SlideShare a Scribd company logo
1 of 20
Artificial Neural Network to Identify Vertical
Fractured Wells Flow Period
Directed Research
Long Vo
9/13/2015
1 UNIVERSITY OFSOUTHERN CALIFORNIA
Contents
1-1 Abstract..................................................................................................................................2
2-1 Introduction............................................................................................................................2
3-1 Back Propagation Neural Network...........................................................................................1
Neural Network Level Classes..........................................................................................................3
Node Number Selection..................................................................................................................3
Data Normalization.........................................................................................................................3
Neural Network Training.................................................................................................................4
4-1 Experimentation and Verification............................................................................................5
5-1 Conclusions.............................................................................................................................6
6-1 Nomenclature.........................................................................................................................6
7-1 Subscripts...............................................................................................................................6
8-1 References..............................................................................................................................6
2 UNIVERSITY OFSOUTHERN CALIFORNIA
Artificial NeuralNetwork to Identify VerticalFractured Wells Flow
Period
Vo, Long
1-1 Abstract
A modifiedpatternrecognitiontechniqueusing
the artificial neural networkisproposedto
reduce the non-uniquenessof hydraulic
fracturingmodel selection.A neural network
level systemof differentcomprehensive neural
networksgroupedintothree stagescanhelp
filterandidentifymodelsthata single
comprehensive neuralnetworkcouldnot.This
can help reduce the time and increase the
accuracy of model selection.
2-1 Introduction
Pressure-transienttestingreliesonasignal of
pressure vs. time;thissignal isexaminedby
plottingwithaspecializedfunctionand
analyzingtodetermine the well-test
interpretationmodel.Traditionallywell-test
interpretationmodelswere identifiedbyusing
inverse theoryregression analysisasnotedby
Al-Kaabi andLee1
;howeverthese theorieslack
the capacity to identifythe correctmodel due
to similarsignals producedfrommultiple
models.Toidentifythe correctmodel,an
interpreterisneededwhenanalyzingwelltest
data to qualitativelyselectthe mostrelated
reservoirmodel. Manypossible analytical
modelscanbe investigatedtofindthe best
interpretation model asnotedbyJuniardi and
Ershaghi2
.
Confusion is caused by non-unique signals when
selecting the most related reservoir model. For
hydraulically fractured wells, the need to
identify the flow regime is necessary. To select
the proper flow regime for hydraulically
fractured wells, Cinco-Ley and Samaniego-V3
proposed the use of type curves of
dimensionless pressure and dimensionless time
to analyze the four flow periods on log-log plots
of a vertically fractured well; fracture linear
flow, bilinear flow, formation linear flow, and
pseudo-radial flow. Yet this approach is limited
by the number of presented flow regimes and a
number of controlling parameters. Future flow
model regime identification can cause an
increase in non-uniqueness such as transition
flow period between bilinear and linear flows
and bilinearflowwithwellbore storage effect.
Application of an expert system in model
interpretation through pattern recognition
using the artificial neural network has been
conducted by Ershaghi et al.4
and Al-Kaabi and
Lee1
. This system has made model identification
faster and more accurate as complexity
increases. The expert system imitates the
reasoning process of a human interpreter as
noted by Juniardi and Ershaghi2
. It uses pattern
recognition of back propagation neural network
to identify the well-test interpretation model.
The back propagation neural network is noise
insensitive, and can analyze complex models
witha multitude of responses.
The purpose of this paper is to describe the
research results on how to train a neural net
simulator to identify hydraulically fractured
flow regimes discussed in Cinco-Ley et al3
. and
to extend the previous studies from Al-Kaabi
and Lee1
, and incorporate Ershaghi et al.4
’s
1 UNIVERSITY OFSOUTHERN CALIFORNIA
training and data normalizing methods while
utilizing single back propagated neural
networks in Juniardi and Ershaghi2
. This paper
will also discuss the strengths and weaknesses
of the neural network models level system in
model interpretation and provide model
selectionverification.
3-1 Back PropagationNeural
Network
The use of Neural Networksinwelltest
interpretationwaspresentedbyAl-Kaabiand
Lee1
in1993 to train a neural netsimulatorto
identifythe well-testinterpretationmodel from
the derivative plot.Thismethodeliminatesthe
needforpreprocessingandwritingcomplex
rules.Itis automaticinmodel selectiononly
and cannotestimate model parameters.
Juniardi andErshaghi2
extendedthisstudyto
incorporate the strengthandweaknessesof the
neural networkmodel interpretationthrougha
single backpropagationneural network while
Ershaghi et al.4
extendedthe researchtowards
a hybridapproachof multiple neuralnetworks.
Thismethod,however, cannotdistinguish
betweensimilarpatternsaswell asa
comprehensive neuralnetwork.The hybrid
methodcannotrecognize patterns thatwere
not trained andmisidentifypatternsif not
properlyfiltered.
In thisstudy,backpropagationneural network
modelswere developedtoidentifywell-test
interpretationmodelsfrom hydraulically
fracturedwells.The modelswere identified
usinglog-logtype curve ondimensionless
pressure andtime as notedbyCinco-Leyand
Samaniego-V3
.A levelclasssystemof neural
networkswascreatedtoensure correct
classificationof all modelsconsidered.
It will focusonflowregime recognitionof
hydraulicallyfracturedwells withafinite-
conductivityvertical fracture.The neural
networkwill be usedasa patternrecognition
tool to determine the bestpossible flowregime
fromthe inputdata.Because the flow regime
variesbasedonitsparameters,the shape will
alsovary. Similarpatternswillalso emerge.
Therefore,asmore flow regimesare
discovered,the needforafast expertsystemis
requiredfora fastercomputation,reducingthe
time of analysis.The five flow regime model
usedinthisstudywill be;bilinearflow,bilinear
flow withwellbore storage effect, earlylinear
flow,formationlinearflow,and pseudo-radial
flow. Each flow period ismodeledbasedonthe
referencedformulasfromCinco-Leyand
Samaniego-V3
.The flow periodconfiguration
can be seenin Figure 1 andthe formulasof
each model canbe seeninTable 1.
The networksystemconsistsof three level
classes.The firstclassconsistsof a single
comprehensive neuralnetwork trainedto
recognize anddistinguishall flow regime
modelsgiven.Byusingasingle comprehensive
neural network,similarities of responsesamong
differentmodelscancause the networkto
outputactivationnumberof > 0.2 for similar
models. Therefore,asecond level of neural
networks iscreatedtorecognize the differences
inthese models,all modelswithsimilar
patternswithactivation number>0.2 are
groupedandtrainedinindividualneural
networksinthe secondlevel.If the secondlevel
of neural networkswere notable todistinguish
the patterns,a thirdlevel wouldbe created (see
Figure 2).A detail descriptionof the neural
networkcan be foundin Ershaghi etal.4
,
Juniardi etal.2
,andAl-Kaabi etal.1
The processof trainingthe Back Propagation
Neural Networkforcomplex pattern
recognitionconsistsof generatingweight
factors to fitthe correct model recognition.The
weightsare generatedthroughoutthree layers
of nodeswithin the neural networkasshownin
2 UNIVERSITY OFSOUTHERN CALIFORNIA
Figure 3; the inputlayeri,the hiddenlayerj,
and the outputlayerk. The nodesinthe layers
are connectedby links;the linksprovide apath
of propagationfromlayeri to j and from j to k
withweightfactorsgeneratedineachlinkas
mentionbyAl-Kaabi andLee1
.The networkis
trainedinan iterative method throughback
propagationbyminimizingthe errorbetween
each weightchange until the weightscan
correctlyidentifythe modelsatacertain
activationnumber.Anexampleof the process
can be seeninJuniardi andErshaghi2
’spaper.
The activationnumberiscontrolledinthe
hiddenlayerandoutputlayerbya squashing
sigmoidfunction.If the node isinactivethe
activationnumberwouldbe 0and if the node is
veryactive the activation wouldbe 1,as
mentionbyErshaghi etal4
.The calculationof
the activationfunctioninasingle node inlayerj
can be seenbelow:
𝑂𝑒𝑑𝑝𝑒𝑑𝑗 =
1
1 + 𝑒π‘₯𝑝(βˆ’π‘‡π‘œπ‘‘π‘Žπ‘™π‘—)
𝑂𝑒𝑑𝑝𝑒𝑑𝑗 = π‘œπ‘’π‘‘π‘π‘’π‘‘ π‘“π‘Ÿπ‘œπ‘š π‘™π‘Žπ‘¦π‘’π‘Ÿ 𝑗
π‘‡π‘œπ‘‘π‘Žπ‘™π‘— = π‘ π‘’π‘šπ‘šπ‘Žπ‘‘π‘–π‘œπ‘› π‘œπ‘“ π‘‘β„Žπ‘’ 𝑖𝑛𝑝𝑒𝑑 π‘ π‘–π‘”π‘›π‘Žπ‘™
π‘‘π‘œ π‘›π‘œπ‘‘π‘’ 𝑗 π‘“π‘Ÿπ‘œπ‘š π‘Žπ‘™π‘™ π‘›π‘œπ‘‘π‘’π‘ 
𝑖𝑛 π‘‘β„Žπ‘’ 𝑖𝑛𝑝𝑒𝑑 π‘™π‘Žπ‘¦π‘’π‘Ÿ 𝑖
π‘‡π‘œπ‘‘π‘Žπ‘™π‘— = βˆ‘ 𝑀𝑖𝑗 𝑂𝑒𝑑𝑝𝑒𝑑𝑖
𝑖
𝑀𝑖𝑗 = π‘€π‘’π‘–π‘”β„Žπ‘‘ π‘“π‘Žπ‘π‘‘π‘œπ‘Ÿ π‘‘π‘Žπ‘˜π‘’π‘› π‘“π‘Ÿπ‘œπ‘š
π‘Ž π‘™π‘–π‘›π‘˜ 𝑏𝑒𝑑𝑀𝑒𝑒𝑛 π‘™π‘Žπ‘¦π‘’π‘Ÿ 𝑖 π‘Žπ‘›π‘‘ 𝑗
𝑂𝑒𝑑𝑝𝑒𝑑𝑖 = π‘œπ‘’π‘‘π‘π‘’π‘‘ π‘“π‘Ÿπ‘œπ‘š π‘™π‘Žπ‘¦π‘’π‘Ÿ 𝑖 π‘œπ‘Ÿ 𝑖𝑛𝑝𝑒𝑑
π‘“π‘Ÿπ‘œπ‘š π‘™π‘Žπ‘¦π‘’π‘Ÿ 𝑖
Since layeri is the (first) inputlayer,the
weights, andoutputsfromthe sigmoidfunction
are the same as what wasinputintolayeri.The
same processisusedfor layerk withinput
signalscomingfromj nodes.
Before the dataare usedas inputsforlayeri,it
isfirstnormalizedforthe x-axisandy-axis.
Because the outputfromthe sigmoidfunctionis
from0 to 1 the (x,y) pairsfrom the type curve
plotswere normalizedfrom0.1 to 0.9. At
positive infinity,the sigmoidfunctionwill be 1
and at negative infinity,the sigmoidfunction
will be 0.
0.1 ≀ ( 𝑑𝐷) π‘œπ‘Ÿ ( 𝑑) ≀ 0.9
0.1 ≀ ( 𝑝𝐷) π‘œπ‘Ÿ ( 𝑝) ≀ 0.9
𝑑𝐷 = π‘‘π‘–π‘šπ‘’π‘›π‘ π‘–π‘œπ‘›π‘™π‘’π‘ π‘  π‘‘π‘–π‘šπ‘’
𝑑 = π‘‘π‘–π‘šπ‘’
𝑝𝐷 = π‘‘π‘–π‘šπ‘’π‘›π‘ π‘–π‘œπ‘›π‘™π‘’π‘ π‘  π‘π‘Ÿπ‘’π‘ π‘ π‘’π‘Ÿπ‘’
𝑝 = π‘π‘Ÿπ‘’π‘ π‘ π‘’π‘Ÿπ‘’
The normalizationwasdone bythe scaling
downmethod:
π‘₯ π‘›π‘œπ‘Ÿ = 0.1 + 0.8 Γ—
(π‘₯βˆ’π‘₯ π‘šπ‘–π‘›)
𝑁π‘₯
π‘¦π‘›π‘œπ‘Ÿ = 0.1 + 0.8 Γ—
(π‘¦βˆ’π‘¦ π‘šπ‘–π‘›)
𝑁 𝑦
π‘₯ = log( 𝑑𝐷) π‘œπ‘Ÿ log(𝑑)
𝑦 = log( 𝑝𝐷) π‘œπ‘Ÿ log(𝑝)
π‘₯ π‘šπ‘– 𝑛 = π‘šπ‘–π‘›π‘–π‘šπ‘’π‘š π‘™π‘œπ‘”π‘œπ‘Ÿπ‘–π‘‘β„Žπ‘š 𝑑𝐷 π‘œπ‘Ÿ 𝑑
π‘β„Žπ‘œπ‘ π‘’π‘› π‘Žπ‘  π‘‘β„Žπ‘’ π‘ π‘‘π‘Žπ‘Ÿπ‘‘π‘–π‘›π‘” π‘π‘œπ‘–π‘›π‘‘
𝑦 π‘šπ‘–π‘› = π‘šπ‘–π‘›π‘–π‘šπ‘’π‘š π‘™π‘œπ‘”π‘œπ‘Ÿπ‘–π‘‘β„Žπ‘š 𝑝𝐷 π‘œπ‘Ÿ 𝑝
π‘β„Žπ‘œπ‘ π‘’π‘› π‘Žπ‘  π‘‘β„Žπ‘’ π‘ π‘‘π‘Žπ‘Ÿπ‘‘π‘–π‘›π‘” π‘π‘œπ‘–π‘›π‘‘
𝑁 π‘₯ = π‘›π‘’π‘šπ‘π‘’π‘Ÿπ‘  π‘œπ‘“
log 𝑐𝑦𝑐𝑙𝑒𝑠 π‘œπ‘› π‘‘β„Žπ‘’ 𝑑𝐷 π‘Žπ‘›π‘‘ 𝑑 π‘Žπ‘₯𝑖𝑠
𝑁 𝑦 = π‘›π‘’π‘šπ‘π‘’π‘Ÿπ‘  π‘œπ‘“
log 𝑐𝑦𝑐𝑙𝑒𝑠 π‘œπ‘› π‘‘β„Žπ‘’ 𝑝𝐷 π‘Žπ‘›π‘‘ 𝑝 π‘Žπ‘₯𝑖𝑠
3 UNIVERSITY OFSOUTHERN CALIFORNIA
For thisstudy,the sectionsbelowanalyze the
processof buildingthe neural networkforwell
testanalysisfollowingthe above-mentioned
methods.
Neural Network Level Classes
The networksystemwasdividedintothree
level classes.Eachclasswas usedto distinguish
patternsoutputfromthe trainedmodelsfrom
the firstlevel throughthe thirdlevel.The first
level classconsistsof earlylinearflow,bilinear
flow,bilinearflow withwellbore storage,
formationlinearflow,andpseudo-radialflow.
Because there are similaritieswithineach
model,the neural networkwouldgenerate
activationnumbershigherthan0.2 forall
patternssimilartothe inputpatterns.Thisis
causedby the non-uniquenessof the patterns.
Therefore,the secondlevelclass of the neural
network systemis createdtodistinguish
betweenthe non-uniquenessoutputtedfrom
level one.
Level twoneural networksconsistof four
groups:
1. Bilinearflow,formationlinearflow,and
pseudo-radialflow
2. Early linearflow,bilinearflow with
wellbore storage, andformationlinear
flow
3. Bilinearflow,bilinearflow with
wellbore storage, andpseudo-radial
flow
4. Bilinearflow,bilinearflow with
wellbore storage, andformationlinear
flow
Howevernotall of the non-uniquenessis
eliminated, therefore, athirdlevelclassneural
networkis createdto eliminate any
misidentification.
