SlideShare a Scribd company logo
1 of 31
Download to read offline
FEBRUARY 2017
Analysis of a building with XC
Introduction
XC is a finite element program oriented
to civil engineering. It is conceived as
Open Source Software since we are de-
veloping it on the strong foundations of
OpenSees and making heavy use of other
OSS like Python, VTK and CGAL. This
case of study is taken from the Euro-
pean Commission publication «Eurocode
2: background & applications. Design of
concrete buildings. Worked examples».
It deals with a six-storey building with
two underground parking levels. The
aim of this exercise is to build the model
with XC in order to obtain the displacements and internal forces in the structure caused
by a set of load combinations. In upcoming exercises the verifications relating to limit
states will be carried out.
Description of the building
Figure 1: Floor plan dimensions [m]. Reprinted from [1]
The building, ideally located in an urban area, is occu-
pied by offices open to public in the ground floor, storeys
first to fifth are for dwellings and the two underground
floors are intended to parking. Its main dimensions are
depicted in figures 1 to 3. The slabs are of type flat con-
crete solid spanning in both X and Y directions with depth
h=21 cm. Shear walls from the staircase area and facade
have a width 30 cm, the inner columns are square 0.5×0.5
in cross-section. The outer columns and the shear walls
are supported by a peripheral diaphragm retaining wall
of width 0.6 m.
XC finite element OSS XC news XC source in GitHub XC doxygen doc XC sphinx doc
ana.ortega.ort@gmail.com l.pereztato@gmail.com Page 1
Figure 2: Section 1. Reprinted from [1]
Figure 3: Section 2. Reprinted from [1]
Finite element model
A three-dimensional model of the structure has been
built, all the scripts related to this model are hosted here
in GitHub.
The geometry is organized by making use of a grid
of coordinates, which points will be the vertices of the
rectangles, lines and other primitives that will define
the shapes. This grid matches the axes graphically rep-
resented in figures 1 to 3.
The global coordinate system is oriented so that the X
axis is horizontal, in the largest dimension of the build-
ing, Y is horizontal perpendicular to X, and Z is a vertical
axis in opposite sense to gravitational force.
A concrete material defined by its Young’s modulus,
mass density and Poisson’s ratio is added to the material
container. The next step is to define the section-materials
appropriates for modeling the different components of
the structure. We use an isotropic section-material of type
shell with shield and plate work for the analysis of slabs
and walls; for the columns a 3D beam elastic section in-
cluding shear deformation is used.
The model is meshed automatically using a global ele-
ments size of 0.5 m. A total of 24084 elements are gener-
ated, of which 200 are of type beam and 23884 are shell
elements. Zero displacement constraints are applied to all
the nodes contained in the plane Z=0.
Loads, load cases and combinations
In the table 3 all the load cases considered for the
analysis are depicted. The values of the loads, as well as
their factors of combination, are reported in the table 1,
extracted from reference [1]. Most of them are applied
to the FE model as uniform loads on surfaces; figures 5
to 27 show the load distribution in the model for each of
these load cases.
Several combinations in ultimate limit states are ana-
lyzed, load cases are combined using the parcial and com-
bination factors depicted in tables 2 and 1 . The full list
of limit states analized is shown in table 4.
Results of structural analysis
A static analysis using a linear algorithm is performed
to achieve the solution for each combination of load
cases. Figures 29 to 166 show the displacements and in-
ternal forces and moments obtained as a result of the
analysis. Displacements are expressed in the global co-
ordinate system. On the other hand, internal forces and
bending moments refers to the following local coordinate
systems (see figure 4):
position axis 1[x] axis 2[y] axis 3[z]
slab X Y Z
walls XZ plane Z X Y
walls YZ plane Y Z X
columns Z Y X
XC finite element OSS XC news XC source in GitHub XC doxygen doc XC sphinx doc
ana.ortega.ort@gmail.com l.pereztato@gmail.com Page 2
Class Load name Value of load Ψ0 Ψ2
Dead load
dead load of construction γreinfconcrete = 25 kN/m3
dead load of interior 3.0 kN/m2
-
dead load of facade 8.0 kN/m
Environmental load 1
wind (below 1000m 0.77 kN/m2
below 10 m
above sea level) 1.09 kN/m2
at 19 m 0.6 0
between 10 m and 19 m linear rising
Environmental load 2 snow on roof or external area 1.70 kN/m2
0.5 0
Service load 1
dwelling (level 1-6) 2.00 kN/m2
stairs, office (level 0) 4.00 kN/m2
0.7 0.3
Service load 2 parking (level -1, -2, external area) 2.50kN/m2
0.7 0.6
Table 1: Loads. Table taken from [1]
Class favourable unfavourable
Self-weight G1 - γG=1.35
Permanent loads G2 γG=1.00 γG=1.35
Variable loads Qi γQ=0.00 γG=1.50
Table 2: Partial factors
Class Load case Id Load case description see figure
Dead loads
LC1 dead load of the bearing structure 5
LC2 dead load of the interior 6
LC3 dead load of the facade 7
Environmental loads
LC51 wind in global X direction 8
LC101 wind in global Y direction 9
LC201 snow on the roof 10
LC202 snow on the external area between axes 1 and 2 11
LC203 snow on the external area between axes 2 and 3 12
LC204 snow on the external area between axes 3 and 4 13
LC205 snow on the external area between axes 4 and 5 14
LC206 snow on the external area between axes 5 and 6 15
Service loads
LC1326 service load 1 on the roof, arrangement 1 16
LC1336 service load 1 on the roof, arrangement 2 17
LC1356 service load 1 on the roof, arrangement 3 18
LC1366 service load 1 on the roof, arrangement 4 19
LC10001 service load 1 on levels 0 to 5, arrangement 1 20
LC10011 service load 1 on levels 0 to 5, arrangement 2 21
LC10021 service load 1 on levels 0 to 5, arrangement 3 22
LC10031 service load 1 on levels 0 to 5, arrangement 4 23
LC10101 service load 2 on levels -1 and -2, arrangement 1 24
LC10111 service load 2 on levels -1 and -2, arrangement 2 25
LC10121 service load 2 on levels -1 and -2, arrangement 3 26
LC10131 service load 2 on levels -1 and -2, arrangement 4 27
Table 3: Load cases
XC finite element OSS XC news XC source in GitHub XC doxygen doc XC sphinx doc
ana.ortega.ort@gmail.com l.pereztato@gmail.com Page 3
Target Combination Id Combination expression
max My ELUmaxMy 1.35 × LC1 + 1.35 × LC2 + 1.35 × LC3 + 1.5 × LC101 + 0.75 × LC203 + 0.75 ×
LC204 + 0.75 × LC205 + 0.75 × LC206 + 1.05 × LC1356 + 1.05 × LC10111
max Mz ELUmaxMz 1.35 × LC1 + 1.35 × LC2 + 1.35 × LC3 + 1.5 × LC10111 + 0.9 × LC51 + 0.75 ×
LC203 + 0.75 × LC204 + 0.75 × LC205 + 0.75 × LC206 + 1.05 × LC10011
max Vy ELUmaxVy 1.35 × LC1 + 1.35 × LC2 + 1.35 × LC3 + 1.5 × LC10111 + 0.9 × LC51 + 0.75 ×
LC203 + 0.75 × LC204 + 0.75 × LC205 + 0.75 × LC206 + 1.05 × LC10011
max Vz ELUmaxVz 1.35 × LC1 + 1.35 × LC2 + 1.35 × LC3 + 1.5 × LC51 + 1.05 × LC10031 + 1 +
1.05 × LC10101
max N ELUmaxN 1.35 × LC1 + 1.35 × LC2 + 1.35 × LC3 + 1.5 × LC51 + 0.75 × LC202 + 0.75 ×
LC203 + 0.75 × LC204 + 0.75 × LC205
min My ELUminMy 1.35 × LC1 + 1.35 × LC2 + 1.35 × LC3 + 1.5 × LC51 + 0.75 × LC201 + 1.05 ×
LC1326 + 1.05 × LC10031 + 1 + 1.05 × LC10101
min Mz ELUminMz 1.35×LC1+1.35×LC2+1.35×LC3+1.5×LC10121+0.9×LC101+0.75×
LC201 + 0.75 × LC202 + 1.05 × LC1326 + 1.5 × LC10021
min Vy ELUminVy 1.35 × LC1 + 1.35 × LC2 + 1.35 × LC3 + 1.5 × LC10121 + 0.75 × LC201 +
0.75 × LC202 + 1.05 × LC1356 + 1.05 × LC10021
min Vz ELUminVz 1.35 × LC1 + 1.35 × LC2 + 1.35 × LC3 + 1.5 × LC101 + 0.75 × LC202 + 0.75 ×
LC203 + 0.75 × LC204 + 0.75 × LC205 + 0.75 × LC206 + 1.05 × LC10111
min N ELUminN 1.35 × LC1 + 1.35 × LC2 + 1.35 × LC3 + 1.5 × LC10031 + 1 + 1.5 × LC1366 +
0.75 × LC201 + 1.05 × LC10121
Table 4: Combinations
Figure 4: Local axes.
Figure 5: LC1: dead load of the bearing structure, overall set,
units:[m,kN]
Figure 6: LC2: dead load of the interior, overall set, units:[m,kN]
XC finite element OSS XC news XC source in GitHub XC doxygen doc XC sphinx doc
ana.ortega.ort@gmail.com l.pereztato@gmail.com Page 4
Figure 7: LC3: dead load of the facade, overall set, units:[m,kN]
Figure 8: LC51: wind in global X direction, overall set, units:[m,kN]
Figure 9: LC101: wind in global Y direction, overall set, units:[m,kN]
Figure 10: LC201: snow on the roof, overall set, units:[m,kN]
Figure 11: LC202: snow on the external area between axes 1 and 2,
overall set, units:[m,kN]
Figure 12: LC203: snow on the external area between axes 2 and 3,
overall set, units:[m,kN]
XC finite element OSS XC news XC source in GitHub XC doxygen doc XC sphinx doc
ana.ortega.ort@gmail.com l.pereztato@gmail.com Page 5
Figure 13: LC204: snow on the external area between axes 3 and 4,
overall set, units:[m,kN]
Figure 14: LC205: snow on the external area between axes 4 and 5,
overall set, units:[m,kN]
Figure 15: LC206: snow on the external area between axes 5 and 6,
overall set, units:[m,kN]
Figure 16: LC1326: service load 1 on the roof, arrangement 1, overall
set, units:[m,kN]
Figure 17: LC1336: service load 1 on the roof, arrangement 2, overall
set, units:[m,kN]
Figure 18: LC1356: service load 1 on the roof, arrangement 3, overall
set, units:[m,kN]
XC finite element OSS XC news XC source in GitHub XC doxygen doc XC sphinx doc
ana.ortega.ort@gmail.com l.pereztato@gmail.com Page 6
Figure 19: LC1366: service load 1 on the roof, arrangement 4, overall
set, units:[m,kN]
Figure 20: LC10001: service load 1 on levels 0 to 5, arrangement 1,
