) =
1
n! ∑
π∈Π
(v(Pπ,i
∪ {i}) − v(Pπ,i
))
ϕ(v) = (ϕ1(v)⋯, ϕn(v))
ϕi(v) =
1
n! ∑
S:S⊆N,i∉S
s!(n − s − 1)!(v(S ∪ {i}) − v(S)), ∀i ∈ N
ͭͷެཧ
ެཧશମ߹ཧੑ


೚ҙͷ ʹରͯ͠





ެཧφϧϓϨΠϠʔʹؔ͢Δੑ࣭


೚ҙͷ ʹରͯ͠
ϓϨΠϠʔ ͕φϧϓϨΠϠʔͰ͋Ε͹





ެཧରশੑ


೚ҙͷ ʹରͯ͠
ϓϨΠϠʔ ͕ ʹ͓͍ͯରশͰ͋Ε͹





ެཧՃ๏ੑ


೚ҙͷ ʹରͯ͠

v ∈ V
∑
i∈N
ψi(v) = v(N)
v ∈ V i ∈ N ψi(v) = 0
v ∈ V i, j (N, v) ψi(v) = ψj(v)
v, u ∈ V ψi(v + u) = ψi(v) + ψi(u) ∀i ∈ N
ਓήʔϜͷ‫ج‬ఈͱͳΔಛੑؔ਺











v{1}(S) =
{
1 S = {1}, {1,2}, {1,3}, {1,4}, {1,2,3}, {1,2,4}, {1,3,4}, {1,2,3,4}
0 otherwise
v{2}(S) =
{
1 S = {2}, {1,2}, {2,3}, {2,4}, {1,2,3}, {1,2,4}, {2,3,4}, {1,2,3,4}
0 otherwise
v{3}(S) =
{
1 S = {3}, {1,3}, {2,3}, {3,4}, {1,2,3}, {1,3,4}, {2,3,4}, {1,2,3,4}
0 otherwise
v{4}(S) =
{
1 S = {4}, {1,4}, {2,4}, {3,4}, {1,2,4}, {1,3,4}, {2,3,4}, {1,2,3,4}
0 otherwise
v{1,2}(S) =
{
1 S = {1,2}, {1,2,3}, {1,2,4}, {1,2,3,4}
0 otherwise
v{1,3}(S) =
{
1 S = {1,3}, {1,2,3}, {1,3,4}, {1,2,3,4}
0 otherwise
v{1,4}(S) =
{
1 S = {1,4}, {1,2,4}, {1,3,4}, {1,2,3,4}
0 otherwise
v{2,3}(S) =
{
1 S = {2,3}, {1,2,3}, {2,3,4}, {1,2,3,4}
0 otherwise
v{2,4}(S) =
{
1 S = {2,4}, {1,2,4}, {2,3,4}, {1,2,3,4}
0 otherwise
v{3,4}(S) =
{
1 S = {3,4}, {1,3,4}, {2,3,4}, {1,2,3,4}
0 otherwise
‫ج‬ఈͱͳΔಛੑؔ਺










	ิ଍
 ‫ݸ‬ͷҎԼͷ‫ج‬ఈͱͳΔಛੑؔ਺͕ଘࡏ͢Δɿ


೚ҙͷఏ‫ܞ‬ ʹରͯ͠



v{1,2,3}(S) =
{
1 S = {1,2,3}, {1,2,3,4}
0 otherwise
v{1,2,4}(S) =
{
1 S = {1,2,4}, {1,2,3,4}
0 otherwise
v{1,3,4}(S) =
{
1 S = {1,3,4}, {1,2,3,4}
0 otherwise
v{2,3,4}(S) =
{
1 S = {2,3,4}, {1,2,3,4}
0 otherwise
v{1,2,3,4}(S) =
{
1 S = {1,2,3,4}
0 otherwise
24
− 1 = 15
R ⊆ N, R ≠ ∅
vR(S) =
{
1 R ⊆ S
0 otherwise
ਓήʔϜͷ‫ج‬ఈͱͳΔಛੑؔ਺











v{1}(S) =
{
1 S = {1}, {1,2}, {1,3}, {1,4}, {1,2,3}, {1,2,4}, {1,3,4}, {1,2,3,4}
0 otherwise
v{2}(S) =
{
1 S = {2}, {1,2}, {2,3}, {2,4}, {1,2,3}, {1,2,4}, {2,3,4}, {1,2,3,4}
0 otherwise
v{3}(S) =
{
1 S = {3}, {1,3}, {2,3}, {3,4}, {1,2,3}, {1,3,4}, {2,3,4}, {1,2,3,4}
0 otherwise
v{4}(S) =
{
1 S = {4}, {1,4}, {2,4}, {3,4}, {1,2,4}, {1,3,4}, {2,3,4}, {1,2,3,4}
0 otherwise
v{1,2}(S) =
{
1 S = {1,2}, {1,2,3}, {1,2,4}, {1,2,3,4}
0 otherwise
v{1,3}(S) =
{
1 S = {1,3}, {1,2,3}, {1,3,4}, {1,2,3,4}
0 otherwise
v{1,4}(S) =
{
1 S = {1,4}, {1,2,4}, {1,3,4}, {1,2,3,4}
0 otherwise
v{2,3}(S) =
{
1 S = {2,3}, {1,2,3}, {2,3,4}, {1,2,3,4}
0 otherwise
v{2,4}(S) =
{
1 S = {2,4}, {1,2,4}, {2,3,4}, {1,2,3,4}
0 otherwise
v{3,4}(S) =
{
1 S = {3,4}, {1,3,4}, {2,3,4}, {1,2,3,4}
0 otherwise










v{1,2,3}(S) =
{
1 S = {1,2,3}, {1,2,3,4}
0 otherwise
v{1,2,4}(S) =
{
1 S = {1,2,4}, {1,2,3,4}
0 otherwise
v{1,3,4}(S) =
{
1 S = {1,3,4}, {1,2,3,4}
0 otherwise
v{2,3,4}(S) =
{
1 S = {2,3,4}, {1,2,3,4}
0 otherwise
v{1,2,3,4}(S) =
{
1 S = {1,2,3,4}
0 otherwise
ϕΫτϧද‫ه‬ vR = (x{1}, x{2}, x{3}, x{4}, x{1,2}, x{1,3}, x{1,4}, x{2,3}, x{2,4}, x{3,4}, x{1,2,3}, x{1,2,4}, x{1,3,4}, x{2,3,4}, x{1,2,3,4})


v{1} = (1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1)
ਓήʔϜͷ‫ج‬ఈͱͳΔಛੑؔ਺











v{1}(S) =
{
1 S = {1}, {1,2}, {1,3}, {1,4}, {1,2,3}, {1,2,4}, {1,3,4}, {1,2,3,4}
0 otherwise
v{2}(S) =
{
1 S = {2}, {1,2}, {2,3}, {2,4}, {1,2,3}, {1,2,4}, {2,3,4}, {1,2,3,4}
0 otherwise
v{3}(S) =
{
1 S = {3}, {1,3}, {2,3}, {3,4}, {1,2,3}, {1,3,4}, {2,3,4}, {1,2,3,4}
0 otherwise
v{4}(S) =
{
1 S = {4}, {1,4}, {2,4}, {3,4}, {1,2,4}, {1,3,4}, {2,3,4}, {1,2,3,4}
0 otherwise
v{1,2}(S) =
{
1 S = {1,2}, {1,2,3}, {1,2,4}, {1,2,3,4}
0 otherwise
v{1,3}(S) =
{
1 S = {1,3}, {1,2,3}, {1,3,4}, {1,2,3,4}
0 otherwise
v{1,4}(S) =
{
1 S = {1,4}, {1,2,4}, {1,3,4}, {1,2,3,4}
0 otherwise
v{2,3}(S) =
{
1 S = {2,3}, {1,2,3}, {2,3,4}, {1,2,3,4}
0 otherwise
v{2,4}(S) =
{
1 S = {2,4}, {1,2,4}, {2,3,4}, {1,2,3,4}
0 otherwise
v{3,4}(S) =
{
1 S = {3,4}, {1,3,4}, {2,3,4}, {1,2,3,4}
0 otherwise










v{1,2,3}(S) =
{
1 S = {1,2,3}, {1,2,3,4}
0 otherwise
v{1,2,4}(S) =
{
1 S = {1,2,4}, {1,2,3,4}
0 otherwise
v{1,3,4}(S) =
{
1 S = {1,3,4}, {1,2,3,4}
0 otherwise
v{2,3,4}(S) =
{
1 S = {2,3,4}, {1,2,3,4}
0 otherwise
v{1,2,3,4}(S) =
{
1 S = {1,2,3,4}
0 otherwise
ϕΫτϧද‫ه‬ vR = (x{1}, x{2}, x{3}, x{4}, x{1,2}, x{1,3}, x{1,4}, x{2,3}, x{2,4}, x{3,4}, x{1,2,3}, x{1,2,4}, x{1,3,4}, x{2,3,4}, x{1,2,3,4})











v{1} = (1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1)
v{2} = (0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1)
v{3} = (0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1)
v{4} = (0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1)
v{1,2} = (0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1)
v{1,3} = (0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1)
v{1,4} = (0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1)
v{2,3} = (0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1)
v{2,4} = (0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1)
v{3,4} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1)
ਓήʔϜͷ‫ج‬ఈͱͳΔಛੑؔ਺











v{1} = (1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1)
v{2} = (0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1)
v{3} = (0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1)
v{4} = (0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1)
v{1,2} = (0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1)
v{1,3} = (0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1)
v{1,4} = (0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1)
v{2,3} = (0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1)
v{2,4} = (0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1)
v{3,4} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1)










v{1,2,3}(S) =
{
1 S = {1,2,3}, {1,2,3,4}
0 otherwise
v{1,2,4}(S) =
{
1 S = {1,2,4}, {1,2,3,4}
0 otherwise
v{1,3,4}(S) =
{
1 S = {1,3,4}, {1,2,3,4}
0 otherwise
v{2,3,4}(S) =
{
1 S = {2,3,4}, {1,2,3,4}
0 otherwise
v{1,2,3,4}(S) =
{
1 S = {1,2,3,4}
0 otherwise
ϕΫτϧද‫ه‬ vR = (x{1}, x{2}, x{3}, x{4}, x{1,2}, x{1,3}, x{1,4}, x{2,3}, x{2,4}, x{3,4}, x{1,2,3}, x{1,2,4}, x{1,3,4}, x{2,3,4}, x{1,2,3,4})





v{1,2,3} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1)
v{1,2,4} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1)
v{1,3,4} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1)
v{2,3,4} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1)
v{1,2,3,4} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)
ਓήʔϜͷ‫ج‬ఈͱͳΔಛੑؔ਺











v{1} = (1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1)
v{2} = (0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1)
v{3} = (0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1)
v{4} = (0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1)
v{1,2} = (0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1)
v{1,3} = (0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1)
v{1,4} = (0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1)
v{2,3} = (0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1)
v{2,4} = (0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1)
v{3,4} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1)










v{1,2,3} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1)
v{1,2,4} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1)
v{1,3,4} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1)
v{2,3,4} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1)
v{1,2,3,4} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)
ϕΫτϧද‫ه‬ vR = (x{1}, x{2}, x{3}, x{4}, x{1,2}, x{1,3}, x{1,4}, x{2,3}, x{2,4}, x{3,4}, x{1,2,3}, x{1,2,4}, x{1,3,4}, x{2,3,4}, x{1,2,3,4})











v{1} = (1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1)
v{2} = (0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1)
v{3} = (0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1)
v{4} = (0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1)
v{1,2} = (0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1)
v{1,3} = (0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1)
v{1,4} = (0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1)
v{2,3} = (0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1)
v{2,4} = (0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1)
v{3,4} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1)










v{1,2,3} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1)
v{1,2,4} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1)
v{1,3,4} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1)
v{2,3,4} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1)
v{1,2,3,4} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)
vR = (x{1}, x{2}, x{3}, x{4}, x{1,2}, x{1,3}, x{1,4}, x{2,3}, x{2,4}, x{3,4}, x{1,2,3}, x{1,2,4}, x{1,3,4}, x{2,3,4}, x{1,2,3,4})
֤ಛੑؔ਺ʹରͯ͠ެཧΛຬͨ͢ ͷ஋
ψ
֤ήʔϜ 
 ʹ͓͍ͯ