Level three neural networksconsistof six
groups:
1. Bilinearflow andbilinearflowwith
wellbore storage
2. Early linearflow andbilinearflow with
wellbore storage
3. Bilinearflow, andformationlinearflow
4. Early linearflow,andbilinearflow
5. Bilinearflow withwellborestorage, and
formationlinearflow
6. Bilinearflow, andpseudo-radial flow
To identify aflow regime, the inputdataenters
the firstlevel neural network;the firstlevel
neural networkoutputseitheraone to three
possible matches.Todistinguishthe non-
uniqueness forthe twoor three outputs,level
classtwo withneural network groupnumber
similartothe outputsfromlevel class,one is
used.The outputfromlevel classtwo can be a
single outputortwooutputs.To distinguish
between the lasttwonon-uniquenessoutputs;
level classthree withneural network group
numbersimilartothe outputsfromlevel class
twois used.
Node NumberSelection
The numberof nodesforthe i inputlayerof
each neural networkconsistsof 100 nodesthat
accept 50 data pointsof (x,y). The hiddenj layer
consistsof 50 nodes;50 nodesisconsistentfor
convergence basedonexperimentation. The
numberof nodesin the outputk layersdepends
on one of the three level classes.The firstlevel
consistsof 5 patternstobe recognized
therefore consistsof 5nodes,the secondlevel
with3 nodes,andthe thirdlevel with2nodes.
Data Normalization
Thisstudyusesthe theoreticallygenerated log-
logtype curve plots’dimensionlesspressure
and dimensionless timedataof hydraulically
fracturedflow regimesasinputsforlayeri. The
minimumlogarithmyandx are determinedby
the characteristicsof each patternandtheir
respective x-axisrange duringtype curve
4 UNIVERSITY OFSOUTHERN CALIFORNIA
matching. To correctlyidentifythe model
duringtype curve matchingthe x-axisrange for
each model needstobe the same,asper Cinco-
Leyet al3
.
Each neural network withinthe neural network
level systemconsistsof anx-axisrange
incorporatingall patterncharacteristicsof all
models.The modelsare fittedwithaminimum
x-axiswithall patternsstartingfromthe same
xmin value, asshownin Figure 4-8 of level one
with50 randomlygeneratedpatterns.Unless
the pattern characteristicof the model extends
past the xmin value anexceptioncanbe made as
longas the numberof cyclesremainsequal to
the rest of the models. The y-axisisdependent
on the x-axisvalues, therefore,cannotbe
selectedindividuallyforeachmodel.The range
will be determinedbythe model withthe
highesty-axislogarithmicvalue atthe highest x-
axisdata pointandthe lowesty-axislogarithmic
value at the lowest x-axisdatapoint.If a
normalizedy value islessthan0.1 causedby
the x-axisdatapoints,0.99 will be used,andif
the ynor is greaterthan0.9, 0.01 will be used.
Level 2 and level 3’sx-axisare chosen similarly
to level one andis basedonthe distinguishable
characteristicsof the patternsto be recognized.
A table of the x-axisandy-axislogarithmic
range of eachlevel canbe seenin Table 2.
Nx and Nyare chosenbasedonthe x-axisandy-
axisrange and are determinedwhenthe full
range are determined toincorporate all pattern
characteristicsof the models.A table of Nx and
Nyfor each level canbe seenin Table 3.
Selectingthe correctx andy range to
incorporate distinguishabledifferences
betweeneach patterncanreduce the number
of type curvesneededtotrainthe neural
networkforall givenreservoirflowmodels.
Doingso will allow the neural networkto
recognize modelsthrough partial datainputs
and shiftingof the partial data,similarlytotype
curve matching.
Neural Network Training
Before the neural networkcanfreelyidentify
reservoirmodels,trainingisrequired.During
the trainingstage,the neural networklearnsto
recognize andseparate differentpatternsby
adjustingthe weightsbetweeneachlayers
usingthe back propagationtechnique
mentionedabove. The trainingsetusedtotrain
the neural networkconsistsof generated
patternsof each model givenbyvarying
parameterswithinanexpectedrange as
mentionedbyErshaghi etal.4
,the minimum
and maximumvaluesof the variedparameters
for eachreservoirflow regimemodelscanbe
seeninTable 4. The parametersare varied
randomlyusingthe Monte Carlosimulationby
rectangulardistribution.
The trainedneural networkcanrecognize an
unknownpatternsimilartothe trainedpattern
witha recognitionlevel usingthe activation
number.Asmentionedthe range usedinthis
paperis from0.1 to 0.9. The higherthe
activationnumberthe higherthe similarity.As
mentionedbyErshaghi etal.4
activationnumber
of greaterthan0.4 is adequate forpattern
recognition.Howeverinthis paperanactivation
of higherthan 0.2 isused fora more
comprehensive networkthatrequiresahigher
numberof trainingsamples.
Trainingthe neural networkcan take a long
periodof time of a few hoursto a few weeks.
However,thiscanbe a limitof the computer
hardware usedto trainthe network;a topof
the line computersystemcancompute the
trainingina few hourswhile a low-end
computersystemcantake up to a few weeks.
Therefore,the trainingof the neural network
shouldbe done ona systemof computers
dedicatedtoneural networkcomputations.
Nevertheless,afterthe networkhasbeen
5 UNIVERSITY OFSOUTHERN CALIFORNIA
trained,the trainedneural networkwill only
take secondsto outputan answer.
The iterative processfortrainingthe neural
networkscanbe seenbelow:
1. 1000 patternsare generatedforeach
flowregime model usingthe Monte
CarloSimulation.
2. The neural networksare trainedforthe
selectedpatterns andflowregime
models.(The numberof flowregimes
groups traineddependsonthe neural
networklevel class.)
3. The trainednetworksare testedwith
10,000 patternsgeneratedfromthe
Monte CarloSimulation foreachflow
regime.
4. Patternswithactivationof lessthan0.2
for each desiredoutput flowregimes
nodesbeingidentifiedare addedtothe
trainingset. Patternswithactivationof
more than 0.2 forflowregimes nodes
not beingidentified are addedtothe
trainingset. Anexample canbe seenin
Figure 9.
5. Steps2 to 4 are repeateduntil there are
no more patternsto addin step4 or
deemedsuitable bythe stopping
algorithm.
Because the networksare trained
comprehensivelyforeachlevelclass,the
numberof outputsdependsonthe numberof
flowregime modelstrainedforthat class,
outputswith activationnumberhigherthan0.2
will be consideredasa possible selection.
Howeverduringthe training process,activation
numberfora specificflow regime higherthan
0.2 not correctlyidentified are alsoaddedto
the trainingset. Addingthese samplestrainthe
neural networktoidentifypatternsthatare
selectedtobe correctand those that are
selectedtobe incorrect.
4-1 Experimentationand
Verification
In orderto verifythe patternrecognition
strengthof the Neural Networks,5sample
patternswere created usingthe Monte Carlo
simulation foreachflow regime model;bilinear
flow,earlylinearflow,formationlinearflow,
pseudo-radialflow,andbilinearflow with
wellbore storage.The x-axisrange selectedwas
between10^-1to 10^5 basedon the level class
one neural network,however, the x-axisrange
can vary basedon the fieldrecordeddata. Level
classone was selectedbecause it isthe first
level of model identification. The y-axisrange
will varybasedoneach flow model.
The data was thennormalizedbasedonthe
range of eachlevel classesmentionedabove
usingthe scalingdownmethod. Theywere used
as inputsforall level classes. Allmodelswere
identifiedcorrectlywithactivationlevel higher
than 0.8 throughthe lastlevel class(3) withall
else lowerthan0.2 as can be seenin Table 5-7.
Thisverifiesthatthe neural networkclass
systemswere able toensure thatthe models
were recognizedthroughpartial datainputsand
shiftingof the partial data. However,itwasnot
able to distinguishbetweenbilinearand
formationlineardistinctively,atlevel 3group 3,
the normalizedrange of the x-axis10^-2 to
10^5 was notable to absolutely distinguish
bilinearfromformationlinearflowwhen
formationlineardatasetwastested. Thiscan
be seenin Table 7, non-uniquenessof the data
was notcompletelyeliminated. When
formationlineardatawere usedasinputsinto
the neural network,the network outputan
activationnumberof lessthan 0.8. Thisproblem
may be due to the fact that formationlinear
flow doesnothave multiple uniquetraining
patterns butconsistsof onlyone.Thiscan cause
the networktomisidentifythe models.This
6 UNIVERSITY OFSOUTHERN CALIFORNIA
problemissimilarlystatedby Juniardi and
Ershaghi2
.
The range selectionduringthe trainingprocess
can alsoplay a role inmisidentification.If the x
and y range of bothbilinearandformation
linearflowwere notselectedtoshowadistinct
difference inpatternbetweenthe two,the non-
uniquenesswillnotbe eliminated. Information
fromothersourcesas mentionedbyErshaghi et
al.4
can be usedtoverifythe chosenmodels.
Data such as one-fourthslopeona log-log
graph mentionedbyCinco-Leyetal.3
toverify
bilinearflow orone-half slopeforlinearflow.
Therefore conventionalmethodswithhuman
verificationsare necessarytoselectthe final
flowmodel whenuncertaintyispresent.
The filteringprocessof the levelsystemswas
thenappliedtotestitsefficiency.The networks
were able toidentifythe desiredflowregime
correctly.The pseudo-radialflowregime, the
bilinearwithwellbore storage flowregime,and
the earlylinearflowregime didnotrequirea
three-stage filtering.A twostage filteringwas
adequate ascan be seenin Figure 10,12, and
14. Bilinearflowandformationlinearflow
requiresathree-stage processtoidentify the
flowregime forthese particularpatterns (see
Figure 11 and13).
5-1 Conclusions
The problemof non-uniqueness hascreateda
needfordecreasingtime andincreasing the
accuracy of flowregime identification.Hydraulic
fracturingmodeling’snon-uniquenesscanoccur
whenmore advancedmodelsof flowregimes
are added,parameterestimationorevenmodel
identificationthroughtype curve matching can
become more complex anddifficulttosolve.
Previouslystudiesof the single comprehensive
neural network helpidentifysimilarpatterns
exhibitedbythe currentmodels.However
cannot distinguishthemwhenthe similarities
are toogreat to separate. Therefore,alevel
classneural networksystemproposedusing
multiple neural networkstrainedtorecognized
and separate the modelsasa formof filtering,
decreasesthe chancesof non-uniqueness.
6-1 Nomenclature
C = wellbore storage coefficient
π‘˜ 𝑓 𝑏𝑓 = π‘“π‘Ÿπ‘Žπ‘π‘‘π‘’π‘Ÿπ‘’ π‘π‘œπ‘›π‘‘π‘’π‘π‘‘π‘–π‘£π‘–π‘‘π‘¦
(π‘˜ 𝑓 𝑏𝑓) 𝐷 = π‘‘π‘–π‘šπ‘’π‘›π‘ π‘–π‘œπ‘›π‘™π‘’π‘ π‘ 
π‘“π‘Ÿπ‘Žπ‘π‘‘π‘’π‘Ÿπ‘’ π‘π‘œπ‘›π‘‘π‘’π‘π‘‘π‘–π‘£π‘–π‘‘π‘¦
𝑝 = π‘π‘Ÿπ‘’π‘ π‘ π‘’π‘Ÿπ‘’
𝑑 = π‘‘π‘–π‘šπ‘’
𝑠 = πΏπ‘Žπ‘π‘™π‘Žπ‘π‘’ π‘ π‘π‘Žπ‘π‘’ π‘£π‘Žπ‘Ÿπ‘–π‘Žπ‘π‘™π‘’
π‘Ÿβ€² 𝑀 = 𝑒𝑓𝑓𝑒𝑐𝑑𝑖𝑣𝑒 π‘€π‘’π‘™π‘™π‘π‘œπ‘Ÿπ‘’ π‘Ÿπ‘Žπ‘‘π‘–π‘’π‘ 
π‘₯, 𝑦 = π‘ π‘π‘Žπ‘π‘’ π‘π‘œπ‘œπ‘Ÿπ‘‘π‘–π‘›π‘Žπ‘‘π‘’π‘ 
π‘₯ 𝑓 = π‘“π‘Ÿπ‘Žπ‘π‘‘π‘’π‘Ÿπ‘’ β„Žπ‘Žπ‘™π‘“ βˆ’ π‘™π‘’π‘›π‘”π‘‘β„Ž
Ξ· = hydraulic diffusivity
7-1 Subscripts
D = dimensionless
𝑓 = π‘“π‘Ÿπ‘Žπ‘π‘‘π‘’π‘Ÿπ‘’
π‘₯ 𝑓 = π‘π‘Žπ‘ π‘’π‘‘ π‘œπ‘› π‘₯ 𝑓
𝑀 = π‘€π‘’π‘™π‘™π‘π‘œπ‘Ÿπ‘’
8-1 References
1. l-Kaabi,A.U.,& Lee,W.J. (1993, September
1). UsingArtificial Neural NetworksTo
Identifythe Well TestInterpretationModel
(includesassociatedpapers28151 and
7 UNIVERSITY OFSOUTHERN CALIFORNIA
28165 ).Societyof PetroleumEngineers.
doi:10.2118/20332-PA
2. Juniardi,I. R.,& Ershaghi,I. (1993, January
1). Complexitiesof UsingNeural Networkin
Well TestAnalysisof FaultedReservoirs.
Societyof PetroleumEngineers.
doi:10.2118/26106-MS
3. Cinco-Ley,H.,& Samaniego-V.,F.(1981,
September1).TransientPressureAnalysis
for FracturedWells.Societyof Petroleum
Engineers.doi:10.2118/7490-PA
4. Ershaghi,I.,Li, X.,Hassibi,M.,& Shikari,Y.
(1993, January1). A RobustNeural Network
Model for PatternRecognitionof Pressure
TransientTestData. Societyof Petroleum
Engineers.doi:10.2118/26427-MS
1 UNIVERSITY OFSOUTHERN CALIFORNIA
Table 1
Flow Regime Model
Description
Mathematical Formulations
Type Curve Training and Testing
Data
Model 1:
Early Linear Flow
Model 2:
Formation Linear
Flow
Model 3:
Bilinear Flow
Model 4:
Bilinear Flow with
Wellbore Storage
Model 5:
Pseudo-Radial Flow
𝑀𝐷 Vs. 𝑑 𝐷π‘₯𝑓
𝑀𝐷 Vs. 𝑑 𝐷π‘₯𝑓
𝑀𝐷 Vs. 𝑑 𝐷π‘₯𝑓
( )
( )
𝑀𝐷 Vs.
𝑀𝐷 Vs. 𝑑 π·π‘Ÿ
Fracture
Fracture
Well
Well Fracture
Fracture
Well
Early LinearFlow
FormationLinearFlow
BilinearFlow
Psuedo-Radial Flow
Fig. 1 Flow Periods for A Vertically Fractured Well (After Cinco-Ley et al.)
2 UNIVERSITY OFSOUTHERN CALIFORNIA
Fig. 3 Set of Weights Obtained After Training The Neural Network (After Juniardi et al.)