overall set, units:[m,kN]
Figure 21: LC10011: service load 1 on levels 0 to 5, arrangement 2,
overall set, units:[m,kN]
Figure 22: LC10021: service load 1 on levels 0 to 5, arrangement 3,
overall set, units:[m,kN]
Figure 23: LC10031: service load 1 on levels 0 to 5, arrangement 4,
overall set, units:[m,kN]
Figure 24: LC10101: service load 2 on levels -1 and -2, arrangement 1,
overall set, units:[m,kN]
XC finite element OSS XC news XC source in GitHub XC doxygen doc XC sphinx doc
ana.ortega.ort@gmail.com l.pereztato@gmail.com Page 7
Figure 25: LC10111: service load 2 on levels -1 and -2, arrangement 2,
overall set, units:[m,kN]
Figure 26: LC10121: service load 2 on levels -1 and -2, arrangement 3,
overall set, units:[m,kN]
Figure 27: LC10131: service load 2 on levels -1 and -2, arrangement 4,
overall set, units:[m,kN]
Figure 28: ELUmaxMy: maximum internal moment My. Overall set, dis-
placement in global X direction [mm]
Figure 29: ELUmaxMy: maximum internal moment My. Overall set, dis-
placement in global Y direction [mm]
Figure 30: ELUmaxMy: maximum internal moment My. Overall set, dis-
placement in global Z direction [mm]
XC finite element OSS XC news XC source in GitHub XC doxygen doc XC sphinx doc
ana.ortega.ort@gmail.com l.pereztato@gmail.com Page 8
Figure 31: ELUmaxMy: maximum internal moment My. Shell elements,
internal axial force in local direction 1 [kN]
Figure 32: ELUmaxMy: maximum internal moment My. Shell elements,
internal axial force in local direction 2 [kN]
Figure 33: ELUmaxMy: maximum internal moment My. Shell elements,
bending moment around local axis 1 [m.kN]
Figure 34: ELUmaxMy: maximum internal moment My. Shell elements,
bending moment around local axis 2 [m.kN]
Figure 35: ELUmaxMy: maximum internal moment My. Shell elements,
internal shear force in local direction 1 [kN]
Figure 36: ELUmaxMy: maximum internal moment My. Shell elements,
internal shear force in local direction 2 [kN]
XC finite element OSS XC news XC source in GitHub XC doxygen doc XC sphinx doc
ana.ortega.ort@gmail.com l.pereztato@gmail.com Page 9
Figure 37: ELUmaxMy: maximum internal moment My. Inner columns,
bending moment around local axis y [m.kN]
Figure 38: ELUmaxMy: maximum internal moment My. Inner columns,
bending moment around local axis z [m.kN]
Figure 39: ELUmaxMy: maximum internal moment My. Inner columns,
internal shear force in local direction y [kN]
Figure 40: ELUmaxMy: maximum internal moment My. Inner columns,
internal shear force in local direction z [kN]
Figure 41: ELUmaxMy: maximum internal moment My. Inner columns,
internal axial force [kN]
Figure 42: ELUmaxMz: maximum internal moment Mz. Overall set, dis-
placement in global X direction [mm]
XC finite element OSS XC news XC source in GitHub XC doxygen doc XC sphinx doc
ana.ortega.ort@gmail.com l.pereztato@gmail.com Page 10
Figure 43: ELUmaxMz: maximum internal moment Mz. Overall set, dis-
placement in global Y direction [mm]
Figure 44: ELUmaxMz: maximum internal moment Mz. Overall set, dis-
placement in global Z direction [mm]
Figure 45: ELUmaxMz: maximum internal moment Mz. Shell elements,
internal axial force in local direction 1 [kN]
Figure 46: ELUmaxMz: maximum internal moment Mz. Shell elements,
internal axial force in local direction 2 [kN]
Figure 47: ELUmaxMz: maximum internal moment Mz. Shell elements,
bending moment around local axis 1 [m.kN]
Figure 48: ELUmaxMz: maximum internal moment Mz. Shell elements,
bending moment around local axis 2 [m.kN]
XC finite element OSS XC news XC source in GitHub XC doxygen doc XC sphinx doc
ana.ortega.ort@gmail.com l.pereztato@gmail.com Page 11
Figure 49: ELUmaxMz: maximum internal moment Mz. Shell elements,
internal shear force in local direction 1 [kN]
Figure 50: ELUmaxMz: maximum internal moment Mz. Shell elements,
internal shear force in local direction 2 [kN]
Figure 51: ELUmaxMz: maximum internal moment Mz. Inner columns,
bending moment around local axis y [m.kN]
Figure 52: ELUmaxMz: maximum internal moment Mz. Inner columns,
bending moment around local axis z [m.kN]
Figure 53: ELUmaxMz: maximum internal moment Mz. Inner columns,
internal shear force in local direction y [kN]
Figure 54: ELUmaxMz: maximum internal moment Mz. Inner columns,
internal shear force in local direction z [kN]
XC finite element OSS XC news XC source in GitHub XC doxygen doc XC sphinx doc
ana.ortega.ort@gmail.com l.pereztato@gmail.com Page 12
Figure 55: ELUmaxMz: maximum internal moment Mz. Inner columns,
internal axial force [kN]
Figure 56: ELUmaxVy: maximum internal force Vy. Overall set, displace-
ment in global X direction [mm]
Figure 57: ELUmaxVy: maximum internal force Vy. Overall set, displace-
ment in global Y direction [mm]
Figure 58: ELUmaxVy: maximum internal force Vy. Overall set, displace-
ment in global Z direction [mm]
Figure 59: ELUmaxVy: maximum internal force Vy. Shell elements, in-
ternal axial force in local direction 1 [kN]
Figure 60: ELUmaxVy: maximum internal force Vy. Shell elements, in-
ternal axial force in local direction 2 [kN]
XC finite element OSS XC news XC source in GitHub XC doxygen doc XC sphinx doc
ana.ortega.ort@gmail.com l.pereztato@gmail.com Page 13
Figure 61: ELUmaxVy: maximum internal force Vy. Shell elements,
bending moment around local axis 1 [m.kN]
Figure 62: ELUmaxVy: maximum internal force Vy. Shell elements,
bending moment around local axis 2 [m.kN]
Figure 63: ELUmaxVy: maximum internal force Vy. Shell elements, in-
ternal shear force in local direction 1 [kN]
Figure 64: ELUmaxVy: maximum internal force Vy. Shell elements, in-
ternal shear force in local direction 2 [kN]
Figure 65: ELUmaxVy: maximum internal force Vy. Inner columns,
bending moment around local axis y [m.kN]
Figure 66: ELUmaxVy: maximum internal force Vy. Inner columns,
bending moment around local axis z [m.kN]
XC finite element OSS XC news XC source in GitHub XC doxygen doc XC sphinx doc
ana.ortega.ort@gmail.com l.pereztato@gmail.com Page 14
Figure 67: ELUmaxVy: maximum internal force Vy. Inner columns, in-
ternal shear force in local direction y [kN]
Figure 68: ELUmaxVy: maximum internal force Vy. Inner columns, in-
ternal shear force in local direction z [kN]
Figure 69: ELUmaxVy: maximum internal force Vy. Inner columns, in-
ternal axial force [kN]
Figure 70: ELUmaxVz: maximum internal force Vz. Overall set, dis-
placement in global X direction [mm]
Figure 71: ELUmaxVz: maximum internal force Vz. Overall set, dis-
placement in global Y direction [mm]
Figure 72: ELUmaxVz: maximum internal force Vz. Overall set, dis-
placement in global Z direction [mm]
XC finite element OSS XC news XC source in GitHub XC doxygen doc XC sphinx doc
ana.ortega.ort@gmail.com l.pereztato@gmail.com Page 15
Figure 73: ELUmaxVz: maximum internal force Vz. Shell elements, in-
ternal axial force in local direction 1 [kN]
Figure 74: ELUmaxVz: maximum internal force Vz. Shell elements, in-
ternal axial force in local direction 2 [kN]
Figure 75: ELUmaxVz: maximum internal force Vz. Shell elements,
bending moment around local axis 1 [m.kN]
Figure 76: ELUmaxVz: maximum internal force Vz. Shell elements,
bending moment around local axis 2 [m.kN]
Figure 77: ELUmaxVz: maximum internal force Vz. Shell elements, in-
ternal shear force in local direction 1 [kN]
Figure 78: ELUmaxVz: maximum internal force Vz. Shell elements, in-
ternal shear force in local direction 2 [kN]
XC finite element OSS XC news XC source in GitHub XC doxygen doc XC sphinx doc
ana.ortega.ort@gmail.com l.pereztato@gmail.com Page 16
Figure 79: ELUmaxVz: maximum internal force Vz. Inner columns,
bending moment around local axis y [m.kN]
Figure 80: ELUmaxVz: maximum internal force Vz. Inner columns,
bending moment around local axis z [m.kN]
Figure 81: ELUmaxVz: maximum internal force Vz. Inner columns, in-
ternal shear force in local direction y [kN]
Figure 82: ELUmaxVz: maximum internal force Vz. Inner columns, in-
ternal shear force in local direction z [kN]
Figure 83: ELUmaxVz: maximum internal force Vz. Inner columns, in-
ternal axial force [kN]
Figure 84: ELUmaxN: maximum internal force N. Overall set, displace-
ment in global X direction [mm]
XC finite element OSS XC news XC source in GitHub XC doxygen doc XC sphinx doc
ana.ortega.ort@gmail.com l.pereztato@gmail.com Page 17
Figure 85: ELUmaxN: maximum internal force N. Overall set, displace-
ment in global Y direction [mm]
Figure 86: ELUmaxN: maximum internal force N. Overall set, displace-
ment in global Z direction [mm]
Figure 87: ELUmaxN: maximum internal force N. Shell elements, inter-
nal axial force in local direction 1 [kN]
Figure 88: ELUmaxN: maximum internal force N. Shell elements, inter-
nal axial force in local direction 2 [kN]
Figure 89: ELUmaxN: maximum internal force N. Shell elements, bend-
ing moment around local axis 1 [m.kN]
Figure 90: ELUmaxN: maximum internal force N. Shell elements, bend-
ing moment around local axis 2 [m.kN]
XC finite element OSS XC news XC source in GitHub XC doxygen doc XC sphinx doc
ana.ortega.ort@gmail.com l.pereztato@gmail.com Page 18
Figure 91: ELUmaxN: maximum internal force N. Shell elements, inter-
nal shear force in local direction 1 [kN]
Figure 92: ELUmaxN: maximum internal force N. Shell elements, inter-
nal shear force in local direction 2 [kN]
Figure 93: ELUmaxN: maximum internal force N. Inner columns, bend-
ing moment around local axis y [m.kN]
Figure 94: ELUmaxN: maximum internal force N. Inner columns, bend-
ing moment around local axis z [m.kN]
Figure 95: ELUmaxN: maximum internal force N. Inner columns, inter-
nal shear force in local direction y [kN]