ʹ‫·ؚ‬ΕΔϓϨΠϠʔ͸ରশ


ʹ‫·ؚ‬Εͳ͍ϓϨΠϠʔ͸φϧϓϨΠϠʔ
vR R ⊆ N, R ≠ ∅
R
R











v{1} = (1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1)
v{2} = (0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1)
v{3} = (0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1)
v{4} = (0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1)
v{1,2} = (0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1)
v{1,3} = (0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1)
v{1,4} = (0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1)
v{2,3} = (0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1)
v{2,4} = (0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1)
v{3,4} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1)










v{1,2,3} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1)
v{1,2,4} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1)
v{1,3,4} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1)
v{2,3,4} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1)
v{1,2,3,4} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)
vR = (x{1}, x{2}, x{3}, x{4}, x{1,2}, x{1,3}, x{1,4}, x{2,3}, x{2,4}, x{3,4}, x{1,2,3}, x{1,2,4}, x{1,3,4}, x{2,3,4}, x{1,2,3,4})
֤ಛੑؔ਺ʹରͯ͠ެཧΛຬͨ͢ ͷ஋
ψ
֤ήʔϜ 
 ʹ͓͍ͯ


ʹ‫·ؚ‬ΕΔϓϨΠϠʔ͸ରশ


ʹ‫·ؚ‬Εͳ͍ϓϨΠϠʔ͸φϧϓϨΠϠʔ
vR R ⊆ N, R ≠ ∅
R
R














ψ(v{1}) = (ψ1(v{1}), ψ2(v{1}), ψ3(v{1}), ψ4(v{1})) = (1,0,0,0)
ψ(v{2}) = (0,1,0,0)
ψ(v{3}) = (0,0,1,0)
ψ(v{4}) = (0,0,0,1)
ψ(v{1,2}) =
(
1
2
,
1
2
, 0, 0
)
ψ(v{1,3}) =
(
1
2
, 0,
1
2
, 0
)
ψ(v{1,4}) =
(
1
2
, 0, 0,
1
2)
ψ(v{2,3}) =
(
0,
1
2
,
1
2
, 0
)
ψ(v{2,4}) =
(
0,
1
2
, 0,
1
2)
ψ(v{3,4}) =
(
0, 0,
1
2
,
1
2)
֤ήʔϜ 
 ʹ͓͍ͯ


ʹ‫·ؚ‬ΕΔϓϨΠϠʔ͸ରশ


ʹ‫·ؚ‬Εͳ͍ϓϨΠϠʔ͸φϧϓϨΠϠʔ
vR R ⊆ N, R ≠ ∅
R
R













ψ(v{1}) = (1,0,0,0)
ψ(v{2}) = (0,1,0,0)
ψ(v{3}) = (0,0,1,0)
ψ(v{4}) = (0,0,0,1)
ψ(v{1,2}) =
(
1
2
,
1
2
, 0, 0
)
ψ(v{1,3}) =
(
1
2
, 0,
1
2
, 0
)
ψ(v{1,4}) =
(
1
2
, 0, 0,
1
2)
ψ(v{2,3}) =
(
0,
1
2
,
1
2
, 0
)
ψ(v{2,4}) =
(
0,
1
2
, 0,
1
2)
ψ(v{3,4}) =
(
0, 0,
1
2
,
1
2)










v{1,2,3} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1)
v{1,2,4} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1)
v{1,3,4} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1)
v{2,3,4} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1)
v{1,2,3,4} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)
vR = (x{1}, x{2}, x{3}, x{4}, x{1,2}, x{1,3}, x{1,4}, x{2,3}, x{2,4}, x{3,4}, x{1,2,3}, x{1,2,4}, x{1,3,4}, x{2,3,4}, x{1,2,3,4})
֤ಛੑؔ਺ʹରͯ͠ެཧΛຬͨ͢ ͷ஋
ψ






ψ(v{1,2,3}) =
(
1
3
,
1
3
,
1
3
, 0
)
ψ(v{1,2,4}) =
(
1
3
,
1
3
, 0,
1
3)
ψ(v{1,3,4}) =
(
1
3
, 0,
1
3
,
1
3)
ψ(v{2,3,4}) =
(
0,
1
3
,
1
3
,
1
3)
ψ(v{1,2,3,4}) =
(
1
4
,
1
4
,
1
4
,
1
4)
֤ήʔϜ 
 ʹ͓͍ͯ


ʹ‫·ؚ‬ΕΔϓϨΠϠʔ͸ରশ


ʹ‫·ؚ‬Εͳ͍ϓϨΠϠʔ͸φϧϓϨΠϠʔ
vR R ⊆ N, R ≠ ∅
R
R













ψ(v{1}) = (1,0,0,0)
ψ(v{2}) = (0,1,0,0)
ψ(v{3}) = (0,0,1,0)
ψ(v{4}) = (0,0,0,1)
ψ(v{1,2}) =
(
1
2
,
1
2
, 0, 0
)
ψ(v{1,3}) =
(
1
2
, 0,
1
2
, 0
)
ψ(v{1,4}) =
(
1
2
, 0, 0,
1
2)
ψ(v{2,3}) =
(
0,
1
2
,
1
2
, 0
)
ψ(v{2,4}) =
(
0,
1
2
, 0,
1
2)
ψ(v{3,4}) =
(
0, 0,
1
2
,
1
2)










ψ(v{1,2,3}) =
(
1
3
,
1
3
,
1
3
, 0
)
ψ(v{1,2,4}) =
(
1
3
,
1
3
, 0,
1
3)
ψ(v{1,3,4}) =
(
1
3
, 0,
1
3
,
1
3)
ψ(v{2,3,4}) =
(
0,
1
3
,
1
3
,
1
3)
ψ(v{1,2,3,4}) =
(
1
4
,
1
4
,
1
4
,
1
4)
vR = (x{1}, x{2}, x{3}, x{4}, x{1,2}, x{1,3}, x{1,4}, x{2,3}, x{2,4}, x{3,4}, x{1,2,3}, x{1,2,4}, x{1,3,4}, x{2,3,4}, x{1,2,3,4})
֤ಛੑؔ਺ʹରͯ͠ެཧΛຬͨ͢ ͷ஋
ψ



 
 
 
 







	
͜ͷήʔϜʹ͓͚ΔγϟʔϓϨΠ஋Λ‫ٻ‬ΊΑ


	
	
Ͱ‫ٻ‬Ίͨ஋Λ‫ج‬ఈͱͳΔಛੑؔ਺Λ༻͍ͯಋग़ͤΑ


͜͜Ͱ೚ҙͷಛੑؔ਺͸
֤ಛੑؔ਺ΛϕΫτϧͱΈͳͯ͠



ҎԼͷ‫Ͱܗ‬Ұҙʹද‫͖Ͱݱ‬Δ͜ͱ͸ར༻ͯ͠Α͍







v({1,2,3,4}) = 10 v({1,2,3}) = 6 v({1,2,4}) = 6 v({1,3,4}) = 5 v({2,3,4}) = 5
v({1,2}) = 6 v({1,3}) = 4 v({1,4}) = 4 v({2,3}) = 3 v({2,4}) = 4 v({3,4}) = 3
v({1}) = v({2}) = v({3}) = v({4}) = v(∅) = 0
v = α1v{1} + α2v{2} + α3v{3} + α4v{4} + α12v{1,2} + α13v{1,3} + α14v{1,4} + α23v{2,3} + α24v{2,4} + α34v{3,4}
+α123v{1,2,3} + α124v{1,2,4} + α134v{1,3,4} + α234v{2,3,4} + α1234v{1,2,3,4}
໰୊



 
 
 
 





	
͜ͷήʔϜʹ͓͚ΔγϟʔϓϨΠ஋Λ‫ٻ‬ΊΑ


ߩ‫౓ݙ‬ͷ‫ظ‬଴஋Λ‫ٻ‬ΊΕ͹Α͍














v({1,2,3,4}) = 10 v({1,2,3}) = 6 v({1,2,4}) = 6 v({1,3,4}) = 5 v({2,3,4}) = 5
v({1,2}) = 6 v({1,3}) = 4 v({1,4}) = 4 v({2,3}) = 3 v({2,4}) = 4 v({3,4}) = 3
v({1}) = v({2}) = v({3}) = v({4}) = v(∅) = 0
ϕ1(v) =
1
4!
72 =
72
24
= 3
ϕ2(v) =
1
4!
68 =
68
24
=
17
6
ϕ3(v) =
1
4!
48 =
48
24
= 2
ϕ4(v) =
1
4!
52 =
52
24
=
13
6
ϕ(v) =
(
3,
17
6
, 2,
13
6 )
໰୊
ॱྻ



 
 
 
 





