SlideShare a Scribd company logo
Perbandingan
SPSS - Smart PLS SEM - Manual
7 Juli 2023
https://www.youtube.com/watch
?v=WG5HdBuvBEs&t=11s
Prof. Dr. Dr. Aminullah Assagaf, SE., MS., MM., M.Ak
Email: assagaf29@yahoo.com
Hp: 08113543409
https://www.slideshare.net/AminullahAssagaf1/aminullah-
assagafspsspls-semmanual07072023pptx
Perbandingan : SPSS, PLS, Manual (Link
Slideshare)
https://www.slideshare.net/AminullahAssagaf1/aminullah-assagafpls-sem-spss4-juli-2023pptx
Link tutorial PLS
https://www.youtube.com/watch?v=WG5HdBuvBEs&t=11s
https://www.youtube.com/watch?v=teyrLfkCyOo
Imput data, dan save melalui excel style
CSV(delimited atau MSDOS), atau Notepad
• Dalam menggunakan data excel: save dengan style CSV (Delimited
atau MSDOS)
• Data dlm excel hanya satu baris nama vabel
• Data diletakkan mulai pojok kiri atas atau A1, agar data tsb bisa
dibaca oleh PLS
• Bila menggunakan Notepate: blok data di excel, buka notepad melalui
search, pilih open, save as, letakkan pd salah satu folder misalnya di
Download.
• Buka PLS: mulai dgn new project, double clik cari file excel atau file
notepad…dst
Pers Regresi (Unstandardized)
n Y X y=Y-Ybar x=X-Xbar y^2 x^2 xy x^2 A=y/SDY B=x/SDX
1 70 30 9.7 -3.8 94 14 -36.9 14.4 0.8 -0.5
2 78 32 17.7 -1.8 313 3 -31.9 3.2 1.5 -0.2
3 56 45 -4.3 11.2 18 125 -48.2 125.4 -0.4 1.3
4 45 24 -15.3 -9.8 234 96 149.9 96.0 -1.3 -1.2
5 68 46 7.7 12.2 59 149 93.9 148.8 0.7 1.5
6 67 32 6.7 -1.8 45 3 -12.1 3.2 0.6 -0.2
7 54 33 -6.3 -0.8 40 1 5.0 0.6 -0.5 -0.1
8 50 35 -10.3 1.2 106 1 -12.4 1.4 -0.9 0.1
9 45 20 -15.3 -13.8 234 190 211.1 190.4 -1.3 -1.6
10 70 41 9.7 7.2 94 52 69.8 51.8 0.8 0.9
Total 603 338 0.0 0.0 1238 636 388.6 635.6 0.0 0.0
Ybar 60.3
Xbar 33.8 b= 0.611
VarY y^2/(n-1)= 137.57 SDY 11.73 a= 39.635
VarX x^2/(n-1)= 70.62 SDX 8.40
Pers Regressi (Standardized)
n Y X y=Y-Ybar x=X-Xbar xy x^2
1 0.8 -0.5 0.8 -0.5 -0.4 0.2
2 1.5 -0.2 1.5 -0.2 -0.3 0.0
3 -0.4 1.3 -0.4 1.3 -0.5 1.8
4 -1.3 -1.2 -1.3 -1.2 1.5 1.4
5 0.7 1.5 0.7 1.5 1.0 2.1
6 0.6 -0.2 0.6 -0.2 -0.1 0.0
7 -0.5 -0.1 -0.5 -0.1 0.1 0.0
8 -0.9 0.1 -0.9 0.1 -0.1 0.0
9 -1.3 -1.6 -1.3 -1.6 2.1 2.7
10 0.8 0.9 0.8 0.9 0.7 0.7
Total 0.0 0.0 - - 3.9 9.0
Ybar 0.0 b= 0.438
Xbar 0.0 a= 0.000
Pers Regresi (SPSS & PLS)
Standardized
Coefficients
B Std. Error Beta
(Constant) 39.635 15.405 2.573 0.033
X 0.611 0.444 0.438 1.378 0.205
1
a. Dependent Variable: Y
Coefficientsa
Model
Unstandardized Coefficients
t Sig.
Prediksi periode: 11 - 13
Pers Reg =
n Y X Y X
8 -0.9 0.1 50 35
9 -1.3 -1.6 45 20
10 0.8 0.9 70 41
11 0.307 0.7 61 35
12 0.350 0.8 64 40
13 0.394 0.9 67 45
Y = 0 + 0.438 X Y = 39.6635 + 0.611 X
Prediksi Periode: 11 - 13
Pers Reg =
n Y X Y X
8 -0.9 0.1 50 35
9 -1.3 -1.6 45 20
10 0.8 0.9 70 41
11 0.307 0.7 61 35
12 0.350 0.8 64 40
13 0.394 0.9 67 45
11 64 kali SDY 11.7
12 64 Plus Ybar 60.3
13 65
Residual (e) e= Ŷ - Y e= Ŷ - Y
8 62 0.1 61 35
9 41 -1.6 52 20
10 70 0.9 65 41
Y = 0 + 0.438 X Y = 39.6635 + 0.611 X
Y X1 X2
6 30 70
7 32 78
5 45 56
5 24 45
6 46 68
7 32 67
6 33 54
8 35 50
6 20 45
8 41 70
Data Penelitian
Y = Kinerja
X1= Incentive
X2= Lingkungan
Standardized
Coefficients
B Std. Error Beta
(Constant) 4.363 2.101 2.076 0.077
X1 -0.003 0.050 -0.025 -0.064 0.951
X2 0.036 0.036 0.388 0.997 0.352
1
a. Dependent Variable: Y
Coefficientsa
Model
Unstandardized Coefficients
t Sig.
SPSS
PLS
Manual (Beta-Unstandardized Coefficients)
n Y X1 X2 X1Y X2Y X1X2 X1^2 X2^2
1 6 30 70 180 420 2100 900 4900
2 7 32 78 224 546 2496 1024 6084
3 5 45 56 225 280 2520 2025 3136
4 5 24 45 120 225 1080 576 2025
5 6 46 68 276 408 3128 2116 4624
6 7 32 67 224 469 2144 1024 4489
7 6 33 54 198 324 1782 1089 2916
8 8 35 50 280 400 1750 1225 2500
9 6 20 45 120 270 900 400 2025
10 8 41 70 328 560 2870 1681 4900
Jumlah 64 338 603 2175 3902 20770 12060 37599
Y X1 X2 X1Y X2Y X1X2 X1^2 X2^2
64 338 603 2,175 3,902 20,770 12,060 37,599 n
Ybar X1bar X2bar n 1
6.4 33.8 60.3 10 2
x1y = X1Y - (X1. Y)/n 2,175 338 64 12 A 3
x2y = X2Y - (X2.Y)/n 3,902 603 64 42.80 B 4
x1x2 =X1X2 -(X1. X2)/n 20,770 338 603 389 C 5
x1^2 = X1^2 - (X1)^2/n 12,060 338 636 D 6
X2^2 = X2^2 - (X2)^2/n 37,599 603 1,238 E 7
b1 = (EA - CB)/(DE- CC) 14,610 16,632 786,936 151,010 (0.003) 8
b2 = (DB - CA)/(DE - CC) 27,204 4,585 786,936 151,010 0.036 9
b0 = Ybar - (b1.Xbar) - (b2. X2bar) 6.4 0.11
- 2.14 4.363 10
Persamaan Reg : Jumlah
Y =4.363 - 0.003 X1 + 0.03 X2
Manual ( Beta – Standardized Coefficients)
n Y X1 X2 y x1 x2 y^2 x1^2 x2^2 Y=y/SDY X1=x1/SDX1 X2=x2/SDX2 X1Y X2Y X1X2 X1^2 X2^2
1 6 30 70 -0.4 -3.8 9.7 0.16 14.44 94.09 0.37
- 0.45
- 0.83 0.168 -0.308 -0.374 0.204 0.684
2 7 32 78 0.6 -1.8 17.7 0.36 3.24 313.29 0.56 0.21
- 1.51 -0.120 0.842 -0.323 0.046 2.277
3 5 45 56 -1.4 11.2 -4.3 1.96 125.4 18.49 1.30
- 1.33 0.37
- -1.736 0.477 -0.489 1.776 0.134
4 5 24 45 -1.4 -9.8 -15.3 1.96 96.04 234.09 1.30
- 1.17
- 1.30
- 1.519 1.699 1.521 1.360 1.702
5 6 46 68 -0.4 12.2 7.7 0.16 148.8 59.29 0.37
- 1.45 0.66 -0.540 -0.244 0.953 2.108 0.431
6 7 32 67 0.6 -1.8 6.7 0.36 3.24 44.89 0.56 0.21
- 0.57 -0.120 0.319 -0.122 0.046 0.326
7 6 33 54 -0.4 -0.8 -6.3 0.16 0.64 39.69 0.37
- 0.10
- 0.54
- 0.035 0.200 0.051 0.009 0.289
8 8 35 50 1.6 1.2 -10.3 2.56 1.44 106.09 1.49 0.14 0.88
- 0.213 -1.307 -0.125 0.020 0.771
9 6 20 45 -0.4 -13.8 -15.3 0.16 190.4 234.09 0.37
- 1.64
- 1.30
- 0.611 0.485 2.142 2.697 1.702
10 8 41 70 1.6 7.2 9.7 2.56 51.84 94.09 1.49 0.86 0.83 1.275 1.231 0.709 0.734 0.684
Jumlah 64 338 603 0
- 0 0 10.4 635.6 1238.10 0.0 0.0 0.0 1.306 3.395 3.943 9.000 9.000
Rt 6.4 33.8 60.3 1.3
Var 1.16 70.62 137.57
SD 1.07 8.40 11.73
Y X1 X2 X1Y X2Y X1X2 X1^2 X2^2
(0) 0 0 1.306 3.395 3.943 9.000 9.000
Ybar X1bar X2bar n
0.0
- 0.0 0.0 10
x1y = X1Y - (X1. Y)/n 1.306 0.000 0.000
- 1.306 A
x2y = X2Y - (X2.Y)/n 3.395 0.000 0.000
- 3.395 B
x1x2 =X1X2 -(X1. X2)/n 3.943 0.000 0.000 3.943 C
x1^2 = X1^2 - (X1)^2/n 9.000 0.000 9.000 D
X2^2 = X2^2 - (X2)^2/n 9.000 0.000 9.000 E
b1 = (EA - CB)/(DE- CC) 11.756 13.383 81.000 15.544 (0.025)
b2 = (DB - CA)/(DE - CC) 30.552 5.150 81.000 15.544 0.388
b0 = Ybar - (b1.Xbar) - (b2. X2bar) 0.000
- 0.000
- 0.000 (0.000) 1
Persamaan Reg : Jum
Y = 0 - 0.025 X1 + 0.388 X2 Rt
Va
Sum of
Squares df
Mean
Square F Sig.
Regression 1.485 2 0.742 0.583 .583
b
Residual 8.915 7 1.274