Figure 96: ELUmaxN: maximum internal force N. Inner columns, inter-
nal shear force in local direction z [kN]
XC finite element OSS XC news XC source in GitHub XC doxygen doc XC sphinx doc
ana.ortega.ort@gmail.com l.pereztato@gmail.com Page 19
Figure 97: ELUmaxN: maximum internal force N. Inner columns, inter-
nal axial force [kN]
Figure 98: ELUminMy: minimum internal moment My. Overall set, dis-
placement in global X direction [mm]
Figure 99: ELUminMy: minimum internal moment My. Overall set, dis-
placement in global Y direction [mm]
Figure 100: ELUminMy: minimum internal moment My. Overall set, dis-
placement in global Z direction [mm]
Figure 101: ELUminMy: minimum internal moment My. Shell elements,
internal axial force in local direction 1 [kN]
Figure 102: ELUminMy: minimum internal moment My. Shell elements,
internal axial force in local direction 2 [kN]
XC finite element OSS XC news XC source in GitHub XC doxygen doc XC sphinx doc
ana.ortega.ort@gmail.com l.pereztato@gmail.com Page 20
Figure 103: ELUminMy: minimum internal moment My. Shell elements,
bending moment around local axis 1 [m.kN]
Figure 104: ELUminMy: minimum internal moment My. Shell elements,
bending moment around local axis 2 [m.kN]
Figure 105: ELUminMy: minimum internal moment My. Shell elements,
internal shear force in local direction 1 [kN]
Figure 106: ELUminMy: minimum internal moment My. Shell elements,
internal shear force in local direction 2 [kN]
Figure 107: ELUminMy: minimum internal moment My. Inner columns,
bending moment around local axis y [m.kN]
Figure 108: ELUminMy: minimum internal moment My. Inner columns,
bending moment around local axis z [m.kN]
XC finite element OSS XC news XC source in GitHub XC doxygen doc XC sphinx doc
ana.ortega.ort@gmail.com l.pereztato@gmail.com Page 21
Figure 109: ELUminMy: minimum internal moment My. Inner columns,
internal shear force in local direction y [kN]
Figure 110: ELUminMy: minimum internal moment My. Inner columns,
internal shear force in local direction z [kN]
Figure 111: ELUminMy: minimum internal moment My. Inner columns,
internal axial force [kN]
Figure 112: ELUminMz: minimum internal moment Mz. Overall set, dis-
placement in global X direction [mm]
Figure 113: ELUminMz: minimum internal moment Mz. Overall set, dis-
placement in global Y direction [mm]
Figure 114: ELUminMz: minimum internal moment Mz. Overall set, dis-
placement in global Z direction [mm]
XC finite element OSS XC news XC source in GitHub XC doxygen doc XC sphinx doc
ana.ortega.ort@gmail.com l.pereztato@gmail.com Page 22
Figure 115: ELUminMz: minimum internal moment Mz. Shell elements,
internal axial force in local direction 1 [kN]
Figure 116: ELUminMz: minimum internal moment Mz. Shell elements,
internal axial force in local direction 2 [kN]
Figure 117: ELUminMz: minimum internal moment Mz. Shell elements,
bending moment around local axis 1 [m.kN]
Figure 118: ELUminMz: minimum internal moment Mz. Shell elements,
bending moment around local axis 2 [m.kN]
Figure 119: ELUminMz: minimum internal moment Mz. Shell elements,
internal shear force in local direction 1 [kN]
Figure 120: ELUminMz: minimum internal moment Mz. Shell elements,
internal shear force in local direction 2 [kN]
XC finite element OSS XC news XC source in GitHub XC doxygen doc XC sphinx doc
ana.ortega.ort@gmail.com l.pereztato@gmail.com Page 23
Figure 121: ELUminMz: minimum internal moment Mz. Inner columns,
bending moment around local axis y [m.kN]
Figure 122: ELUminMz: minimum internal moment Mz. Inner columns,
bending moment around local axis z [m.kN]
Figure 123: ELUminMz: minimum internal moment Mz. Inner columns,
internal shear force in local direction y [kN]
Figure 124: ELUminMz: minimum internal moment Mz. Inner columns,
internal shear force in local direction z [kN]
Figure 125: ELUminMz: minimum internal moment Mz. Inner columns,
internal axial force [kN]
Figure 126: ELUminVy: minimum internal force Vy. Overall set, dis-
placement in global X direction [mm]
XC finite element OSS XC news XC source in GitHub XC doxygen doc XC sphinx doc
ana.ortega.ort@gmail.com l.pereztato@gmail.com Page 24
Figure 127: ELUminVy: minimum internal force Vy. Overall set, dis-
placement in global Y direction [mm]
Figure 128: ELUminVy: minimum internal force Vy. Overall set, dis-
placement in global Z direction [mm]
Figure 129: ELUminVy: minimum internal force Vy. Shell elements, in-
ternal axial force in local direction 1 [kN]
Figure 130: ELUminVy: minimum internal force Vy. Shell elements, in-
ternal axial force in local direction 2 [kN]
Figure 131: ELUminVy: minimum internal force Vy. Shell elements,
bending moment around local axis 1 [m.kN]
Figure 132: ELUminVy: minimum internal force Vy. Shell elements,
bending moment around local axis 2 [m.kN]
XC finite element OSS XC news XC source in GitHub XC doxygen doc XC sphinx doc
ana.ortega.ort@gmail.com l.pereztato@gmail.com Page 25
Figure 133: ELUminVy: minimum internal force Vy. Shell elements, in-
ternal shear force in local direction 1 [kN]
Figure 134: ELUminVy: minimum internal force Vy. Shell elements, in-
ternal shear force in local direction 2 [kN]
Figure 135: ELUminVy: minimum internal force Vy. Inner columns,
bending moment around local axis y [m.kN]
Figure 136: ELUminVy: minimum internal force Vy. Inner columns,
bending moment around local axis z [m.kN]
Figure 137: ELUminVy: minimum internal force Vy. Inner columns, in-
ternal shear force in local direction y [kN]
Figure 138: ELUminVy: minimum internal force Vy. Inner columns, in-
ternal shear force in local direction z [kN]
XC finite element OSS XC news XC source in GitHub XC doxygen doc XC sphinx doc
ana.ortega.ort@gmail.com l.pereztato@gmail.com Page 26
Figure 139: ELUminVy: minimum internal force Vy. Inner columns, in-
ternal axial force [kN]
Figure 140: ELUminVz: minimum internal force Vz. Overall set, dis-
placement in global X direction [mm]
Figure 141: ELUminVz: minimum internal force Vz. Overall set, dis-
placement in global Y direction [mm]
Figure 142: ELUminVz: minimum internal force Vz. Overall set, dis-
placement in global Z direction [mm]
Figure 143: ELUminVz: minimum internal force Vz. Shell elements, in-
ternal axial force in local direction 1 [kN]
Figure 144: ELUminVz: minimum internal force Vz. Shell elements, in-
ternal axial force in local direction 2 [kN]
XC finite element OSS XC news XC source in GitHub XC doxygen doc XC sphinx doc
ana.ortega.ort@gmail.com l.pereztato@gmail.com Page 27
Figure 145: ELUminVz: minimum internal force Vz. Shell elements,
bending moment around local axis 1 [m.kN]
Figure 146: ELUminVz: minimum internal force Vz. Shell elements,
bending moment around local axis 2 [m.kN]
Figure 147: ELUminVz: minimum internal force Vz. Shell elements, in-
ternal shear force in local direction 1 [kN]
Figure 148: ELUminVz: minimum internal force Vz. Shell elements, in-
ternal shear force in local direction 2 [kN]
Figure 149: ELUminVz: minimum internal force Vz. Inner columns,
bending moment around local axis y [m.kN]
Figure 150: ELUminVz: minimum internal force Vz. Inner columns,
bending moment around local axis z [m.kN]
XC finite element OSS XC news XC source in GitHub XC doxygen doc XC sphinx doc
ana.ortega.ort@gmail.com l.pereztato@gmail.com Page 28
Figure 151: ELUminVz: minimum internal force Vz. Inner columns, in-
ternal shear force in local direction y [kN]
Figure 152: ELUminVz: minimum internal force Vz. Inner columns, in-
ternal shear force in local direction z [kN]
Figure 153: ELUminVz: minimum internal force Vz. Inner columns, in-
ternal axial force [kN]
Figure 154: ELUminN: minimum internal force N. Overall set, displace-
ment in global X direction [mm]
Figure 155: ELUminN: minimum internal force N. Overall set, displace-
ment in global Y direction [mm]
Figure 156: ELUminN: minimum internal force N. Overall set, displace-
ment in global Z direction [mm]
XC finite element OSS XC news XC source in GitHub XC doxygen doc XC sphinx doc
ana.ortega.ort@gmail.com l.pereztato@gmail.com Page 29
Figure 157: ELUminN: minimum internal force N. Shell elements, inter-
nal axial force in local direction 1 [kN]
Figure 158: ELUminN: minimum internal force N. Shell elements, inter-
nal axial force in local direction 2 [kN]
Figure 159: ELUminN: minimum internal force N. Shell elements, bend-
ing moment around local axis 1 [m.kN]
Figure 160: ELUminN: minimum internal force N. Shell elements, bend-
ing moment around local axis 2 [m.kN]
Figure 161: ELUminN: minimum internal force N. Shell elements, inter-
nal shear force in local direction 1 [kN]
Figure 162: ELUminN: minimum internal force N. Shell elements, inter-
nal shear force in local direction 2 [kN]
XC finite element OSS XC news XC source in GitHub XC doxygen doc XC sphinx doc
ana.ortega.ort@gmail.com l.pereztato@gmail.com Page 30
REFERENCES REFERENCES
Figure 163: ELUminN: minimum internal force N. Inner columns, bend-
ing moment around local axis y [m.kN]
Figure 164: ELUminN: minimum internal force N. Inner columns, bend-
ing moment around local axis z [m.kN]
Figure 165: ELUminN: minimum internal force N. Inner columns, inter-
nal shear force in local direction z [kN]
Figure 166: ELUminN: minimum internal force N. Inner columns, inter-
nal axial force [kN]
References
[1] M.Just M.Curbach J.Walraven S.Gmainer J.Arrieta R.Frank C.Morin F.Robert SF.Biasioli, G.Mancini. Eurocode 2:
background & applications. design of concrete buildings. worked examples. Technical report, European Comis-
sion, 2014.
XC finite element OSS XC news XC source in GitHub XC doxygen doc XC sphinx doc
ana.ortega.ort@gmail.com l.pereztato@gmail.com Page 31