BNN Level 1
All Flow
BNN Level 2
BNN Level 3
Group 1 Group 2 Group 3 Group 4
Group 1 Group 2 Group 3 Group 4 Group 5 Group 6
Fig. 2 Neural Network Level Class System Structure
3 UNIVERSITY OFSOUTHERN CALIFORNIA
Fig. 4 Early Linear Flow and Early Linear Flow Normalize
Fig. 5 Bilinear Flow and Bilinear Flow Normalize
Fig. 6 Bilinear with Wellbore Storage Flow and Bilinear with Wellbore Storage Flow Normalize
4 UNIVERSITY OFSOUTHERN CALIFORNIA
Fig. 7 Formation Linear Flow and Formation Linear Flow Normalize
Fig. 8 Pseudo-Radial Flow and Pseudo-Radial Flow Normalize
Table 2 Table 3
Table 4
xmin xmax ymin ymax
FlowLevel 1:
Pseudo-Radial -3 3 -2 6
Formation Linear -1 5 -1 7
Early Linear -1 5 -5 3
Bilinearwith Wellbore Storage -1 5 -6 2
Bilinear -1 5 -2 6
FlowLevel 2:
Group 1
Bilinear -1 5 -2 1
Formation Linear -1 5 -1 2
Psuedo-Radial -3 3 -2 1
Group 2
Early Linear -1 5 -5 10
Bilinearwith Wellbore Storage -1 5 -6 9
Formation Linear -1 5 -1 14
Group 3
Bilinear -1 6 -2 6
Bilinearwith Wellbore Storage -1 6 -6 2
Psuedo-Radial -4 3 -2 6
Group 4
Bilinear -1 5 -2 6
Bilinearwith Wellbore Storage -1 5 -6 2
Formation Linear -1 5 -1 7
FlowLevel 3:
Group 1
Bilinear -1 7 -2 6
Bilinearwith Wellbore Storage -1 7 -6 2
Group 2
Early Linear -1 5 -5 4
Bilinearwith Wellbore Storage -1 5 -6 3
Group 3
Bilinear -2 5 -2 3
Formation Linear -2 5 -2 3
Group 4
Early Linear -1 5 -5 4
Bilinear -1 5 -2 7
Group 5
Bilinearwith Wellbore Storage -1 5 -6 2
Formation Linear -1 5 -1 7
Group 6
Bilinear -1 7 -2 3
Pseudo-Radial -5 3 -3 2
Note:Each value is an exponentof base 10.
Flow Level 1:
Nx 6
Ny 8
Flow Level 2:
Group 1
Nx 6
Ny 3
Group 2
Nx 6
Ny 15
Group 3
Nx 7
Ny 8
Group 4
Nx 6
Ny 8
Flow Level 3:
Group 1
Nx 8
Ny 8
Group 2
Nx 6
Ny 9
Group 3
Nx 7
Ny 5
Group 4
Nx 6
Ny 9
Group 5
Nx 6
Ny 8
Group 6
Nx 8
Ny 5
Parameter Minimum Maximum
0 500
0 500
0 10000
(π‘˜ 𝑓 𝑏𝑓) 𝐷
𝑛 𝑓𝐷
𝐷𝑓
Fig. 9 Neural Network Training Set
Filtering
Table 5
FlowLevel1
Early
Linear
Flow
Bilinear
Flow
BilinearFlow
withWellbore
Storage Flow
Formation
Linear
Flow
Pseudo-
Radial Flow
DesiredOutput 0.9 0.1 0.1 0.1 0.1
0.6611 0.051 0.4633 0.0905 0.0935 Yes
0.0152 0.1523 0.5621 0.5854 0.6541 Yes
0.7215 0.0124 0.0152 0.0685 0.0545 No
0.8552 0.0154 0.0752 0.0874 0.0656 No
FlowLevel3:Group4
DesiredOutput 0.9 0.1
0.9016 0.0984 No
0.8154 0.1523 No
0.5452 0.5451 Yes
0.4512 0.8421 Yes
10,000Patterns
OptainedTested
Output
ObtainedTested
Output
AddedTo
TrainingSet
10,000Patterns
Flow Level 1
Early Linear
Flow Bilinear Flow
Bilinear Flow
with Wellbore
Storage Flow
Formation
Linear Flow
Pseudo-
Radial Flow
Desired Output 0.9 0.1 0.1 0.1 0.1
0.6346 0.0573 0.4417 0.1063 0.0934
0.6231 0.0599 0.4355 0.1117 0.0935
0.6335 0.0571 0.4454 0.1048 0.0936
0.6454 0.0531 0.4636 0.0975 0.0934
0.6393 0.0558 0.4488 0.1019 0.0935
Desired Output 0.1 0.9 0.1 0.1 0.1
0.1111 0.3282 0.0946 0.2102 0.5629
0.095 0.3833 0.1534 0.197 0.3916
0.1154 0.3217 0.0966 0.2102 0.5517
0.1049 0.3545 0.1314 0.2023 0.4431
0.1161 0.3244 0.1073 0.2085 0.5121
Desired Output 0.1 0.1 0.9 0.1 0.1
0.5887 0.0273 0.7927 0.0383 0.0957
0.5268 0.0508 0.6112 0.1201 0.0931
0.5235 0.0517 0.6067 0.1229 0.0931
0.5947 0.0219 0.8483 0.023 0.0971
0.5571 0.0414 0.6673 0.0888 0.0936
Desired Output 0.1 0.1 0.1 0.9 0.1
0.1157 0.3206 0.1069 0.2097 0.5206
0.1157 0.3206 0.1069 0.2097 0.5206
0.1157 0.3206 0.1069 0.2097 0.5206
0.1157 0.3206 0.1069 0.2097 0.5206
0.1157 0.3206 0.1069 0.2097 0.5206
Desired Output 0.1 0.1 0.1 0.1 0.9
0.1151 0.3194 0.0998 0.2107 0.5461
0.1158 0.319 0.1015 0.2105 0.5391
0.115 0.3195 0.0997 0.2107 0.5466
0.1153 0.3192 0.1002 0.2107 0.5443
0.1153 0.3192 0.1003 0.2106 0.544
Obtained Tested
Output
Obtained Tested
Output
Obtained Tested
Output
Obtained Tested
Output
Obtained Tested
Output
Table 6
Flow Level 2:
Group 1
Early Linear
Flow
Bilinear
Flow
Bilinear Flow
with Wellbore
Storage Flow
Formation
Linear Flow
Pseudo-Radial
Flow
Desired Output n/a 0.9 n/a 0.1 0.1
0.6521 0.3336 0.0977
0.9643 0.046 0.0916
0.924 0.0903 0.093
0.9687 0.0408 0.0914
0.9625 0.0482 0.0917
Flow Level 2:
Group 1
Early Linear
Flow
Bilinear
Flow
Bilinear Flow
with Wellbore
Storage Flow
Formation
Linear Flow
Pseudo-Radial
Flow
Desired Output n/a 0.1 n/a 0.9 0.1
0.3343 0.6011 0.1024
0.3343 0.6011 0.1024
0.3343 0.6011 0.1024
0.3343 0.6011 0.1024
0.3343 0.6011 0.1024
Flow Level 2:
Group 1
Early Linear
Flow
Bilinear
Flow
Bilinear Flow
with Wellbore
Storage Flow
Formation
Linear Flow
Pseudo-Radial
Flow
Desired Output n/a 0.1 n/a 0.1 0.9
0.11 0.0591 0.9046
0.1066 0.0628 0.9021
0.1102 0.0589 0.9048
0.1094 0.0599 0.904
0.1093 0.06 0.9039
Flow Level 2:
Group 2
Early Linear
Flow
Bilinear
Flow
Bilinear Flow
with Wellbore
Storage Flow
Formation
Linear Flow
Pseudo-Radial
Flow
Desired Output 0.9 n/a 0.1 0.1 n/a
0.9551 0.042 0.1019
0.9516 0.0456 0.1017
0.8985 0.1007 0.1001
0.881 0.1192 0.0998
0.9022 0.0968 0.1002
Obtained Tested
Output
n/a n/a
Obtained Tested
Output
n/a n/a
Obtained Tested
Output
n/a n/a
Obtained Tested
Output
n/a n/a
Flow Level 2:
Group 2
Early Linear
Flow
Bilinear
Flow
Bilinear Flow
with Wellbore
Storage Flow
Formation
Linear Flow
Pseudo-Radial
Flow
Desired Output 0.1 n/a 0.9 0.1 n/a
0.0171 0.9693 0.0989
0.0551 0.9322 0.0925
0.0348 0.9524 0.0931
0.0217 0.9653 0.0958
0.0721 0.9154 0.0925
Flow Level 2:
Group 2
Early Linear
Flow
Bilinear
Flow
Bilinear Flow
with Wellbore
Storage Flow
Formation
Linear Flow
Pseudo-Radial
Flow
Desired Output 0.1 n/a 0.1 0.9 n/a
0.1018 0.0932 0.9004
0.1018 0.0932 0.9004
0.1018 0.0932 0.9004
0.1018 0.0932 0.9004
0.1018 0.0932 0.9004
Flow Level 2:
Group 3
Early Linear
Flow
Bilinear
Flow
Bilinear Flow
with Wellbore
Storage Flow
Formation
Linear Flow
Pseudo-Radial
Flow
Desired Output n/a 0.9 0.1 n/a 0.1
0.2762 0.282 0.1413
0.285 0.799 0.1183
0.2829 0.6979 0.1234
0.2849 0.7965 0.1185
0.2846 0.7838 0.1192
Flow Level 2:
Group 3
Early Linear
Flow
Bilinear
Flow
Bilinear Flow
with Wellbore
Storage Flow
Formation
Linear Flow
Pseudo-Radial
Flow
Desired Output n/a 0.1 0.9 n/a 0.1
0.285 0.8022 0.1181
0.285 0.8022 0.1181
0.285 0.8022 0.1181
0.285 0.8022 0.1181
0.285 0.8022 0.1181
Obtained Tested
Output
n/a n/a
Obtained Tested
Output
n/a n/a
Obtained Tested
Output
n/a n/a
Obtained Tested
Output
n/a n/a
Flow Level 2:
Group 3
Early Linear
Flow
Bilinear
Flow
Bilinear Flow
with Wellbore
Storage Flow
Formation
Linear Flow
Pseudo-Radial
Flow
Desired Output n/a 0.1 0.1 n/a 0.9
0.2212 0 0.3792
0.2178 0 0.3996
0.2178 0 0.3995
0.2199 0 0.3871
0.2185 0 0.3953
Flow Level 2:
Group 4
Early Linear
Flow
Bilinear
Flow
Bilinear Flow
with Wellbore
Storage Flow
Formation
Linear Flow
Pseudo-Radial
Flow
Desired Output n/a 0.9 0.1 0.1 n/a
0.6889 0.1083 0.3169
0.6405 0.1272 0.3176
0.68 0.1115 0.3173
0.6504 0.1231 0.3177
0.6655 0.117 0.3177
Flow Level 2:
Group 4
Early Linear
Flow
Bilinear
Flow
Bilinear Flow
with Wellbore
Storage Flow
Formation
Linear Flow
Pseudo-Radial
Flow
Desired Output n/a 0.1 0.9 0.1 n/a
0 1 0.0731
0 1 0.0896
0 1 0.0817
0 1 0.0752
0 1 0.0949
Flow Level 2:
Group 4
Early Linear
Flow
Bilinear
Flow
Bilinear Flow
with Wellbore
Storage Flow
Formation
Linear Flow
Pseudo-Radial
Flow
Desired Output n/a 0.1 0.1 0.9 n/a
0.6353 0.1292 0.3178
0.6353 0.1292 0.3178
0.6353 0.1292 0.3178
0.6353 0.1292 0.3178
0.6353 0.1292 0.3178
Obtained Tested
Output
n/a n/a
Obtained Tested
Output
n/a n/a
Obtained Tested
Output
n/a n/a
Obtained Tested
Output
n/a n/a
1 UNIVERSITY OFSOUTHERN CALIFORNIA
Table 7
Flow Level 3:
Group 1
Early Linear
Flow
Bilinear
Flow
Bilinear Flow
with Wellbore
Storage Flow
Formation
Linear Flow
Pseudo-
Radial Flow
Desired Output n/a 0.9 0.1 n/a n/a
0.8944 0.1056
0.854 0.1456
0.8885 0.1114
0.8634 0.1364
0.877 0.1229
Flow Level 3:
Group 1
Early Linear
Flow
Bilinear
Flow
Bilinear Flow
with Wellbore
Storage Flow
Formation
Linear Flow
Pseudo-
Radial Flow
Desired Output n/a 0.1 0.9 n/a n/a
0.0976 0.9024
0.0963 0.9037
0.0965 0.9035
0.097 0.903
0.0963 0.9037
Flow Level 3:
Group 2
Early Linear
Flow
Bilinear
Flow
Bilinear Flow
with Wellbore
Storage Flow
Formation
Linear Flow
Pseudo-
Radial Flow
Desired Output 0.9 n/a 0.1 n/a n/a
0.9001 0.1
0.8998 0.1003
0.9001 0.1
0.902 0.098
0.9002 0.0999
Flow Level 3:
Group 2
Early Linear
Flow
Bilinear
Flow
Bilinear Flow
with Wellbore
Storage Flow
Formation
Linear Flow
Pseudo-
Radial Flow
Desired Output 0.1 n/a 0.9 n/a n/a
0.0993 0.9007
0.0996 0.9004
0.0997 0.9004
0.0997 0.9003
0.0992 0.9008
Obtained Tested
Output
n/a n/a n/a
Obtained Tested
Output
n/a n/a n/a
Obtained Tested
Output
n/a n/an/a
Obtained Tested
Output
n/a n/a n/a
Flow Level 3:
Group 3
Early Linear
Flow
Bilinear
Flow
Bilinear Flow
with Wellbore
Storage Flow
Formation
Linear Flow
Pseudo-
Radial Flow
Desired Output n/a 0.9 n/a 0.1 n/a
0.9008 0.0992
0.8998 0.1002
0.9007 0.0993
0.9 0.1
0.9004 0.0996
Flow Level 3:
Group 3
Early Linear
Flow
Bilinear
Flow
Bilinear Flow
with Wellbore
Storage Flow
Formation
Linear Flow
Pseudo-
Radial Flow
Desired Output n/a 0.1 n/a 0.9 n/a
0.2953 0.7024
0.2953 0.7024
0.2953 0.7024
0.2953 0.7024
0.2953 0.7024
Flow Level 3:
Group 4
Early Linear
Flow
Bilinear
Flow
Bilinear Flow
with Wellbore
Storage Flow
Formation
Linear Flow
Pseudo-
Radial Flow
Desired Output 0.9 0.1 n/a n/a n/a
0.901 0.099
0.9007 0.0993
0.9011 0.0989
0.9003 0.0997
0.9012 0.0988
Flow Level 3:
Group 4
Early Linear
Flow
Bilinear
Flow
Bilinear Flow
with Wellbore
Storage Flow
Formation
Linear Flow
Pseudo-
Radial Flow
Desired Output 0.1 0.9 n/a n/a n/a
0.0996 0.9003
0.1063 0.8939
0.1016 0.8984
0.1055 0.8947
0.1039 0.8962
Obtained Tested
Output
n/an/an/a
Obtained Tested
Output
n/a n/a n/a
Obtained Tested
Output
n/a n/an/a
Obtained Tested
Output
n/a n/a n/a
Flow Level 3:
Group 5
Early Linear
Flow
Bilinear
Flow
Bilinear Flow
with Wellbore
Storage Flow
Formation
Linear Flow
Pseudo-
Radial Flow
Desired Output n/a n/a 0.9 0.1 n/a
0.8998 0.1002
0.9021 0.0979
0.9016 0.0984
0.9006 0.0994
0.9023 0.0977
Flow Level 3:
Group 5
Early Linear
Flow
Bilinear
Flow
Bilinear Flow
with Wellbore
Storage Flow
Formation
Linear Flow
Pseudo-
Radial Flow
Desired Output n/a n/a 0.1 0.9 n/a
0.1 0.9
0.1 0.9
0.1 0.9
0.1 0.9
0.1 0.9
Flow Level 3:
Group 6
Early Linear
Flow
Bilinear
Flow
Bilinear Flow
with Wellbore
Storage Flow
Formation
Linear Flow
Pseudo-
Radial Flow
Desired Output n/a 0.9 n/a n/a 0.1
0.9487 0.0514
0.9458 0.0543
0.9481 0.052
0.9463 0.0538
0.9472 0.0529
Flow Level 3:
Group 6
Early Linear
Flow
Bilinear
Flow
Bilinear Flow
with Wellbore
Storage Flow
Formation
Linear Flow
Pseudo-
Radial Flow
Desired Output n/a 0.1 n/a n/a 0.9
0.1262 0.8738
0.1396 0.8604
0.1252 0.8748
0.1295 0.8706
0.13 0.87
Obtained Tested
Output
n/an/a n/a
n/a
Obtained Tested
Output
n/a n/a n/a
Obtained Tested
Output
n/a n/a n/a
Obtained Tested
Output
n/a n/a
Fig. 10 Early Linear Flow Identification
Fig. 11 Bilinear Flow Model Identification
Fig. 12 Bilinear Flow with Wellbore Storage Flow Model
Identification
Fig. 13 Formation Linear Flow Model Identification
Flow Level 1
Early Linear
Flow
Bilinear
Flow
Bilinear Flow
with Wellbore
Storage Flow
Formation
Linear Flow
Pseudo-
Radial Flow
Desired Output 0.9 0.1 0.1 0.1 0.1
0.6346 0.0573 0.4417 0.1063 0.0934
0.6231 0.0599 0.4355 0.1117 0.0935
0.6335 0.0571 0.4454 0.1048 0.0936
0.6454 0.0531 0.4636 0.0975 0.0934
0.6393 0.0558 0.4488 0.1019 0.0935
Flow Level 2:
Group 2
Early Linear
Flow
Bilinear
Flow
Bilinear Flow
with Wellbore
Storage Flow
Formation
Linear Flow
Pseudo-
Radial Flow
Desired Output 0.9 n/a 0.1 0.1 n/a
0.9551 0.042 0.1019
0.9516 0.0456 0.1017
0.8985 0.1007 0.1001
0.881 0.1192 0.0998
0.9022 0.0968 0.1002
Flow Level 3:
Group 2
Early Linear
Flow
Bilinear
Flow
Bilinear Flow
with Wellbore
Storage Flow
Formation
Linear Flow
Pseudo-
Radial Flow
Desired Output 0.9 n/a 0.1 n/a n/a
0.9001 0.1
0.8998 0.1003
0.9001 0.1
0.902 0.098
0.9002 0.0999
Obtained Tested
Output
Obtained Tested
Output
n/a n/a
Obtained Tested
Output
n/a n/an/a
Flow Level 1 Early Linear Flow Bilinear Flow
Bilinear Flow
with Wellbore