Total 10.400 9
A JKT=y^2 10.400
B df - (n-1) 9
Variance C=A/B KTT 1.16
Standar Dv C^(0.5) 1.07
ANOVA
a
Model
1
a. Dependent Variable: Y
b. Predictors: (Constant), X2, X1
Istilah
• Variabel Laten merupakan variabel yang tidak dapat diukur secara
langsung kecuali dengan satu atau lebih variabel manifest
(indicator). Variabel laten (tidak dapat diukur secara langsung, msi:
tingkat sehatan) dapat berfungsi sebagai variabel eksogen
(independent) maupun endogen (dependen).
Jenis variabel
•Berdasarkan perannya dalam suatu hubungan
• 1. Variabel Independen/Prediktor/Bebas
• 2. Variabel Dependent/Respon/Terikat
• 3. Variabel Eksogen
• 4. Variabel Endogen
• 5. Variabel Intervening/Mediasi
• 6. Variabel Moderating
•Berdasarkan cara pengukurannya
• 1. Variabel Laten (variabel kosntrak)
• 2. Variabel Indikator / Manifest
Berdasarkan perannya dalam suatu hubungan
1. Variabel Independen/Prediktor/Bebas
Merupakan variabel yang mempengaruhi variabel lain dalam suatu hubungan. Variabel
ini dapat dijumpai di model regresi linier, regresi logistik, model probit/gompit, analisis
data panel, model GLM dan lainnya.
2. Variabel Dependent/Respon/Terikat
Merupakan variabel yang dipengaruhi oleh variabel lain dalam suatu model hubungan.
Variabel ini dapat dijumpai di model regresi linier, regresi logistik, model probit/gompit,
analisis data panel, model GLM dan lainnya. Seringkali, di bidang Bisnis/Ekonomi
cenderung menggunakan nama variabel dependent, Sedangkan di bidang Ilmu
Kehidupan (Biologi dan Pertanian) cenderung akan menggunakan nama variabel Respon.
3. Variabel Eksogen
Pengertian variabel ini sama dengan variabel independent, namun tidak dikatakan
variabel independent karena dalam hubungannya ada yang bertindak sebagai variabel
independent sekaligus variabel dependent. Jenis variabel ini dapat dijumpai dalam
analisis Jalur (Path Analysis).
4. Variabel Endogen
Pengertian variabel ini sama dengan variabel dependent, namun tidak dikatakan
variabel dependent karena dalam hubungannya ada yang bertindak sebagai
variabel independent sekaligus variabel dependent. Jenis variabel ini dapat
dijumpai dalam analisis Jalur (Path Analysis).
5. Variabel Intervening/Mediasi
Variabel ini seolah-olah bertindak sebagai variabel independent dan dependent
variabel sekaligus dalam suatu set hubungan. Variabel ini dapat dijumpai dalam
analisis jalur (Path Analysis)
6. Variabel Moderating
Merupakan variabel yang dapat melemahkan atau memperkuat hubungan
antara variabel satu dengan variabel lainnya.
Berdasarkan cara pengukurannya
1. Variabel Laten (variabel kosntrak)
Merupakan variabel yang tidak bisa diukur secara langsung. Oleh karena itu, kita perlu
sejumlah variabel lain untuk menyatakannya. Contoh variabel laten adalah Tingkat
Kesehatan, Loyalitas, Kebijaksanaan, dan Kepuasan. Untuk mengukur variabel ini kita
perlu kombinasi variabel lain (a.k.a indikator).
Contohnya, variabel Tingkat Kesehatan bisa diukur menggunakan kombinasi beberapa
indikator seperti tekanan darah, kadar asam urat, kadar glukosa dalam darah, dan
kolesterol.
2. Variabel Indikator / Manifest
Merupakan variabel yang bisa diukur secara langsung sehingga dia seringkali menjadi
penyusun variabel laten. Contoh variabel Manifest adalah tinggi badan, berat badan,
dan suhu.
Standardized Coefficients
B Std. Error Beta
(Constant) 2.705 0.905 2.988 0.020
X1 0.323 0.237 0.437 1.360 0.216
X2 -0.045 0.055 -0.264 -0.820 0.439
a. Dependent Variable: Y
Coefficientsa
Model
Unstandardized Coefficients
t Sig.
1
Standardized Coefficients
B Std. Error Beta
(Constant) 2.364 0.787 3.002 0.017
X1 0.364 0.227 0.492 1.600 0.148
Standardized Coefficients
B Std. Error Beta
(Constant) 3.873 0.301 12.870 0.000
X2 -0.061 0.056 -0.355 -1.075 0.314
Sig.
1
a. Dependent Variable: Y
Coefficients
a
Model
Unstandardized Coefficients
t Sig.
1
a. Dependent Variable: Y
Coefficientsa
Model
Unstandardized Coefficients
t
Standardized Coefficients
B Std. Error Beta
(Constant) 8.264 2.676 3.088 0.018
X1 0.304 0.239 0.410 1.270 0.245
X2 -0.047 0.053 -0.289 -0.896 0.400
Standardized Coefficients
B Std. Error Beta
(Constant) 7.231 2.385 3.032 0.016
X1 0.343 0.232 0.463 1.478 0.178
Standardized Coefficients
B Std. Error Beta
(Constant) 11.501 0.849 13.553 0.000
X2 -0.059 0.054 -0.364 -1.107 0.301
1
a. Dependent Variable: Y
1
a. Dependent Variable: Y
Coefficients
a
Model
Unstandardized Coefficients
t Sig.
1
a. Dependent Variable: Y
Coefficientsa
Model
Unstandardized Coefficients
t Sig.
Coefficientsa
Model
Unstandardized Coefficients
t Sig.
Standardized Coefficients
B Std. Error Beta
(Constant) 8.264 2.676 3.088 0.018
X1 0.304 0.239 0.410 1.270 0.245
X2 -0.047 0.053 -0.289 -0.896 0.400
1
a. Dependent Variable: Y
Coefficientsa
Model
Unstandardized Coefficients
t Sig.
R R Square Adjusted R Square Std. Error of the Estimate
1 .543a
0.295 0.094 1.34995
Model Summary
Model
a. Predictors: (Constant), X2, X1
Standardiz
ed
Coefficient
s
B Std. Error Beta
(Constant) 4.363 2.101 2.076 0.077
X1 -0.003 0.050 -0.025 -0.064 0.951
X2 0.036 0.036 0.388 0.997 0.352
Coefficientsa
Model
Unstandardized
Coefficients
t Sig.
1
a. Dependent Variable: Y
R R Square
Adjusted R
Square
Std. Error
of the
Estimate
1 .378
a
0.143 -0.102 1.12854
Model Summary
Model
a. Predictors: (Constant), X2, X1
Standardiz
ed
Coefficient
s
B Std. Error Beta
(Constant) 5.772 1.554 3.715 0.006
X1 0.019 0.045 0.145 0.415 0.689
Standardiz
ed
Coefficient
s
B Std. Error Beta
(Constant) 4.315 1.840 2.345 0.047
X2 0.035 0.030 0.377 1.152 0.283
Standardiz
ed
Coefficient
s
B Std. Error Beta
(Constant) 4.363 2.101 2.076 0.077
X1 -0.003 0.050 -0.025 -0.064 0.951
X2 0.036 0.036 0.388 0.997 0.352
Coefficients
a
Model
Unstandardized
Coefficients
t Sig.
1
a. Dependent Variable: Y
1
a. Dependent Variable: Y
1
a. Dependent Variable: Y
Coefficients
a
Model
Unstandardized
Coefficients
t Sig.
Coefficientsa
Model
Unstandardized
Coefficients
t Sig.
b = xy/x^2 = 0.611
a = Ybar - b(Xbar) = 39.63
MANUAL
Standardize
d
Coefficients
B Std. Error Beta
(Constant) 39.635 15.405 2.573 0.033
X1 0.611 0.444 0.438 1.378 0.205
1
a. Dependent Variable: YX2
Coefficientsa
Model
Unstandardized
Coefficients
t Sig.
b = xy/x^2 = 0.438
a = Ybar - b(Xbar) = 0.00
Standardized
Unstandardized