	
͜ͷήʔϜʹ͓͚ΔγϟʔϓϨΠ஋Λ‫ٻ‬ΊΑ


Λ࢖͏ͷͰ͋Ε͹


ϓϨΠϠʔʹ͍ͭͯ


ͱͯ͠͸



ͱͳΔ৔߹ͷ਺͸ ௨Γ
ߩ‫౓ݙ‬͸


ͱͳΔ৔߹ͷ਺͸ ௨Γ
ߩ‫౓ݙ‬͸


ͱͳΔ৔߹ͷ਺͸ ௨Γ
ߩ‫౓ݙ‬͸


ͱͳΔ৔߹ͷ਺͸ ௨Γ
ߩ‫౓ݙ‬͸


ͱͳΔ৔߹ͷ਺͸ ௨Γ
ߩ‫౓ݙ‬͸


ͱͳΔ৔߹ͷ਺͸ ௨Γ
ߩ‫౓ݙ‬͸


ͱͳΔ৔߹ͷ਺͸ ௨Γ
ߩ‫౓ݙ‬͸


ͱͳΔ৔߹ͷ਺͸ ௨Γ
ߩ‫౓ݙ‬͸




v({1,2,3,4}) = 10 v({1,2,3}) = 6 v({1,2,4}) = 6 v({1,3,4}) = 5 v({2,3,4}) = 5
v({1,2}) = 6 v({1,3}) = 4 v({1,4}) = 4 v({2,3}) = 3 v({2,4}) = 4 v({3,4}) = 3
v({1}) = v({2}) = v({3}) = v({4}) = v(∅) = 0
ϕi(v) =
1
n! ∑
S:S⊆N,i∉S
s!(n − s − 1)!(v(S ∪ {i}) − v(S)), ∀i ∈ N
S : S ⊆ N,1 ∉ S ∅, {2}, {3}, {4}, {2,3}, {2,4}, {3,4}, {2,3,4}
∅ → {1} 0!(4 − 0 − 1)! = 3! = 6
{2} → {1,2} 1!(4 − 1 − 1)! = 2
{3} → {1,3} 1!(4 − 1 − 1)! = 2
{4} → {1,4} 1!(4 − 1 − 1)! = 2
{2,3} → {1,2,3} 2!(4 − 2 − 1)! = 2
{2,4} → {1,2,4} 2!(4 − 2 − 1)! = 2
{3,4} → {1,3,4} 2!(4 − 2 − 1)! = 2
{2,3,4} → {1,2,3,4} 3!(4 − 3 − 1)! = 3! = 6
ϕ1(v) =
1
4!
(6 ⋅ 0 + 2 ⋅ 6 + 2 ⋅ 4 + 2 ⋅ 4 + 2 ⋅ 3 + 2 ⋅ 2 + 2 ⋅ 2 + 6 ⋅ 5) =
1
4!
(0 + 12 + 8 + 8 + 6 + 4 + 4 + 30) =
72
24
= 3
໰୊
ॱྻ



 
 
 
 





	
͜ͷήʔϜʹ͓͚ΔγϟʔϓϨΠ஋Λ‫ٻ‬ΊΑ


Λ࢖͏ͷͰ͋Ε͹


ϓϨΠϠʔʹ͍ͭͯ


ͱͯ͠͸



ͱͳΔ৔߹ͷ਺͸ ௨Γ
ߩ‫౓ݙ‬͸


ͱͳΔ৔߹ͷ਺͸ ௨Γ
ߩ‫౓ݙ‬͸


ͱͳΔ৔߹ͷ਺͸ ௨Γ
ߩ‫౓ݙ‬͸


ͱͳΔ৔߹ͷ਺͸ ௨Γ
ߩ‫౓ݙ‬͸


ͱͳΔ৔߹ͷ਺͸ ௨Γ
ߩ‫౓ݙ‬͸


ͱͳΔ৔߹ͷ਺͸ ௨Γ
ߩ‫౓ݙ‬͸


ͱͳΔ৔߹ͷ਺͸ ௨Γ
ߩ‫౓ݙ‬͸


ͱͳΔ৔߹ͷ਺͸ ௨Γ
ߩ‫౓ݙ‬͸




v({1,2,3,4}) = 10 v({1,2,3}) = 6 v({1,2,4}) = 6 v({1,3,4}) = 5 v({2,3,4}) = 5
v({1,2}) = 6 v({1,3}) = 4 v({1,4}) = 4 v({2,3}) = 3 v({2,4}) = 4 v({3,4}) = 3
v({1}) = v({2}) = v({3}) = v({4}) = v(∅) = 0
ϕi(v) =
1
n! ∑
S:S⊆N,i∉S
s!(n − s − 1)!(v(S ∪ {i}) − v(S)), ∀i ∈ N
S : S ⊆ N,2 ∉ S ∅, {1}, {3}, {4}, {1,3}, {1,4}, {3,4}, {1,3,4}
∅ → {2} 0!(4 − 0 − 1)! = 3! = 6
{1} → {1,2} 1!(4 − 1 − 1)! = 2
{3} → {2,3} 1!(4 − 1 − 1)! = 2
{4} → {2,4} 1!(4 − 1 − 1)! = 2
{1,3} → {1,2,3} 2!(4 − 2 − 1)! = 2
{1,4} → {1,2,4} 2!(4 − 2 − 1)! = 2
{3,4} → {2,3,4} 2!(4 − 2 − 1)! = 2
{1,3,4} → {1,2,3,4} 3!(4 − 3 − 1)! = 3! = 6
ϕ1(v) =
1
4!
(6 ⋅ 0 + 2 ⋅ 6 + 2 ⋅ 3 + 2 ⋅ 4 + 2 ⋅ 2 + 2 ⋅ 2 + 2 ⋅ 2 + 6 ⋅ 5) =
1
4!
(0 + 12 + 6 + 8 + 4 + 4 + 4 + 30) =
68
24
=
17
6
໰୊
ॱྻ



 
 
 
 





	
͜ͷήʔϜʹ͓͚ΔγϟʔϓϨΠ஋Λ‫ٻ‬ΊΑ


Λ࢖͏ͷͰ͋Ε͹


ϓϨΠϠʔʹ͍ͭͯ


ͱͯ͠͸



ͱͳΔ৔߹ͷ਺͸ ௨Γ
ߩ‫౓ݙ‬͸


ͱͳΔ৔߹ͷ਺͸ ௨Γ
ߩ‫౓ݙ‬͸


ͱͳΔ৔߹ͷ਺͸ ௨Γ
ߩ‫౓ݙ‬͸


ͱͳΔ৔߹ͷ਺͸ ௨Γ
ߩ‫౓ݙ‬͸


ͱͳΔ৔߹ͷ਺͸ ௨Γ
ߩ‫౓ݙ‬͸


ͱͳΔ৔߹ͷ਺͸ ௨Γ
ߩ‫౓ݙ‬͸


ͱͳΔ৔߹ͷ਺͸ ௨Γ
ߩ‫౓ݙ‬͸


ͱͳΔ৔߹ͷ਺͸ ௨Γ
ߩ‫౓ݙ‬͸




v({1,2,3,4}) = 10 v({1,2,3}) = 6 v({1,2,4}) = 6 v({1,3,4}) = 5 v({2,3,4}) = 5
v({1,2}) = 6 v({1,3}) = 4 v({1,4}) = 4 v({2,3}) = 3 v({2,4}) = 4 v({3,4}) = 3
v({1}) = v({2}) = v({3}) = v({4}) = v(∅) = 0
ϕi(v) =
1
n! ∑
S:S⊆N,i∉S
s!(n − s − 1)!(v(S ∪ {i}) − v(S)), ∀i ∈ N
S : S ⊆ N,3 ∉ S ∅, {1}, {2}, {4}, {1,2}, {1,4}, {2,4}, {1,2,4}
∅ → {3} 0!(4 − 0 − 1)! = 3! = 6
{1} → {1,3} 1!(4 − 1 − 1)! = 2
{2} → {2,3} 1!(4 − 1 − 1)! = 2
{4} → {3,4} 1!(4 − 1 − 1)! = 2
{1,2} → {1,2,3} 2!(4 − 2 − 1)! = 2
{1,4} → {1,3,4} 2!(4 − 2 − 1)! = 2
{2,4} → {2,3,4} 2!(4 − 2 − 1)! = 2
{1,2,4} → {1,2,3,4} 3!(4 − 3 − 1)! = 3! = 6
ϕ1(v) =
1
4!
(6 ⋅ 0 + 2 ⋅ 4 + 2 ⋅ 3 + 2 ⋅ 3 + 2 ⋅ 0 + 2 ⋅ 1 + 2 ⋅ 1 + 6 ⋅ 4) =
1
4!
(0 + 8 + 6 + 6 + 0 + 2 + 2 + 24) =
48
24
= 2
໰୊
ॱྻ



 
 
 
 





	
͜ͷήʔϜʹ͓͚ΔγϟʔϓϨΠ஋Λ‫ٻ‬ΊΑ


Λ࢖͏ͷͰ͋Ε͹


ϓϨΠϠʔʹ͍ͭͯ


ͱͯ͠͸



ͱͳΔ৔߹ͷ਺͸ ௨Γ
ߩ‫౓ݙ‬͸


ͱͳΔ৔߹ͷ਺͸ ௨Γ
ߩ‫౓ݙ‬͸


ͱͳΔ৔߹ͷ਺͸ ௨Γ
ߩ‫౓ݙ‬͸


ͱͳΔ৔߹ͷ਺͸ ௨Γ
ߩ‫౓ݙ‬͸


ͱͳΔ৔߹ͷ਺͸ ௨Γ
ߩ‫౓ݙ‬͸


ͱͳΔ৔߹ͷ਺͸ ௨Γ
ߩ‫౓ݙ‬͸


ͱͳΔ৔߹ͷ਺͸ ௨Γ
ߩ‫౓ݙ‬͸


ͱͳΔ৔߹ͷ਺͸ ௨Γ
ߩ‫౓ݙ‬͸




v({1,2,3,4}) = 10 v({1,2,3}) = 6 v({1,2,4}) = 6 v({1,3,4}) = 5 v({2,3,4}) = 5
v({1,2}) = 6 v({1,3}) = 4 v({1,4}) = 4 v({2,3}) = 3 v({2,4}) = 4 v({3,4}) = 3
v({1}) = v({2}) = v({3}) = v({4}) = v(∅) = 0
ϕi(v) =
1
n! ∑
S:S⊆N,i∉S
s!(n − s − 1)!(v(S ∪ {i}) − v(S)), ∀i ∈ N
S : S ⊆ N,4 ∉ S ∅, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}
∅ → {4} 0!(4 − 0 − 1)! = 3! = 6
{1} → {1,4} 1!(4 − 1 − 1)! = 2
{2} → {2,4} 1!(4 − 1 − 1)! = 2
{3} → {3,4} 1!(4 − 1 − 1)! = 2
{1,2} → {1,2,4} 2!(4 − 2 − 1)! = 2
{1,3} → {1,3,4} 2!(4 − 2 − 1)! = 2
{2,3} → {2,3,4} 2!(4 − 2 − 1)! = 2
{1,2,3} → {1,2,3,4} 3!(4 − 3 − 1)! = 3! = 6
ϕ1(v) =
1
4!
(6 ⋅ 0 + 2 ⋅ 4 + 2 ⋅ 4 + 2 ⋅ 3 + 2 ⋅ 0 + 2 ⋅ 1 + 2 ⋅ 2 + 6 ⋅ 4) =
1
4!
(0 + 8 + 8 + 6 + 0 + 2 + 4 + 24) =
52
24
=
13
6
໰୊
ॱྻ
͕ҎԼͷ‫͚ॻͰܗ‬ΔͷͰ