More Related Content

What's hot

B structure
B structure B structure
B structure Andy Heng
 
Analysis of portal frame by direct stiffness method
Analysis of  portal frame by direct stiffness methodAnalysis of  portal frame by direct stiffness method
Analysis of portal frame by direct stiffness methodkasirekha
 
Block Reduction Method
Block Reduction MethodBlock Reduction Method
Block Reduction MethodSmit Shah
 
QuickELPLA for solving different problems in geotechnical engineering
QuickELPLA for solving different problems in geotechnical engineeringQuickELPLA for solving different problems in geotechnical engineering
QuickELPLA for solving different problems in geotechnical engineeringAmin El Gendy, Ph.D., P.Eng, PMP
 
Plate load test observation and calculation Plate load test image (usefulsear...
Plate load test observation and calculation Plate load test image (usefulsear...Plate load test observation and calculation Plate load test image (usefulsear...
Plate load test observation and calculation Plate load test image (usefulsear...Make Mannan
 
Week 10 part 1 pe 6282 Block Diagrams
Week  10 part 1 pe 6282   Block DiagramsWeek  10 part 1 pe 6282   Block Diagrams
Week 10 part 1 pe 6282 Block DiagramsCharlton Inao
 
Concurrent Ternary Galois-based Computation using Nano-apex Multiplexing Nibs...
Concurrent Ternary Galois-based Computation using Nano-apex Multiplexing Nibs...Concurrent Ternary Galois-based Computation using Nano-apex Multiplexing Nibs...
Concurrent Ternary Galois-based Computation using Nano-apex Multiplexing Nibs...VLSICS Design
 
MySQL and GIS Programming
MySQL and GIS ProgrammingMySQL and GIS Programming
MySQL and GIS ProgrammingMike Benshoof
 
Examples on effective stress
Examples on effective stressExamples on effective stress
Examples on effective stressMalika khalil
 
Block diagram Examples
Block diagram ExamplesBlock diagram Examples
Block diagram ExamplesSagar Kuntumal
 
Building Structure calculation
Building Structure calculationBuilding Structure calculation
Building Structure calculationJy Chong
 
Entanglement of formation
Entanglement of formationEntanglement of formation
Entanglement of formationwtyru1989
 
Finite Element Analysis of the Beams Under Thermal Loading
Finite Element Analysis of the Beams Under Thermal LoadingFinite Element Analysis of the Beams Under Thermal Loading
Finite Element Analysis of the Beams Under Thermal LoadingMohammad Tawfik
 
Solution to-2nd-semester-soil-mechanics-2015-2016
Solution to-2nd-semester-soil-mechanics-2015-2016Solution to-2nd-semester-soil-mechanics-2015-2016
Solution to-2nd-semester-soil-mechanics-2015-2016chener Qadr
 
Computational fracture mechanics
Computational fracture mechanicsComputational fracture mechanics
Computational fracture mechanicsNguyen Vinh Phu
 
Re:ゲーム理論入門 第11回 - ふりかえり -
Re:ゲーム理論入門 第11回 - ふりかえり -Re:ゲーム理論入門 第11回 - ふりかえり -
Re:ゲーム理論入門 第11回 - ふりかえり -ssusere0a682
 

What's hot (20)

Communication de Conférence
Communication de Conférence Communication de Conférence
Communication de Conférence
 
B structure
B structure B structure
B structure
 
Expo Analitica
Expo AnaliticaExpo Analitica
Expo Analitica
 
ME300Lab3
ME300Lab3ME300Lab3
ME300Lab3
 
Analysis of portal frame by direct stiffness method
Analysis of  portal frame by direct stiffness methodAnalysis of  portal frame by direct stiffness method
Analysis of portal frame by direct stiffness method
 
Block Reduction Method
Block Reduction MethodBlock Reduction Method
Block Reduction Method
 
QuickELPLA for solving different problems in geotechnical engineering
QuickELPLA for solving different problems in geotechnical engineeringQuickELPLA for solving different problems in geotechnical engineering
QuickELPLA for solving different problems in geotechnical engineering
 
Plate load test observation and calculation Plate load test image (usefulsear...
Plate load test observation and calculation Plate load test image (usefulsear...Plate load test observation and calculation Plate load test image (usefulsear...
Plate load test observation and calculation Plate load test image (usefulsear...
 
Week 10 part 1 pe 6282 Block Diagrams
Week  10 part 1 pe 6282   Block DiagramsWeek  10 part 1 pe 6282   Block Diagrams
Week 10 part 1 pe 6282 Block Diagrams
 
Bearing capacity of piles
Bearing capacity of pilesBearing capacity of piles
Bearing capacity of piles
 
Concurrent Ternary Galois-based Computation using Nano-apex Multiplexing Nibs...
Concurrent Ternary Galois-based Computation using Nano-apex Multiplexing Nibs...Concurrent Ternary Galois-based Computation using Nano-apex Multiplexing Nibs...
Concurrent Ternary Galois-based Computation using Nano-apex Multiplexing Nibs...
 
MySQL and GIS Programming
MySQL and GIS ProgrammingMySQL and GIS Programming
MySQL and GIS Programming
 
Examples on effective stress
Examples on effective stressExamples on effective stress
Examples on effective stress
 
Block diagram Examples
Block diagram ExamplesBlock diagram Examples
Block diagram Examples
 
Building Structure calculation
Building Structure calculationBuilding Structure calculation
Building Structure calculation
 
Entanglement of formation
Entanglement of formationEntanglement of formation
Entanglement of formation
 
Finite Element Analysis of the Beams Under Thermal Loading
Finite Element Analysis of the Beams Under Thermal LoadingFinite Element Analysis of the Beams Under Thermal Loading
Finite Element Analysis of the Beams Under Thermal Loading
 
Solution to-2nd-semester-soil-mechanics-2015-2016
Solution to-2nd-semester-soil-mechanics-2015-2016Solution to-2nd-semester-soil-mechanics-2015-2016
Solution to-2nd-semester-soil-mechanics-2015-2016
 
Computational fracture mechanics
Computational fracture mechanicsComputational fracture mechanics
Computational fracture mechanics
 
Re:ゲーム理論入門 第11回 - ふりかえり -
Re:ゲーム理論入門 第11回 - ふりかえり -Re:ゲーム理論入門 第11回 - ふりかえり -
Re:ゲーム理論入門 第11回 - ふりかえり -
 

Similar to Analysis of a building with XC

Icuc1
Icuc1Icuc1
Icuc1epfl
 
Evaluation of Fixed Base vs. Base Isolated Building Systems
Evaluation of Fixed Base vs. Base Isolated Building SystemsEvaluation of Fixed Base vs. Base Isolated Building Systems
Evaluation of Fixed Base vs. Base Isolated Building SystemsIJERD Editor
 
Study of Soil Structure Interaction Effects on Multi-risers by applying soil ...
Study of Soil Structure Interaction Effects on Multi-risers by applying soil ...Study of Soil Structure Interaction Effects on Multi-risers by applying soil ...
Study of Soil Structure Interaction Effects on Multi-risers by applying soil ...Roshni Ramakrishnan
 
