© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.
@ A
,
.
• : : : : N
• : I LP MF D N G
• & A , : :
• , : :
• :
. .
) (
•
,
•
•
5 1 &&
( 5 )
• E )
• C -- ( )
- )
• ) )
) )
9 13 % 5
-
( 2
• , , 3
P B D
• S I
W M
- ) 1,
0
1) 0 (/
• ,
• '
2 1 5 5
43 , 2 1
• 5
6 : 7 2
•
% %
• 0 1 %
•
5 0 43
) 2 1 (
Transforming Industrial Processes with Deep Learning (MAC301),
AWS re:Invent 2016
https://www.youtube.com/watch?v=AHUaor0odh4
ArrivalImage
Tower
( )
ArrivalImage
Tower
Departure Image
Tower
ArrivalImage
Tower
Departure Image
Tower
-
-
•
•
•
Krizhevsky’s CNN
CIFAR CNN
Best Hand-
Engineered
Model
-
Original image Activation map Binarymap
2.0
1.0
Google
Net
Conv
Conv
(3*3)
Avg
Pool
3*3
1024 channels
:
•
3
S
A
. / . -
. / / .
-
2 7
•
•
1 ) (
0 6
-
12 -.0 , 2
• ,
•
7
( ) 8
( https://www.amazon.com/b?node=16008589011
Active Customers
Up Nearly 5X
Tens of Millions of
Alexa-Enabled Devices
,0 0
+
Alexa Voice
Service
+
5 2
Alexa Skills
Kit
https://github.com/alexa/alexa-avs-
sample-app/wiki/Raspberry-Pi
https://echosim.io
Deep Learning in Alexa (MAC202), AWS re:Invent 2016
https://www.youtube.com/watch?v=TYRckcVm4WE
S A
8 B
2 0 M3
S E
Corpus size
20K+ hours
GPUs - g2.2xlarge
B A G P
U C B S
Distributed SGD
0
100,000
200,000
300,000
400,000
500,000
600,000
0 10 20 30 40 50 60 70 80
Framespersecond
Number of GPU workers
DNN training speed
Strom, Nikko. "Scalable Distributed DNN Training using Commodity GPU Cloud Computing." INTERSPEECH. Vol. 7. 2015.
1
4.75
8.5
12.25
16
1 4.75 8.5 12.25 16
Speedup(x)
# GPUs
Resnet 152
Inceptin V3
Alexnet
Ideal
P2.16xlarge (8 Nvidia Tesla K80 - 16 GPUs)
Synchronous SGD (Stochastic Gradient Descent)
91%
Efficiency
88%
Efficiency
16x P2.16xlarge by AWS CloudFormation
Mounted on Amazon EFS
# GPUs
## train
num_gpus = 4
gpus = [mx.gpu(i) for i in range(num_gpus)]
model = mx.model.FeedForward(
ctx = gpus,
symbol = softmax,
num_round = 20,
learning_rate = 0.01,
momentum = 0.9,
wd = 0.00001)
model.fit(X = train, eval_data = val,
batch_end_callback =
mx.callback.Speedometer(batch_size=batch_size))
http://gluon.mxnet.io
-
• ,W NTca I
• ( P C W d MS
K H b
• ) A ) A A
A X
• A ,C C X
NEW!
• A Kumar, et al, Just ASK: Building an Architecture for Extensible Self-Service Spoken Language Understanding,
https://arxiv.org/abs/1711.00549
• R Maas, et al, Domain-Specific Utterance End-Point Detection for Speech Recognition - Proc. Interspeech 2017,
http://www.isca-speech.org/archive/Interspeech_2017/pdfs/1673.PDF
• B King et al, Robust Speech Recognition Via Anchor Word Representations - Proc. Interspeech 2017,
http://www.isca-speech.org/archive/Interspeech_2017/pdfs/1570.PDF
• A Kumar et al, Zero-shot learning across heterogeneous overlapping domains - Proc. Interspeech 2017,
http://www.isca-speech.org/archive/Interspeech_2017/pdfs/0516.PDF
• M Sun et al, Max-pooling loss training of long short-term memory networks for small-footprint keyword spotting,
Spoken Language Technology Workshop (SLT), 2016 IEEE
• F Ladhak et al, LatticeRnn: Recurrent Neural Networks Over Lattices - Proc. Interspeech 2016, http://www.isca-
speech.org/archive/Interspeech_2016/pdfs/1583.PDF
• S Panchapagesan et al, Multi-Task Learning and Weighted Cross-Entropy for DNN-Based Keyword Spotting -
Proc. Interspeech 2016, http://www.isca-speech.org/archive/Interspeech_2016/pdfs/1485.PDF
• R Maas et al, Anchored Speech Detection - Proc. Interspeech 2016, http://www.isca-
speech.org/archive/Interspeech_2016/pdfs/1346.PDF
• M Sun et al, Model Shrinking for Embedded Keyword Spotting, 2015 IEEE 14th International Conference on
Machine Learning and Applications (ICMLA)
• N Strom, Scalable distributed DNN training using commodity GPU cloud computing, Annual Conference of the
International Speech Communication Association 2015, http://www.isca-
speech.org/archive/interspeech_2015/papers/i15_1488.pdf
NEW!