֤܎਺Λ‫ݩ‬ͷήʔϜʹ͓͚Δಛੑؔ਺ͷ஋Ͱද‫͢ݱ‬Δ













 



 


 





͜ͷϕΫτϧͷཁૉ໨͸ ʹର͢Δಛੑؔ਺஋Ͱ͋Δ͔Β





ಉ༷ʹ
 
 
 ͕‫͑ݴ‬Δ
v
v = α1v{1} + α2v{2} + α3v{3} + α4v{4}
+α12v{1,2} + α13v{1,3} + α14v{1,4} + α23v{2,3} + α24v{2,4} + α34v{3,4}
+α123v{1,2,3} + α124v{1,2,4} + α134v{1,3,4} + α234v{2,3,4} + α1234v{1,2,3,4}
= (α1, α2, α3, α4,
α1 + α2 + α12, α1 + α3 + α13, α1 + α4 + α14, α2 + α3 + α23, α2 + α4 + α24, α3 + α4 + α34
α1 + α2 + α3 + α12 + α13 + α23 + α123, α1 + α2 + α4 + α12 + α14 + α24 + α124
α1 + α3 + α4 + α13 + α14 + α34 + α134, α2 + α3 + α4 + α23 + α24 + α34 + α234
α1 + α2 + α3 + α4 + α12 + α13 + α14 + α23 + α24 + α34 + α123 + α124 + α134 + α234 + α1234)
{1}
α1 = v({1}) = 0
α2 = v({2}) = 0 α3 = v({3}) = 0 α4 = v({4}) = 0
໰୊

















v{1} = (1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1)
v{2} = (0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1)
v{3} = (0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1)
v{4} = (0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1)
v{1,2} = (0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1)
v{1,3} = (0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1)
v{1,4} = (0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1)
v{2,3} = (0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1)
v{2,4} = (0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1)
v{3,4} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1)
v{1,2,3} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1)
v{1,2,4} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1)
v{1,3,4} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1)
v{2,3,4} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1)
v{1,2,3,4} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)
vR = (x{1}, x{2}, x{3}, x{4}, x{1,2}, x{1,3}, x{1,4}, x{2,3}, x{2,4}, x{3,4}, x{1,2,3}, x{1,2,4}, x{1,3,4}, x{2,3,4}, x{1,2,3,4})


 



 


 





͜ͷϕΫτϧͷཁૉ໨͸ ʹର͢Δಛੑؔ਺஋Ͱ͋Δ͔Β





ಉ༷ʹ
 
 
 
 
 
v = (0, 0, 0, 0,
α12, α13, α14, α23, α24, α34
α12 + α13 + α23 + α123, α12 + α14 + α24 + α124
α13 + α14 + α34 + α134, α23 + α24 + α34 + α234
α12 + α13 + α14 + α23 + α24 + α34 + α123 + α124 + α134 + α234 + α1234)
{1,2}
α1 + α2 + α12 = v({1,2}) ⇔ α12 = v({1,2}) − α1 − α2 ⇔ α12 = 6
α13 = 4 α14 = 4 α23 = 3 α24 = 4 α34 = 3
໰୊

 
 
 
 



 
 
 
 



v({1,2,3,4}) = 10 v({1,2,3}) = 6 v({1,2,4}) = 6 v({1,3,4}) = 5 v({2,3,4}) = 5
v({1,2}) = 6 v({1,3}) = 4 v({1,4}) = 4 v({2,3}) = 3 v({2,4}) = 4 v({3,4}) = 3
v({1}) = v({2}) = v({3}) = v({4}) = v(∅) = 0
vR = (x{1}, x{2}, x{3}, x{4}, x{1,2}, x{1,3}, x{1,4}, x{2,3}, x{2,4}, x{3,4}, x{1,2,3}, x{1,2,4}, x{1,3,4}, x{2,3,4}, x{1,2,3,4})


 



 


 





͜ͷϕΫτϧͷཁૉ໨͸ ʹର͢Δಛੑؔ਺஋Ͱ͋Δ͔Β





ಉ༷ʹ
 
 

v = (0, 0, 0, 0,
6, 4, 4, 3, 4, 3
13 + α123, 14 + α124
11 + α134, 10 + α234
24 + α123 + α124 + α134 + α234 + α1234)
{1,2,3}
13 + α123 = v({1,2,3}) ⇔ α123 = v({1,2,3}) − 13 ⇔ α123 = − 7
α124 = − 8 α134 = − 6 α234 = − 5
໰୊

 
 
 
 



 
 
 
 



v({1,2,3,4}) = 10 v({1,2,3}) = 6 v({1,2,4}) = 6 v({1,3,4}) = 5 v({2,3,4}) = 5
v({1,2}) = 6 v({1,3}) = 4 v({1,4}) = 4 v({2,3}) = 3 v({2,4}) = 4 v({3,4}) = 3
v({1}) = v({2}) = v({3}) = v({4}) = v(∅) = 0
vR = (x{1}, x{2}, x{3}, x{4}, x{1,2}, x{1,3}, x{1,4}, x{2,3}, x{2,4}, x{3,4}, x{1,2,3}, x{1,2,4}, x{1,3,4}, x{2,3,4}, x{1,2,3,4})


 



 


 





͜ͷϕΫτϧͷཁૉ໨͸ ʹର͢Δಛੑؔ਺஋Ͱ͋Δ͔Β







Ҏ্ΑΓ









v = (0, 0, 0, 0,
6, 4, 4, 3, 4, 3
6, 6
5, 5
−2 + α1234)
{1,2,3,4}
−2 + α1234 = v({1,2,3,4}) ⇔ α1234 = v({1,2,3,4}) + 2 ⇔ α1234 = 12
v = 0v{1} + 0v{2} + 0v{3} + 0v{4}
+6v{1,2} + 4v{1,3} + 4v{1,4} + 3v{2,3} + 4v{2,4} + 3v{3,4}
−7v{1,2,3} − 8v{1,2,4} − 6v{1,3,4} − 5v{2,3,4} + 12v{1,2,3,4}
໰୊

 
 
 
 



 
 
 
 



v({1,2,3,4}) = 10 v({1,2,3}) = 6 v({1,2,4}) = 6 v({1,3,4}) = 5 v({2,3,4}) = 5
v({1,2}) = 6 v({1,3}) = 4 v({1,4}) = 4 v({2,3}) = 3 v({2,4}) = 4 v({3,4}) = 3
v({1}) = v({2}) = v({3}) = v({4}) = v(∅) = 0
vR = (x{1}, x{2}, x{3}, x{4}, x{1,2}, x{1,3}, x{1,4}, x{2,3}, x{2,4}, x{3,4}, x{1,2,3}, x{1,2,4}, x{1,3,4}, x{2,3,4}, x{1,2,3,4})









Ճ๏ੑΑΓ









v = 0v{1} + 0v{2} + 0v{3} + 0v{4}+6v{1,2} + 4v{1,3} + 4v{1,4} + 3v{2,3} + 4v{2,4} + 3v{3,4}
−7v{1,2,3} − 8v{1,2,4} − 6v{1,3,4} − 5v{2,3,4} + 12v{1,2,3,4}
v + 7v{1,2,3} + 8v{1,2,4} + 6v{1,3,4} + 5v{2,3,4} = 6v{1,2} + 4v{1,3} + 4v{1,4} + 3v{2,3} + 4v{2,4} + 3v{3,4} + 12v{1,2,3,4}
ψ(v + 7v{1,2,3} + 8v{1,2,4} + 6v{1,3,4} + 5v{2,3,4}) = ψ(6v{1,2} + 4v{1,3} + 4v{1,4} + 3v{2,3} + 4v{2,4} + 3v{3,4} + 12v{1,2,3,4})
⇔ ψ(v) + 7ψ(v{1,2,3}) + 8ψ(v{1,2,4}) + 6ψ(v{1,3,4}) + 5ψ(v{2,3,4}) = 6ψ(v{1,2}) + 4ψ(v{1,3}) + 4ψ(v{1,4}) + 3ψ(v{2,3}) + 4ψ(v{2,4}) + 3ψ(v{3,4}) + 12ψ(v{1,2,3,4})
⇔ ψ(v) + 7
(
1
3
,
1
3
,
1
3
, 0
)
+ 8
(
1
3
,
1
3
, 0,
1
3)
+ 6
(
1
3
, 0,
1
3
,
1
3 )
+ 5
(
0,
1
3
,
1
3
,
1
3)
= 6
(
1
2
,
1
2
, 0, 0
)
+ 4
(
1
2
, 0,
1
2
, 0
)
+ 4
(
1
2
, 0, 0,
1
2)
+ 3
(
0,
1
2
,
1
2
, 0
)
+ 4
(
0,
1
2
, 0,
1
2)
+ 3
(
0, 0,
1
2
,
1
2)
+ 12
(
1
4
,
1
4
,
1
4
,
1
4)
⇔ ψ(v) +
(
7,
20
3
, 6,
19
3 )
=
(
10,
19
2
, 8,
17
2 )
⇔ ψ(v) =
(
3,
17
6
, 2,
13
6 )
໰୊








ψ(v{1,2}) =
(
1
2
,
1
2
, 0, 0
)
ψ(v{1,3}) =
(
1
2
, 0,
1
2
, 0
)
ψ(v{1,4}) =
(
1
2
, 0, 0,
1
2)
ψ(v{2,3}) =
(
0,
1
2
,
1
2
, 0
)
ψ(v{2,4}) =
(
0,
1
2
, 0,
1
2)
ψ(v{3,4}) =
(
0, 0,
1
2
,
1
2)





ψ(v{1,2,3}) =
(
1
3
,
1
3
,
1
3
, 0
)
ψ(v{1,2,4}) =
(
1
3
,
1
3
, 0,
1
3)
ψ(v{1,3,4}) =
(
1
3
, 0,
1
3
,
1
3)
ψ(v{2,3,4}) =
(
0,
1
3
,
1
3
,
1
3)
ψ(v{1,2,3,4}) =
(
1
4
,
1
4
,
1
4
,
1
4)
ήʔϜཧ࿦#4*$ԋश
ਓήʔϜͷγϟʔϓϨΠ஋Λ‫ٻ‬ΊΔ
࣍ճɿԋश

ゲーム理論BASIC 演習36 -4人ゲームのシャープレイ値を求める-

  • 1.
  • 2.
  • 3.
    γϟʔϓϨΠ஋ͷఆٛ ఆٛɿγϟʔϓϨΠ஋ 
 ಛੑؔ਺‫ܗ‬ήʔϜ ʹ͓͍ͯ ਓͣͭϓϨΠϠʔ͕ՃΘΓશମఏ‫ܗ͕ܞ‬੒͞ΕΔ ‫ݸ‬ͷఏ‫ܗܞ‬੒͕ 
 ͢΂ͯಉ֬͡཰Ͱ‫͜ى‬Δͱ͢Δ͜ͷͱ͖ͷ֤ϓϨΠϠʔͷߩ‫౓ݙ‬ͷ‫ظ‬଴஋Λʹ͓͚Δ 
 ֤ϓϨΠϠʔͷγϟʔϓϨΠ஋ͱ͍͏ϓϨΠϠʔ ͷγϟʔϓϨΠ஋Λ ͱ͢Δͱ 
 