Feedback Control of Dynamic Systems 8th Edition Franklin Solutions Manual
Feedback Control of Dynamic Systems 8th Edition Franklin Solutions ManualFeedback Control of Dynamic Systems 8th Edition Franklin Solutions Manual
Feedback Control of Dynamic Systems 8th Edition Franklin Solutions ManualDakotaFredericks
 
Applied mathematics for complex engineering
Applied mathematics for complex engineeringApplied mathematics for complex engineering
Applied mathematics for complex engineeringSahl Buhary
 
A Rapid Location Independent Full Tensor Gravity Algorithm
A Rapid Location Independent Full Tensor Gravity AlgorithmA Rapid Location Independent Full Tensor Gravity Algorithm
A Rapid Location Independent Full Tensor Gravity AlgorithmPioneer Natural Resources
 
Comparative study of results obtained by analysis of structures using ANSYS, ...
Comparative study of results obtained by analysis of structures using ANSYS, ...Comparative study of results obtained by analysis of structures using ANSYS, ...
Comparative study of results obtained by analysis of structures using ANSYS, ...IOSR Journals
 
Analysis of CANADAIR CL-215 retractable landing gear.
Analysis of CANADAIR CL-215 retractable landing gear.Analysis of CANADAIR CL-215 retractable landing gear.
Analysis of CANADAIR CL-215 retractable landing gear.Nagesh NARASIMHA PRASAD
 
EGME 431 Term ProjectJake Bailey, CSU FullertonSpring .docx
EGME 431 Term ProjectJake Bailey, CSU FullertonSpring .docxEGME 431 Term ProjectJake Bailey, CSU FullertonSpring .docx
EGME 431 Term ProjectJake Bailey, CSU FullertonSpring .docxSALU18
 
Modelling Quantum Transport in Nanostructures
Modelling Quantum Transport in NanostructuresModelling Quantum Transport in Nanostructures
Modelling Quantum Transport in Nanostructuresiosrjce
 
JGrass-NewAge LongWave radiation Balance
JGrass-NewAge LongWave radiation BalanceJGrass-NewAge LongWave radiation Balance
JGrass-NewAge LongWave radiation BalanceMarialaura Bancheri
 
Module%201
Module%201Module%201
Module%201rns02013
 
Lecture-3-Column-Design.pdf
Lecture-3-Column-Design.pdfLecture-3-Column-Design.pdf
Lecture-3-Column-Design.pdfAberaMamoJaleta
 

Similar to Analysis of a building with XC (20)

Presentation
PresentationPresentation
Presentation
 
Icuc1
Icuc1Icuc1
Icuc1
 
s1233587_Report
s1233587_Reports1233587_Report
s1233587_Report
 
Evaluation of Fixed Base vs. Base Isolated Building Systems
Evaluation of Fixed Base vs. Base Isolated Building SystemsEvaluation of Fixed Base vs. Base Isolated Building Systems
Evaluation of Fixed Base vs. Base Isolated Building Systems
 
Study of Soil Structure Interaction Effects on Multi-risers by applying soil ...
Study of Soil Structure Interaction Effects on Multi-risers by applying soil ...Study of Soil Structure Interaction Effects on Multi-risers by applying soil ...
Study of Soil Structure Interaction Effects on Multi-risers by applying soil ...
 
Feedback Control of Dynamic Systems 8th Edition Franklin Solutions Manual
Feedback Control of Dynamic Systems 8th Edition Franklin Solutions ManualFeedback Control of Dynamic Systems 8th Edition Franklin Solutions Manual
Feedback Control of Dynamic Systems 8th Edition Franklin Solutions Manual
 
Applied mathematics for complex engineering
Applied mathematics for complex engineeringApplied mathematics for complex engineering
Applied mathematics for complex engineering
 
ppt.pptx
ppt.pptxppt.pptx
ppt.pptx
 
A Rapid Location Independent Full Tensor Gravity Algorithm
A Rapid Location Independent Full Tensor Gravity AlgorithmA Rapid Location Independent Full Tensor Gravity Algorithm
A Rapid Location Independent Full Tensor Gravity Algorithm
 
Comparative study of results obtained by analysis of structures using ANSYS, ...
Comparative study of results obtained by analysis of structures using ANSYS, ...Comparative study of results obtained by analysis of structures using ANSYS, ...
Comparative study of results obtained by analysis of structures using ANSYS, ...
 
Introduction to FEA
Introduction to FEAIntroduction to FEA
Introduction to FEA
 
Analysis of CANADAIR CL-215 retractable landing gear.
Analysis of CANADAIR CL-215 retractable landing gear.Analysis of CANADAIR CL-215 retractable landing gear.
Analysis of CANADAIR CL-215 retractable landing gear.
 
EGME 431 Term ProjectJake Bailey, CSU FullertonSpring .docx
EGME 431 Term ProjectJake Bailey, CSU FullertonSpring .docxEGME 431 Term ProjectJake Bailey, CSU FullertonSpring .docx
EGME 431 Term ProjectJake Bailey, CSU FullertonSpring .docx
 
E010632226
E010632226E010632226
E010632226
 
Modelling Quantum Transport in Nanostructures
Modelling Quantum Transport in NanostructuresModelling Quantum Transport in Nanostructures
Modelling Quantum Transport in Nanostructures
 
JGrass-NewAge LongWave radiation Balance
JGrass-NewAge LongWave radiation BalanceJGrass-NewAge LongWave radiation Balance
JGrass-NewAge LongWave radiation Balance
 
Report Final
Report FinalReport Final
Report Final
 
Finite element analysis qb
Finite element analysis qbFinite element analysis qb
Finite element analysis qb
 
Module%201
Module%201Module%201
Module%201
 
Lecture-3-Column-Design.pdf
Lecture-3-Column-Design.pdfLecture-3-Column-Design.pdf
Lecture-3-Column-Design.pdf
 

More from Luis Claudio Pérez Tato

More from Luis Claudio Pérez Tato (9)

Implementation of a tension-stiffening model for the cracking nonlinear analy...
Implementation of a tension-stiffening model for the cracking nonlinear analy...Implementation of a tension-stiffening model for the cracking nonlinear analy...
Implementation of a tension-stiffening model for the cracking nonlinear analy...
 
Aplicaciones xc proy
Aplicaciones xc proyAplicaciones xc proy
Aplicaciones xc proy
 
Introducción a la compilación en ambientes Unix.
Introducción a la compilación en ambientes Unix.Introducción a la compilación en ambientes Unix.
Introducción a la compilación en ambientes Unix.
 
Diseño estructural de mástiles y torres.
Diseño estructural de mástiles y torres.Diseño estructural de mástiles y torres.
Diseño estructural de mástiles y torres.
 
Combinación de acciones
Combinación de accionesCombinación de acciones
Combinación de acciones
 
El sismo y sus espectros.
El sismo y sus espectros.El sismo y sus espectros.
El sismo y sus espectros.
 
Clasificación de secciones de acero estructural
Clasificación de secciones de acero estructuralClasificación de secciones de acero estructural
Clasificación de secciones de acero estructural
 
Cálculo de uniones metálicas mediante el MEF.
Cálculo de uniones metálicas mediante el MEF.Cálculo de uniones metálicas mediante el MEF.
Cálculo de uniones metálicas mediante el MEF.
 
Software libre en la oficina técnica.
Software libre en la oficina técnica.Software libre en la oficina técnica.
Software libre en la oficina técnica.
 

Recently uploaded

Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingrakeshbaidya232001
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
 
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝soniya singh
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxupamatechverse
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSRajkumarAkumalla
 
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...RajaP95
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxupamatechverse
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxAsutosh Ranjan
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINESIVASHANKAR N
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 

Recently uploaded (20)

Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writing
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
 
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptx
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
 