More Related Content

Similar to Aminullah Assagaf_SPSS_PLS SEM_Manual_COMPARE.pptx

Aminullah Assagaf_PERBANDINGAN SPSS, PLS SEM, MANUAL_15 Juli 2023.pdf
Aminullah Assagaf_PERBANDINGAN SPSS, PLS SEM, MANUAL_15 Juli 2023.pdfAminullah Assagaf_PERBANDINGAN SPSS, PLS SEM, MANUAL_15 Juli 2023.pdf
Aminullah Assagaf_PERBANDINGAN SPSS, PLS SEM, MANUAL_15 Juli 2023.pdf
Aminullah Assagaf
 
Aminullah Assagaf_PLS SEM & SPSS_.pptx
Aminullah Assagaf_PLS SEM & SPSS_.pptxAminullah Assagaf_PLS SEM & SPSS_.pptx
Aminullah Assagaf_PLS SEM & SPSS_.pptx
Aminullah Assagaf
 
3 path analysis
3 path analysis3 path analysis
3 path analysis
Muhammad Afif
 
Statistika 2014 Tendensi Sentral
Statistika 2014 Tendensi SentralStatistika 2014 Tendensi Sentral
Statistika 2014 Tendensi Sentral
Tri Asih Krisna
 
Vle 0987.pdf
Vle 0987.pdfVle 0987.pdf
Vle 0987.pdf
IdhaWahidah2
 
forecasting statistik for beginner using excel
forecasting statistik for beginner using excelforecasting statistik for beginner using excel
forecasting statistik for beginner using excel
FaishalFadli
 
Analisis Regresi #2
Analisis Regresi #2Analisis Regresi #2
Analisis Regresi #2
Adhitya Akbar
 
Pengantar Ekonometri
Pengantar EkonometriPengantar Ekonometri
Pengantar Ekonometri
Adhitya Akbar
 
Uji normalitas dan homogenitas non parametrik (Estrela Muaja - UNIMA)
Uji normalitas dan homogenitas non parametrik (Estrela Muaja - UNIMA)Uji normalitas dan homogenitas non parametrik (Estrela Muaja - UNIMA)
Uji normalitas dan homogenitas non parametrik (Estrela Muaja - UNIMA)
Estrela Bellia Muaja
 
Model Distribusi lag dan distribusi autoregressive
Model Distribusi lag dan distribusi autoregressiveModel Distribusi lag dan distribusi autoregressive
Model Distribusi lag dan distribusi autoregressive
Agung Handoko
 
39 model analisis regeresi jalur (path analysis)
39 model analisis regeresi jalur (path analysis)39 model analisis regeresi jalur (path analysis)
39 model analisis regeresi jalur (path analysis)
Aminullah Assagaf
 
39 model analisis regeresi jalur (path analysis)
39 model analisis regeresi jalur (path analysis)39 model analisis regeresi jalur (path analysis)
39 model analisis regeresi jalur (path analysis)
Aminullah Assagaf
 
39 model analisis regeresi jalur (path analysis)
39 model analisis regeresi jalur (path analysis)39 model analisis regeresi jalur (path analysis)
39 model analisis regeresi jalur (path analysis)
AminullahAssagaf3
 
Mei puspita-wati-1101125049 math4b-regresi-linear-sederhana-dan-berganda
Mei puspita-wati-1101125049 math4b-regresi-linear-sederhana-dan-bergandaMei puspita-wati-1101125049 math4b-regresi-linear-sederhana-dan-berganda
Mei puspita-wati-1101125049 math4b-regresi-linear-sederhana-dan-bergandaSyahar Legenda Markus Lionel
 
Mei puspita-wati-1101125049 math4b-regresi-linear-sederhana-dan-berganda
Mei puspita-wati-1101125049 math4b-regresi-linear-sederhana-dan-bergandaMei puspita-wati-1101125049 math4b-regresi-linear-sederhana-dan-berganda
Mei puspita-wati-1101125049 math4b-regresi-linear-sederhana-dan-berganda
Rizkisetiawan13
 

Similar to Aminullah Assagaf_SPSS_PLS SEM_Manual_COMPARE.pptx (20)

Aminullah Assagaf_PERBANDINGAN SPSS, PLS SEM, MANUAL_15 Juli 2023.pdf
Aminullah Assagaf_PERBANDINGAN SPSS, PLS SEM, MANUAL_15 Juli 2023.pdfAminullah Assagaf_PERBANDINGAN SPSS, PLS SEM, MANUAL_15 Juli 2023.pdf
Aminullah Assagaf_PERBANDINGAN SPSS, PLS SEM, MANUAL_15 Juli 2023.pdf
 
Aminullah Assagaf_PLS SEM & SPSS_.pptx
Aminullah Assagaf_PLS SEM & SPSS_.pptxAminullah Assagaf_PLS SEM & SPSS_.pptx
Aminullah Assagaf_PLS SEM & SPSS_.pptx
 
3 path analysis
3 path analysis3 path analysis
3 path analysis
 
Makalah numerik
Makalah numerikMakalah numerik
Makalah numerik
 
Statistika 2014 Tendensi Sentral
Statistika 2014 Tendensi SentralStatistika 2014 Tendensi Sentral
Statistika 2014 Tendensi Sentral
 
Uji normalitas
Uji normalitasUji normalitas
Uji normalitas
 
Uji normalitas
Uji normalitasUji normalitas
Uji normalitas
 
Vle 0987.pdf
Vle 0987.pdfVle 0987.pdf
Vle 0987.pdf
 
forecasting statistik for beginner using excel
forecasting statistik for beginner using excelforecasting statistik for beginner using excel
forecasting statistik for beginner using excel
 
Analisis Regresi #2
Analisis Regresi #2Analisis Regresi #2
Analisis Regresi #2
 
Pengantar Ekonometri
Pengantar EkonometriPengantar Ekonometri
Pengantar Ekonometri
 
Uji normalitas dan homogenitas non parametrik (Estrela Muaja - UNIMA)
Uji normalitas dan homogenitas non parametrik (Estrela Muaja - UNIMA)Uji normalitas dan homogenitas non parametrik (Estrela Muaja - UNIMA)
Uji normalitas dan homogenitas non parametrik (Estrela Muaja - UNIMA)
 
Model Distribusi lag dan distribusi autoregressive
Model Distribusi lag dan distribusi autoregressiveModel Distribusi lag dan distribusi autoregressive
Model Distribusi lag dan distribusi autoregressive
 
39 model analisis regeresi jalur (path analysis)
39 model analisis regeresi jalur (path analysis)39 model analisis regeresi jalur (path analysis)
39 model analisis regeresi jalur (path analysis)
 
39 model analisis regeresi jalur (path analysis)
39 model analisis regeresi jalur (path analysis)39 model analisis regeresi jalur (path analysis)
39 model analisis regeresi jalur (path analysis)
 
39 model analisis regeresi jalur (path analysis)
39 model analisis regeresi jalur (path analysis)39 model analisis regeresi jalur (path analysis)
39 model analisis regeresi jalur (path analysis)
 
6. korelasi dan regresi
6. korelasi dan regresi6. korelasi dan regresi
6. korelasi dan regresi
 
6. korelasi dan regresi
6. korelasi dan regresi6. korelasi dan regresi
6. korelasi dan regresi
 
Mei puspita-wati-1101125049 math4b-regresi-linear-sederhana-dan-berganda
Mei puspita-wati-1101125049 math4b-regresi-linear-sederhana-dan-bergandaMei puspita-wati-1101125049 math4b-regresi-linear-sederhana-dan-berganda
Mei puspita-wati-1101125049 math4b-regresi-linear-sederhana-dan-berganda
 
Mei puspita-wati-1101125049 math4b-regresi-linear-sederhana-dan-berganda
Mei puspita-wati-1101125049 math4b-regresi-linear-sederhana-dan-bergandaMei puspita-wati-1101125049 math4b-regresi-linear-sederhana-dan-berganda
Mei puspita-wati-1101125049 math4b-regresi-linear-sederhana-dan-berganda
 

More from Aminullah Assagaf

Aminullah Assagaf_Regresi Lengkap 22_11 April 2024.pdf
Aminullah Assagaf_Regresi Lengkap 22_11 April 2024.pdfAminullah Assagaf_Regresi Lengkap 22_11 April 2024.pdf
Aminullah Assagaf_Regresi Lengkap 22_11 April 2024.pdf
Aminullah Assagaf
 
Aminullah Assagaf_Regresi Lengkap 22_11 April 2024.pptx
Aminullah Assagaf_Regresi Lengkap 22_11 April 2024.pptxAminullah Assagaf_Regresi Lengkap 22_11 April 2024.pptx
Aminullah Assagaf_Regresi Lengkap 22_11 April 2024.pptx
Aminullah Assagaf
 
Aminullah Assagaf_Regresi Lengkap 22_11 April 2024.pdf
Aminullah Assagaf_Regresi Lengkap 22_11 April 2024.pdfAminullah Assagaf_Regresi Lengkap 22_11 April 2024.pdf
Aminullah Assagaf_Regresi Lengkap 22_11 April 2024.pdf
Aminullah Assagaf
 
