آبان1398
•ابزارها
• fastText (2019).Available at: https://fasttext.cc/ (Accessed: 12 September 2019).
• Hall, M. et al. (2009) ‘The WEKA data mining software’, ACM SIGKDD Explorations Newsletter.
New York, NY, USA: ACM, 11(1), p. 10. doi: 10.1145/1656274.1656278.
• Pedregosa, F. et al. (2011) ‘Scikit-learn: machine learning in python’, Journal of Machine Learning
Research, 12, pp. 2825–2830.
• Pennington, J., Socher, R. and Manning, C. D. (2014) ‘GloVe: Global vectors for word
representation’, in Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543.
Available at: http://www.aclweb.org/anthology/D14-1162.
• Rose, S. et al. (2010) ‘Automatic keyword extraction from individual documents’, in Text Mining.
Chichester, UK: John Wiley & Sons, Ltd, pp. 1–20. doi: 10.1002/9780470689646.ch1.
• Tarau, R. M. and P. (1973) ‘TextRank: bringing order into texts’, Comparative Biochemistry and
Physiology -- Part B: Biochemistry and, 45(4). Available at: http://www.aclweb.org/anthology/W04-
3252.
•مجموعههاداده
• Twitter: social network company (2019). Available at: https://twitter.com/ (Accessed: 12 September 2019).
ماشینی یادگیری فنون با اجتماعی هایپدیده تحلیل:ترکیبی تحقیق چارچوب یک-ذاکری مرتضی
مراجع
14
15.
آبان1398
•کارهایمرتبط
• Bajari, P.et al. (2015) Demand estimation with machine learning and model combination,
Mimeo. Cambridge, MA. doi: 10.3386/w20955.
• Epstein, J. M. (2007) Generative social science: studies in agent-based computational
modeling (Princeton studies in complexity). Princeton, NJ, USA: Princeton University Press.
• Gilbert, N. and Troitzsch, K. (2005) Simulation for the social scientist. Open University Press.
Available at: https://books.google.com/books?id=VflDBgAAQBAJ.
• Hoey, J. et al. (2018) ‘Artificial intelligence and social simulation: studying group dynamics on
a massive scale’, Small Group Research, 49(6), pp. 647–683. doi: 10.1177/1046496418802362.
• Patel, M. P. and Mistry, M. K. (2015) ‘A review: text classification on social media data’, IOSR
Journal of Computer Engineering Ver. IV, 17(1), pp. 2278–661. doi: 10.9790/0661-17148084.
• Wang, J.-H. et al. (2018) ‘An LSTM approach to short text sentiment classification with word
embeddings’, in 2018 Conference on Computational Linguistics and Speech Processing
ROCLING 2018, pp. 214–223.
ماشینی یادگیری فنون با اجتماعی هایپدیده تحلیل:ترکیبی تحقیق چارچوب یک-ذاکری مرتضی
مراجع
15