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
 
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
 

Analysis of a building with XC

  • 1. FEBRUARY 2017 Analysis of a building with XC Introduction XC is a finite element program oriented to civil engineering. It is conceived as Open Source Software since we are de- veloping it on the strong foundations of OpenSees and making heavy use of other OSS like Python, VTK and CGAL. This case of study is taken from the Euro- pean Commission publication «Eurocode 2: background & applications. Design of concrete buildings. Worked examples». It deals with a six-storey building with two underground parking levels. The aim of this exercise is to build the model with XC in order to obtain the displacements and internal forces in the structure caused by a set of load combinations. In upcoming exercises the verifications relating to limit states will be carried out. Description of the building Figure 1: Floor plan dimensions [m]. Reprinted from [1] The building, ideally located in an urban area, is occu- pied by offices open to public in the ground floor, storeys first to fifth are for dwellings and the two underground floors are intended to parking. Its main dimensions are depicted in figures 1 to 3. The slabs are of type flat con- crete solid spanning in both X and Y directions with depth h=21 cm. Shear walls from the staircase area and facade have a width 30 cm, the inner columns are square 0.5×0.5 in cross-section. The outer columns and the shear walls are supported by a peripheral diaphragm retaining wall of width 0.6 m. XC finite element OSS XC news XC source in GitHub XC doxygen doc XC sphinx doc ana.ortega.ort@gmail.com l.pereztato@gmail.com Page 1
  • 2. Figure 2: Section 1. Reprinted from [1] Figure 3: Section 2. Reprinted from [1] Finite element model A three-dimensional model of the structure has been built, all the scripts related to this model are hosted here in GitHub. The geometry is organized by making use of a grid of coordinates, which points will be the vertices of the rectangles, lines and other primitives that will define the shapes. This grid matches the axes graphically rep- resented in figures 1 to 3. The global coordinate system is oriented so that the X axis is horizontal, in the largest dimension of the build- ing, Y is horizontal perpendicular to X, and Z is a vertical axis in opposite sense to gravitational force. A concrete material defined by its Young’s modulus, mass density and Poisson’s ratio is added to the material container. The next step is to define the section-materials appropriates for modeling the different components of the structure. We use an isotropic section-material of type shell with shield and plate work for the analysis of slabs and walls; for the columns a 3D beam elastic section in- cluding shear deformation is used. The model is meshed automatically using a global ele- ments size of 0.5 m. A total of 24084 elements are gener- ated, of which 200 are of type beam and 23884 are shell elements. Zero displacement constraints are applied to all the nodes contained in the plane Z=0. Loads, load cases and combinations In the table 3 all the load cases considered for the analysis are depicted. The values of the loads, as well as their factors of combination, are reported in the table 1, extracted from reference [1]. Most of them are applied to the FE model as uniform loads on surfaces; figures 5 to 27 show the load distribution in the model for each of these load cases. Several combinations in ultimate limit states are ana- lyzed, load cases are combined using the parcial and com- bination factors depicted in tables 2 and 1 . The full list of limit states analized is shown in table 4. Results of structural analysis A static analysis using a linear algorithm is performed to achieve the solution for each combination of load cases. Figures 29 to 166 show the displacements and in- ternal forces and moments obtained as a result of the analysis. Displacements are expressed in the global co- ordinate system. On the other hand, internal forces and bending moments refers to the following local coordinate systems (see figure 4): position axis 1[x] axis 2[y] axis 3[z] slab X Y Z walls XZ plane Z X Y walls YZ plane Y Z X columns Z Y X XC finite element OSS XC news XC source in GitHub XC doxygen doc XC sphinx doc ana.ortega.ort@gmail.com l.pereztato@gmail.com Page 2
  • 3. Class Load name Value of load Ψ0 Ψ2 Dead load dead load of construction γreinfconcrete = 25 kN/m3 dead load of interior 3.0 kN/m2 - dead load of facade 8.0 kN/m Environmental load 1 wind (below 1000m 0.77 kN/m2 below 10 m above sea level) 1.09 kN/m2 at 19 m 0.6 0 between 10 m and 19 m linear rising Environmental load 2 snow on roof or external area 1.70 kN/m2 0.5 0 Service load 1 dwelling (level 1-6) 2.00 kN/m2 stairs, office (level 0) 4.00 kN/m2 0.7 0.3 Service load 2 parking (level -1, -2, external area) 2.50kN/m2 0.7 0.6 Table 1: Loads. Table taken from [1] Class favourable unfavourable Self-weight G1 - γG=1.35 Permanent loads G2 γG=1.00 γG=1.35 Variable loads Qi γQ=0.00 γG=1.50 Table 2: Partial factors Class Load case Id Load case description see figure Dead loads LC1 dead load of the bearing structure 5 LC2 dead load of the interior 6 LC3 dead load of the facade 7 Environmental loads LC51 wind in global X direction 8 LC101 wind in global Y direction 9 LC201 snow on the roof 10 LC202 snow on the external area between axes 1 and 2 11 LC203 snow on the external area between axes 2 and 3 12 LC204 snow on the external area between axes 3 and 4 13 LC205 snow on the external area between axes 4 and 5 14 LC206 snow on the external area between axes 5 and 6 15 Service loads LC1326 service load 1 on the roof, arrangement 1 16 LC1336 service load 1 on the roof, arrangement 2 17 LC1356 service load 1 on the roof, arrangement 3 18 LC1366 service load 1 on the roof, arrangement 4 19 LC10001 service load 1 on levels 0 to 5, arrangement 1 20 LC10011 service load 1 on levels 0 to 5, arrangement 2 21 LC10021 service load 1 on levels 0 to 5, arrangement 3 22 LC10031 service load 1 on levels 0 to 5, arrangement 4 23 LC10101 service load 2 on levels -1 and -2, arrangement 1 24 LC10111 service load 2 on levels -1 and -2, arrangement 2 25 LC10121 service load 2 on levels -1 and -2, arrangement 3 26 LC10131 service load 2 on levels -1 and -2, arrangement 4 27 Table 3: Load cases XC finite element OSS XC news XC source in GitHub XC doxygen doc XC sphinx doc ana.ortega.ort@gmail.com l.pereztato@gmail.com Page 3
  • 4. Target Combination Id Combination expression max My ELUmaxMy 1.35 × LC1 + 1.35 × LC2 + 1.35 × LC3 + 1.5 × LC101 + 0.75 × LC203 + 0.75 × LC204 + 0.75 × LC205 + 0.75 × LC206 + 1.05 × LC1356 + 1.05 × LC10111 max Mz ELUmaxMz 1.35 × LC1 + 1.35 × LC2 + 1.35 × LC3 + 1.5 × LC10111 + 0.9 × LC51 + 0.75 × LC203 + 0.75 × LC204 + 0.75 × LC205 + 0.75 × LC206 + 1.05 × LC10011 max Vy ELUmaxVy 1.35 × LC1 + 1.35 × LC2 + 1.35 × LC3 + 1.5 × LC10111 + 0.9 × LC51 + 0.75 × LC203 + 0.75 × LC204 + 0.75 × LC205 + 0.75 × LC206 + 1.05 × LC10011 max Vz ELUmaxVz 1.35 × LC1 + 1.35 × LC2 + 1.35 × LC3 + 1.5 × LC51 + 1.05 × LC10031 + 1 + 1.05 × LC10101 max N ELUmaxN 1.35 × LC1 + 1.35 × LC2 + 1.35 × LC3 + 1.5 × LC51 + 0.75 × LC202 + 0.75 × LC203 + 0.75 × LC204 + 0.75 × LC205 min My ELUminMy 1.35 × LC1 + 1.35 × LC2 + 1.35 × LC3 + 1.5 × LC51 + 0.75 × LC201 + 1.05 × LC1326 + 1.05 × LC10031 + 1 + 1.05 × LC10101 min Mz ELUminMz 1.35×LC1+1.35×LC2+1.35×LC3+1.5×LC10121+0.9×LC101+0.75× LC201 + 0.75 × LC202 + 1.05 × LC1326 + 1.5 × LC10021 min Vy ELUminVy 1.35 × LC1 + 1.35 × LC2 + 1.35 × LC3 + 1.5 × LC10121 + 0.75 × LC201 + 0.75 × LC202 + 1.05 × LC1356 + 1.05 × LC10021 min Vz ELUminVz 1.35 × LC1 + 1.35 × LC2 + 1.35 × LC3 + 1.5 × LC101 + 0.75 × LC202 + 0.75 × LC203 + 0.75 × LC204 + 0.75 × LC205 + 0.75 × LC206 + 1.05 × LC10111 min N ELUminN 1.35 × LC1 + 1.35 × LC2 + 1.35 × LC3 + 1.5 × LC10031 + 1 + 1.5 × LC1366 + 0.75 × LC201 + 1.05 × LC10121 Table 4: Combinations Figure 4: Local axes. Figure 5: LC1: dead load of the bearing structure, overall set, units:[m,kN] Figure 6: LC2: dead load of the interior, overall set, units:[m,kN] XC finite element OSS XC news XC source in GitHub XC doxygen doc XC sphinx doc ana.ortega.ort@gmail.com l.pereztato@gmail.com Page 4
  • 5. Figure 7: LC3: dead load of the facade, overall set, units:[m,kN] Figure 8: LC51: wind in global X direction, overall set, units:[m,kN] Figure 9: LC101: wind in global Y direction, overall set, units:[m,kN] Figure 10: LC201: snow on the roof, overall set, units:[m,kN] Figure 11: LC202: snow on the external area between axes 1 and 2, overall set, units:[m,kN] Figure 12: LC203: snow on the external area between axes 2 and 3, overall set, units:[m,kN] XC finite element OSS XC news XC source in GitHub XC doxygen doc XC sphinx doc ana.ortega.ort@gmail.com l.pereztato@gmail.com Page 5
  • 6. Figure 13: LC204: snow on the external area between axes 3 and 4, overall set, units:[m,kN] Figure 14: LC205: snow on the external area between axes 4 and 5, overall set, units:[m,kN] Figure 15: LC206: snow on the external area between axes 5 and 6, overall set, units:[m,kN] Figure 16: LC1326: service load 1 on the roof, arrangement 1, overall set, units:[m,kN] Figure 17: LC1336: service load 1 on the roof, arrangement 2, overall set, units:[m,kN] Figure 18: LC1356: service load 1 on the roof, arrangement 3, overall set, units:[m,kN] XC finite element OSS XC news XC source in GitHub XC doxygen doc XC sphinx doc ana.ortega.ort@gmail.com l.pereztato@gmail.com Page 6