Aminullah Assagaf_Regresi Lengkap 21_11 April 2024.pdf
Aminullah Assagaf_Regresi Lengkap 21_11 April 2024.pdfAminullah Assagaf_Regresi Lengkap 21_11 April 2024.pdf
Aminullah Assagaf_Regresi Lengkap 21_11 April 2024.pdf
Aminullah Assagaf
 
Aminullah Assagaf_Regresi Lengkap 21_11 April 2024.pptx
Aminullah Assagaf_Regresi Lengkap 21_11 April 2024.pptxAminullah Assagaf_Regresi Lengkap 21_11 April 2024.pptx
Aminullah Assagaf_Regresi Lengkap 21_11 April 2024.pptx
Aminullah Assagaf
 
Aminullah Assagaf_Regresi Lengkap 20_10 April 2024_Inc. Data panel & Perbandi...
Aminullah Assagaf_Regresi Lengkap 20_10 April 2024_Inc. Data panel & Perbandi...Aminullah Assagaf_Regresi Lengkap 20_10 April 2024_Inc. Data panel & Perbandi...
Aminullah Assagaf_Regresi Lengkap 20_10 April 2024_Inc. Data panel & Perbandi...
Aminullah Assagaf
 
Aminullah Assagaf_Regresi Lengkap 19_8 Nov 2023_Inc. Data panel & Perbandinga...
Aminullah Assagaf_Regresi Lengkap 19_8 Nov 2023_Inc. Data panel & Perbandinga...Aminullah Assagaf_Regresi Lengkap 19_8 Nov 2023_Inc. Data panel & Perbandinga...
Aminullah Assagaf_Regresi Lengkap 19_8 Nov 2023_Inc. Data panel & Perbandinga...
Aminullah Assagaf
 
Aminullah Assagaf_Regresi Lengkap 19_8 Nov 2023_Inc. Data panel & Perbandinga...
Aminullah Assagaf_Regresi Lengkap 19_8 Nov 2023_Inc. Data panel & Perbandinga...Aminullah Assagaf_Regresi Lengkap 19_8 Nov 2023_Inc. Data panel & Perbandinga...
Aminullah Assagaf_Regresi Lengkap 19_8 Nov 2023_Inc. Data panel & Perbandinga...
Aminullah Assagaf
 
Aminullah Assagaf_K12-14_Manj Oprs dan Prod_2024.ppt
Aminullah Assagaf_K12-14_Manj Oprs dan Prod_2024.pptAminullah Assagaf_K12-14_Manj Oprs dan Prod_2024.ppt
Aminullah Assagaf_K12-14_Manj Oprs dan Prod_2024.ppt
Aminullah Assagaf
 
Aminullah Assagaf_K10-11_Manj Oprs dan Prod_2024.ppt
Aminullah Assagaf_K10-11_Manj Oprs dan Prod_2024.pptAminullah Assagaf_K10-11_Manj Oprs dan Prod_2024.ppt
Aminullah Assagaf_K10-11_Manj Oprs dan Prod_2024.ppt
Aminullah Assagaf
 
Aminullah Assagaf_K6-7_29 Oktober 2024.ppt
Aminullah Assagaf_K6-7_29 Oktober 2024.pptAminullah Assagaf_K6-7_29 Oktober 2024.ppt
Aminullah Assagaf_K6-7_29 Oktober 2024.ppt
Aminullah Assagaf
 
Aminullah Assagaf_K8-9_Manj Oprs dan Prod_2024.ppt
Aminullah Assagaf_K8-9_Manj Oprs dan Prod_2024.pptAminullah Assagaf_K8-9_Manj Oprs dan Prod_2024.ppt
Aminullah Assagaf_K8-9_Manj Oprs dan Prod_2024.ppt
Aminullah Assagaf
 
Aminullah Assagaf_K4-5_Manj Oprs dan Prod_2021 [Autosaved].ppt
Aminullah Assagaf_K4-5_Manj Oprs dan Prod_2021 [Autosaved].pptAminullah Assagaf_K4-5_Manj Oprs dan Prod_2021 [Autosaved].ppt
Aminullah Assagaf_K4-5_Manj Oprs dan Prod_2021 [Autosaved].ppt
Aminullah Assagaf
 
Aminullah Assagaf_K1-3_Manj Oprs dan Prod_2024.ppt
Aminullah Assagaf_K1-3_Manj Oprs dan Prod_2024.pptAminullah Assagaf_K1-3_Manj Oprs dan Prod_2024.ppt
Aminullah Assagaf_K1-3_Manj Oprs dan Prod_2024.ppt
Aminullah Assagaf
 
Aminullah Assagaf_P7-Ch.9_Project management-32.pptx
Aminullah Assagaf_P7-Ch.9_Project management-32.pptxAminullah Assagaf_P7-Ch.9_Project management-32.pptx
Aminullah Assagaf_P7-Ch.9_Project management-32.pptx
Aminullah Assagaf
 
Aminullah Assagaf_P6-Ch.8_Human resources-32.pptx
Aminullah Assagaf_P6-Ch.8_Human resources-32.pptxAminullah Assagaf_P6-Ch.8_Human resources-32.pptx
Aminullah Assagaf_P6-Ch.8_Human resources-32.pptx
Aminullah Assagaf
 
Aminullah Assagaf_P5-Ch.7_Capacity and Facility_32.pptx
Aminullah Assagaf_P5-Ch.7_Capacity and Facility_32.pptxAminullah Assagaf_P5-Ch.7_Capacity and Facility_32.pptx
Aminullah Assagaf_P5-Ch.7_Capacity and Facility_32.pptx
Aminullah Assagaf
 
Aminullah Assagaf_P4-Ch.6_Processes and technology-32.pptx
Aminullah Assagaf_P4-Ch.6_Processes and technology-32.pptxAminullah Assagaf_P4-Ch.6_Processes and technology-32.pptx
Aminullah Assagaf_P4-Ch.6_Processes and technology-32.pptx
Aminullah Assagaf
 
Aminullah Assagaf_P3-Ch.4-5_Product Design & Srvice Design.pptx
Aminullah Assagaf_P3-Ch.4-5_Product Design & Srvice Design.pptxAminullah Assagaf_P3-Ch.4-5_Product Design & Srvice Design.pptx
Aminullah Assagaf_P3-Ch.4-5_Product Design & Srvice Design.pptx
Aminullah Assagaf
 
Aminullah Assagaf_P2-Ch.2-3_Operations Strategy & Qualittty Mangt.pptx
Aminullah Assagaf_P2-Ch.2-3_Operations Strategy & Qualittty Mangt.pptxAminullah Assagaf_P2-Ch.2-3_Operations Strategy & Qualittty Mangt.pptx
Aminullah Assagaf_P2-Ch.2-3_Operations Strategy & Qualittty Mangt.pptx
Aminullah Assagaf
 

More from Aminullah Assagaf (20)

Aminullah Assagaf_Regresi Lengkap 22_11 April 2024.pdf
Aminullah Assagaf_Regresi Lengkap 22_11 April 2024.pdfAminullah Assagaf_Regresi Lengkap 22_11 April 2024.pdf
Aminullah Assagaf_Regresi Lengkap 22_11 April 2024.pdf
 
Aminullah Assagaf_Regresi Lengkap 22_11 April 2024.pptx
Aminullah Assagaf_Regresi Lengkap 22_11 April 2024.pptxAminullah Assagaf_Regresi Lengkap 22_11 April 2024.pptx
Aminullah Assagaf_Regresi Lengkap 22_11 April 2024.pptx
 
Aminullah Assagaf_Regresi Lengkap 22_11 April 2024.pdf
Aminullah Assagaf_Regresi Lengkap 22_11 April 2024.pdfAminullah Assagaf_Regresi Lengkap 22_11 April 2024.pdf
Aminullah Assagaf_Regresi Lengkap 22_11 April 2024.pdf
 
Aminullah Assagaf_Regresi Lengkap 21_11 April 2024.pdf
Aminullah Assagaf_Regresi Lengkap 21_11 April 2024.pdfAminullah Assagaf_Regresi Lengkap 21_11 April 2024.pdf
Aminullah Assagaf_Regresi Lengkap 21_11 April 2024.pdf
 
Aminullah Assagaf_Regresi Lengkap 21_11 April 2024.pptx
Aminullah Assagaf_Regresi Lengkap 21_11 April 2024.pptxAminullah Assagaf_Regresi Lengkap 21_11 April 2024.pptx
Aminullah Assagaf_Regresi Lengkap 21_11 April 2024.pptx
 
Aminullah Assagaf_Regresi Lengkap 20_10 April 2024_Inc. Data panel & Perbandi...
Aminullah Assagaf_Regresi Lengkap 20_10 April 2024_Inc. Data panel & Perbandi...Aminullah Assagaf_Regresi Lengkap 20_10 April 2024_Inc. Data panel & Perbandi...
Aminullah Assagaf_Regresi Lengkap 20_10 April 2024_Inc. Data panel & Perbandi...
 
Aminullah Assagaf_Regresi Lengkap 19_8 Nov 2023_Inc. Data panel & Perbandinga...
Aminullah Assagaf_Regresi Lengkap 19_8 Nov 2023_Inc. Data panel & Perbandinga...Aminullah Assagaf_Regresi Lengkap 19_8 Nov 2023_Inc. Data panel & Perbandinga...
Aminullah Assagaf_Regresi Lengkap 19_8 Nov 2023_Inc. Data panel & Perbandinga...
 