 Λ୯ʹγϟʔϓϨΠ஋ͱ͍͏ 
 
 ผද‫ݱ‬ 
 (N, v) n! (N, v) i ϕi(v) ϕi(v) = 1 n! ∑ π∈Π (v(Pπ,i ∪ {i}) − v(Pπ,i )) ϕ(v) = (ϕ1(v)⋯, ϕn(v)) ϕi(v) = 1 n! ∑ S:S⊆N,i∉S s!(n − s − 1)!(v(S ∪ {i}) − v(S)), ∀i ∈ N
  • 4.
    ͭͷެཧ ެཧશମ߹ཧੑ 
 ೚ҙͷ ʹରͯ͠ 
 
 ެཧφϧϓϨΠϠʔʹؔ͢Δੑ࣭ 
 ೚ҙͷ ʹରͯ͠ ϓϨΠϠʔ͕φϧϓϨΠϠʔͰ͋Ε͹ 
 
 ެཧରশੑ 
 ೚ҙͷ ʹରͯ͠ ϓϨΠϠʔ ͕ ʹ͓͍ͯରশͰ͋Ε͹ 
 
 ެཧՃ๏ੑ 
 ೚ҙͷ ʹରͯ͠ v ∈ V ∑ i∈N ψi(v) = v(N) v ∈ V i ∈ N ψi(v) = 0 v ∈ V i, j (N, v) ψi(v) = ψj(v) v, u ∈ V ψi(v + u) = ψi(v) + ψi(u) ∀i ∈ N
  • 5.
    ਓήʔϜͷ‫ج‬ఈͱͳΔಛੑؔ਺ 



 




 v{1}(S) = { 1 S= {1}, {1,2}, {1,3}, {1,4}, {1,2,3}, {1,2,4}, {1,3,4}, {1,2,3,4} 0 otherwise v{2}(S) = { 1 S = {2}, {1,2}, {2,3}, {2,4}, {1,2,3}, {1,2,4}, {2,3,4}, {1,2,3,4} 0 otherwise v{3}(S) = { 1 S = {3}, {1,3}, {2,3}, {3,4}, {1,2,3}, {1,3,4}, {2,3,4}, {1,2,3,4} 0 otherwise v{4}(S) = { 1 S = {4}, {1,4}, {2,4}, {3,4}, {1,2,4}, {1,3,4}, {2,3,4}, {1,2,3,4} 0 otherwise v{1,2}(S) = { 1 S = {1,2}, {1,2,3}, {1,2,4}, {1,2,3,4} 0 otherwise v{1,3}(S) = { 1 S = {1,3}, {1,2,3}, {1,3,4}, {1,2,3,4} 0 otherwise v{1,4}(S) = { 1 S = {1,4}, {1,2,4}, {1,3,4}, {1,2,3,4} 0 otherwise v{2,3}(S) = { 1 S = {2,3}, {1,2,3}, {2,3,4}, {1,2,3,4} 0 otherwise v{2,4}(S) = { 1 S = {2,4}, {1,2,4}, {2,3,4}, {1,2,3,4} 0 otherwise v{3,4}(S) = { 1 S = {3,4}, {1,3,4}, {2,3,4}, {1,2,3,4} 0 otherwise ‫ج‬ఈͱͳΔಛੑؔ਺ 



 
 

 ิ଍ ‫ݸ‬ͷҎԼͷ‫ج‬ఈͱͳΔಛੑؔ਺͕ଘࡏ͢Δɿ 
 ೚ҙͷఏ‫ܞ‬ ʹରͯ͠ 
 v{1,2,3}(S) = { 1 S = {1,2,3}, {1,2,3,4} 0 otherwise v{1,2,4}(S) = { 1 S = {1,2,4}, {1,2,3,4} 0 otherwise v{1,3,4}(S) = { 1 S = {1,3,4}, {1,2,3,4} 0 otherwise v{2,3,4}(S) = { 1 S = {2,3,4}, {1,2,3,4} 0 otherwise v{1,2,3,4}(S) = { 1 S = {1,2,3,4} 0 otherwise 24 − 1 = 15 R ⊆ N, R ≠ ∅ vR(S) = { 1 R ⊆ S 0 otherwise
  • 6.
    ਓήʔϜͷ‫ج‬ఈͱͳΔಛੑؔ਺ 



 




 v{1}(S) = { 1 S= {1}, {1,2}, {1,3}, {1,4}, {1,2,3}, {1,2,4}, {1,3,4}, {1,2,3,4} 0 otherwise v{2}(S) = { 1 S = {2}, {1,2}, {2,3}, {2,4}, {1,2,3}, {1,2,4}, {2,3,4}, {1,2,3,4} 0 otherwise v{3}(S) = { 1 S = {3}, {1,3}, {2,3}, {3,4}, {1,2,3}, {1,3,4}, {2,3,4}, {1,2,3,4} 0 otherwise v{4}(S) = { 1 S = {4}, {1,4}, {2,4}, {3,4}, {1,2,4}, {1,3,4}, {2,3,4}, {1,2,3,4} 0 otherwise v{1,2}(S) = { 1 S = {1,2}, {1,2,3}, {1,2,4}, {1,2,3,4} 0 otherwise v{1,3}(S) = { 1 S = {1,3}, {1,2,3}, {1,3,4}, {1,2,3,4} 0 otherwise v{1,4}(S) = { 1 S = {1,4}, {1,2,4}, {1,3,4}, {1,2,3,4} 0 otherwise v{2,3}(S) = { 1 S = {2,3}, {1,2,3}, {2,3,4}, {1,2,3,4} 0 otherwise v{2,4}(S) = { 1 S = {2,4}, {1,2,4}, {2,3,4}, {1,2,3,4} 0 otherwise v{3,4}(S) = { 1 S = {3,4}, {1,3,4}, {2,3,4}, {1,2,3,4} 0 otherwise 



 
 

 v{1,2,3}(S) = { 1 S = {1,2,3}, {1,2,3,4} 0 otherwise v{1,2,4}(S) = { 1 S = {1,2,4}, {1,2,3,4} 0 otherwise v{1,3,4}(S) = { 1 S = {1,3,4}, {1,2,3,4} 0 otherwise v{2,3,4}(S) = { 1 S = {2,3,4}, {1,2,3,4} 0 otherwise v{1,2,3,4}(S) = { 1 S = {1,2,3,4} 0 otherwise ϕΫτϧද‫ه‬ vR = (x{1}, x{2}, x{3}, x{4}, x{1,2}, x{1,3}, x{1,4}, x{2,3}, x{2,4}, x{3,4}, x{1,2,3}, x{1,2,4}, x{1,3,4}, x{2,3,4}, x{1,2,3,4}) 
 v{1} = (1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1)
  • 7.
    ਓήʔϜͷ‫ج‬ఈͱͳΔಛੑؔ਺ 



 




 v{1}(S) = { 1 S= {1}, {1,2}, {1,3}, {1,4}, {1,2,3}, {1,2,4}, {1,3,4}, {1,2,3,4} 0 otherwise v{2}(S) = { 1 S = {2}, {1,2}, {2,3}, {2,4}, {1,2,3}, {1,2,4}, {2,3,4}, {1,2,3,4} 0 otherwise v{3}(S) = { 1 S = {3}, {1,3}, {2,3}, {3,4}, {1,2,3}, {1,3,4}, {2,3,4}, {1,2,3,4} 0 otherwise v{4}(S) = { 1 S = {4}, {1,4}, {2,4}, {3,4}, {1,2,4}, {1,3,4}, {2,3,4}, {1,2,3,4} 0 otherwise v{1,2}(S) = { 1 S = {1,2}, {1,2,3}, {1,2,4}, {1,2,3,4} 0 otherwise v{1,3}(S) = { 1 S = {1,3}, {1,2,3}, {1,3,4}, {1,2,3,4} 0 otherwise v{1,4}(S) = { 1 S = {1,4}, {1,2,4}, {1,3,4}, {1,2,3,4} 0 otherwise v{2,3}(S) = { 1 S = {2,3}, {1,2,3}, {2,3,4}, {1,2,3,4} 0 otherwise v{2,4}(S) = { 1 S = {2,4}, {1,2,4}, {2,3,4}, {1,2,3,4} 0 otherwise v{3,4}(S) = { 1 S = {3,4}, {1,3,4}, {2,3,4}, {1,2,3,4} 0 otherwise 



 
 

 v{1,2,3}(S) = { 1 S = {1,2,3}, {1,2,3,4} 0 otherwise v{1,2,4}(S) = { 1 S = {1,2,4}, {1,2,3,4} 0 otherwise v{1,3,4}(S) = { 1 S = {1,3,4}, {1,2,3,4} 0 otherwise v{2,3,4}(S) = { 1 S = {2,3,4}, {1,2,3,4} 0 otherwise v{1,2,3,4}(S) = { 1 S = {1,2,3,4} 0 otherwise ϕΫτϧද‫ه‬ vR = (x{1}, x{2}, x{3}, x{4}, x{1,2}, x{1,3}, x{1,4}, x{2,3}, x{2,4}, x{3,4}, x{1,2,3}, x{1,2,4}, x{1,3,4}, x{2,3,4}, x{1,2,3,4}) 



 




 v{1} = (1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1) v{2} = (0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1) v{3} = (0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1) v{4} = (0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1) v{1,2} = (0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1) v{1,3} = (0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1) v{1,4} = (0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1) v{2,3} = (0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1) v{2,4} = (0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1) v{3,4} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1)
  • 8.
    ਓήʔϜͷ‫ج‬ఈͱͳΔಛੑؔ਺ 



 




 v{1} = (1,0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1) v{2} = (0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1) v{3} = (0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1) v{4} = (0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1) v{1,2} = (0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1) v{1,3} = (0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1) v{1,4} = (0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1) v{2,3} = (0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1) v{2,4} = (0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1) v{3,4} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1) 



 
 

 v{1,2,3}(S) = { 1 S = {1,2,3}, {1,2,3,4} 0 otherwise v{1,2,4}(S) = { 1 S = {1,2,4}, {1,2,3,4} 0 otherwise v{1,3,4}(S) = { 1 S = {1,3,4}, {1,2,3,4} 0 otherwise v{2,3,4}(S) = { 1 S = {2,3,4}, {1,2,3,4} 0 otherwise v{1,2,3,4}(S) = { 1 S = {1,2,3,4} 0 otherwise ϕΫτϧද‫ه‬ vR = (x{1}, x{2}, x{3}, x{4}, x{1,2}, x{1,3}, x{1,4}, x{2,3}, x{2,4}, x{3,4}, x{1,2,3}, x{1,2,4}, x{1,3,4}, x{2,3,4}, x{1,2,3,4}) 



 v{1,2,3} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1) v{1,2,4} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1) v{1,3,4} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1) v{2,3,4} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1) v{1,2,3,4} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)
  • 9.
    ਓήʔϜͷ‫ج‬ఈͱͳΔಛੑؔ਺ 



 




 v{1} = (1,0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1) v{2} = (0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1) v{3} = (0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1) v{4} = (0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1) v{1,2} = (0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1) v{1,3} = (0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1) v{1,4} = (0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1) v{2,3} = (0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1) v{2,4} = (0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1) v{3,4} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1) 



 
 

 v{1,2,3} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1) v{1,2,4} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1) v{1,3,4} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1) v{2,3,4} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1) v{1,2,3,4} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) ϕΫτϧද‫ه‬ vR = (x{1}, x{2}, x{3}, x{4}, x{1,2}, x{1,3}, x{1,4}, x{2,3}, x{2,4}, x{3,4}, x{1,2,3}, x{1,2,4}, x{1,3,4}, x{2,3,4}, x{1,2,3,4})
  • 10.
    