Storage Flow
Formation
Linear Flow
Pseudo-
Radial Flow
Desired Output 0.1 0.9 0.1 0.1 0.1
0.1111 0.3282 0.0946 0.2102 0.5629
0.095 0.3833 0.1534 0.197 0.3916
0.1154 0.3217 0.0966 0.2102 0.5517
0.1049 0.3545 0.1314 0.2023 0.4431
0.1161 0.3244 0.1073 0.2085 0.5121
Flow Level 2:
Group 1 Early Linear Flow Bilinear Flow
Bilinear Flow
with Wellbore
Storage Flow
Formation
Linear Flow
Pseudo-
Radial Flow
Desired Output n/a 0.9 n/a 0.1 0.1
0.6521 0.3336 0.0977
0.9643 0.046 0.0916
0.924 0.0903 0.093
0.9687 0.0408 0.0914
0.9625 0.0482 0.0917
Flow Level 3:
Group 1 Early Linear Flow Bilinear Flow
Bilinear Flow
with Wellbore
Storage Flow
Formation
Linear Flow
Pseudo-
Radial Flow
Desired Output n/a 0.9 0.1 n/a n/a
0.8944 0.1056
0.854 0.1456
0.8885 0.1114
0.8634 0.1364
0.877 0.1229
Obtained Tested
Output
Obtained Tested
Output
n/a n/a
Obtained Tested
Output
n/a n/a n/a
Flow Level 1
Early Linear
Flow
Bilinear
Flow
Bilinear Flow
with Wellbore
Storage Flow
Formation
Linear Flow
Pseudo-Radial
Flow
Desired Output 0.1 0.1 0.9 0.1 0.1
0.5887 0.0273 0.7927 0.0383 0.0957
0.5268 0.0508 0.6112 0.1201 0.0931
0.5235 0.0517 0.6067 0.1229 0.0931
0.5947 0.0219 0.8483 0.023 0.0971
0.5571 0.0414 0.6673 0.0888 0.0936
Flow Level 2:
Group 2
Early Linear
Flow
Bilinear
Flow
Bilinear Flow
with Wellbore
Storage Flow
Formation
Linear Flow
Pseudo-Radial
Flow
Desired Output 0.1 n/a 0.9 0.1 n/a
0.0171 0.9693 0.0989
0.0551 0.9322 0.0925
0.0348 0.9524 0.0931
0.0217 0.9653 0.0958
0.0721 0.9154 0.0925
Flow Level 3:
Group 2
Early Linear
Flow
Bilinear
Flow
Bilinear Flow
with Wellbore
Storage Flow
Formation
Linear Flow
Pseudo-Radial
Flow
Desired Output 0.1 n/a 0.9 n/a n/a
0.0993 0.9007
0.0996 0.9004
0.0997 0.9004
0.0997 0.9003
0.0992 0.9008
Obtained Tested
Output
n/a
Obtained Tested
Output
n/a
Obtained Tested
Output
n/a n/an/a
Flow Level 1
Early Linear
Flow
Bilinear
Flow
Bilinear Flow with
Wellbore Storage
Flow
Formation
Linear Flow
Pseudo-Radial
Flow
Desired Output 0.1 0.1 0.1 0.9 0.1
0.1157 0.3206 0.1069 0.2097 0.5206
0.1157 0.3206 0.1069 0.2097 0.5206
0.1157 0.3206 0.1069 0.2097 0.5206
0.1157 0.3206 0.1069 0.2097 0.5206
0.1157 0.3206 0.1069 0.2097 0.5206
Flow Level 2:
Group 1
Early Linear
Flow
Bilinear
Flow
Bilinear Flow with
Wellbore Storage
Flow
Formation
Linear Flow
Pseudo-Radial
Flow
Desired Output n/a 0.1 n/a 0.9 0.1
0.3343 0.6011 0.1024
0.3343 0.6011 0.1024
0.3343 0.6011 0.1024
0.3343 0.6011 0.1024
0.3343 0.6011 0.1024
Flow Level 3:
Group 3
Early Linear
Flow
Bilinear
Flow
Bilinear Flow with
Wellbore Storage
Flow
Formation
Linear Flow
Pseudo-Radial
Flow
Desired Output n/a 0.1 n/a 0.9 n/a
0.2953 0.7024
0.2953 0.7024
0.2953 0.7024
0.2953 0.7024
0.2953 0.7024
Obtained
Tested Output
n/a
Obtained
Tested Output
n/a
Obtained
Tested Output
n/a n/a n/a
Fig. 14 Pseudo-Radial Flow Model Identification
Flow Level 1
Early Linear
Flow
Bilinear
Flow
Bilinear Flow
with Wellbore
Storage Flow
Formation
Linear Flow
Pseudo-
Radial Flow
Desired Output 0.1 0.1 0.1 0.1 0.9
0.1151 0.3194 0.0998 0.2107 0.5461
0.1158 0.319 0.1015 0.2105 0.5391
0.115 0.3195 0.0997 0.2107 0.5466
0.1153 0.3192 0.1002 0.2107 0.5443
0.1153 0.3192 0.1003 0.2106 0.544
Flow Level 2:
Group 1
Early Linear
Flow
Bilinear
Flow
Bilinear Flow
with Wellbore
Storage Flow
Formation
Linear Flow
Pseudo-
Radial Flow
Desired Output n/a 0.1 n/a 0.1 0.9
0.11 0.0591 0.9046
0.1066 0.0628 0.9021
0.1102 0.0589 0.9048
0.1094 0.0599 0.904
0.1093 0.06 0.9039
Flow Level 3:
Group 6
Early Linear
Flow
Bilinear
Flow
Bilinear Flow
with Wellbore
Storage Flow
Formation
Linear Flow
Pseudo-
Radial Flow
Desired Output n/a 0.1 n/a n/a 0.9
0.1262 0.8738
0.1396 0.8604
0.1252 0.8748
0.1295 0.8706
0.13 0.87
Obtained Tested
Output
Obtained Tested
Output
n/a n/a
Obtained Tested
Output
n/a n/a n/a

More Related Content

What's hot

Location, Location, Location - A Framework for Intelligence and Cortical Comp...
Location, Location, Location - A Framework for Intelligence and Cortical Comp...Location, Location, Location - A Framework for Intelligence and Cortical Comp...
Location, Location, Location - A Framework for Intelligence and Cortical Comp...Numenta
Β 
Evolving Neural Networks through Augmenting Topologies NEAT
Evolving Neural Networks through Augmenting Topologies NEATEvolving Neural Networks through Augmenting Topologies NEAT
Evolving Neural Networks through Augmenting Topologies NEATAavaas Gajurel
Β 
Jeff Hawkins Human Brain Project Summit Keynote: "Location, Location, Locatio...
Jeff Hawkins Human Brain Project Summit Keynote: "Location, Location, Locatio...Jeff Hawkins Human Brain Project Summit Keynote: "Location, Location, Locatio...
Jeff Hawkins Human Brain Project Summit Keynote: "Location, Location, Locatio...Numenta
Β 
Dissertation character recognition - Report
Dissertation character recognition - ReportDissertation character recognition - Report
Dissertation character recognition - Reportsachinkumar Bharadva
Β 
Building Neural Network Through Neuroevolution
Building Neural Network Through NeuroevolutionBuilding Neural Network Through Neuroevolution
Building Neural Network Through Neuroevolutionbergel
Β 
Neural Network Classification and its Applications in Insurance Industry
Neural Network Classification and its Applications in Insurance IndustryNeural Network Classification and its Applications in Insurance Industry
Neural Network Classification and its Applications in Insurance IndustryInderjeet Singh
Β 
IRJET-Breast Cancer Detection using Convolution Neural Network
IRJET-Breast Cancer Detection using Convolution Neural NetworkIRJET-Breast Cancer Detection using Convolution Neural Network
IRJET-Breast Cancer Detection using Convolution Neural NetworkIRJET Journal
Β 
Efficiency of Neural Networks Study in the Design of Trusses
Efficiency of Neural Networks Study in the Design of TrussesEfficiency of Neural Networks Study in the Design of Trusses
Efficiency of Neural Networks Study in the Design of TrussesIRJET Journal
Β 
Artificial Neural Network and its Applications
Artificial Neural Network and its ApplicationsArtificial Neural Network and its Applications
Artificial Neural Network and its Applicationsshritosh kumar
Β 
Analysis of Neocognitron of Neural Network Method in the String Recognition
Analysis of Neocognitron of Neural Network Method in the String RecognitionAnalysis of Neocognitron of Neural Network Method in the String Recognition
Analysis of Neocognitron of Neural Network Method in the String RecognitionIDES Editor
Β 
Locations in the Neocortex: A Theory of Sensorimotor Prediction Using Cortica...
Locations in the Neocortex: A Theory of Sensorimotor Prediction Using Cortica...Locations in the Neocortex: A Theory of Sensorimotor Prediction Using Cortica...
Locations in the Neocortex: A Theory of Sensorimotor Prediction Using Cortica...Numenta
Β 
Does the neocortex use grid cell-like mechanisms to learn the structure of ob...
Does the neocortex use grid cell-like mechanisms to learn the structure of ob...Does the neocortex use grid cell-like mechanisms to learn the structure of ob...
Does the neocortex use grid cell-like mechanisms to learn the structure of ob...Numenta
Β 
Af4102237242
Af4102237242Af4102237242
Af4102237242IJERA Editor
Β 
Jeff Hawkins NAISys 2020: How the Brain Uses Reference Frames, Why AI Needs t...
Jeff Hawkins NAISys 2020: How the Brain Uses Reference Frames, Why AI Needs t...Jeff Hawkins NAISys 2020: How the Brain Uses Reference Frames, Why AI Needs t...
Jeff Hawkins NAISys 2020: How the Brain Uses Reference Frames, Why AI Needs t...Numenta
Β 
Cerebellar Model Controller with new Model of Granule Cell-golgi Cell Buildi...
Cerebellar Model Controller with new Model of Granule  Cell-golgi Cell Buildi...Cerebellar Model Controller with new Model of Granule  Cell-golgi Cell Buildi...
Cerebellar Model Controller with new Model of Granule Cell-golgi Cell Buildi...IJECEIAES
Β 
fundamentals-of-neural-networks-laurene-fausett
fundamentals-of-neural-networks-laurene-fausettfundamentals-of-neural-networks-laurene-fausett
fundamentals-of-neural-networks-laurene-fausettZarnigar Altaf
Β 
Pattern Recognition using Artificial Neural Network
Pattern Recognition using Artificial Neural NetworkPattern Recognition using Artificial Neural Network
Pattern Recognition using Artificial Neural NetworkEditor IJCATR
Β 
VLSI IN NEURAL NETWORKS
VLSI IN NEURAL NETWORKSVLSI IN NEURAL NETWORKS
VLSI IN NEURAL NETWORKSMohan Moki
Β 

What's hot (20)

Location, Location, Location - A Framework for Intelligence and Cortical Comp...
Location, Location, Location - A Framework for Intelligence and Cortical Comp...Location, Location, Location - A Framework for Intelligence and Cortical Comp...
Location, Location, Location - A Framework for Intelligence and Cortical Comp...
Β 
Evolving Neural Networks through Augmenting Topologies NEAT
Evolving Neural Networks through Augmenting Topologies NEATEvolving Neural Networks through Augmenting Topologies NEAT
Evolving Neural Networks through Augmenting Topologies NEAT
Β 
Jeff Hawkins Human Brain Project Summit Keynote: "Location, Location, Locatio...
Jeff Hawkins Human Brain Project Summit Keynote: "Location, Location, Locatio...Jeff Hawkins Human Brain Project Summit Keynote: "Location, Location, Locatio...
Jeff Hawkins Human Brain Project Summit Keynote: "Location, Location, Locatio...
Β 
Dissertation character recognition - Report
Dissertation character recognition - ReportDissertation character recognition - Report
Dissertation character recognition - Report
Β 
Building Neural Network Through Neuroevolution
Building Neural Network Through NeuroevolutionBuilding Neural Network Through Neuroevolution
Building Neural Network Through Neuroevolution
Β 
Neural Network Classification and its Applications in Insurance Industry
Neural Network Classification and its Applications in Insurance IndustryNeural Network Classification and its Applications in Insurance Industry
Neural Network Classification and its Applications in Insurance Industry
Β 
IRJET-Breast Cancer Detection using Convolution Neural Network
IRJET-Breast Cancer Detection using Convolution Neural NetworkIRJET-Breast Cancer Detection using Convolution Neural Network
IRJET-Breast Cancer Detection using Convolution Neural Network
Β 
Efficiency of Neural Networks Study in the Design of Trusses
Efficiency of Neural Networks Study in the Design of TrussesEfficiency of Neural Networks Study in the Design of Trusses
Efficiency of Neural Networks Study in the Design of Trusses
Β 
Artificial Neural Network and its Applications
Artificial Neural Network and its ApplicationsArtificial Neural Network and its Applications
Artificial Neural Network and its Applications
Β 
H43014046
H43014046H43014046
H43014046
Β 
Analysis of Neocognitron of Neural Network Method in the String Recognition
Analysis of Neocognitron of Neural Network Method in the String RecognitionAnalysis of Neocognitron of Neural Network Method in the String Recognition
Analysis of Neocognitron of Neural Network Method in the String Recognition
Β 
Locations in the Neocortex: A Theory of Sensorimotor Prediction Using Cortica...
Locations in the Neocortex: A Theory of Sensorimotor Prediction Using Cortica...Locations in the Neocortex: A Theory of Sensorimotor Prediction Using Cortica...
Locations in the Neocortex: A Theory of Sensorimotor Prediction Using Cortica...
Β 
Lesson 37
Lesson 37Lesson 37
Lesson 37
Β 
Does the neocortex use grid cell-like mechanisms to learn the structure of ob...
Does the neocortex use grid cell-like mechanisms to learn the structure of ob...Does the neocortex use grid cell-like mechanisms to learn the structure of ob...
Does the neocortex use grid cell-like mechanisms to learn the structure of ob...
Β 
Af4102237242
Af4102237242Af4102237242
Af4102237242
Β 
Jeff Hawkins NAISys 2020: How the Brain Uses Reference Frames, Why AI Needs t...