Aminullah Assagaf_Regresi Lengkap 19_8 Nov 2023_Inc. Data panel & Perbandinga...
Aminullah Assagaf_Regresi Lengkap 19_8 Nov 2023_Inc. Data panel & Perbandinga...Aminullah Assagaf_Regresi Lengkap 19_8 Nov 2023_Inc. Data panel & Perbandinga...
Aminullah Assagaf_Regresi Lengkap 19_8 Nov 2023_Inc. Data panel & Perbandinga...
 
Aminullah Assagaf_K12-14_Manj Oprs dan Prod_2024.ppt
Aminullah Assagaf_K12-14_Manj Oprs dan Prod_2024.pptAminullah Assagaf_K12-14_Manj Oprs dan Prod_2024.ppt
Aminullah Assagaf_K12-14_Manj Oprs dan Prod_2024.ppt
 
Aminullah Assagaf_K10-11_Manj Oprs dan Prod_2024.ppt
Aminullah Assagaf_K10-11_Manj Oprs dan Prod_2024.pptAminullah Assagaf_K10-11_Manj Oprs dan Prod_2024.ppt
Aminullah Assagaf_K10-11_Manj Oprs dan Prod_2024.ppt
 
Aminullah Assagaf_K6-7_29 Oktober 2024.ppt
Aminullah Assagaf_K6-7_29 Oktober 2024.pptAminullah Assagaf_K6-7_29 Oktober 2024.ppt
Aminullah Assagaf_K6-7_29 Oktober 2024.ppt
 
Aminullah Assagaf_K8-9_Manj Oprs dan Prod_2024.ppt
Aminullah Assagaf_K8-9_Manj Oprs dan Prod_2024.pptAminullah Assagaf_K8-9_Manj Oprs dan Prod_2024.ppt
Aminullah Assagaf_K8-9_Manj Oprs dan Prod_2024.ppt
 
Aminullah Assagaf_K4-5_Manj Oprs dan Prod_2021 [Autosaved].ppt
Aminullah Assagaf_K4-5_Manj Oprs dan Prod_2021 [Autosaved].pptAminullah Assagaf_K4-5_Manj Oprs dan Prod_2021 [Autosaved].ppt
Aminullah Assagaf_K4-5_Manj Oprs dan Prod_2021 [Autosaved].ppt
 
Aminullah Assagaf_K1-3_Manj Oprs dan Prod_2024.ppt
Aminullah Assagaf_K1-3_Manj Oprs dan Prod_2024.pptAminullah Assagaf_K1-3_Manj Oprs dan Prod_2024.ppt
Aminullah Assagaf_K1-3_Manj Oprs dan Prod_2024.ppt
 
Aminullah Assagaf_P7-Ch.9_Project management-32.pptx
Aminullah Assagaf_P7-Ch.9_Project management-32.pptxAminullah Assagaf_P7-Ch.9_Project management-32.pptx
Aminullah Assagaf_P7-Ch.9_Project management-32.pptx
 
Aminullah Assagaf_P6-Ch.8_Human resources-32.pptx
Aminullah Assagaf_P6-Ch.8_Human resources-32.pptxAminullah Assagaf_P6-Ch.8_Human resources-32.pptx
Aminullah Assagaf_P6-Ch.8_Human resources-32.pptx
 
Aminullah Assagaf_P5-Ch.7_Capacity and Facility_32.pptx
Aminullah Assagaf_P5-Ch.7_Capacity and Facility_32.pptxAminullah Assagaf_P5-Ch.7_Capacity and Facility_32.pptx
Aminullah Assagaf_P5-Ch.7_Capacity and Facility_32.pptx
 
Aminullah Assagaf_P4-Ch.6_Processes and technology-32.pptx
Aminullah Assagaf_P4-Ch.6_Processes and technology-32.pptxAminullah Assagaf_P4-Ch.6_Processes and technology-32.pptx
Aminullah Assagaf_P4-Ch.6_Processes and technology-32.pptx
 
Aminullah Assagaf_P3-Ch.4-5_Product Design & Srvice Design.pptx
Aminullah Assagaf_P3-Ch.4-5_Product Design & Srvice Design.pptxAminullah Assagaf_P3-Ch.4-5_Product Design & Srvice Design.pptx
Aminullah Assagaf_P3-Ch.4-5_Product Design & Srvice Design.pptx
 
Aminullah Assagaf_P2-Ch.2-3_Operations Strategy & Qualittty Mangt.pptx
Aminullah Assagaf_P2-Ch.2-3_Operations Strategy & Qualittty Mangt.pptxAminullah Assagaf_P2-Ch.2-3_Operations Strategy & Qualittty Mangt.pptx
Aminullah Assagaf_P2-Ch.2-3_Operations Strategy & Qualittty Mangt.pptx
 

Recently uploaded

Bahan Sosialisasi PPDB_1 2024/2025 Bandung
Bahan Sosialisasi PPDB_1 2024/2025 BandungBahan Sosialisasi PPDB_1 2024/2025 Bandung
Bahan Sosialisasi PPDB_1 2024/2025 Bandung
Galang Adi Kuncoro
 
INSTRUMEN PENILAIAN PRAKTIK KINERJA KS Dok Rating Observasi (1).docx
INSTRUMEN PENILAIAN PRAKTIK KINERJA KS Dok Rating Observasi (1).docxINSTRUMEN PENILAIAN PRAKTIK KINERJA KS Dok Rating Observasi (1).docx
INSTRUMEN PENILAIAN PRAKTIK KINERJA KS Dok Rating Observasi (1).docx
lindaagina84
 
tugas pai kelas 10 rangkuman bab 10 smk madani bogor
tugas pai kelas 10 rangkuman bab 10 smk madani bogortugas pai kelas 10 rangkuman bab 10 smk madani bogor
tugas pai kelas 10 rangkuman bab 10 smk madani bogor
WILDANREYkun
 
Seminar: Sekolah Alkitab Liburan (SAL) 2024
Seminar: Sekolah Alkitab Liburan (SAL) 2024Seminar: Sekolah Alkitab Liburan (SAL) 2024
Seminar: Sekolah Alkitab Liburan (SAL) 2024
SABDA
 
Permainan Wiwi Wowo aksi nyata berkebhinekaan
Permainan Wiwi Wowo aksi nyata berkebhinekaanPermainan Wiwi Wowo aksi nyata berkebhinekaan
Permainan Wiwi Wowo aksi nyata berkebhinekaan
DEVI390643
 
Program Kerja Kepala Sekolah 2023-2024.pdf
Program Kerja Kepala Sekolah 2023-2024.pdfProgram Kerja Kepala Sekolah 2023-2024.pdf
Program Kerja Kepala Sekolah 2023-2024.pdf
erlita3
 
NUMERASI KOMPETENSI PENDIDIK TAHAP CAKAP DAN MAHIR.pdf
NUMERASI KOMPETENSI PENDIDIK TAHAP CAKAP DAN MAHIR.pdfNUMERASI KOMPETENSI PENDIDIK TAHAP CAKAP DAN MAHIR.pdf
NUMERASI KOMPETENSI PENDIDIK TAHAP CAKAP DAN MAHIR.pdf
DataSupriatna
 
RUBRIK OBSERVASI KINERJA KEPALA SEKOLAH.docx
RUBRIK OBSERVASI KINERJA KEPALA SEKOLAH.docxRUBRIK OBSERVASI KINERJA KEPALA SEKOLAH.docx
RUBRIK OBSERVASI KINERJA KEPALA SEKOLAH.docx
lastri261
 
SEMINAR PPG DAN PPL ppg prajabatan 2024.pptx
SEMINAR PPG DAN PPL ppg prajabatan 2024.pptxSEMINAR PPG DAN PPL ppg prajabatan 2024.pptx
SEMINAR PPG DAN PPL ppg prajabatan 2024.pptx
bobobodo693
 
Laporan Piket Guru untuk bukti dukung PMM.pdf
Laporan Piket Guru untuk bukti dukung PMM.pdfLaporan Piket Guru untuk bukti dukung PMM.pdf
Laporan Piket Guru untuk bukti dukung PMM.pdf
gloriosaesy
 
Dokumen Rangkuman Kehadiran Guru ini dipergunakan sebagai bukti dukung yang w...
Dokumen Rangkuman Kehadiran Guru ini dipergunakan sebagai bukti dukung yang w...Dokumen Rangkuman Kehadiran Guru ini dipergunakan sebagai bukti dukung yang w...
Dokumen Rangkuman Kehadiran Guru ini dipergunakan sebagai bukti dukung yang w...
haryonospdsd011
 
LK 1 - 5T Keputusan Berdampak PERMATA BUNDA.pdf
LK 1 - 5T Keputusan Berdampak PERMATA BUNDA.pdfLK 1 - 5T Keputusan Berdampak PERMATA BUNDA.pdf
LK 1 - 5T Keputusan Berdampak PERMATA BUNDA.pdf
UditGheozi2
 
ppt landasan pendidikan Alat alat pendidikan PAI 9_
ppt landasan pendidikan Alat alat pendidikan PAI 9_ppt landasan pendidikan Alat alat pendidikan PAI 9_
ppt landasan pendidikan Alat alat pendidikan PAI 9_
setiatinambunan
 