 




 v{1} = (1,0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1) v{2} = (0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1) v{3} = (0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1) v{4} = (0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1) v{1,2} = (0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1) v{1,3} = (0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1) v{1,4} = (0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1) v{2,3} = (0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1) v{2,4} = (0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1) v{3,4} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1) 



 
 

 v{1,2,3} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1) v{1,2,4} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1) v{1,3,4} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1) v{2,3,4} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1) v{1,2,3,4} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) vR = (x{1}, x{2}, x{3}, x{4}, x{1,2}, x{1,3}, x{1,4}, x{2,3}, x{2,4}, x{3,4}, x{1,2,3}, x{1,2,4}, x{1,3,4}, x{2,3,4}, x{1,2,3,4}) ֤ಛੑؔ਺ʹରͯ͠ެཧΛຬͨ͢ ͷ஋ ψ ֤ήʔϜ ʹ͓͍ͯ 
 ʹ‫·ؚ‬ΕΔϓϨΠϠʔ͸ରশ 
 ʹ‫·ؚ‬Εͳ͍ϓϨΠϠʔ͸φϧϓϨΠϠʔ vR R ⊆ N, R ≠ ∅ R R
  • 11.
    



 




 v{1} = (1,0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1) v{2} = (0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1) v{3} = (0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1) v{4} = (0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1) v{1,2} = (0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1) v{1,3} = (0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1) v{1,4} = (0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1) v{2,3} = (0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1) v{2,4} = (0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1) v{3,4} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1) 



 
 

 v{1,2,3} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1) v{1,2,4} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1) v{1,3,4} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1) v{2,3,4} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1) v{1,2,3,4} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) vR = (x{1}, x{2}, x{3}, x{4}, x{1,2}, x{1,3}, x{1,4}, x{2,3}, x{2,4}, x{3,4}, x{1,2,3}, x{1,2,4}, x{1,3,4}, x{2,3,4}, x{1,2,3,4}) ֤ಛੑؔ਺ʹରͯ͠ެཧΛຬͨ͢ ͷ஋ ψ ֤ήʔϜ ʹ͓͍ͯ 
 ʹ‫·ؚ‬ΕΔϓϨΠϠʔ͸ରশ 
 ʹ‫·ؚ‬Εͳ͍ϓϨΠϠʔ͸φϧϓϨΠϠʔ vR R ⊆ N, R ≠ ∅ R R 
 


 
 


 
 ψ(v{1}) = (ψ1(v{1}), ψ2(v{1}), ψ3(v{1}), ψ4(v{1})) = (1,0,0,0) ψ(v{2}) = (0,1,0,0) ψ(v{3}) = (0,0,1,0) ψ(v{4}) = (0,0,0,1) ψ(v{1,2}) = ( 1 2 , 1 2 , 0, 0 ) ψ(v{1,3}) = ( 1 2 , 0, 1 2 , 0 ) ψ(v{1,4}) = ( 1 2 , 0, 0, 1 2) ψ(v{2,3}) = ( 0, 1 2 , 1 2 , 0 ) ψ(v{2,4}) = ( 0, 1 2 , 0, 1 2) ψ(v{3,4}) = ( 0, 0, 1 2 , 1 2) ֤ήʔϜ ʹ͓͍ͯ 
 ʹ‫·ؚ‬ΕΔϓϨΠϠʔ͸ରশ 
 ʹ‫·ؚ‬Εͳ͍ϓϨΠϠʔ͸φϧϓϨΠϠʔ vR R ⊆ N, R ≠ ∅ R R
  • 12.
    



 
 


 
 ψ(v{1}) = (1,0,0,0) ψ(v{2})= (0,1,0,0) ψ(v{3}) = (0,0,1,0) ψ(v{4}) = (0,0,0,1) ψ(v{1,2}) = ( 1 2 , 1 2 , 0, 0 ) ψ(v{1,3}) = ( 1 2 , 0, 1 2 , 0 ) ψ(v{1,4}) = ( 1 2 , 0, 0, 1 2) ψ(v{2,3}) = ( 0, 1 2 , 1 2 , 0 ) ψ(v{2,4}) = ( 0, 1 2 , 0, 1 2) ψ(v{3,4}) = ( 0, 0, 1 2 , 1 2) 



 
 

 v{1,2,3} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1) v{1,2,4} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1) v{1,3,4} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1) v{2,3,4} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1) v{1,2,3,4} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) vR = (x{1}, x{2}, x{3}, x{4}, x{1,2}, x{1,3}, x{1,4}, x{2,3}, x{2,4}, x{3,4}, x{1,2,3}, x{1,2,4}, x{1,3,4}, x{2,3,4}, x{1,2,3,4}) ֤ಛੑؔ਺ʹରͯ͠ެཧΛຬͨ͢ ͷ஋ ψ 
 


 ψ(v{1,2,3}) = ( 1 3 , 1 3 , 1 3 , 0 ) ψ(v{1,2,4}) = ( 1 3 , 1 3 , 0, 1 3) ψ(v{1,3,4}) = ( 1 3 , 0, 1 3 , 1 3) ψ(v{2,3,4}) = ( 0, 1 3 , 1 3 , 1 3) ψ(v{1,2,3,4}) = ( 1 4 , 1 4 , 1 4 , 1 4) ֤ήʔϜ ʹ͓͍ͯ 
 ʹ‫·ؚ‬ΕΔϓϨΠϠʔ͸ରশ 
 ʹ‫·ؚ‬Εͳ͍ϓϨΠϠʔ͸φϧϓϨΠϠʔ vR R ⊆ N, R ≠ ∅ R R
  • 13.
    



 
 


 
 ψ(v{1}) = (1,0,0,0) ψ(v{2})= (0,1,0,0) ψ(v{3}) = (0,0,1,0) ψ(v{4}) = (0,0,0,1) ψ(v{1,2}) = ( 1 2 , 1 2 , 0, 0 ) ψ(v{1,3}) = ( 1 2 , 0, 1 2 , 0 ) ψ(v{1,4}) = ( 1 2 , 0, 0, 1 2) ψ(v{2,3}) = ( 0, 1 2 , 1 2 , 0 ) ψ(v{2,4}) = ( 0, 1 2 , 0, 1 2) ψ(v{3,4}) = ( 0, 0, 1 2 , 1 2) 
 


 
 
 ψ(v{1,2,3}) = ( 1 3 , 1 3 , 1 3 , 0 ) ψ(v{1,2,4}) = ( 1 3 , 1 3 , 0, 1 3) ψ(v{1,3,4}) = ( 1 3 , 0, 1 3 , 1 3) ψ(v{2,3,4}) = ( 0, 1 3 , 1 3 , 1 3) ψ(v{1,2,3,4}) = ( 1 4 , 1 4 , 1 4 , 1 4) vR = (x{1}, x{2}, x{3}, x{4}, x{1,2}, x{1,3}, x{1,4}, x{2,3}, x{2,4}, x{3,4}, x{1,2,3}, x{1,2,4}, x{1,3,4}, x{2,3,4}, x{1,2,3,4}) ֤ಛੑؔ਺ʹରͯ͠ެཧΛຬͨ͢ ͷ஋ ψ
  • 14.
    
 
 
 ͜ͷήʔϜʹ͓͚ΔγϟʔϓϨΠ஋Λ‫ٻ‬ΊΑ 
 Ͱ‫ٻ‬Ίͨ஋Λ‫ج‬ఈͱͳΔಛੑؔ਺Λ༻͍ͯಋग़ͤΑ 
 ͜͜Ͱ೚ҙͷಛੑؔ਺͸ ֤ಛੑؔ਺ΛϕΫτϧͱΈͳͯ͠ 
 ҎԼͷ‫Ͱܗ‬Ұҙʹද‫͖Ͱݱ‬Δ͜ͱ͸ར༻ͯ͠Α͍ 
 
 
 v({1,2,3,4}) = 10 v({1,2,3}) = 6 v({1,2,4}) = 6 v({1,3,4}) = 5 v({2,3,4}) = 5 v({1,2}) = 6 v({1,3}) = 4 v({1,4}) = 4 v({2,3}) = 3 v({2,4}) = 4 v({3,4}) = 3 v({1}) = v({2}) = v({3}) = v({4}) = v(∅) = 0 v = α1v{1} + α2v{2} + α3v{3} + α4v{4} + α12v{1,2} + α13v{1,3} + α14v{1,4} + α23v{2,3} + α24v{2,4} + α34v{3,4} +α123v{1,2,3} + α124v{1,2,4} + α134v{1,3,4} + α234v{2,3,4} + α1234v{1,2,3,4} ໰୊
  • 15.
    
 
 ͜ͷήʔϜʹ͓͚ΔγϟʔϓϨΠ஋Λ‫ٻ‬ΊΑ 
 ߩ‫౓ݙ‬ͷ‫ظ‬଴஋Λ‫ٻ‬ΊΕ͹Α͍ 
 
 
 
 
 
 
 v({1,2,3,4}) = 10 v({1,2,3}) = 6 v({1,2,4}) = 6 v({1,3,4}) = 5 v({2,3,4}) = 5 v({1,2}) = 6 v({1,3}) = 4 v({1,4}) = 4 v({2,3}) = 3 v({2,4}) = 4 v({3,4}) = 3 v({1}) = v({2}) = v({3}) = v({4}) = v(∅) = 0 ϕ1(v) = 1 4! 72 = 72 24 = 3 ϕ2(v) = 1 4! 68 = 68 24 = 17 6 ϕ3(v) = 1 4! 48 = 48 24 = 2 ϕ4(v) = 1 4! 52 = 52 24 = 13 6 ϕ(v) = ( 3, 17 6 , 2, 13 6 ) ໰୊ ॱྻ
  • 16.
    