Jeff Hawkins NAISys 2020: How the Brain Uses Reference Frames, Why AI Needs t...Jeff Hawkins NAISys 2020: How the Brain Uses Reference Frames, Why AI Needs t...
Jeff Hawkins NAISys 2020: How the Brain Uses Reference Frames, Why AI Needs t...
Β 
Cerebellar Model Controller with new Model of Granule Cell-golgi Cell Buildi...
Cerebellar Model Controller with new Model of Granule  Cell-golgi Cell Buildi...Cerebellar Model Controller with new Model of Granule  Cell-golgi Cell Buildi...
Cerebellar Model Controller with new Model of Granule Cell-golgi Cell Buildi...
Β 
fundamentals-of-neural-networks-laurene-fausett
fundamentals-of-neural-networks-laurene-fausettfundamentals-of-neural-networks-laurene-fausett
fundamentals-of-neural-networks-laurene-fausett
Β 
Pattern Recognition using Artificial Neural Network
Pattern Recognition using Artificial Neural NetworkPattern Recognition using Artificial Neural Network
Pattern Recognition using Artificial Neural Network
Β 
VLSI IN NEURAL NETWORKS
VLSI IN NEURAL NETWORKSVLSI IN NEURAL NETWORKS
VLSI IN NEURAL NETWORKS
Β 

Similar to ANN Fracture Flow Regime

Paper Egr 183 Modeling Neural Networks In Silico
Paper Egr 183 Modeling Neural Networks In SilicoPaper Egr 183 Modeling Neural Networks In Silico
Paper Egr 183 Modeling Neural Networks In SilicoJoshua Mendoza-Elias
Β 
Using Artificial Neural Networks to Detect Multiple Cancers from a Blood Test
Using Artificial Neural Networks to Detect Multiple Cancers from a Blood TestUsing Artificial Neural Networks to Detect Multiple Cancers from a Blood Test
Using Artificial Neural Networks to Detect Multiple Cancers from a Blood TestStevenQu1
Β 
Modeling of neural image compression using gradient decent technology
Modeling of neural image compression using gradient decent technologyModeling of neural image compression using gradient decent technology
Modeling of neural image compression using gradient decent technologytheijes
Β 
SeniorThesisFinal_Biswas
SeniorThesisFinal_BiswasSeniorThesisFinal_Biswas
SeniorThesisFinal_BiswasAditya Biswas
Β 
NEURAL NETWORK FOR THE RELIABILITY ANALYSIS OF A SERIES - PARALLEL SYSTEM SUB...
NEURAL NETWORK FOR THE RELIABILITY ANALYSIS OF A SERIES - PARALLEL SYSTEM SUB...NEURAL NETWORK FOR THE RELIABILITY ANALYSIS OF A SERIES - PARALLEL SYSTEM SUB...
NEURAL NETWORK FOR THE RELIABILITY ANALYSIS OF A SERIES - PARALLEL SYSTEM SUB...IAEME Publication
Β 
Research Paper - Vaibhav
Research Paper - VaibhavResearch Paper - Vaibhav
Research Paper - VaibhavVaibhav Dhattarwal
Β 
Artificial Neural Networks In Control And Optimization
Artificial Neural Networks In Control And OptimizationArtificial Neural Networks In Control And Optimization
Artificial Neural Networks In Control And OptimizationJim Webb
Β 
CONVOLUTIONAL NEURAL NETWORK BASED RETINAL VESSEL SEGMENTATION
CONVOLUTIONAL NEURAL NETWORK BASED RETINAL VESSEL SEGMENTATIONCONVOLUTIONAL NEURAL NETWORK BASED RETINAL VESSEL SEGMENTATION
CONVOLUTIONAL NEURAL NETWORK BASED RETINAL VESSEL SEGMENTATIONCSEIJJournal
Β 
Convolutional Neural Network based Retinal Vessel Segmentation
Convolutional Neural Network based Retinal Vessel SegmentationConvolutional Neural Network based Retinal Vessel Segmentation
Convolutional Neural Network based Retinal Vessel SegmentationCSEIJJournal
Β 
Artificial Neural Networks (ANNS) For Prediction of California Bearing Ratio ...
Artificial Neural Networks (ANNS) For Prediction of California Bearing Ratio ...Artificial Neural Networks (ANNS) For Prediction of California Bearing Ratio ...
Artificial Neural Networks (ANNS) For Prediction of California Bearing Ratio ...IJMER
Β 
Control of Nonlinear Industrial Processes Using Fuzzy Wavelet Neural Network ...
Control of Nonlinear Industrial Processes Using Fuzzy Wavelet Neural Network ...Control of Nonlinear Industrial Processes Using Fuzzy Wavelet Neural Network ...
Control of Nonlinear Industrial Processes Using Fuzzy Wavelet Neural Network ...IJRES Journal
Β 
Live to learn: learning rules-based artificial neural network
Live to learn: learning rules-based artificial neural networkLive to learn: learning rules-based artificial neural network
Live to learn: learning rules-based artificial neural networknooriasukmaningtyas
Β 
Study of Membrane Transport for Protein Filtration Using Artificial Neural Ne...
Study of Membrane Transport for Protein Filtration Using Artificial Neural Ne...Study of Membrane Transport for Protein Filtration Using Artificial Neural Ne...
Study of Membrane Transport for Protein Filtration Using Artificial Neural Ne...IJERDJOURNAL
Β 
Deep Learning for Health Informatics
Deep Learning for Health InformaticsDeep Learning for Health Informatics
Deep Learning for Health InformaticsJason J Pulikkottil
Β 
Crude Oil Price Prediction Based on Soft Computing Model: Case Study of Iraq
Crude Oil Price Prediction Based on Soft Computing Model: Case Study of IraqCrude Oil Price Prediction Based on Soft Computing Model: Case Study of Iraq
Crude Oil Price Prediction Based on Soft Computing Model: Case Study of IraqKiogyf
Β 
Rupesh-ibPRIA final
Rupesh-ibPRIA finalRupesh-ibPRIA final
Rupesh-ibPRIA finalDr Rupesh Shet
Β 
Summary Of Thesis
Summary Of ThesisSummary Of Thesis
Summary Of Thesisguestb452d6
Β 

Similar to ANN Fracture Flow Regime (20)

Paper Egr 183 Modeling Neural Networks In Silico
Paper Egr 183 Modeling Neural Networks In SilicoPaper Egr 183 Modeling Neural Networks In Silico
Paper Egr 183 Modeling Neural Networks In Silico
Β 
Using Artificial Neural Networks to Detect Multiple Cancers from a Blood Test
Using Artificial Neural Networks to Detect Multiple Cancers from a Blood TestUsing Artificial Neural Networks to Detect Multiple Cancers from a Blood Test
Using Artificial Neural Networks to Detect Multiple Cancers from a Blood Test
Β 
D028018022
D028018022D028018022
D028018022
Β 
Modeling of neural image compression using gradient decent technology
Modeling of neural image compression using gradient decent technologyModeling of neural image compression using gradient decent technology
Modeling of neural image compression using gradient decent technology
Β 
SeniorThesisFinal_Biswas
SeniorThesisFinal_BiswasSeniorThesisFinal_Biswas
SeniorThesisFinal_Biswas
Β 
NEURAL NETWORK FOR THE RELIABILITY ANALYSIS OF A SERIES - PARALLEL SYSTEM SUB...
NEURAL NETWORK FOR THE RELIABILITY ANALYSIS OF A SERIES - PARALLEL SYSTEM SUB...NEURAL NETWORK FOR THE RELIABILITY ANALYSIS OF A SERIES - PARALLEL SYSTEM SUB...
NEURAL NETWORK FOR THE RELIABILITY ANALYSIS OF A SERIES - PARALLEL SYSTEM SUB...
Β 
Research Paper - Vaibhav
Research Paper - VaibhavResearch Paper - Vaibhav
Research Paper - Vaibhav
Β 
Artificial Neural Networks In Control And Optimization
Artificial Neural Networks In Control And OptimizationArtificial Neural Networks In Control And Optimization
Artificial Neural Networks In Control And Optimization
Β 
CONVOLUTIONAL NEURAL NETWORK BASED RETINAL VESSEL SEGMENTATION
CONVOLUTIONAL NEURAL NETWORK BASED RETINAL VESSEL SEGMENTATIONCONVOLUTIONAL NEURAL NETWORK BASED RETINAL VESSEL SEGMENTATION
CONVOLUTIONAL NEURAL NETWORK BASED RETINAL VESSEL SEGMENTATION
Β 
Convolutional Neural Network based Retinal Vessel Segmentation
Convolutional Neural Network based Retinal Vessel SegmentationConvolutional Neural Network based Retinal Vessel Segmentation
Convolutional Neural Network based Retinal Vessel Segmentation
Β 
thesis.compressed
thesis.compressedthesis.compressed
thesis.compressed
Β 
Artificial Neural Networks (ANNS) For Prediction of California Bearing Ratio ...
Artificial Neural Networks (ANNS) For Prediction of California Bearing Ratio ...Artificial Neural Networks (ANNS) For Prediction of California Bearing Ratio ...
Artificial Neural Networks (ANNS) For Prediction of California Bearing Ratio ...
Β 
Control of Nonlinear Industrial Processes Using Fuzzy Wavelet Neural Network ...
Control of Nonlinear Industrial Processes Using Fuzzy Wavelet Neural Network ...Control of Nonlinear Industrial Processes Using Fuzzy Wavelet Neural Network ...
Control of Nonlinear Industrial Processes Using Fuzzy Wavelet Neural Network ...
Β 
Live to learn: learning rules-based artificial neural network
Live to learn: learning rules-based artificial neural networkLive to learn: learning rules-based artificial neural network
Live to learn: learning rules-based artificial neural network
Β 
Study of Membrane Transport for Protein Filtration Using Artificial Neural Ne...
Study of Membrane Transport for Protein Filtration Using Artificial Neural Ne...Study of Membrane Transport for Protein Filtration Using Artificial Neural Ne...
Study of Membrane Transport for Protein Filtration Using Artificial Neural Ne...
Β 
honn
honnhonn
honn
Β 
Deep Learning for Health Informatics
Deep Learning for Health InformaticsDeep Learning for Health Informatics
Deep Learning for Health Informatics
Β 
Crude Oil Price Prediction Based on Soft Computing Model: Case Study of Iraq
Crude Oil Price Prediction Based on Soft Computing Model: Case Study of IraqCrude Oil Price Prediction Based on Soft Computing Model: Case Study of Iraq
Crude Oil Price Prediction Based on Soft Computing Model: Case Study of Iraq
Β 
Rupesh-ibPRIA final
Rupesh-ibPRIA finalRupesh-ibPRIA final
Rupesh-ibPRIA final
Β 
Summary Of Thesis
Summary Of ThesisSummary Of Thesis
Summary Of Thesis
Β 

ANN Fracture Flow Regime

  • 1. Artificial Neural Network to Identify Vertical Fractured Wells Flow Period Directed Research Long Vo 9/13/2015
  • 2. 1 UNIVERSITY OFSOUTHERN CALIFORNIA Contents 1-1 Abstract..................................................................................................................................2 2-1 Introduction............................................................................................................................2 3-1 Back Propagation Neural Network...........................................................................................1 Neural Network Level Classes..........................................................................................................3 Node Number Selection..................................................................................................................3 Data Normalization.........................................................................................................................3 Neural Network Training.................................................................................................................4 4-1 Experimentation and Verification............................................................................................5 5-1 Conclusions.............................................................................................................................6 6-1 Nomenclature.........................................................................................................................6 7-1 Subscripts...............................................................................................................................6 8-1 References..............................................................................................................................6