Sebuah buku foto yang berjudul Lensa Kampung Ondel-Ondel
Sebuah buku foto yang berjudul Lensa Kampung Ondel-OndelSebuah buku foto yang berjudul Lensa Kampung Ondel-Ondel
Sebuah buku foto yang berjudul Lensa Kampung Ondel-Ondel
ferrydmn1999
 
ppt-menghindari-marah-ghadab-membiasakan-kontrol-diri-dan-berani-membela-kebe...
ppt-menghindari-marah-ghadab-membiasakan-kontrol-diri-dan-berani-membela-kebe...ppt-menghindari-marah-ghadab-membiasakan-kontrol-diri-dan-berani-membela-kebe...
ppt-menghindari-marah-ghadab-membiasakan-kontrol-diri-dan-berani-membela-kebe...
AgusRahmat39
 
tugas modul 1.4 Koneksi Antar Materi (1).pptx
tugas  modul 1.4 Koneksi Antar Materi (1).pptxtugas  modul 1.4 Koneksi Antar Materi (1).pptx
tugas modul 1.4 Koneksi Antar Materi (1).pptx
d2spdpnd9185
 
Paparan Kurikulum Satuan Pendidikan_LOKAKARYA TPK 2024.pptx.pdf
Paparan Kurikulum Satuan Pendidikan_LOKAKARYA TPK 2024.pptx.pdfPaparan Kurikulum Satuan Pendidikan_LOKAKARYA TPK 2024.pptx.pdf
Paparan Kurikulum Satuan Pendidikan_LOKAKARYA TPK 2024.pptx.pdf
SEMUELSAMBOKARAENG
 
SOSIALISASI PPDB TAHUN AJARAN 2024-2025.pptx
SOSIALISASI PPDB TAHUN AJARAN 2024-2025.pptxSOSIALISASI PPDB TAHUN AJARAN 2024-2025.pptx
SOSIALISASI PPDB TAHUN AJARAN 2024-2025.pptx
astridamalia20
 
KOMITMEN MENULIS DI BLOG KBMN PB PGRI.ppt
KOMITMEN MENULIS DI BLOG KBMN PB PGRI.pptKOMITMEN MENULIS DI BLOG KBMN PB PGRI.ppt
KOMITMEN MENULIS DI BLOG KBMN PB PGRI.ppt
Dedi Dwitagama
 
LAPORAN TUGAS TAMBAHAN PEMBINA PRAMUKA..
LAPORAN TUGAS TAMBAHAN PEMBINA PRAMUKA..LAPORAN TUGAS TAMBAHAN PEMBINA PRAMUKA..
LAPORAN TUGAS TAMBAHAN PEMBINA PRAMUKA..
widyakusuma99
 

Recently uploaded (20)

Bahan Sosialisasi PPDB_1 2024/2025 Bandung
Bahan Sosialisasi PPDB_1 2024/2025 BandungBahan Sosialisasi PPDB_1 2024/2025 Bandung
Bahan Sosialisasi PPDB_1 2024/2025 Bandung
 
INSTRUMEN PENILAIAN PRAKTIK KINERJA KS Dok Rating Observasi (1).docx
INSTRUMEN PENILAIAN PRAKTIK KINERJA KS Dok Rating Observasi (1).docxINSTRUMEN PENILAIAN PRAKTIK KINERJA KS Dok Rating Observasi (1).docx
INSTRUMEN PENILAIAN PRAKTIK KINERJA KS Dok Rating Observasi (1).docx
 
tugas pai kelas 10 rangkuman bab 10 smk madani bogor
tugas pai kelas 10 rangkuman bab 10 smk madani bogortugas pai kelas 10 rangkuman bab 10 smk madani bogor
tugas pai kelas 10 rangkuman bab 10 smk madani bogor
 
Seminar: Sekolah Alkitab Liburan (SAL) 2024
Seminar: Sekolah Alkitab Liburan (SAL) 2024Seminar: Sekolah Alkitab Liburan (SAL) 2024
Seminar: Sekolah Alkitab Liburan (SAL) 2024
 
Permainan Wiwi Wowo aksi nyata berkebhinekaan
Permainan Wiwi Wowo aksi nyata berkebhinekaanPermainan Wiwi Wowo aksi nyata berkebhinekaan
Permainan Wiwi Wowo aksi nyata berkebhinekaan
 
Program Kerja Kepala Sekolah 2023-2024.pdf
Program Kerja Kepala Sekolah 2023-2024.pdfProgram Kerja Kepala Sekolah 2023-2024.pdf
Program Kerja Kepala Sekolah 2023-2024.pdf
 
NUMERASI KOMPETENSI PENDIDIK TAHAP CAKAP DAN MAHIR.pdf
NUMERASI KOMPETENSI PENDIDIK TAHAP CAKAP DAN MAHIR.pdfNUMERASI KOMPETENSI PENDIDIK TAHAP CAKAP DAN MAHIR.pdf
NUMERASI KOMPETENSI PENDIDIK TAHAP CAKAP DAN MAHIR.pdf
 
RUBRIK OBSERVASI KINERJA KEPALA SEKOLAH.docx
RUBRIK OBSERVASI KINERJA KEPALA SEKOLAH.docxRUBRIK OBSERVASI KINERJA KEPALA SEKOLAH.docx
RUBRIK OBSERVASI KINERJA KEPALA SEKOLAH.docx
 
SEMINAR PPG DAN PPL ppg prajabatan 2024.pptx
SEMINAR PPG DAN PPL ppg prajabatan 2024.pptxSEMINAR PPG DAN PPL ppg prajabatan 2024.pptx
SEMINAR PPG DAN PPL ppg prajabatan 2024.pptx
 
Laporan Piket Guru untuk bukti dukung PMM.pdf
Laporan Piket Guru untuk bukti dukung PMM.pdfLaporan Piket Guru untuk bukti dukung PMM.pdf
Laporan Piket Guru untuk bukti dukung PMM.pdf
 
Dokumen Rangkuman Kehadiran Guru ini dipergunakan sebagai bukti dukung yang w...
Dokumen Rangkuman Kehadiran Guru ini dipergunakan sebagai bukti dukung yang w...Dokumen Rangkuman Kehadiran Guru ini dipergunakan sebagai bukti dukung yang w...
Dokumen Rangkuman Kehadiran Guru ini dipergunakan sebagai bukti dukung yang w...
 
LK 1 - 5T Keputusan Berdampak PERMATA BUNDA.pdf
LK 1 - 5T Keputusan Berdampak PERMATA BUNDA.pdfLK 1 - 5T Keputusan Berdampak PERMATA BUNDA.pdf
LK 1 - 5T Keputusan Berdampak PERMATA BUNDA.pdf
 
ppt landasan pendidikan Alat alat pendidikan PAI 9_
ppt landasan pendidikan Alat alat pendidikan PAI 9_ppt landasan pendidikan Alat alat pendidikan PAI 9_
ppt landasan pendidikan Alat alat pendidikan PAI 9_
 
Sebuah buku foto yang berjudul Lensa Kampung Ondel-Ondel
Sebuah buku foto yang berjudul Lensa Kampung Ondel-OndelSebuah buku foto yang berjudul Lensa Kampung Ondel-Ondel
Sebuah buku foto yang berjudul Lensa Kampung Ondel-Ondel
 
ppt-menghindari-marah-ghadab-membiasakan-kontrol-diri-dan-berani-membela-kebe...
ppt-menghindari-marah-ghadab-membiasakan-kontrol-diri-dan-berani-membela-kebe...ppt-menghindari-marah-ghadab-membiasakan-kontrol-diri-dan-berani-membela-kebe...
ppt-menghindari-marah-ghadab-membiasakan-kontrol-diri-dan-berani-membela-kebe...
 
tugas modul 1.4 Koneksi Antar Materi (1).pptx
tugas  modul 1.4 Koneksi Antar Materi (1).pptxtugas  modul 1.4 Koneksi Antar Materi (1).pptx
tugas modul 1.4 Koneksi Antar Materi (1).pptx
 
Paparan Kurikulum Satuan Pendidikan_LOKAKARYA TPK 2024.pptx.pdf
Paparan Kurikulum Satuan Pendidikan_LOKAKARYA TPK 2024.pptx.pdfPaparan Kurikulum Satuan Pendidikan_LOKAKARYA TPK 2024.pptx.pdf
Paparan Kurikulum Satuan Pendidikan_LOKAKARYA TPK 2024.pptx.pdf
 
SOSIALISASI PPDB TAHUN AJARAN 2024-2025.pptx
SOSIALISASI PPDB TAHUN AJARAN 2024-2025.pptxSOSIALISASI PPDB TAHUN AJARAN 2024-2025.pptx
SOSIALISASI PPDB TAHUN AJARAN 2024-2025.pptx
 
KOMITMEN MENULIS DI BLOG KBMN PB PGRI.ppt
KOMITMEN MENULIS DI BLOG KBMN PB PGRI.pptKOMITMEN MENULIS DI BLOG KBMN PB PGRI.ppt
KOMITMEN MENULIS DI BLOG KBMN PB PGRI.ppt
 
LAPORAN TUGAS TAMBAHAN PEMBINA PRAMUKA..
LAPORAN TUGAS TAMBAHAN PEMBINA PRAMUKA..LAPORAN TUGAS TAMBAHAN PEMBINA PRAMUKA..
LAPORAN TUGAS TAMBAHAN PEMBINA PRAMUKA..
 