 
 ͜ͷήʔϜʹ͓͚ΔγϟʔϓϨΠ஋Λ‫ٻ‬ΊΑ 
 Λ࢖͏ͷͰ͋Ε͹ 
 ϓϨΠϠʔʹ͍ͭͯ 
 ͱͯ͠͸ 
 ͱͳΔ৔߹ͷ਺͸ ௨Γ ߩ‫౓ݙ‬͸ 
 ͱͳΔ৔߹ͷ਺͸ ௨Γ ߩ‫౓ݙ‬͸ 
 ͱͳΔ৔߹ͷ਺͸ ௨Γ ߩ‫౓ݙ‬͸ 
 ͱͳΔ৔߹ͷ਺͸ ௨Γ ߩ‫౓ݙ‬͸ 
 ͱͳΔ৔߹ͷ਺͸ ௨Γ ߩ‫౓ݙ‬͸ 
 ͱͳΔ৔߹ͷ਺͸ ௨Γ ߩ‫౓ݙ‬͸ 
 ͱͳΔ৔߹ͷ਺͸ ௨Γ ߩ‫౓ݙ‬͸ 
 ͱͳΔ৔߹ͷ਺͸ ௨Γ ߩ‫౓ݙ‬͸ 
 
 v({1,2,3,4}) = 10 v({1,2,3}) = 6 v({1,2,4}) = 6 v({1,3,4}) = 5 v({2,3,4}) = 5 v({1,2}) = 6 v({1,3}) = 4 v({1,4}) = 4 v({2,3}) = 3 v({2,4}) = 4 v({3,4}) = 3 v({1}) = v({2}) = v({3}) = v({4}) = v(∅) = 0 ϕi(v) = 1 n! ∑ S:S⊆N,i∉S s!(n − s − 1)!(v(S ∪ {i}) − v(S)), ∀i ∈ N S : S ⊆ N,1 ∉ S ∅, {2}, {3}, {4}, {2,3}, {2,4}, {3,4}, {2,3,4} ∅ → {1} 0!(4 − 0 − 1)! = 3! = 6 {2} → {1,2} 1!(4 − 1 − 1)! = 2 {3} → {1,3} 1!(4 − 1 − 1)! = 2 {4} → {1,4} 1!(4 − 1 − 1)! = 2 {2,3} → {1,2,3} 2!(4 − 2 − 1)! = 2 {2,4} → {1,2,4} 2!(4 − 2 − 1)! = 2 {3,4} → {1,3,4} 2!(4 − 2 − 1)! = 2 {2,3,4} → {1,2,3,4} 3!(4 − 3 − 1)! = 3! = 6 ϕ1(v) = 1 4! (6 ⋅ 0 + 2 ⋅ 6 + 2 ⋅ 4 + 2 ⋅ 4 + 2 ⋅ 3 + 2 ⋅ 2 + 2 ⋅ 2 + 6 ⋅ 5) = 1 4! (0 + 12 + 8 + 8 + 6 + 4 + 4 + 30) = 72 24 = 3 ໰୊ ॱྻ
  • 17.
    
 
 ͜ͷήʔϜʹ͓͚ΔγϟʔϓϨΠ஋Λ‫ٻ‬ΊΑ 
 Λ࢖͏ͷͰ͋Ε͹ 
 ϓϨΠϠʔʹ͍ͭͯ 
 ͱͯ͠͸ 
 ͱͳΔ৔߹ͷ਺͸ ௨Γ ߩ‫౓ݙ‬͸ 
 ͱͳΔ৔߹ͷ਺͸ ௨Γ ߩ‫౓ݙ‬͸ 
 ͱͳΔ৔߹ͷ਺͸ ௨Γ ߩ‫౓ݙ‬͸ 
 ͱͳΔ৔߹ͷ਺͸ ௨Γ ߩ‫౓ݙ‬͸ 
 ͱͳΔ৔߹ͷ਺͸ ௨Γ ߩ‫౓ݙ‬͸ 
 ͱͳΔ৔߹ͷ਺͸ ௨Γ ߩ‫౓ݙ‬͸ 
 ͱͳΔ৔߹ͷ਺͸ ௨Γ ߩ‫౓ݙ‬͸ 
 ͱͳΔ৔߹ͷ਺͸ ௨Γ ߩ‫౓ݙ‬͸ 
 
 v({1,2,3,4}) = 10 v({1,2,3}) = 6 v({1,2,4}) = 6 v({1,3,4}) = 5 v({2,3,4}) = 5 v({1,2}) = 6 v({1,3}) = 4 v({1,4}) = 4 v({2,3}) = 3 v({2,4}) = 4 v({3,4}) = 3 v({1}) = v({2}) = v({3}) = v({4}) = v(∅) = 0 ϕi(v) = 1 n! ∑ S:S⊆N,i∉S s!(n − s − 1)!(v(S ∪ {i}) − v(S)), ∀i ∈ N S : S ⊆ N,2 ∉ S ∅, {1}, {3}, {4}, {1,3}, {1,4}, {3,4}, {1,3,4} ∅ → {2} 0!(4 − 0 − 1)! = 3! = 6 {1} → {1,2} 1!(4 − 1 − 1)! = 2 {3} → {2,3} 1!(4 − 1 − 1)! = 2 {4} → {2,4} 1!(4 − 1 − 1)! = 2 {1,3} → {1,2,3} 2!(4 − 2 − 1)! = 2 {1,4} → {1,2,4} 2!(4 − 2 − 1)! = 2 {3,4} → {2,3,4} 2!(4 − 2 − 1)! = 2 {1,3,4} → {1,2,3,4} 3!(4 − 3 − 1)! = 3! = 6 ϕ1(v) = 1 4! (6 ⋅ 0 + 2 ⋅ 6 + 2 ⋅ 3 + 2 ⋅ 4 + 2 ⋅ 2 + 2 ⋅ 2 + 2 ⋅ 2 + 6 ⋅ 5) = 1 4! (0 + 12 + 6 + 8 + 4 + 4 + 4 + 30) = 68 24 = 17 6 ໰୊ ॱྻ
  • 18.
    
 
 ͜ͷήʔϜʹ͓͚ΔγϟʔϓϨΠ஋Λ‫ٻ‬ΊΑ 
 Λ࢖͏ͷͰ͋Ε͹ 
 ϓϨΠϠʔʹ͍ͭͯ 
 ͱͯ͠͸ 
 ͱͳΔ৔߹ͷ਺͸ ௨Γ ߩ‫౓ݙ‬͸ 
 ͱͳΔ৔߹ͷ਺͸ ௨Γ ߩ‫౓ݙ‬͸ 
 ͱͳΔ৔߹ͷ਺͸ ௨Γ ߩ‫౓ݙ‬͸ 
 ͱͳΔ৔߹ͷ਺͸ ௨Γ ߩ‫౓ݙ‬͸ 
 ͱͳΔ৔߹ͷ਺͸ ௨Γ ߩ‫౓ݙ‬͸ 
 ͱͳΔ৔߹ͷ਺͸ ௨Γ ߩ‫౓ݙ‬͸ 
 ͱͳΔ৔߹ͷ਺͸ ௨Γ ߩ‫౓ݙ‬͸ 
 ͱͳΔ৔߹ͷ਺͸ ௨Γ ߩ‫౓ݙ‬͸ 
 
 v({1,2,3,4}) = 10 v({1,2,3}) = 6 v({1,2,4}) = 6 v({1,3,4}) = 5 v({2,3,4}) = 5 v({1,2}) = 6 v({1,3}) = 4 v({1,4}) = 4 v({2,3}) = 3 v({2,4}) = 4 v({3,4}) = 3 v({1}) = v({2}) = v({3}) = v({4}) = v(∅) = 0 ϕi(v) = 1 n! ∑ S:S⊆N,i∉S s!(n − s − 1)!(v(S ∪ {i}) − v(S)), ∀i ∈ N S : S ⊆ N,3 ∉ S ∅, {1}, {2}, {4}, {1,2}, {1,4}, {2,4}, {1,2,4} ∅ → {3} 0!(4 − 0 − 1)! = 3! = 6 {1} → {1,3} 1!(4 − 1 − 1)! = 2 {2} → {2,3} 1!(4 − 1 − 1)! = 2 {4} → {3,4} 1!(4 − 1 − 1)! = 2 {1,2} → {1,2,3} 2!(4 − 2 − 1)! = 2 {1,4} → {1,3,4} 2!(4 − 2 − 1)! = 2 {2,4} → {2,3,4} 2!(4 − 2 − 1)! = 2 {1,2,4} → {1,2,3,4} 3!(4 − 3 − 1)! = 3! = 6 ϕ1(v) = 1 4! (6 ⋅ 0 + 2 ⋅ 4 + 2 ⋅ 3 + 2 ⋅ 3 + 2 ⋅ 0 + 2 ⋅ 1 + 2 ⋅ 1 + 6 ⋅ 4) = 1 4! (0 + 8 + 6 + 6 + 0 + 2 + 2 + 24) = 48 24 = 2 ໰୊ ॱྻ
  • 19.
    
 
 ͜ͷήʔϜʹ͓͚ΔγϟʔϓϨΠ஋Λ‫ٻ‬ΊΑ 
 Λ࢖͏ͷͰ͋Ε͹ 
 ϓϨΠϠʔʹ͍ͭͯ 
 ͱͯ͠͸ 
 ͱͳΔ৔߹ͷ਺͸ ௨Γ ߩ‫౓ݙ‬͸ 
 ͱͳΔ৔߹ͷ਺͸ ௨Γ ߩ‫౓ݙ‬͸ 
 ͱͳΔ৔߹ͷ਺͸ ௨Γ ߩ‫౓ݙ‬͸ 
 ͱͳΔ৔߹ͷ਺͸ ௨Γ ߩ‫౓ݙ‬͸ 
 ͱͳΔ৔߹ͷ਺͸ ௨Γ ߩ‫౓ݙ‬͸ 
 ͱͳΔ৔߹ͷ਺͸ ௨Γ ߩ‫౓ݙ‬͸ 
 ͱͳΔ৔߹ͷ਺͸ ௨Γ ߩ‫౓ݙ‬͸ 
 ͱͳΔ৔߹ͷ਺͸ ௨Γ ߩ‫౓ݙ‬͸ 
 
 v({1,2,3,4}) = 10 v({1,2,3}) = 6 v({1,2,4}) = 6 v({1,3,4}) = 5 v({2,3,4}) = 5 v({1,2}) = 6 v({1,3}) = 4 v({1,4}) = 4 v({2,3}) = 3 v({2,4}) = 4 v({3,4}) = 3 v({1}) = v({2}) = v({3}) = v({4}) = v(∅) = 0 ϕi(v) = 1 n! ∑ S:S⊆N,i∉S s!(n − s − 1)!(v(S ∪ {i}) − v(S)), ∀i ∈ N S : S ⊆ N,4 ∉ S ∅, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3} ∅ → {4} 0!(4 − 0 − 1)! = 3! = 6 {1} → {1,4} 1!(4 − 1 − 1)! = 2 {2} → {2,4} 1!(4 − 1 − 1)! = 2 {3} → {3,4} 1!(4 − 1 − 1)! = 2 {1,2} → {1,2,4} 2!(4 − 2 − 1)! = 2 {1,3} → {1,3,4} 2!(4 − 2 − 1)! = 2 {2,3} → {2,3,4} 2!(4 − 2 − 1)! = 2 {1,2,3} → {1,2,3,4} 3!(4 − 3 − 1)! = 3! = 6 ϕ1(v) = 1 4! (6 ⋅ 0 + 2 ⋅ 4 + 2 ⋅ 4 + 2 ⋅ 3 + 2 ⋅ 0 + 2 ⋅ 1 + 2 ⋅ 2 + 6 ⋅ 4) = 1 4! (0 + 8 + 8 + 6 + 0 + 2 + 4 + 24) = 52 24 = 13 6 ໰୊ ॱྻ
  • 20.
    ͕ҎԼͷ‫͚ॻͰܗ‬ΔͷͰ 
 ֤܎਺Λ‫ݩ‬ͷήʔϜʹ͓͚Δಛੑؔ਺ͷ஋Ͱද‫͢ݱ‬Δ 
 