  • 3. 2 UNIVERSITY OFSOUTHERN CALIFORNIA Artificial NeuralNetwork to Identify VerticalFractured Wells Flow Period Vo, Long 1-1 Abstract A modifiedpatternrecognitiontechniqueusing the artificial neural networkisproposedto reduce the non-uniquenessof hydraulic fracturingmodel selection.A neural network level systemof differentcomprehensive neural networksgroupedintothree stagescanhelp filterandidentifymodelsthata single comprehensive neuralnetworkcouldnot.This can help reduce the time and increase the accuracy of model selection. 2-1 Introduction Pressure-transienttestingreliesonasignal of pressure vs. time;thissignal isexaminedby plottingwithaspecializedfunctionand analyzingtodetermine the well-test interpretationmodel.Traditionallywell-test interpretationmodelswere identifiedbyusing inverse theoryregression analysisasnotedby Al-Kaabi andLee1 ;howeverthese theorieslack the capacity to identifythe correctmodel due to similarsignals producedfrommultiple models.Toidentifythe correctmodel,an interpreterisneededwhenanalyzingwelltest data to qualitativelyselectthe mostrelated reservoirmodel. Manypossible analytical modelscanbe investigatedtofindthe best interpretation model asnotedbyJuniardi and Ershaghi2 . Confusion is caused by non-unique signals when selecting the most related reservoir model. For hydraulically fractured wells, the need to identify the flow regime is necessary. To select the proper flow regime for hydraulically fractured wells, Cinco-Ley and Samaniego-V3 proposed the use of type curves of dimensionless pressure and dimensionless time to analyze the four flow periods on log-log plots of a vertically fractured well; fracture linear flow, bilinear flow, formation linear flow, and pseudo-radial flow. Yet this approach is limited by the number of presented flow regimes and a number of controlling parameters. Future flow model regime identification can cause an increase in non-uniqueness such as transition flow period between bilinear and linear flows and bilinearflowwithwellbore storage effect. Application of an expert system in model interpretation through pattern recognition using the artificial neural network has been conducted by Ershaghi et al.4 and Al-Kaabi and Lee1 . This system has made model identification faster and more accurate as complexity increases. The expert system imitates the reasoning process of a human interpreter as noted by Juniardi and Ershaghi2 . It uses pattern recognition of back propagation neural network to identify the well-test interpretation model. The back propagation neural network is noise insensitive, and can analyze complex models witha multitude of responses. The purpose of this paper is to describe the research results on how to train a neural net simulator to identify hydraulically fractured flow regimes discussed in Cinco-Ley et al3 . and to extend the previous studies from Al-Kaabi and Lee1 , and incorporate Ershaghi et al.4 ’s
  • 4. 1 UNIVERSITY OFSOUTHERN CALIFORNIA training and data normalizing methods while utilizing single back propagated neural networks in Juniardi and Ershaghi2 . This paper will also discuss the strengths and weaknesses of the neural network models level system in model interpretation and provide model selectionverification. 3-1 Back PropagationNeural Network The use of Neural Networksinwelltest interpretationwaspresentedbyAl-Kaabiand Lee1 in1993 to train a neural netsimulatorto identifythe well-testinterpretationmodel from the derivative plot.Thismethodeliminatesthe needforpreprocessingandwritingcomplex rules.Itis automaticinmodel selectiononly and cannotestimate model parameters. Juniardi andErshaghi2 extendedthisstudyto incorporate the strengthandweaknessesof the neural networkmodel interpretationthrougha single backpropagationneural network while Ershaghi et al.4 extendedthe researchtowards a hybridapproachof multiple neuralnetworks. Thismethod,however, cannotdistinguish betweensimilarpatternsaswell asa comprehensive neuralnetwork.The hybrid methodcannotrecognize patterns thatwere not trained andmisidentifypatternsif not properlyfiltered. In thisstudy,backpropagationneural network modelswere developedtoidentifywell-test interpretationmodelsfrom hydraulically fracturedwells.The modelswere identified usinglog-logtype curve ondimensionless pressure andtime as notedbyCinco-Leyand Samaniego-V3 .A levelclasssystemof neural networkswascreatedtoensure correct classificationof all modelsconsidered. It will focusonflowregime recognitionof hydraulicallyfracturedwells withafinite- conductivityvertical fracture.The neural networkwill be usedasa patternrecognition tool to determine the bestpossible flowregime fromthe inputdata.Because the flow regime variesbasedonitsparameters,the shape will alsovary. Similarpatternswillalso emerge. Therefore,asmore flow regimesare discovered,the needforafast expertsystemis requiredfora fastercomputation,reducingthe time of analysis.The five flow regime model usedinthisstudywill be;bilinearflow,bilinear flow withwellbore storage effect, earlylinear flow,formationlinearflow,and pseudo-radial flow. Each flow period ismodeledbasedonthe referencedformulasfromCinco-Leyand Samaniego-V3 .The flow periodconfiguration can be seenin Figure 1 andthe formulasof each model canbe seeninTable 1. The networksystemconsistsof three level classes.The firstclassconsistsof a single comprehensive neuralnetwork trainedto recognize anddistinguishall flow regime modelsgiven.Byusingasingle comprehensive neural network,similarities of responsesamong differentmodelscancause the networkto outputactivationnumberof > 0.2 for similar models. Therefore,asecond level of neural networks iscreatedtorecognize the differences inthese models,all modelswithsimilar patternswithactivation number>0.2 are groupedandtrainedinindividualneural networksinthe secondlevel.If the secondlevel of neural networkswere notable todistinguish the patterns,a thirdlevel wouldbe created (see Figure 2).A detail descriptionof the neural networkcan be foundin Ershaghi etal.4 , Juniardi etal.2 ,andAl-Kaabi etal.1 The processof trainingthe Back Propagation Neural Networkforcomplex pattern recognitionconsistsof generatingweight factors to fitthe correct model recognition.The weightsare generatedthroughoutthree layers of nodeswithin the neural networkasshownin
  • 5. 2 UNIVERSITY OFSOUTHERN CALIFORNIA Figure 3; the inputlayeri,the hiddenlayerj, and the outputlayerk. The nodesinthe layers are connectedby links;the linksprovide apath of propagationfromlayeri to j and from j to k withweightfactorsgeneratedineachlinkas mentionbyAl-Kaabi andLee1 .The networkis trainedinan iterative method throughback propagationbyminimizingthe errorbetween each weightchange until the weightscan correctlyidentifythe modelsatacertain activationnumber.Anexampleof the process can be seeninJuniardi andErshaghi2 ’spaper. The activationnumberiscontrolledinthe hiddenlayerandoutputlayerbya squashing sigmoidfunction.If the node isinactivethe activationnumberwouldbe 0and if the node is veryactive the activation wouldbe 1,as mentionbyErshaghi etal4 .The calculationof the activationfunctioninasingle node inlayerj can be seenbelow: 𝑂𝑒𝑑𝑝𝑒𝑑𝑗 = 1 1 + 𝑒π‘₯𝑝(βˆ’π‘‡π‘œπ‘‘π‘Žπ‘™π‘—) 𝑂𝑒𝑑𝑝𝑒𝑑𝑗 = π‘œπ‘’π‘‘π‘π‘’π‘‘ π‘“π‘Ÿπ‘œπ‘š π‘™π‘Žπ‘¦π‘’π‘Ÿ 𝑗 π‘‡π‘œπ‘‘π‘Žπ‘™π‘— = π‘ π‘’π‘šπ‘šπ‘Žπ‘‘π‘–π‘œπ‘› π‘œπ‘“ π‘‘β„Žπ‘’ 𝑖𝑛𝑝𝑒𝑑 π‘ π‘–π‘”π‘›π‘Žπ‘™ π‘‘π‘œ π‘›π‘œπ‘‘π‘’ 𝑗 π‘“π‘Ÿπ‘œπ‘š π‘Žπ‘™π‘™ π‘›π‘œπ‘‘π‘’π‘  𝑖𝑛 π‘‘β„Žπ‘’ 𝑖𝑛𝑝𝑒𝑑 π‘™π‘Žπ‘¦π‘’π‘Ÿ 𝑖 π‘‡π‘œπ‘‘π‘Žπ‘™π‘— = βˆ‘ 𝑀𝑖𝑗 𝑂𝑒𝑑𝑝𝑒𝑑𝑖 𝑖 𝑀𝑖𝑗 = π‘€π‘’π‘–π‘”β„Žπ‘‘ π‘“π‘Žπ‘π‘‘π‘œπ‘Ÿ π‘‘π‘Žπ‘˜π‘’π‘› π‘“π‘Ÿπ‘œπ‘š π‘Ž π‘™π‘–π‘›π‘˜ 𝑏𝑒𝑑𝑀𝑒𝑒𝑛 π‘™π‘Žπ‘¦π‘’π‘Ÿ 𝑖 π‘Žπ‘›π‘‘ 𝑗 𝑂𝑒𝑑𝑝𝑒𝑑𝑖 = π‘œπ‘’π‘‘π‘π‘’π‘‘ π‘“π‘Ÿπ‘œπ‘š π‘™π‘Žπ‘¦π‘’π‘Ÿ 𝑖 π‘œπ‘Ÿ 𝑖𝑛𝑝𝑒𝑑 π‘“π‘Ÿπ‘œπ‘š π‘™π‘Žπ‘¦π‘’π‘Ÿ 𝑖 Since layeri is the (first) inputlayer,the weights, andoutputsfromthe sigmoidfunction are the same as what wasinputintolayeri.The same processisusedfor layerk withinput signalscomingfromj nodes. Before the dataare usedas inputsforlayeri,it isfirstnormalizedforthe x-axisandy-axis. Because the outputfromthe sigmoidfunctionis from0 to 1 the (x,y) pairsfrom the type curve plotswere normalizedfrom0.1 to 0.9. At positive infinity,the sigmoidfunctionwill be 1 and at negative infinity,the sigmoidfunction will be 0. 0.1 ≀ ( 𝑑𝐷) π‘œπ‘Ÿ ( 𝑑) ≀ 0.9 0.1 ≀ ( 𝑝𝐷) π‘œπ‘Ÿ ( 𝑝) ≀ 0.9 𝑑𝐷 = π‘‘π‘–π‘šπ‘’π‘›π‘ π‘–π‘œπ‘›π‘™π‘’π‘ π‘  π‘‘π‘–π‘šπ‘’ 𝑑 = π‘‘π‘–π‘šπ‘’ 𝑝𝐷 = π‘‘π‘–π‘šπ‘’π‘›π‘ π‘–π‘œπ‘›π‘™π‘’π‘ π‘  π‘π‘Ÿπ‘’π‘ π‘ π‘’π‘Ÿπ‘’ 𝑝 = π‘π‘Ÿπ‘’π‘ π‘ π‘’π‘Ÿπ‘’ The normalizationwasdone bythe scaling downmethod: π‘₯ π‘›π‘œπ‘Ÿ = 0.1 + 0.8 Γ— (π‘₯βˆ’π‘₯ π‘šπ‘–π‘›) 𝑁π‘₯ π‘¦π‘›π‘œπ‘Ÿ = 0.1 + 0.8 Γ— (π‘¦βˆ’π‘¦ π‘šπ‘–π‘›) 𝑁 𝑦 π‘₯ = log( 𝑑𝐷) π‘œπ‘Ÿ log(𝑑) 𝑦 = log( 𝑝𝐷) π‘œπ‘Ÿ log(𝑝) π‘₯ π‘šπ‘– 𝑛 = π‘šπ‘–π‘›π‘–π‘šπ‘’π‘š π‘™π‘œπ‘”π‘œπ‘Ÿπ‘–π‘‘β„Žπ‘š 𝑑𝐷 π‘œπ‘Ÿ 𝑑 π‘β„Žπ‘œπ‘ π‘’π‘› π‘Žπ‘  π‘‘β„Žπ‘’ π‘ π‘‘π‘Žπ‘Ÿπ‘‘π‘–π‘›π‘” π‘π‘œπ‘–π‘›π‘‘ 𝑦 π‘šπ‘–π‘› = π‘šπ‘–π‘›π‘–π‘šπ‘’π‘š π‘™π‘œπ‘”π‘œπ‘Ÿπ‘–π‘‘β„Žπ‘š 𝑝𝐷 π‘œπ‘Ÿ 𝑝 π‘β„Žπ‘œπ‘ π‘’π‘› π‘Žπ‘  π‘‘β„Žπ‘’ π‘ π‘‘π‘Žπ‘Ÿπ‘‘π‘–π‘›π‘” π‘π‘œπ‘–π‘›π‘‘ 𝑁 π‘₯ = π‘›π‘’π‘šπ‘π‘’π‘Ÿπ‘  π‘œπ‘“ log 𝑐𝑦𝑐𝑙𝑒𝑠 π‘œπ‘› π‘‘β„Žπ‘’ 𝑑𝐷 π‘Žπ‘›π‘‘ 𝑑 π‘Žπ‘₯𝑖𝑠 𝑁 𝑦 = π‘›π‘’π‘šπ‘π‘’π‘Ÿπ‘  π‘œπ‘“ log 𝑐𝑦𝑐𝑙𝑒𝑠 π‘œπ‘› π‘‘β„Žπ‘’ 𝑝𝐷 π‘Žπ‘›π‘‘ 𝑝 π‘Žπ‘₯𝑖𝑠
  • 6. 3 UNIVERSITY OFSOUTHERN CALIFORNIA For thisstudy,the sectionsbelowanalyze the processof buildingthe neural networkforwell testanalysisfollowingthe above-mentioned methods. Neural Network Level Classes The networksystemwasdividedintothree level classes.Eachclasswas usedto distinguish patternsoutputfromthe trainedmodelsfrom the firstlevel throughthe thirdlevel.The first level classconsistsof earlylinearflow,bilinear flow,bilinearflow withwellbore storage, formationlinearflow,andpseudo-radialflow. Because there are similaritieswithineach model,the neural networkwouldgenerate activationnumbershigherthan0.2 forall patternssimilartothe inputpatterns.Thisis causedby the non-uniquenessof the patterns. Therefore,the secondlevelclass of the neural network systemis createdtodistinguish betweenthe non-uniquenessoutputtedfrom level one. Level twoneural networksconsistof four groups: 1. Bilinearflow,formationlinearflow,and pseudo-radialflow 2. Early linearflow,bilinearflow with wellbore storage, andformationlinear flow 3. Bilinearflow,bilinearflow with wellbore storage, andpseudo-radial flow 4. Bilinearflow,bilinearflow with wellbore storage, andformationlinear flow Howevernotall of the non-uniquenessis eliminated, therefore, athirdlevelclassneural networkis createdto eliminate any misidentification. Level three neural networksconsistof six groups: 1. Bilinearflow andbilinearflowwith wellbore storage 2. Early linearflow andbilinearflow with wellbore storage 3. Bilinearflow, andformationlinearflow 4. Early linearflow,andbilinearflow 5. Bilinearflow withwellborestorage, and formationlinearflow 6. Bilinearflow, andpseudo-radial flow To identify aflow regime, the inputdataenters the firstlevel neural network;the firstlevel neural networkoutputseitheraone to three possible matches.Todistinguishthe non- uniqueness forthe twoor three outputs,level classtwo withneural network groupnumber similartothe outputsfromlevel class,one is used.The outputfromlevel classtwo can be a single outputortwooutputs.To distinguish between the lasttwonon-uniquenessoutputs; level classthree withneural network group numbersimilartothe outputsfromlevel class twois used. Node NumberSelection The numberof nodesforthe i inputlayerof each neural networkconsistsof 100 nodesthat accept 50 data pointsof (x,y). The hiddenj layer consistsof 50 nodes;50 nodesisconsistentfor convergence basedonexperimentation. The numberof nodesin the outputk layersdepends on one of the three level classes.The firstlevel consistsof 5 patternstobe recognized therefore consistsof 5nodes,the secondlevel with3 nodes,andthe thirdlevel with2nodes. Data Normalization Thisstudyusesthe theoreticallygenerated log- logtype curve plots’dimensionlesspressure and dimensionless timedataof hydraulically fracturedflow regimesasinputsforlayeri. The minimumlogarithmyandx are determinedby the characteristicsof each patternandtheir respective x-axisrange duringtype curve