Aminullah Assagaf_SPSS_PLS SEM_Manual_COMPARE.pptx

  • 1. Perbandingan SPSS - Smart PLS SEM - Manual 7 Juli 2023 https://www.youtube.com/watch ?v=WG5HdBuvBEs&t=11s Prof. Dr. Dr. Aminullah Assagaf, SE., MS., MM., M.Ak Email: assagaf29@yahoo.com Hp: 08113543409 https://www.slideshare.net/AminullahAssagaf1/aminullah- assagafspsspls-semmanual07072023pptx
  • 2. Perbandingan : SPSS, PLS, Manual (Link Slideshare) https://www.slideshare.net/AminullahAssagaf1/aminullah-assagafpls-sem-spss4-juli-2023pptx
  • 4.
  • 5. Imput data, dan save melalui excel style CSV(delimited atau MSDOS), atau Notepad • Dalam menggunakan data excel: save dengan style CSV (Delimited atau MSDOS) • Data dlm excel hanya satu baris nama vabel • Data diletakkan mulai pojok kiri atas atau A1, agar data tsb bisa dibaca oleh PLS • Bila menggunakan Notepate: blok data di excel, buka notepad melalui search, pilih open, save as, letakkan pd salah satu folder misalnya di Download. • Buka PLS: mulai dgn new project, double clik cari file excel atau file notepad…dst
  • 6.
  • 7.
  • 8. Pers Regresi (Unstandardized) n Y X y=Y-Ybar x=X-Xbar y^2 x^2 xy x^2 A=y/SDY B=x/SDX 1 70 30 9.7 -3.8 94 14 -36.9 14.4 0.8 -0.5 2 78 32 17.7 -1.8 313 3 -31.9 3.2 1.5 -0.2 3 56 45 -4.3 11.2 18 125 -48.2 125.4 -0.4 1.3 4 45 24 -15.3 -9.8 234 96 149.9 96.0 -1.3 -1.2 5 68 46 7.7 12.2 59 149 93.9 148.8 0.7 1.5 6 67 32 6.7 -1.8 45 3 -12.1 3.2 0.6 -0.2 7 54 33 -6.3 -0.8 40 1 5.0 0.6 -0.5 -0.1 8 50 35 -10.3 1.2 106 1 -12.4 1.4 -0.9 0.1 9 45 20 -15.3 -13.8 234 190 211.1 190.4 -1.3 -1.6 10 70 41 9.7 7.2 94 52 69.8 51.8 0.8 0.9 Total 603 338 0.0 0.0 1238 636 388.6 635.6 0.0 0.0 Ybar 60.3 Xbar 33.8 b= 0.611 VarY y^2/(n-1)= 137.57 SDY 11.73 a= 39.635 VarX x^2/(n-1)= 70.62 SDX 8.40
  • 9. Pers Regressi (Standardized) n Y X y=Y-Ybar x=X-Xbar xy x^2 1 0.8 -0.5 0.8 -0.5 -0.4 0.2 2 1.5 -0.2 1.5 -0.2 -0.3 0.0 3 -0.4 1.3 -0.4 1.3 -0.5 1.8 4 -1.3 -1.2 -1.3 -1.2 1.5 1.4 5 0.7 1.5 0.7 1.5 1.0 2.1 6 0.6 -0.2 0.6 -0.2 -0.1 0.0 7 -0.5 -0.1 -0.5 -0.1 0.1 0.0 8 -0.9 0.1 -0.9 0.1 -0.1 0.0 9 -1.3 -1.6 -1.3 -1.6 2.1 2.7 10 0.8 0.9 0.8 0.9 0.7 0.7 Total 0.0 0.0 - - 3.9 9.0 Ybar 0.0 b= 0.438 Xbar 0.0 a= 0.000
  • 10. Pers Regresi (SPSS & PLS) Standardized Coefficients B Std. Error Beta (Constant) 39.635 15.405 2.573 0.033 X 0.611 0.444 0.438 1.378 0.205 1 a. Dependent Variable: Y Coefficientsa Model Unstandardized Coefficients t Sig.
  • 11. Prediksi periode: 11 - 13 Pers Reg = n Y X Y X 8 -0.9 0.1 50 35 9 -1.3 -1.6 45 20 10 0.8 0.9 70 41 11 0.307 0.7 61 35 12 0.350 0.8 64 40 13 0.394 0.9 67 45 Y = 0 + 0.438 X Y = 39.6635 + 0.611 X
  • 12. Prediksi Periode: 11 - 13 Pers Reg = n Y X Y X 8 -0.9 0.1 50 35 9 -1.3 -1.6 45 20 10 0.8 0.9 70 41 11 0.307 0.7 61 35 12 0.350 0.8 64 40 13 0.394 0.9 67 45 11 64 kali SDY 11.7 12 64 Plus Ybar 60.3 13 65 Residual (e) e= Ŷ - Y e= Ŷ - Y 8 62 0.1 61 35 9 41 -1.6 52 20 10 70 0.9 65 41 Y = 0 + 0.438 X Y = 39.6635 + 0.611 X
  • 13.
  • 14. Y X1 X2 6 30 70 7 32 78 5 45 56 5 24 45 6 46 68 7 32 67 6 33 54 8 35 50 6 20 45 8 41 70 Data Penelitian Y = Kinerja X1= Incentive X2= Lingkungan
  • 15. Standardized Coefficients B Std. Error Beta (Constant) 4.363 2.101 2.076 0.077 X1 -0.003 0.050 -0.025 -0.064 0.951 X2 0.036 0.036 0.388 0.997 0.352 1 a. Dependent Variable: Y Coefficientsa Model Unstandardized Coefficients t Sig. SPSS PLS
  • 16. Manual (Beta-Unstandardized Coefficients) n Y X1 X2 X1Y X2Y X1X2 X1^2 X2^2 1 6 30 70 180 420 2100 900 4900 2 7 32 78 224 546 2496 1024 6084 3 5 45 56 225 280 2520 2025 3136 4 5 24 45 120 225 1080 576 2025 5 6 46 68 276 408 3128 2116 4624 6 7 32 67 224 469 2144 1024 4489 7 6 33 54 198 324 1782 1089 2916 8 8 35 50 280 400 1750 1225 2500 9 6 20 45 120 270 900 400 2025 10 8 41 70 328 560 2870 1681 4900 Jumlah 64 338 603 2175 3902 20770 12060 37599 Y X1 X2 X1Y X2Y X1X2 X1^2 X2^2 64 338 603 2,175 3,902 20,770 12,060 37,599 n Ybar X1bar X2bar n 1 6.4 33.8 60.3 10 2 x1y = X1Y - (X1. Y)/n 2,175 338 64 12 A 3 x2y = X2Y - (X2.Y)/n 3,902 603 64 42.80 B 4 x1x2 =X1X2 -(X1. X2)/n 20,770 338 603 389 C 5 x1^2 = X1^2 - (X1)^2/n 12,060 338 636 D 6 X2^2 = X2^2 - (X2)^2/n 37,599 603 1,238 E 7 b1 = (EA - CB)/(DE- CC) 14,610 16,632 786,936 151,010 (0.003) 8 b2 = (DB - CA)/(DE - CC) 27,204 4,585 786,936 151,010 0.036 9 b0 = Ybar - (b1.Xbar) - (b2. X2bar) 6.4 0.11 - 2.14 4.363 10 Persamaan Reg : Jumlah Y =4.363 - 0.003 X1 + 0.03 X2
  • 17. Manual ( Beta – Standardized Coefficients) n Y X1 X2 y x1 x2 y^2 x1^2 x2^2 Y=y/SDY X1=x1/SDX1 X2=x2/SDX2 X1Y X2Y X1X2 X1^2 X2^2 1 6 30 70 -0.4 -3.8 9.7 0.16 14.44 94.09 0.37 - 0.45 - 0.83 0.168 -0.308 -0.374 0.204 0.684 2 7 32 78 0.6 -1.8 17.7 0.36 3.24 313.29 0.56 0.21 - 1.51 -0.120 0.842 -0.323 0.046 2.277 3 5 45 56 -1.4 11.2 -4.3 1.96 125.4 18.49 1.30 - 1.33 0.37 - -1.736 0.477 -0.489 1.776 0.134 4 5 24 45 -1.4 -9.8 -15.3 1.96 96.04 234.09 1.30 - 1.17 - 1.30 - 1.519 1.699 1.521 1.360 1.702 5 6 46 68 -0.4 12.2 7.7 0.16 148.8 59.29 0.37 - 1.45 0.66 -0.540 -0.244 0.953 2.108 0.431 6 7 32 67 0.6 -1.8 6.7 0.36 3.24 44.89 0.56 0.21 - 0.57 -0.120 0.319 -0.122 0.046 0.326 7 6 33 54 -0.4 -0.8 -6.3 0.16 0.64 39.69 0.37 - 0.10 - 0.54 - 0.035 0.200 0.051 0.009 0.289 8 8 35 50 1.6 1.2 -10.3 2.56 1.44 106.09 1.49 0.14 0.88 - 0.213 -1.307 -0.125 0.020 0.771 9 6 20 45 -0.4 -13.8 -15.3 0.16 190.4 234.09 0.37 - 1.64 - 1.30 - 0.611 0.485 2.142 2.697 1.702 10 8 41 70 1.6 7.2 9.7 2.56 51.84 94.09 1.49 0.86 0.83 1.275 1.231 0.709 0.734 0.684 Jumlah 64 338 603 0 - 0 0 10.4 635.6 1238.10 0.0 0.0 0.0 1.306 3.395 3.943 9.000 9.000 Rt 6.4 33.8 60.3 1.3 Var 1.16 70.62 137.57 SD 1.07 8.40 11.73 Y X1 X2 X1Y X2Y X1X2 X1^2 X2^2 (0) 0 0 1.306 3.395 3.943 9.000 9.000 Ybar X1bar X2bar n 0.0 - 0.0 0.0 10 x1y = X1Y - (X1. Y)/n 1.306 0.000 0.000 - 1.306 A x2y = X2Y - (X2.Y)/n 3.395 0.000 0.000 - 3.395 B x1x2 =X1X2 -(X1. X2)/n 3.943 0.000 0.000 3.943 C x1^2 = X1^2 - (X1)^2/n 9.000 0.000 9.000 D X2^2 = X2^2 - (X2)^2/n 9.000 0.000 9.000 E b1 = (EA - CB)/(DE- CC) 11.756 13.383 81.000 15.544 (0.025) b2 = (DB - CA)/(DE - CC) 30.552 5.150 81.000 15.544 0.388 b0 = Ybar - (b1.Xbar) - (b2. X2bar) 0.000 - 0.000 - 0.000 (0.000) 1 Persamaan Reg : Jum Y = 0 - 0.025 X1 + 0.388 X2 Rt Va Sum of Squares df Mean Square F Sig. Regression 1.485 2 0.742 0.583 .583 b Residual 8.915 7 1.274 Total 10.400 9 A JKT=y^2 10.400 B df - (n-1) 9 Variance C=A/B KTT 1.16 Standar Dv C^(0.5) 1.07 ANOVA a Model 1 a. Dependent Variable: Y b. Predictors: (Constant), X2, X1