 
 
 
 
 
 
 
 ͜ͷϕΫτϧͷཁૉ໨͸ ʹର͢Δಛੑؔ਺஋Ͱ͋Δ͔Β 
 
 ಉ༷ʹ ͕‫͑ݴ‬Δ v v = α1v{1} + α2v{2} + α3v{3} + α4v{4} +α12v{1,2} + α13v{1,3} + α14v{1,4} + α23v{2,3} + α24v{2,4} + α34v{3,4} +α123v{1,2,3} + α124v{1,2,4} + α134v{1,3,4} + α234v{2,3,4} + α1234v{1,2,3,4} = (α1, α2, α3, α4, α1 + α2 + α12, α1 + α3 + α13, α1 + α4 + α14, α2 + α3 + α23, α2 + α4 + α24, α3 + α4 + α34 α1 + α2 + α3 + α12 + α13 + α23 + α123, α1 + α2 + α4 + α12 + α14 + α24 + α124 α1 + α3 + α4 + α13 + α14 + α34 + α134, α2 + α3 + α4 + α23 + α24 + α34 + α234 α1 + α2 + α3 + α4 + α12 + α13 + α14 + α23 + α24 + α34 + α123 + α124 + α134 + α234 + α1234) {1} α1 = v({1}) = 0 α2 = v({2}) = 0 α3 = v({3}) = 0 α4 = v({4}) = 0 ໰୊ 



 





 



 v{1} = (1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1) v{2} = (0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1) v{3} = (0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1) v{4} = (0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1) v{1,2} = (0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1) v{1,3} = (0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1) v{1,4} = (0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1) v{2,3} = (0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1) v{2,4} = (0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1) v{3,4} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1) v{1,2,3} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1) v{1,2,4} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1) v{1,3,4} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1) v{2,3,4} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1) v{1,2,3,4} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) vR = (x{1}, x{2}, x{3}, x{4}, x{1,2}, x{1,3}, x{1,4}, x{2,3}, x{2,4}, x{3,4}, x{1,2,3}, x{1,2,4}, x{1,3,4}, x{2,3,4}, x{1,2,3,4})
  • 21.
    
 
 
 
 
 ͜ͷϕΫτϧͷཁૉ໨͸ ʹର͢Δಛੑؔ਺஋Ͱ͋Δ͔Β 
 
 ಉ༷ʹ v = (0, 0, 0, 0, α12, α13, α14, α23, α24, α34 α12 + α13 + α23 + α123, α12 + α14 + α24 + α124 α13 + α14 + α34 + α134, α23 + α24 + α34 + α234 α12 + α13 + α14 + α23 + α24 + α34 + α123 + α124 + α134 + α234 + α1234) {1,2} α1 + α2 + α12 = v({1,2}) ⇔ α12 = v({1,2}) − α1 − α2 ⇔ α12 = 6 α13 = 4 α14 = 4 α23 = 3 α24 = 4 α34 = 3 ໰୊ 
 
 v({1,2,3,4}) = 10 v({1,2,3}) = 6 v({1,2,4}) = 6 v({1,3,4}) = 5 v({2,3,4}) = 5 v({1,2}) = 6 v({1,3}) = 4 v({1,4}) = 4 v({2,3}) = 3 v({2,4}) = 4 v({3,4}) = 3 v({1}) = v({2}) = v({3}) = v({4}) = v(∅) = 0 vR = (x{1}, x{2}, x{3}, x{4}, x{1,2}, x{1,3}, x{1,4}, x{2,3}, x{2,4}, x{3,4}, x{1,2,3}, x{1,2,4}, x{1,3,4}, x{2,3,4}, x{1,2,3,4})
  • 22.
    
 
 
 
 
 ͜ͷϕΫτϧͷཁૉ໨͸ ʹର͢Δಛੑؔ਺஋Ͱ͋Δ͔Β 
 
 ಉ༷ʹ v = (0, 0, 0, 0, 6, 4, 4, 3, 4, 3 13 + α123, 14 + α124 11 + α134, 10 + α234 24 + α123 + α124 + α134 + α234 + α1234) {1,2,3} 13 + α123 = v({1,2,3}) ⇔ α123 = v({1,2,3}) − 13 ⇔ α123 = − 7 α124 = − 8 α134 = − 6 α234 = − 5 ໰୊ 
 
 v({1,2,3,4}) = 10 v({1,2,3}) = 6 v({1,2,4}) = 6 v({1,3,4}) = 5 v({2,3,4}) = 5 v({1,2}) = 6 v({1,3}) = 4 v({1,4}) = 4 v({2,3}) = 3 v({2,4}) = 4 v({3,4}) = 3 v({1}) = v({2}) = v({3}) = v({4}) = v(∅) = 0 vR = (x{1}, x{2}, x{3}, x{4}, x{1,2}, x{1,3}, x{1,4}, x{2,3}, x{2,4}, x{3,4}, x{1,2,3}, x{1,2,4}, x{1,3,4}, x{2,3,4}, x{1,2,3,4})
  • 23.
    
 
 
 
 
 ͜ͷϕΫτϧͷཁૉ໨͸ ʹର͢Δಛੑؔ਺஋Ͱ͋Δ͔Β 
 
 
 Ҏ্ΑΓ 
 
 
 v = (0, 0, 0, 0, 6, 4, 4, 3, 4, 3 6, 6 5, 5 −2 + α1234) {1,2,3,4} −2 + α1234 = v({1,2,3,4}) ⇔ α1234 = v({1,2,3,4}) + 2 ⇔ α1234 = 12 v = 0v{1} + 0v{2} + 0v{3} + 0v{4} +6v{1,2} + 4v{1,3} + 4v{1,4} + 3v{2,3} + 4v{2,4} + 3v{3,4} −7v{1,2,3} − 8v{1,2,4} − 6v{1,3,4} − 5v{2,3,4} + 12v{1,2,3,4} ໰୊ 
 
 v({1,2,3,4}) = 10 v({1,2,3}) = 6 v({1,2,4}) = 6 v({1,3,4}) = 5 v({2,3,4}) = 5 v({1,2}) = 6 v({1,3}) = 4 v({1,4}) = 4 v({2,3}) = 3 v({2,4}) = 4 v({3,4}) = 3 v({1}) = v({2}) = v({3}) = v({4}) = v(∅) = 0 vR = (x{1}, x{2}, x{3}, x{4}, x{1,2}, x{1,3}, x{1,4}, x{2,3}, x{2,4}, x{3,4}, x{1,2,3}, x{1,2,4}, x{1,3,4}, x{2,3,4}, x{1,2,3,4})
  • 24.
    
 
 
 
 Ճ๏ੑΑΓ 
 
 

 
 v = 0v{1}+ 0v{2} + 0v{3} + 0v{4}+6v{1,2} + 4v{1,3} + 4v{1,4} + 3v{2,3} + 4v{2,4} + 3v{3,4} −7v{1,2,3} − 8v{1,2,4} − 6v{1,3,4} − 5v{2,3,4} + 12v{1,2,3,4} v + 7v{1,2,3} + 8v{1,2,4} + 6v{1,3,4} + 5v{2,3,4} = 6v{1,2} + 4v{1,3} + 4v{1,4} + 3v{2,3} + 4v{2,4} + 3v{3,4} + 12v{1,2,3,4} ψ(v + 7v{1,2,3} + 8v{1,2,4} + 6v{1,3,4} + 5v{2,3,4}) = ψ(6v{1,2} + 4v{1,3} + 4v{1,4} + 3v{2,3} + 4v{2,4} + 3v{3,4} + 12v{1,2,3,4}) ⇔ ψ(v) + 7ψ(v{1,2,3}) + 8ψ(v{1,2,4}) + 6ψ(v{1,3,4}) + 5ψ(v{2,3,4}) = 6ψ(v{1,2}) + 4ψ(v{1,3}) + 4ψ(v{1,4}) + 3ψ(v{2,3}) + 4ψ(v{2,4}) + 3ψ(v{3,4}) + 12ψ(v{1,2,3,4}) ⇔ ψ(v) + 7 ( 1 3 , 1 3 , 1 3 , 0 ) + 8 ( 1 3 , 1 3 , 0, 1 3) + 6 ( 1 3 , 0, 1 3 , 1 3 ) + 5 ( 0, 1 3 , 1 3 , 1 3) = 6 ( 1 2 , 1 2 , 0, 0 ) + 4 ( 1 2 , 0, 1 2 , 0 ) + 4 ( 1 2 , 0, 0, 1 2) + 3 ( 0, 1 2 , 1 2 , 0 ) + 4 ( 0, 1 2 , 0, 1 2) + 3 ( 0, 0, 1 2 , 1 2) + 12 ( 1 4 , 1 4 , 1 4 , 1 4) ⇔ ψ(v) + ( 7, 20 3 , 6, 19 3 ) = ( 10, 19 2 , 8, 17 2 ) ⇔ ψ(v) = ( 3, 17 6 , 2, 13 6 ) ໰୊ 
 


 
 ψ(v{1,2}) = ( 1 2 , 1 2 , 0, 0 ) ψ(v{1,3}) = ( 1 2 , 0, 1 2 , 0 ) ψ(v{1,4}) = ( 1 2 , 0, 0, 1 2) ψ(v{2,3}) = ( 0, 1 2 , 1 2 , 0 ) ψ(v{2,4}) = ( 0, 1 2 , 0, 1 2) ψ(v{3,4}) = ( 0, 0, 1 2 , 1 2) 



 ψ(v{1,2,3}) = ( 1 3 , 1 3 , 1 3 , 0 ) ψ(v{1,2,4}) = ( 1 3 , 1 3 , 0, 1 3) ψ(v{1,3,4}) = ( 1 3 , 0, 1 3 , 1 3) ψ(v{2,3,4}) = ( 0, 1 3 , 1 3 , 1 3) ψ(v{1,2,3,4}) = ( 1 4 , 1 4 , 1 4 , 1 4)
  • 25.