  • 7. 4 UNIVERSITY OFSOUTHERN CALIFORNIA matching. To correctlyidentifythe model duringtype curve matchingthe x-axisrange for each model needstobe the same,asper Cinco- Leyet al3 . Each neural network withinthe neural network level systemconsistsof anx-axisrange incorporatingall patterncharacteristicsof all models.The modelsare fittedwithaminimum x-axiswithall patternsstartingfromthe same xmin value, asshownin Figure 4-8 of level one with50 randomlygeneratedpatterns.Unless the pattern characteristicof the model extends past the xmin value anexceptioncanbe made as longas the numberof cyclesremainsequal to the rest of the models. The y-axisisdependent on the x-axisvalues, therefore,cannotbe selectedindividuallyforeachmodel.The range will be determinedbythe model withthe highesty-axislogarithmicvalue atthe highest x- axisdata pointandthe lowesty-axislogarithmic value at the lowest x-axisdatapoint.If a normalizedy value islessthan0.1 causedby the x-axisdatapoints,0.99 will be used,andif the ynor is greaterthan0.9, 0.01 will be used. Level 2 and level 3’sx-axisare chosen similarly to level one andis basedonthe distinguishable characteristicsof the patternsto be recognized. A table of the x-axisandy-axislogarithmic range of eachlevel canbe seenin Table 2. Nx and Nyare chosenbasedonthe x-axisandy- axisrange and are determinedwhenthe full range are determined toincorporate all pattern characteristicsof the models.A table of Nx and Nyfor each level canbe seenin Table 3. Selectingthe correctx andy range to incorporate distinguishabledifferences betweeneach patterncanreduce the number of type curvesneededtotrainthe neural networkforall givenreservoirflowmodels. Doingso will allow the neural networkto recognize modelsthrough partial datainputs and shiftingof the partial data,similarlytotype curve matching. Neural Network Training Before the neural networkcanfreelyidentify reservoirmodels,trainingisrequired.During the trainingstage,the neural networklearnsto recognize andseparate differentpatternsby adjustingthe weightsbetweeneachlayers usingthe back propagationtechnique mentionedabove. The trainingsetusedtotrain the neural networkconsistsof generated patternsof each model givenbyvarying parameterswithinanexpectedrange as mentionedbyErshaghi etal.4 ,the minimum and maximumvaluesof the variedparameters for eachreservoirflow regimemodelscanbe seeninTable 4. The parametersare varied randomlyusingthe Monte Carlosimulationby rectangulardistribution. The trainedneural networkcanrecognize an unknownpatternsimilartothe trainedpattern witha recognitionlevel usingthe activation number.Asmentionedthe range usedinthis paperis from0.1 to 0.9. The higherthe activationnumberthe higherthe similarity.As mentionedbyErshaghi etal.4 activationnumber of greaterthan0.4 is adequate forpattern recognition.Howeverinthis paperanactivation of higherthan 0.2 isused fora more comprehensive networkthatrequiresahigher numberof trainingsamples. Trainingthe neural networkcan take a long periodof time of a few hoursto a few weeks. However,thiscanbe a limitof the computer hardware usedto trainthe network;a topof the line computersystemcancompute the trainingina few hourswhile a low-end computersystemcantake up to a few weeks. Therefore,the trainingof the neural network shouldbe done ona systemof computers dedicatedtoneural networkcomputations. Nevertheless,afterthe networkhasbeen
  • 8. 5 UNIVERSITY OFSOUTHERN CALIFORNIA trained,the trainedneural networkwill only take secondsto outputan answer. The iterative processfortrainingthe neural networkscanbe seenbelow: 1. 1000 patternsare generatedforeach flowregime model usingthe Monte CarloSimulation. 2. The neural networksare trainedforthe selectedpatterns andflowregime models.(The numberof flowregimes groups traineddependsonthe neural networklevel class.) 3. The trainednetworksare testedwith 10,000 patternsgeneratedfromthe Monte CarloSimulation foreachflow regime. 4. Patternswithactivationof lessthan0.2 for each desiredoutput flowregimes nodesbeingidentifiedare addedtothe trainingset. Patternswithactivationof more than 0.2 forflowregimes nodes not beingidentified are addedtothe trainingset. Anexample canbe seenin Figure 9. 5. Steps2 to 4 are repeateduntil there are no more patternsto addin step4 or deemedsuitable bythe stopping algorithm. Because the networksare trained comprehensivelyforeachlevelclass,the numberof outputsdependsonthe numberof flowregime modelstrainedforthat class, outputswith activationnumberhigherthan0.2 will be consideredasa possible selection. Howeverduringthe training process,activation numberfora specificflow regime higherthan 0.2 not correctlyidentified are alsoaddedto the trainingset. Addingthese samplestrainthe neural networktoidentifypatternsthatare selectedtobe correctand those that are selectedtobe incorrect. 4-1 Experimentationand Verification In orderto verifythe patternrecognition strengthof the Neural Networks,5sample patternswere created usingthe Monte Carlo simulation foreachflow regime model;bilinear flow,earlylinearflow,formationlinearflow, pseudo-radialflow,andbilinearflow with wellbore storage.The x-axisrange selectedwas between10^-1to 10^5 basedon the level class one neural network,however, the x-axisrange can vary basedon the fieldrecordeddata. Level classone was selectedbecause it isthe first level of model identification. The y-axisrange will varybasedoneach flow model. The data was thennormalizedbasedonthe range of eachlevel classesmentionedabove usingthe scalingdownmethod. Theywere used as inputsforall level classes. Allmodelswere identifiedcorrectlywithactivationlevel higher than 0.8 throughthe lastlevel class(3) withall else lowerthan0.2 as can be seenin Table 5-7. Thisverifiesthatthe neural networkclass systemswere able toensure thatthe models were recognizedthroughpartial datainputsand shiftingof the partial data. However,itwasnot able to distinguishbetweenbilinearand formationlineardistinctively,atlevel 3group 3, the normalizedrange of the x-axis10^-2 to 10^5 was notable to absolutely distinguish bilinearfromformationlinearflowwhen formationlineardatasetwastested. Thiscan be seenin Table 7, non-uniquenessof the data was notcompletelyeliminated. When formationlineardatawere usedasinputsinto the neural network,the network outputan activationnumberof lessthan 0.8. Thisproblem may be due to the fact that formationlinear flow doesnothave multiple uniquetraining patterns butconsistsof onlyone.Thiscan cause the networktomisidentifythe models.This
  • 9. 6 UNIVERSITY OFSOUTHERN CALIFORNIA problemissimilarlystatedby Juniardi and Ershaghi2 . The range selectionduringthe trainingprocess can alsoplay a role inmisidentification.If the x and y range of bothbilinearandformation linearflowwere notselectedtoshowadistinct difference inpatternbetweenthe two,the non- uniquenesswillnotbe eliminated. Information fromothersourcesas mentionedbyErshaghi et al.4 can be usedtoverifythe chosenmodels. Data such as one-fourthslopeona log-log graph mentionedbyCinco-Leyetal.3 toverify bilinearflow orone-half slopeforlinearflow. Therefore conventionalmethodswithhuman verificationsare necessarytoselectthe final flowmodel whenuncertaintyispresent. The filteringprocessof the levelsystemswas thenappliedtotestitsefficiency.The networks were able toidentifythe desiredflowregime correctly.The pseudo-radialflowregime, the bilinearwithwellbore storage flowregime,and the earlylinearflowregime didnotrequirea three-stage filtering.A twostage filteringwas adequate ascan be seenin Figure 10,12, and 14. Bilinearflowandformationlinearflow requiresathree-stage processtoidentify the flowregime forthese particularpatterns (see Figure 11 and13). 5-1 Conclusions The problemof non-uniqueness hascreateda needfordecreasingtime andincreasing the accuracy of flowregime identification.Hydraulic fracturingmodeling’snon-uniquenesscanoccur whenmore advancedmodelsof flowregimes are added,parameterestimationorevenmodel identificationthroughtype curve matching can become more complex anddifficulttosolve. Previouslystudiesof the single comprehensive neural network helpidentifysimilarpatterns exhibitedbythe currentmodels.However cannot distinguishthemwhenthe similarities are toogreat to separate. Therefore,alevel classneural networksystemproposedusing multiple neural networkstrainedtorecognized and separate the modelsasa formof filtering, decreasesthe chancesof non-uniqueness. 6-1 Nomenclature C = wellbore storage coefficient π‘˜ 𝑓 𝑏𝑓 = π‘“π‘Ÿπ‘Žπ‘π‘‘π‘’π‘Ÿπ‘’ π‘π‘œπ‘›π‘‘π‘’π‘π‘‘π‘–π‘£π‘–π‘‘π‘¦ (π‘˜ 𝑓 𝑏𝑓) 𝐷 = π‘‘π‘–π‘šπ‘’π‘›π‘ π‘–π‘œπ‘›π‘™π‘’π‘ π‘  π‘“π‘Ÿπ‘Žπ‘π‘‘π‘’π‘Ÿπ‘’ π‘π‘œπ‘›π‘‘π‘’π‘π‘‘π‘–π‘£π‘–π‘‘π‘¦ 𝑝 = π‘π‘Ÿπ‘’π‘ π‘ π‘’π‘Ÿπ‘’ 𝑑 = π‘‘π‘–π‘šπ‘’ 𝑠 = πΏπ‘Žπ‘π‘™π‘Žπ‘π‘’ π‘ π‘π‘Žπ‘π‘’ π‘£π‘Žπ‘Ÿπ‘–π‘Žπ‘π‘™π‘’ π‘Ÿβ€² 𝑀 = 𝑒𝑓𝑓𝑒𝑐𝑑𝑖𝑣𝑒 π‘€π‘’π‘™π‘™π‘π‘œπ‘Ÿπ‘’ π‘Ÿπ‘Žπ‘‘π‘–π‘’π‘  π‘₯, 𝑦 = π‘ π‘π‘Žπ‘π‘’ π‘π‘œπ‘œπ‘Ÿπ‘‘π‘–π‘›π‘Žπ‘‘π‘’π‘  π‘₯ 𝑓 = π‘“π‘Ÿπ‘Žπ‘π‘‘π‘’π‘Ÿπ‘’ β„Žπ‘Žπ‘™π‘“ βˆ’ π‘™π‘’π‘›π‘”π‘‘β„Ž Ξ· = hydraulic diffusivity 7-1 Subscripts D = dimensionless 𝑓 = π‘“π‘Ÿπ‘Žπ‘π‘‘π‘’π‘Ÿπ‘’ π‘₯ 𝑓 = π‘π‘Žπ‘ π‘’π‘‘ π‘œπ‘› π‘₯ 𝑓 𝑀 = π‘€π‘’π‘™π‘™π‘π‘œπ‘Ÿπ‘’ 8-1 References 1. l-Kaabi,A.U.,& Lee,W.J. (1993, September 1). UsingArtificial Neural NetworksTo Identifythe Well TestInterpretationModel (includesassociatedpapers28151 and
  • 10. 7 UNIVERSITY OFSOUTHERN CALIFORNIA 28165 ).Societyof PetroleumEngineers. doi:10.2118/20332-PA 2. Juniardi,I. R.,& Ershaghi,I. (1993, January 1). Complexitiesof UsingNeural Networkin Well TestAnalysisof FaultedReservoirs. Societyof PetroleumEngineers. doi:10.2118/26106-MS 3. Cinco-Ley,H.,& Samaniego-V.,F.(1981, September1).TransientPressureAnalysis for FracturedWells.Societyof Petroleum Engineers.doi:10.2118/7490-PA 4. Ershaghi,I.,Li, X.,Hassibi,M.,& Shikari,Y. (1993, January1). A RobustNeural Network Model for PatternRecognitionof Pressure TransientTestData. Societyof Petroleum Engineers.doi:10.2118/26427-MS
  • 11. 1 UNIVERSITY OFSOUTHERN CALIFORNIA Table 1 Flow Regime Model Description Mathematical Formulations Type Curve Training and Testing Data Model 1: Early Linear Flow Model 2: Formation Linear Flow Model 3: Bilinear Flow Model 4: Bilinear Flow with Wellbore Storage Model 5: Pseudo-Radial Flow 𝑀𝐷 Vs. 𝑑 𝐷π‘₯𝑓 𝑀𝐷 Vs. 𝑑 𝐷π‘₯𝑓 𝑀𝐷 Vs. 𝑑 𝐷π‘₯𝑓 ( ) ( ) 𝑀𝐷 Vs. 𝑀𝐷 Vs. 𝑑 π·π‘Ÿ Fracture Fracture Well Well Fracture Fracture Well Early LinearFlow FormationLinearFlow BilinearFlow Psuedo-Radial Flow Fig. 1 Flow Periods for A Vertically Fractured Well (After Cinco-Ley et al.)
  • 12. 2 UNIVERSITY OFSOUTHERN CALIFORNIA Fig. 3 Set of Weights Obtained After Training The Neural Network (After Juniardi et al.) BNN Level 1 All Flow BNN Level 2 BNN Level 3 Group 1 Group 2 Group 3 Group 4 Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Fig. 2 Neural Network Level Class System Structure
  • 13. 3 UNIVERSITY OFSOUTHERN CALIFORNIA Fig. 4 Early Linear Flow and Early Linear Flow Normalize Fig. 5 Bilinear Flow and Bilinear Flow Normalize Fig. 6 Bilinear with Wellbore Storage Flow and Bilinear with Wellbore Storage Flow Normalize
  • 14. 4 UNIVERSITY OFSOUTHERN CALIFORNIA Fig. 7 Formation Linear Flow and Formation Linear Flow Normalize Fig. 8 Pseudo-Radial Flow and Pseudo-Radial Flow Normalize
  • 15. Table 2 Table 3 Table 4 xmin xmax ymin ymax FlowLevel 1: Pseudo-Radial -3 3 -2 6 Formation Linear -1 5 -1 7 Early Linear -1 5 -5 3 Bilinearwith Wellbore Storage -1 5 -6 2 Bilinear -1 5 -2 6 FlowLevel 2: Group 1 Bilinear -1 5 -2 1 Formation Linear -1 5 -1 2 Psuedo-Radial -3 3 -2 1 Group 2 Early Linear -1 5 -5 10 Bilinearwith Wellbore Storage -1 5 -6 9 Formation Linear -1 5 -1 14 Group 3 Bilinear -1 6 -2 6 Bilinearwith Wellbore Storage -1 6 -6 2 Psuedo-Radial -4 3 -2 6 Group 4 Bilinear -1 5 -2 6 Bilinearwith Wellbore Storage -1 5 -6 2 Formation Linear -1 5 -1 7 FlowLevel 3: Group 1 Bilinear -1 7 -2 6 Bilinearwith Wellbore Storage -1 7 -6 2 Group 2 Early Linear -1 5 -5 4 Bilinearwith Wellbore Storage -1 5 -6 3 Group 3 Bilinear -2 5 -2 3 Formation Linear -2 5 -2 3 Group 4 Early Linear -1 5 -5 4 Bilinear -1 5 -2 7 Group 5 Bilinearwith Wellbore Storage -1 5 -6 2 Formation Linear -1 5 -1 7 Group 6 Bilinear -1 7 -2 3 Pseudo-Radial -5 3 -3 2 Note:Each value is an exponentof base 10. Flow Level 1: Nx 6 Ny 8 Flow Level 2: Group 1 Nx 6 Ny 3 Group 2 Nx 6 Ny 15 Group 3 Nx 7 Ny 8 Group 4 Nx 6 Ny 8 Flow Level 3: Group 1 Nx 8 Ny 8 Group 2 Nx 6 Ny 9 Group 3 Nx 7 Ny 5 Group 4 Nx 6 Ny 9 Group 5 Nx 6 Ny 8 Group 6 Nx 8 Ny 5 Parameter Minimum Maximum 0 500 0 500 0 10000 (π‘˜ 𝑓 𝑏𝑓) 𝐷 𝑛 𝑓𝐷 𝐷𝑓
  • 16. Fig. 9 Neural Network Training Set Filtering Table 5 FlowLevel1 Early Linear Flow Bilinear Flow BilinearFlow withWellbore Storage Flow Formation Linear Flow Pseudo- Radial Flow DesiredOutput 0.9 0.1 0.1 0.1 0.1 0.6611 0.051 0.4633 0.0905 0.0935 Yes 0.0152 0.1523 0.5621 0.5854 0.6541 Yes 0.7215 0.0124 0.0152 0.0685 0.0545 No 0.8552 0.0154 0.0752 0.0874 0.0656 No FlowLevel3:Group4 DesiredOutput 0.9 0.1 0.9016 0.0984 No 0.8154 0.1523 No 0.5452 0.5451 Yes 0.4512 0.8421 Yes 10,000Patterns OptainedTested Output ObtainedTested Output AddedTo TrainingSet 10,000Patterns Flow Level 1 Early Linear Flow Bilinear Flow Bilinear Flow with Wellbore Storage Flow Formation Linear Flow Pseudo- Radial Flow Desired Output 0.9 0.1 0.1 0.1 0.1 0.6346 0.0573 0.4417 0.1063 0.0934 0.6231 0.0599 0.4355 0.1117 0.0935 0.6335 0.0571 0.4454 0.1048 0.0936 0.6454 0.0531 0.4636 0.0975 0.0934 0.6393 0.0558 0.4488 0.1019 0.0935 Desired Output 0.1 0.9 0.1 0.1 0.1 0.1111 0.3282 0.0946 0.2102 0.5629 0.095 0.3833 0.1534 0.197 0.3916 0.1154 0.3217 0.0966 0.2102 0.5517 0.1049 0.3545 0.1314 0.2023 0.4431 0.1161 0.3244 0.1073 0.2085 0.5121 Desired Output 0.1 0.1 0.9 0.1 0.1 0.5887 0.0273 0.7927 0.0383 0.0957 0.5268 0.0508 0.6112 0.1201 0.0931 0.5235 0.0517 0.6067 0.1229 0.0931 0.5947 0.0219 0.8483 0.023 0.0971 0.5571 0.0414 0.6673 0.0888 0.0936 Desired Output 0.1 0.1 0.1 0.9 0.1 0.1157 0.3206 0.1069 0.2097 0.5206 0.1157 0.3206 0.1069 0.2097 0.5206 0.1157 0.3206 0.1069 0.2097 0.5206 0.1157 0.3206 0.1069 0.2097 0.5206 0.1157 0.3206 0.1069 0.2097 0.5206 Desired Output 0.1 0.1 0.1 0.1 0.9 0.1151 0.3194 0.0998 0.2107 0.5461 0.1158 0.319 0.1015 0.2105 0.5391 0.115 0.3195 0.0997 0.2107 0.5466 0.1153 0.3192 0.1002 0.2107 0.5443 0.1153 0.3192 0.1003 0.2106 0.544 Obtained Tested Output Obtained Tested Output Obtained Tested Output Obtained Tested Output Obtained Tested Output