  • 7. Figure 19: LC1366: service load 1 on the roof, arrangement 4, overall set, units:[m,kN] Figure 20: LC10001: service load 1 on levels 0 to 5, arrangement 1, overall set, units:[m,kN] Figure 21: LC10011: service load 1 on levels 0 to 5, arrangement 2, overall set, units:[m,kN] Figure 22: LC10021: service load 1 on levels 0 to 5, arrangement 3, overall set, units:[m,kN] Figure 23: LC10031: service load 1 on levels 0 to 5, arrangement 4, overall set, units:[m,kN] Figure 24: LC10101: service load 2 on levels -1 and -2, arrangement 1, overall set, units:[m,kN] XC finite element OSS XC news XC source in GitHub XC doxygen doc XC sphinx doc ana.ortega.ort@gmail.com l.pereztato@gmail.com Page 7
  • 8. Figure 25: LC10111: service load 2 on levels -1 and -2, arrangement 2, overall set, units:[m,kN] Figure 26: LC10121: service load 2 on levels -1 and -2, arrangement 3, overall set, units:[m,kN] Figure 27: LC10131: service load 2 on levels -1 and -2, arrangement 4, overall set, units:[m,kN] Figure 28: ELUmaxMy: maximum internal moment My. Overall set, dis- placement in global X direction [mm] Figure 29: ELUmaxMy: maximum internal moment My. Overall set, dis- placement in global Y direction [mm] Figure 30: ELUmaxMy: maximum internal moment My. Overall set, dis- placement in global Z direction [mm] XC finite element OSS XC news XC source in GitHub XC doxygen doc XC sphinx doc ana.ortega.ort@gmail.com l.pereztato@gmail.com Page 8
  • 9. Figure 31: ELUmaxMy: maximum internal moment My. Shell elements, internal axial force in local direction 1 [kN] Figure 32: ELUmaxMy: maximum internal moment My. Shell elements, internal axial force in local direction 2 [kN] Figure 33: ELUmaxMy: maximum internal moment My. Shell elements, bending moment around local axis 1 [m.kN] Figure 34: ELUmaxMy: maximum internal moment My. Shell elements, bending moment around local axis 2 [m.kN] Figure 35: ELUmaxMy: maximum internal moment My. Shell elements, internal shear force in local direction 1 [kN] Figure 36: ELUmaxMy: maximum internal moment My. Shell elements, internal shear force in local direction 2 [kN] XC finite element OSS XC news XC source in GitHub XC doxygen doc XC sphinx doc ana.ortega.ort@gmail.com l.pereztato@gmail.com Page 9
  • 10. Figure 37: ELUmaxMy: maximum internal moment My. Inner columns, bending moment around local axis y [m.kN] Figure 38: ELUmaxMy: maximum internal moment My. Inner columns, bending moment around local axis z [m.kN] Figure 39: ELUmaxMy: maximum internal moment My. Inner columns, internal shear force in local direction y [kN] Figure 40: ELUmaxMy: maximum internal moment My. Inner columns, internal shear force in local direction z [kN] Figure 41: ELUmaxMy: maximum internal moment My. Inner columns, internal axial force [kN] Figure 42: ELUmaxMz: maximum internal moment Mz. Overall set, dis- placement in global X direction [mm] XC finite element OSS XC news XC source in GitHub XC doxygen doc XC sphinx doc ana.ortega.ort@gmail.com l.pereztato@gmail.com Page 10
  • 11. Figure 43: ELUmaxMz: maximum internal moment Mz. Overall set, dis- placement in global Y direction [mm] Figure 44: ELUmaxMz: maximum internal moment Mz. Overall set, dis- placement in global Z direction [mm] Figure 45: ELUmaxMz: maximum internal moment Mz. Shell elements, internal axial force in local direction 1 [kN] Figure 46: ELUmaxMz: maximum internal moment Mz. Shell elements, internal axial force in local direction 2 [kN] Figure 47: ELUmaxMz: maximum internal moment Mz. Shell elements, bending moment around local axis 1 [m.kN] Figure 48: ELUmaxMz: maximum internal moment Mz. Shell elements, bending moment around local axis 2 [m.kN] XC finite element OSS XC news XC source in GitHub XC doxygen doc XC sphinx doc ana.ortega.ort@gmail.com l.pereztato@gmail.com Page 11
  • 12. Figure 49: ELUmaxMz: maximum internal moment Mz. Shell elements, internal shear force in local direction 1 [kN] Figure 50: ELUmaxMz: maximum internal moment Mz. Shell elements, internal shear force in local direction 2 [kN] Figure 51: ELUmaxMz: maximum internal moment Mz. Inner columns, bending moment around local axis y [m.kN] Figure 52: ELUmaxMz: maximum internal moment Mz. Inner columns, bending moment around local axis z [m.kN] Figure 53: ELUmaxMz: maximum internal moment Mz. Inner columns, internal shear force in local direction y [kN] Figure 54: ELUmaxMz: maximum internal moment Mz. Inner columns, internal shear force in local direction z [kN] XC finite element OSS XC news XC source in GitHub XC doxygen doc XC sphinx doc ana.ortega.ort@gmail.com l.pereztato@gmail.com Page 12
  • 13. Figure 55: ELUmaxMz: maximum internal moment Mz. Inner columns, internal axial force [kN] Figure 56: ELUmaxVy: maximum internal force Vy. Overall set, displace- ment in global X direction [mm] Figure 57: ELUmaxVy: maximum internal force Vy. Overall set, displace- ment in global Y direction [mm] Figure 58: ELUmaxVy: maximum internal force Vy. Overall set, displace- ment in global Z direction [mm] Figure 59: ELUmaxVy: maximum internal force Vy. Shell elements, in- ternal axial force in local direction 1 [kN] Figure 60: ELUmaxVy: maximum internal force Vy. Shell elements, in- ternal axial force in local direction 2 [kN] XC finite element OSS XC news XC source in GitHub XC doxygen doc XC sphinx doc ana.ortega.ort@gmail.com l.pereztato@gmail.com Page 13
  • 14. Figure 61: ELUmaxVy: maximum internal force Vy. Shell elements, bending moment around local axis 1 [m.kN] Figure 62: ELUmaxVy: maximum internal force Vy. Shell elements, bending moment around local axis 2 [m.kN] Figure 63: ELUmaxVy: maximum internal force Vy. Shell elements, in- ternal shear force in local direction 1 [kN] Figure 64: ELUmaxVy: maximum internal force Vy. Shell elements, in- ternal shear force in local direction 2 [kN] Figure 65: ELUmaxVy: maximum internal force Vy. Inner columns, bending moment around local axis y [m.kN] Figure 66: ELUmaxVy: maximum internal force Vy. Inner columns, bending moment around local axis z [m.kN] XC finite element OSS XC news XC source in GitHub XC doxygen doc XC sphinx doc ana.ortega.ort@gmail.com l.pereztato@gmail.com Page 14
  • 15. Figure 67: ELUmaxVy: maximum internal force Vy. Inner columns, in- ternal shear force in local direction y [kN] Figure 68: ELUmaxVy: maximum internal force Vy. Inner columns, in- ternal shear force in local direction z [kN] Figure 69: ELUmaxVy: maximum internal force Vy. Inner columns, in- ternal axial force [kN] Figure 70: ELUmaxVz: maximum internal force Vz. Overall set, dis- placement in global X direction [mm] Figure 71: ELUmaxVz: maximum internal force Vz. Overall set, dis- placement in global Y direction [mm] Figure 72: ELUmaxVz: maximum internal force Vz. Overall set, dis- placement in global Z direction [mm] XC finite element OSS XC news XC source in GitHub XC doxygen doc XC sphinx doc ana.ortega.ort@gmail.com l.pereztato@gmail.com Page 15
  • 16. Figure 73: ELUmaxVz: maximum internal force Vz. Shell elements, in- ternal axial force in local direction 1 [kN] Figure 74: ELUmaxVz: maximum internal force Vz. Shell elements, in- ternal axial force in local direction 2 [kN] Figure 75: ELUmaxVz: maximum internal force Vz. Shell elements, bending moment around local axis 1 [m.kN] Figure 76: ELUmaxVz: maximum internal force Vz. Shell elements, bending moment around local axis 2 [m.kN] Figure 77: ELUmaxVz: maximum internal force Vz. Shell elements, in- ternal shear force in local direction 1 [kN] Figure 78: ELUmaxVz: maximum internal force Vz. Shell elements, in- ternal shear force in local direction 2 [kN] XC finite element OSS XC news XC source in GitHub XC doxygen doc XC sphinx doc ana.ortega.ort@gmail.com l.pereztato@gmail.com Page 16
  • 17. Figure 79: ELUmaxVz: maximum internal force Vz. Inner columns, bending moment around local axis y [m.kN] Figure 80: ELUmaxVz: maximum internal force Vz. Inner columns, bending moment around local axis z [m.kN] Figure 81: ELUmaxVz: maximum internal force Vz. Inner columns, in- ternal shear force in local direction y [kN] Figure 82: ELUmaxVz: maximum internal force Vz. Inner columns, in- ternal shear force in local direction z [kN] Figure 83: ELUmaxVz: maximum internal force Vz. Inner columns, in- ternal axial force [kN] Figure 84: ELUmaxN: maximum internal force N. Overall set, displace- ment in global X direction [mm] XC finite element OSS XC news XC source in GitHub XC doxygen doc XC sphinx doc ana.ortega.ort@gmail.com l.pereztato@gmail.com Page 17
  • 18. Figure 85: ELUmaxN: maximum internal force N. Overall set, displace- ment in global Y direction [mm] Figure 86: ELUmaxN: maximum internal force N. Overall set, displace- ment in global Z direction [mm] Figure 87: ELUmaxN: maximum internal force N. Shell elements, inter- nal axial force in local direction 1 [kN] Figure 88: ELUmaxN: maximum internal force N. Shell elements, inter- nal axial force in local direction 2 [kN] Figure 89: ELUmaxN: maximum internal force N. Shell elements, bend- ing moment around local axis 1 [m.kN] Figure 90: ELUmaxN: maximum internal force N. Shell elements, bend- ing moment around local axis 2 [m.kN] XC finite element OSS XC news XC source in GitHub XC doxygen doc XC sphinx doc ana.ortega.ort@gmail.com l.pereztato@gmail.com Page 18
  • 19. Figure 91: ELUmaxN: maximum internal force N. Shell elements, inter- nal shear force in local direction 1 [kN] Figure 92: ELUmaxN: maximum internal force N. Shell elements, inter- nal shear force in local direction 2 [kN] Figure 93: ELUmaxN: maximum internal force N. Inner columns, bend- ing moment around local axis y [m.kN] Figure 94: ELUmaxN: maximum internal force N. Inner columns, bend- ing moment around local axis z [m.kN] Figure 95: ELUmaxN: maximum internal force N. Inner columns, inter- nal shear force in local direction y [kN] Figure 96: ELUmaxN: maximum internal force N. Inner columns, inter- nal shear force in local direction z [kN] XC finite element OSS XC news XC source in GitHub XC doxygen doc XC sphinx doc ana.ortega.ort@gmail.com l.pereztato@gmail.com Page 19