  • 18. Istilah • Variabel Laten merupakan variabel yang tidak dapat diukur secara langsung kecuali dengan satu atau lebih variabel manifest (indicator). Variabel laten (tidak dapat diukur secara langsung, msi: tingkat sehatan) dapat berfungsi sebagai variabel eksogen (independent) maupun endogen (dependen).
  • 19. Jenis variabel •Berdasarkan perannya dalam suatu hubungan • 1. Variabel Independen/Prediktor/Bebas • 2. Variabel Dependent/Respon/Terikat • 3. Variabel Eksogen • 4. Variabel Endogen • 5. Variabel Intervening/Mediasi • 6. Variabel Moderating •Berdasarkan cara pengukurannya • 1. Variabel Laten (variabel kosntrak) • 2. Variabel Indikator / Manifest
  • 20. Berdasarkan perannya dalam suatu hubungan 1. Variabel Independen/Prediktor/Bebas Merupakan variabel yang mempengaruhi variabel lain dalam suatu hubungan. Variabel ini dapat dijumpai di model regresi linier, regresi logistik, model probit/gompit, analisis data panel, model GLM dan lainnya. 2. Variabel Dependent/Respon/Terikat Merupakan variabel yang dipengaruhi oleh variabel lain dalam suatu model hubungan. Variabel ini dapat dijumpai di model regresi linier, regresi logistik, model probit/gompit, analisis data panel, model GLM dan lainnya. Seringkali, di bidang Bisnis/Ekonomi cenderung menggunakan nama variabel dependent, Sedangkan di bidang Ilmu Kehidupan (Biologi dan Pertanian) cenderung akan menggunakan nama variabel Respon. 3. Variabel Eksogen Pengertian variabel ini sama dengan variabel independent, namun tidak dikatakan variabel independent karena dalam hubungannya ada yang bertindak sebagai variabel independent sekaligus variabel dependent. Jenis variabel ini dapat dijumpai dalam analisis Jalur (Path Analysis).
  • 21. 4. Variabel Endogen Pengertian variabel ini sama dengan variabel dependent, namun tidak dikatakan variabel dependent karena dalam hubungannya ada yang bertindak sebagai variabel independent sekaligus variabel dependent. Jenis variabel ini dapat dijumpai dalam analisis Jalur (Path Analysis). 5. Variabel Intervening/Mediasi Variabel ini seolah-olah bertindak sebagai variabel independent dan dependent variabel sekaligus dalam suatu set hubungan. Variabel ini dapat dijumpai dalam analisis jalur (Path Analysis) 6. Variabel Moderating Merupakan variabel yang dapat melemahkan atau memperkuat hubungan antara variabel satu dengan variabel lainnya.
  • 22. Berdasarkan cara pengukurannya 1. Variabel Laten (variabel kosntrak) Merupakan variabel yang tidak bisa diukur secara langsung. Oleh karena itu, kita perlu sejumlah variabel lain untuk menyatakannya. Contoh variabel laten adalah Tingkat Kesehatan, Loyalitas, Kebijaksanaan, dan Kepuasan. Untuk mengukur variabel ini kita perlu kombinasi variabel lain (a.k.a indikator). Contohnya, variabel Tingkat Kesehatan bisa diukur menggunakan kombinasi beberapa indikator seperti tekanan darah, kadar asam urat, kadar glukosa dalam darah, dan kolesterol. 2. Variabel Indikator / Manifest Merupakan variabel yang bisa diukur secara langsung sehingga dia seringkali menjadi penyusun variabel laten. Contoh variabel Manifest adalah tinggi badan, berat badan, dan suhu.
  • 23.
  • 24.
  • 25.
  • 26. Standardized Coefficients B Std. Error Beta (Constant) 2.705 0.905 2.988 0.020 X1 0.323 0.237 0.437 1.360 0.216 X2 -0.045 0.055 -0.264 -0.820 0.439 a. Dependent Variable: Y Coefficientsa Model Unstandardized Coefficients t Sig. 1
  • 27. Standardized Coefficients B Std. Error Beta (Constant) 2.364 0.787 3.002 0.017 X1 0.364 0.227 0.492 1.600 0.148 Standardized Coefficients B Std. Error Beta (Constant) 3.873 0.301 12.870 0.000 X2 -0.061 0.056 -0.355 -1.075 0.314 Sig. 1 a. Dependent Variable: Y Coefficients a Model Unstandardized Coefficients t Sig. 1 a. Dependent Variable: Y Coefficientsa Model Unstandardized Coefficients t
  • 28.
  • 29.
  • 30. Standardized Coefficients B Std. Error Beta (Constant) 8.264 2.676 3.088 0.018 X1 0.304 0.239 0.410 1.270 0.245 X2 -0.047 0.053 -0.289 -0.896 0.400 Standardized Coefficients B Std. Error Beta (Constant) 7.231 2.385 3.032 0.016 X1 0.343 0.232 0.463 1.478 0.178 Standardized Coefficients B Std. Error Beta (Constant) 11.501 0.849 13.553 0.000 X2 -0.059 0.054 -0.364 -1.107 0.301 1 a. Dependent Variable: Y 1 a. Dependent Variable: Y Coefficients a Model Unstandardized Coefficients t Sig. 1 a. Dependent Variable: Y Coefficientsa Model Unstandardized Coefficients t Sig. Coefficientsa Model Unstandardized Coefficients t Sig.
  • 31. Standardized Coefficients B Std. Error Beta (Constant) 8.264 2.676 3.088 0.018 X1 0.304 0.239 0.410 1.270 0.245 X2 -0.047 0.053 -0.289 -0.896 0.400 1 a. Dependent Variable: Y Coefficientsa Model Unstandardized Coefficients t Sig.
  • 32.
  • 33. R R Square Adjusted R Square Std. Error of the Estimate 1 .543a 0.295 0.094 1.34995 Model Summary Model a. Predictors: (Constant), X2, X1
  • 34.
  • 35.
  • 36. Standardiz ed Coefficient s B Std. Error Beta (Constant) 4.363 2.101 2.076 0.077 X1 -0.003 0.050 -0.025 -0.064 0.951 X2 0.036 0.036 0.388 0.997 0.352 Coefficientsa Model Unstandardized Coefficients t Sig. 1 a. Dependent Variable: Y
  • 37.
  • 38.
  • 39. R R Square Adjusted R Square Std. Error of the Estimate 1 .378 a 0.143 -0.102 1.12854 Model Summary Model a. Predictors: (Constant), X2, X1
  • 40. Standardiz ed Coefficient s B Std. Error Beta (Constant) 5.772 1.554 3.715 0.006 X1 0.019 0.045 0.145 0.415 0.689 Standardiz ed Coefficient s B Std. Error Beta (Constant) 4.315 1.840 2.345 0.047 X2 0.035 0.030 0.377 1.152 0.283 Standardiz ed Coefficient s B Std. Error Beta (Constant) 4.363 2.101 2.076 0.077 X1 -0.003 0.050 -0.025 -0.064 0.951 X2 0.036 0.036 0.388 0.997 0.352 Coefficients a Model Unstandardized Coefficients t Sig. 1 a. Dependent Variable: Y 1 a. Dependent Variable: Y 1 a. Dependent Variable: Y Coefficients a Model Unstandardized Coefficients t Sig. Coefficientsa Model Unstandardized Coefficients t Sig.
  • 41.
  • 42.
  • 43. b = xy/x^2 = 0.611 a = Ybar - b(Xbar) = 39.63 MANUAL Standardize d Coefficients B Std. Error Beta (Constant) 39.635 15.405 2.573 0.033 X1 0.611 0.444 0.438 1.378 0.205 1 a. Dependent Variable: YX2 Coefficientsa Model Unstandardized Coefficients t Sig. b = xy/x^2 = 0.438 a = Ybar - b(Xbar) = 0.00 Standardized Unstandardized