  • 17. Table 6 Flow Level 2: Group 1 Early Linear Flow Bilinear Flow Bilinear Flow with Wellbore Storage Flow Formation Linear Flow Pseudo-Radial Flow Desired Output n/a 0.9 n/a 0.1 0.1 0.6521 0.3336 0.0977 0.9643 0.046 0.0916 0.924 0.0903 0.093 0.9687 0.0408 0.0914 0.9625 0.0482 0.0917 Flow Level 2: Group 1 Early Linear Flow Bilinear Flow Bilinear Flow with Wellbore Storage Flow Formation Linear Flow Pseudo-Radial Flow Desired Output n/a 0.1 n/a 0.9 0.1 0.3343 0.6011 0.1024 0.3343 0.6011 0.1024 0.3343 0.6011 0.1024 0.3343 0.6011 0.1024 0.3343 0.6011 0.1024 Flow Level 2: Group 1 Early Linear Flow Bilinear Flow Bilinear Flow with Wellbore Storage Flow Formation Linear Flow Pseudo-Radial Flow Desired Output n/a 0.1 n/a 0.1 0.9 0.11 0.0591 0.9046 0.1066 0.0628 0.9021 0.1102 0.0589 0.9048 0.1094 0.0599 0.904 0.1093 0.06 0.9039 Flow Level 2: Group 2 Early Linear Flow Bilinear Flow Bilinear Flow with Wellbore Storage Flow Formation Linear Flow Pseudo-Radial Flow Desired Output 0.9 n/a 0.1 0.1 n/a 0.9551 0.042 0.1019 0.9516 0.0456 0.1017 0.8985 0.1007 0.1001 0.881 0.1192 0.0998 0.9022 0.0968 0.1002 Obtained Tested Output n/a n/a Obtained Tested Output n/a n/a Obtained Tested Output n/a n/a Obtained Tested Output n/a n/a Flow Level 2: Group 2 Early Linear Flow Bilinear Flow Bilinear Flow with Wellbore Storage Flow Formation Linear Flow Pseudo-Radial Flow Desired Output 0.1 n/a 0.9 0.1 n/a 0.0171 0.9693 0.0989 0.0551 0.9322 0.0925 0.0348 0.9524 0.0931 0.0217 0.9653 0.0958 0.0721 0.9154 0.0925 Flow Level 2: Group 2 Early Linear Flow Bilinear Flow Bilinear Flow with Wellbore Storage Flow Formation Linear Flow Pseudo-Radial Flow Desired Output 0.1 n/a 0.1 0.9 n/a 0.1018 0.0932 0.9004 0.1018 0.0932 0.9004 0.1018 0.0932 0.9004 0.1018 0.0932 0.9004 0.1018 0.0932 0.9004 Flow Level 2: Group 3 Early Linear Flow Bilinear Flow Bilinear Flow with Wellbore Storage Flow Formation Linear Flow Pseudo-Radial Flow Desired Output n/a 0.9 0.1 n/a 0.1 0.2762 0.282 0.1413 0.285 0.799 0.1183 0.2829 0.6979 0.1234 0.2849 0.7965 0.1185 0.2846 0.7838 0.1192 Flow Level 2: Group 3 Early Linear Flow Bilinear Flow Bilinear Flow with Wellbore Storage Flow Formation Linear Flow Pseudo-Radial Flow Desired Output n/a 0.1 0.9 n/a 0.1 0.285 0.8022 0.1181 0.285 0.8022 0.1181 0.285 0.8022 0.1181 0.285 0.8022 0.1181 0.285 0.8022 0.1181 Obtained Tested Output n/a n/a Obtained Tested Output n/a n/a Obtained Tested Output n/a n/a Obtained Tested Output n/a n/a Flow Level 2: Group 3 Early Linear Flow Bilinear Flow Bilinear Flow with Wellbore Storage Flow Formation Linear Flow Pseudo-Radial Flow Desired Output n/a 0.1 0.1 n/a 0.9 0.2212 0 0.3792 0.2178 0 0.3996 0.2178 0 0.3995 0.2199 0 0.3871 0.2185 0 0.3953 Flow Level 2: Group 4 Early Linear Flow Bilinear Flow Bilinear Flow with Wellbore Storage Flow Formation Linear Flow Pseudo-Radial Flow Desired Output n/a 0.9 0.1 0.1 n/a 0.6889 0.1083 0.3169 0.6405 0.1272 0.3176 0.68 0.1115 0.3173 0.6504 0.1231 0.3177 0.6655 0.117 0.3177 Flow Level 2: Group 4 Early Linear Flow Bilinear Flow Bilinear Flow with Wellbore Storage Flow Formation Linear Flow Pseudo-Radial Flow Desired Output n/a 0.1 0.9 0.1 n/a 0 1 0.0731 0 1 0.0896 0 1 0.0817 0 1 0.0752 0 1 0.0949 Flow Level 2: Group 4 Early Linear Flow Bilinear Flow Bilinear Flow with Wellbore Storage Flow Formation Linear Flow Pseudo-Radial Flow Desired Output n/a 0.1 0.1 0.9 n/a 0.6353 0.1292 0.3178 0.6353 0.1292 0.3178 0.6353 0.1292 0.3178 0.6353 0.1292 0.3178 0.6353 0.1292 0.3178 Obtained Tested Output n/a n/a Obtained Tested Output n/a n/a Obtained Tested Output n/a n/a Obtained Tested Output n/a n/a
  • 18. 1 UNIVERSITY OFSOUTHERN CALIFORNIA Table 7 Flow Level 3: Group 1 Early Linear Flow Bilinear Flow Bilinear Flow with Wellbore Storage Flow Formation Linear Flow Pseudo- Radial Flow Desired Output n/a 0.9 0.1 n/a n/a 0.8944 0.1056 0.854 0.1456 0.8885 0.1114 0.8634 0.1364 0.877 0.1229 Flow Level 3: Group 1 Early Linear Flow Bilinear Flow Bilinear Flow with Wellbore Storage Flow Formation Linear Flow Pseudo- Radial Flow Desired Output n/a 0.1 0.9 n/a n/a 0.0976 0.9024 0.0963 0.9037 0.0965 0.9035 0.097 0.903 0.0963 0.9037 Flow Level 3: Group 2 Early Linear Flow Bilinear Flow Bilinear Flow with Wellbore Storage Flow Formation Linear Flow Pseudo- Radial Flow Desired Output 0.9 n/a 0.1 n/a n/a 0.9001 0.1 0.8998 0.1003 0.9001 0.1 0.902 0.098 0.9002 0.0999 Flow Level 3: Group 2 Early Linear Flow Bilinear Flow Bilinear Flow with Wellbore Storage Flow Formation Linear Flow Pseudo- Radial Flow Desired Output 0.1 n/a 0.9 n/a n/a 0.0993 0.9007 0.0996 0.9004 0.0997 0.9004 0.0997 0.9003 0.0992 0.9008 Obtained Tested Output n/a n/a n/a Obtained Tested Output n/a n/a n/a Obtained Tested Output n/a n/an/a Obtained Tested Output n/a n/a n/a Flow Level 3: Group 3 Early Linear Flow Bilinear Flow Bilinear Flow with Wellbore Storage Flow Formation Linear Flow Pseudo- Radial Flow Desired Output n/a 0.9 n/a 0.1 n/a 0.9008 0.0992 0.8998 0.1002 0.9007 0.0993 0.9 0.1 0.9004 0.0996 Flow Level 3: Group 3 Early Linear Flow Bilinear Flow Bilinear Flow with Wellbore Storage Flow Formation Linear Flow Pseudo- Radial Flow Desired Output n/a 0.1 n/a 0.9 n/a 0.2953 0.7024 0.2953 0.7024 0.2953 0.7024 0.2953 0.7024 0.2953 0.7024 Flow Level 3: Group 4 Early Linear Flow Bilinear Flow Bilinear Flow with Wellbore Storage Flow Formation Linear Flow Pseudo- Radial Flow Desired Output 0.9 0.1 n/a n/a n/a 0.901 0.099 0.9007 0.0993 0.9011 0.0989 0.9003 0.0997 0.9012 0.0988 Flow Level 3: Group 4 Early Linear Flow Bilinear Flow Bilinear Flow with Wellbore Storage Flow Formation Linear Flow Pseudo- Radial Flow Desired Output 0.1 0.9 n/a n/a n/a 0.0996 0.9003 0.1063 0.8939 0.1016 0.8984 0.1055 0.8947 0.1039 0.8962 Obtained Tested Output n/an/an/a Obtained Tested Output n/a n/a n/a Obtained Tested Output n/a n/an/a Obtained Tested Output n/a n/a n/a Flow Level 3: Group 5 Early Linear Flow Bilinear Flow Bilinear Flow with Wellbore Storage Flow Formation Linear Flow Pseudo- Radial Flow Desired Output n/a n/a 0.9 0.1 n/a 0.8998 0.1002 0.9021 0.0979 0.9016 0.0984 0.9006 0.0994 0.9023 0.0977 Flow Level 3: Group 5 Early Linear Flow Bilinear Flow Bilinear Flow with Wellbore Storage Flow Formation Linear Flow Pseudo- Radial Flow Desired Output n/a n/a 0.1 0.9 n/a 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9 Flow Level 3: Group 6 Early Linear Flow Bilinear Flow Bilinear Flow with Wellbore Storage Flow Formation Linear Flow Pseudo- Radial Flow Desired Output n/a 0.9 n/a n/a 0.1 0.9487 0.0514 0.9458 0.0543 0.9481 0.052 0.9463 0.0538 0.9472 0.0529 Flow Level 3: Group 6 Early Linear Flow Bilinear Flow Bilinear Flow with Wellbore Storage Flow Formation Linear Flow Pseudo- Radial Flow Desired Output n/a 0.1 n/a n/a 0.9 0.1262 0.8738 0.1396 0.8604 0.1252 0.8748 0.1295 0.8706 0.13 0.87 Obtained Tested Output n/an/a n/a n/a Obtained Tested Output n/a n/a n/a Obtained Tested Output n/a n/a n/a Obtained Tested Output n/a n/a
  • 19. Fig. 10 Early Linear Flow Identification Fig. 11 Bilinear Flow Model Identification Fig. 12 Bilinear Flow with Wellbore Storage Flow Model Identification Fig. 13 Formation Linear Flow Model Identification Flow Level 1 Early Linear Flow Bilinear Flow Bilinear Flow with Wellbore Storage Flow Formation Linear Flow Pseudo- Radial Flow Desired Output 0.9 0.1 0.1 0.1 0.1 0.6346 0.0573 0.4417 0.1063 0.0934 0.6231 0.0599 0.4355 0.1117 0.0935 0.6335 0.0571 0.4454 0.1048 0.0936 0.6454 0.0531 0.4636 0.0975 0.0934 0.6393 0.0558 0.4488 0.1019 0.0935 Flow Level 2: Group 2 Early Linear Flow Bilinear Flow Bilinear Flow with Wellbore Storage Flow Formation Linear Flow Pseudo- Radial Flow Desired Output 0.9 n/a 0.1 0.1 n/a 0.9551 0.042 0.1019 0.9516 0.0456 0.1017 0.8985 0.1007 0.1001 0.881 0.1192 0.0998 0.9022 0.0968 0.1002 Flow Level 3: Group 2 Early Linear Flow Bilinear Flow Bilinear Flow with Wellbore Storage Flow Formation Linear Flow Pseudo- Radial Flow Desired Output 0.9 n/a 0.1 n/a n/a 0.9001 0.1 0.8998 0.1003 0.9001 0.1 0.902 0.098 0.9002 0.0999 Obtained Tested Output Obtained Tested Output n/a n/a Obtained Tested Output n/a n/an/a Flow Level 1 Early Linear Flow Bilinear Flow Bilinear Flow with Wellbore Storage Flow Formation Linear Flow Pseudo- Radial Flow Desired Output 0.1 0.9 0.1 0.1 0.1 0.1111 0.3282 0.0946 0.2102 0.5629 0.095 0.3833 0.1534 0.197 0.3916 0.1154 0.3217 0.0966 0.2102 0.5517 0.1049 0.3545 0.1314 0.2023 0.4431 0.1161 0.3244 0.1073 0.2085 0.5121 Flow Level 2: Group 1 Early Linear Flow Bilinear Flow Bilinear Flow with Wellbore Storage Flow Formation Linear Flow Pseudo- Radial Flow Desired Output n/a 0.9 n/a 0.1 0.1 0.6521 0.3336 0.0977 0.9643 0.046 0.0916 0.924 0.0903 0.093 0.9687 0.0408 0.0914 0.9625 0.0482 0.0917 Flow Level 3: Group 1 Early Linear Flow Bilinear Flow Bilinear Flow with Wellbore Storage Flow Formation Linear Flow Pseudo- Radial Flow Desired Output n/a 0.9 0.1 n/a n/a 0.8944 0.1056 0.854 0.1456 0.8885 0.1114 0.8634 0.1364 0.877 0.1229 Obtained Tested Output Obtained Tested Output n/a n/a Obtained Tested Output n/a n/a n/a Flow Level 1 Early Linear Flow Bilinear Flow Bilinear Flow with Wellbore Storage Flow Formation Linear Flow Pseudo-Radial Flow Desired Output 0.1 0.1 0.9 0.1 0.1 0.5887 0.0273 0.7927 0.0383 0.0957 0.5268 0.0508 0.6112 0.1201 0.0931 0.5235 0.0517 0.6067 0.1229 0.0931 0.5947 0.0219 0.8483 0.023 0.0971 0.5571 0.0414 0.6673 0.0888 0.0936 Flow Level 2: Group 2 Early Linear Flow Bilinear Flow Bilinear Flow with Wellbore Storage Flow Formation Linear Flow Pseudo-Radial Flow Desired Output 0.1 n/a 0.9 0.1 n/a 0.0171 0.9693 0.0989 0.0551 0.9322 0.0925 0.0348 0.9524 0.0931 0.0217 0.9653 0.0958 0.0721 0.9154 0.0925 Flow Level 3: Group 2 Early Linear Flow Bilinear Flow Bilinear Flow with Wellbore Storage Flow Formation Linear Flow Pseudo-Radial Flow Desired Output 0.1 n/a 0.9 n/a n/a 0.0993 0.9007 0.0996 0.9004 0.0997 0.9004 0.0997 0.9003 0.0992 0.9008 Obtained Tested Output n/a Obtained Tested Output n/a Obtained Tested Output n/a n/an/a Flow Level 1 Early Linear Flow Bilinear Flow Bilinear Flow with Wellbore Storage Flow Formation Linear Flow Pseudo-Radial Flow Desired Output 0.1 0.1 0.1 0.9 0.1 0.1157 0.3206 0.1069 0.2097 0.5206 0.1157 0.3206 0.1069 0.2097 0.5206 0.1157 0.3206 0.1069 0.2097 0.5206 0.1157 0.3206 0.1069 0.2097 0.5206 0.1157 0.3206 0.1069 0.2097 0.5206 Flow Level 2: Group 1 Early Linear Flow Bilinear Flow Bilinear Flow with Wellbore Storage Flow Formation Linear Flow Pseudo-Radial Flow Desired Output n/a 0.1 n/a 0.9 0.1 0.3343 0.6011 0.1024 0.3343 0.6011 0.1024 0.3343 0.6011 0.1024 0.3343 0.6011 0.1024 0.3343 0.6011 0.1024 Flow Level 3: Group 3 Early Linear Flow Bilinear Flow Bilinear Flow with Wellbore Storage Flow Formation Linear Flow Pseudo-Radial Flow Desired Output n/a 0.1 n/a 0.9 n/a 0.2953 0.7024 0.2953 0.7024 0.2953 0.7024 0.2953 0.7024 0.2953 0.7024 Obtained Tested Output n/a Obtained Tested Output n/a Obtained Tested Output n/a n/a n/a
  • 20. Fig. 14 Pseudo-Radial Flow Model Identification Flow Level 1 Early Linear Flow Bilinear Flow Bilinear Flow with Wellbore Storage Flow Formation Linear Flow Pseudo- Radial Flow Desired Output 0.1 0.1 0.1 0.1 0.9 0.1151 0.3194 0.0998 0.2107 0.5461 0.1158 0.319 0.1015 0.2105 0.5391 0.115 0.3195 0.0997 0.2107 0.5466 0.1153 0.3192 0.1002 0.2107 0.5443 0.1153 0.3192 0.1003 0.2106 0.544 Flow Level 2: Group 1 Early Linear Flow Bilinear Flow Bilinear Flow with Wellbore Storage Flow Formation Linear Flow Pseudo- Radial Flow Desired Output n/a 0.1 n/a 0.1 0.9 0.11 0.0591 0.9046 0.1066 0.0628 0.9021 0.1102 0.0589 0.9048 0.1094 0.0599 0.904 0.1093 0.06 0.9039 Flow Level 3: Group 6 Early Linear Flow Bilinear Flow Bilinear Flow with Wellbore Storage Flow Formation Linear Flow Pseudo- Radial Flow Desired Output n/a 0.1 n/a n/a 0.9 0.1262 0.8738 0.1396 0.8604 0.1252 0.8748 0.1295 0.8706 0.13 0.87 Obtained Tested Output Obtained Tested Output n/a n/a Obtained Tested Output n/a n/a n/a