  • 20. Figure 97: ELUmaxN: maximum internal force N. Inner columns, inter- nal axial force [kN] Figure 98: ELUminMy: minimum internal moment My. Overall set, dis- placement in global X direction [mm] Figure 99: ELUminMy: minimum internal moment My. Overall set, dis- placement in global Y direction [mm] Figure 100: ELUminMy: minimum internal moment My. Overall set, dis- placement in global Z direction [mm] Figure 101: ELUminMy: minimum internal moment My. Shell elements, internal axial force in local direction 1 [kN] Figure 102: ELUminMy: minimum internal moment My. Shell elements, internal axial force in local direction 2 [kN] XC finite element OSS XC news XC source in GitHub XC doxygen doc XC sphinx doc ana.ortega.ort@gmail.com l.pereztato@gmail.com Page 20
  • 21. Figure 103: ELUminMy: minimum internal moment My. Shell elements, bending moment around local axis 1 [m.kN] Figure 104: ELUminMy: minimum internal moment My. Shell elements, bending moment around local axis 2 [m.kN] Figure 105: ELUminMy: minimum internal moment My. Shell elements, internal shear force in local direction 1 [kN] Figure 106: ELUminMy: minimum internal moment My. Shell elements, internal shear force in local direction 2 [kN] Figure 107: ELUminMy: minimum internal moment My. Inner columns, bending moment around local axis y [m.kN] Figure 108: ELUminMy: minimum internal moment My. Inner columns, bending moment around local axis z [m.kN] XC finite element OSS XC news XC source in GitHub XC doxygen doc XC sphinx doc ana.ortega.ort@gmail.com l.pereztato@gmail.com Page 21
  • 22. Figure 109: ELUminMy: minimum internal moment My. Inner columns, internal shear force in local direction y [kN] Figure 110: ELUminMy: minimum internal moment My. Inner columns, internal shear force in local direction z [kN] Figure 111: ELUminMy: minimum internal moment My. Inner columns, internal axial force [kN] Figure 112: ELUminMz: minimum internal moment Mz. Overall set, dis- placement in global X direction [mm] Figure 113: ELUminMz: minimum internal moment Mz. Overall set, dis- placement in global Y direction [mm] Figure 114: ELUminMz: minimum internal moment Mz. Overall set, dis- placement in global Z direction [mm] XC finite element OSS XC news XC source in GitHub XC doxygen doc XC sphinx doc ana.ortega.ort@gmail.com l.pereztato@gmail.com Page 22
  • 23. Figure 115: ELUminMz: minimum internal moment Mz. Shell elements, internal axial force in local direction 1 [kN] Figure 116: ELUminMz: minimum internal moment Mz. Shell elements, internal axial force in local direction 2 [kN] Figure 117: ELUminMz: minimum internal moment Mz. Shell elements, bending moment around local axis 1 [m.kN] Figure 118: ELUminMz: minimum internal moment Mz. Shell elements, bending moment around local axis 2 [m.kN] Figure 119: ELUminMz: minimum internal moment Mz. Shell elements, internal shear force in local direction 1 [kN] Figure 120: ELUminMz: minimum internal moment Mz. Shell elements, internal shear force in local direction 2 [kN] XC finite element OSS XC news XC source in GitHub XC doxygen doc XC sphinx doc ana.ortega.ort@gmail.com l.pereztato@gmail.com Page 23
  • 24. Figure 121: ELUminMz: minimum internal moment Mz. Inner columns, bending moment around local axis y [m.kN] Figure 122: ELUminMz: minimum internal moment Mz. Inner columns, bending moment around local axis z [m.kN] Figure 123: ELUminMz: minimum internal moment Mz. Inner columns, internal shear force in local direction y [kN] Figure 124: ELUminMz: minimum internal moment Mz. Inner columns, internal shear force in local direction z [kN] Figure 125: ELUminMz: minimum internal moment Mz. Inner columns, internal axial force [kN] Figure 126: ELUminVy: minimum internal force Vy. Overall set, dis- placement in global X direction [mm] XC finite element OSS XC news XC source in GitHub XC doxygen doc XC sphinx doc ana.ortega.ort@gmail.com l.pereztato@gmail.com Page 24
  • 25. Figure 127: ELUminVy: minimum internal force Vy. Overall set, dis- placement in global Y direction [mm] Figure 128: ELUminVy: minimum internal force Vy. Overall set, dis- placement in global Z direction [mm] Figure 129: ELUminVy: minimum internal force Vy. Shell elements, in- ternal axial force in local direction 1 [kN] Figure 130: ELUminVy: minimum internal force Vy. Shell elements, in- ternal axial force in local direction 2 [kN] Figure 131: ELUminVy: minimum internal force Vy. Shell elements, bending moment around local axis 1 [m.kN] Figure 132: ELUminVy: minimum internal force Vy. Shell elements, bending moment around local axis 2 [m.kN] XC finite element OSS XC news XC source in GitHub XC doxygen doc XC sphinx doc ana.ortega.ort@gmail.com l.pereztato@gmail.com Page 25
  • 26. Figure 133: ELUminVy: minimum internal force Vy. Shell elements, in- ternal shear force in local direction 1 [kN] Figure 134: ELUminVy: minimum internal force Vy. Shell elements, in- ternal shear force in local direction 2 [kN] Figure 135: ELUminVy: minimum internal force Vy. Inner columns, bending moment around local axis y [m.kN] Figure 136: ELUminVy: minimum internal force Vy. Inner columns, bending moment around local axis z [m.kN] Figure 137: ELUminVy: minimum internal force Vy. Inner columns, in- ternal shear force in local direction y [kN] Figure 138: ELUminVy: minimum internal force Vy. Inner columns, in- ternal shear force in local direction z [kN] XC finite element OSS XC news XC source in GitHub XC doxygen doc XC sphinx doc ana.ortega.ort@gmail.com l.pereztato@gmail.com Page 26
  • 27. Figure 139: ELUminVy: minimum internal force Vy. Inner columns, in- ternal axial force [kN] Figure 140: ELUminVz: minimum internal force Vz. Overall set, dis- placement in global X direction [mm] Figure 141: ELUminVz: minimum internal force Vz. Overall set, dis- placement in global Y direction [mm] Figure 142: ELUminVz: minimum internal force Vz. Overall set, dis- placement in global Z direction [mm] Figure 143: ELUminVz: minimum internal force Vz. Shell elements, in- ternal axial force in local direction 1 [kN] Figure 144: ELUminVz: minimum internal force Vz. Shell elements, in- ternal axial force in local direction 2 [kN] XC finite element OSS XC news XC source in GitHub XC doxygen doc XC sphinx doc ana.ortega.ort@gmail.com l.pereztato@gmail.com Page 27
  • 28. Figure 145: ELUminVz: minimum internal force Vz. Shell elements, bending moment around local axis 1 [m.kN] Figure 146: ELUminVz: minimum internal force Vz. Shell elements, bending moment around local axis 2 [m.kN] Figure 147: ELUminVz: minimum internal force Vz. Shell elements, in- ternal shear force in local direction 1 [kN] Figure 148: ELUminVz: minimum internal force Vz. Shell elements, in- ternal shear force in local direction 2 [kN] Figure 149: ELUminVz: minimum internal force Vz. Inner columns, bending moment around local axis y [m.kN] Figure 150: ELUminVz: minimum internal force Vz. Inner columns, bending moment around local axis z [m.kN] XC finite element OSS XC news XC source in GitHub XC doxygen doc XC sphinx doc ana.ortega.ort@gmail.com l.pereztato@gmail.com Page 28
  • 29. Figure 151: ELUminVz: minimum internal force Vz. Inner columns, in- ternal shear force in local direction y [kN] Figure 152: ELUminVz: minimum internal force Vz. Inner columns, in- ternal shear force in local direction z [kN] Figure 153: ELUminVz: minimum internal force Vz. Inner columns, in- ternal axial force [kN] Figure 154: ELUminN: minimum internal force N. Overall set, displace- ment in global X direction [mm] Figure 155: ELUminN: minimum internal force N. Overall set, displace- ment in global Y direction [mm] Figure 156: ELUminN: minimum internal force N. Overall set, displace- ment in global Z direction [mm] XC finite element OSS XC news XC source in GitHub XC doxygen doc XC sphinx doc ana.ortega.ort@gmail.com l.pereztato@gmail.com Page 29
  • 30. Figure 157: ELUminN: minimum internal force N. Shell elements, inter- nal axial force in local direction 1 [kN] Figure 158: ELUminN: minimum internal force N. Shell elements, inter- nal axial force in local direction 2 [kN] Figure 159: ELUminN: minimum internal force N. Shell elements, bend- ing moment around local axis 1 [m.kN] Figure 160: ELUminN: minimum internal force N. Shell elements, bend- ing moment around local axis 2 [m.kN] Figure 161: ELUminN: minimum internal force N. Shell elements, inter- nal shear force in local direction 1 [kN] Figure 162: ELUminN: minimum internal force N. Shell elements, inter- nal shear force in local direction 2 [kN] XC finite element OSS XC news XC source in GitHub XC doxygen doc XC sphinx doc ana.ortega.ort@gmail.com l.pereztato@gmail.com Page 30
  • 31. REFERENCES REFERENCES Figure 163: ELUminN: minimum internal force N. Inner columns, bend- ing moment around local axis y [m.kN] Figure 164: ELUminN: minimum internal force N. Inner columns, bend- ing moment around local axis z [m.kN] Figure 165: ELUminN: minimum internal force N. Inner columns, inter- nal shear force in local direction z [kN] Figure 166: ELUminN: minimum internal force N. Inner columns, inter- nal axial force [kN] References [1] M.Just M.Curbach J.Walraven S.Gmainer J.Arrieta R.Frank C.Morin F.Robert SF.Biasioli, G.Mancini. Eurocode 2: background & applications. design of concrete buildings. worked examples. Technical report, European Comis- sion, 2014. XC finite element OSS XC news XC source in GitHub XC doxygen doc XC sphinx doc ana.ortega.ort@gmail.com l.pereztato@gmail.com Page 31