“Alexa, start the meeting.”
“Alexa, dial 555-8000.”
“Alexa, lower the blinds.”
“Alexa, ask Salesforce which
big deals closed today.”
44.1%
7.7%
3.0%
2.3%
1.0%
1.4%
0.7%
2.2%
0.5%
0.9%
4 ) 0
2 1 % 37
% ( 2 8
2012 2013 2015 20172014 20162008 2009 2010 2011
516
24 48 61 82
159
280
722
1,017
LAUNCHES
1,300+
Most robust, fully featured technology infrastructure platform
- -
FRAMEWORKS AND INTERFACES
AWS DEEP LEARNING AMI
Apache MXNet TensorFlowCaffe2 Torch KerasCNTK PyTorch GluonTheano
PLATFORM SERVICES
VISION
AWS DeepLensAmazon SageMaker
LANGUAGE
Amazon Rekognition Amazon Polly Amazon Lex
Amazon Rekognition Video Amazon Transcribe Amazon Comprehend
Alexa for Business
VR/AR
Amazon Sumerian
APPLICATION SERVICES
Amazon Machine Learning Amazon EMR & SparkMechanical Turk
INSTANCES
GPU (G2/P2/P3) CPU (C5) FPGA (F1)
Amazon Translate
F R A M E W O R K S A N D I N T E R FA C E S
NVIDIA
Tesla V100 GPUs
P3 1 Petaflop of compute
NVLink 2.0
5,120 Tensor cores
128GB of memory
~14X faster than P2
P3 Instance Deep Learning AMI Frameworks
PLATFORM SERVICES
VISION LANGUAGE VR/IR
APPLICATION SERVICE
AWS DeepLensAmazon SageMaker Amazon Machine Learning Amazon EMR & SparkMechanical Turk
AWS DEEP LEARNING AMI
Apache MXNet TensorFlowCaffe2 Torch KerasCNTK PyTorch GluonTheano
INSTANCES
GPU (G2/P2/P3) CPU (C5) FPGA (F1)
2 0 3
p3.2xlarge
= $5 per hour
p3.2xlarge x 20
= $100 per hour
) ( 1 20
Spot Instances (75% ↓)
= $30 per hour
3
$aws ec2-run-instances ami-b232d0db
--instance-count 20
--instance-type p3.2xlarge
--region us-east-1
$aws ec2-stop-instances
i-10a64379 i-10a64280 ...
CUSTOMERS RUNNING MACHINE
LEARNING ON AWS TODAY
(
)
!
H J
.
31
N
31
, - N
31 2
, -
, -
-
NEW!
FRAMEWORKS AND INTERFACES
AWS DEEP LEARNING AMI
Apache MXNet TensorFlowCaffe2 Torch KerasCNTK PyTorch GluonTheano
PLATFORM SERVICES
VISION
AWS DeepLensAmazon SageMaker
LANGUAGE
Amazon Rekognition Amazon Polly Amazon Lex
Amazon Rekognition Video Amazon Transcribe Amazon Comprehend
Alexa for Business
VR/AR
Amazon Sumerian
APPLICATION SERVICES
Amazon Machine Learning Amazon EMR & SparkMechanical Turk
INSTANCES
GPU (G2/P2/P3) CPU (C5) FPGA (F1)
Amazon Translate
C A D
,65 .88 387 9 ,41
g g
2 8 a g C
55 ES
2 8 re
t D
J t M
Ip i J
D L J n
2 8 g g
,65 y a 2 8 D
D W L J n
2 +
2
2 2
H D t t A u H
Discrete Classification,
Regression
Linear Learner Supervised
XGBoost Algorithm Supervised
Discrete Recommendations Factorization Machines Supervised
Image Classification Image Classification Algorithm Supervised, CNN
Neural Machine Translation Sequence to Sequence Supervised, seq2seq
Time-series Prediction DeepAR Supervised, RNN
Discrete Groupings K-Means Algorithm Unsupervised
Dimensionality Reduction PCA (Principal Component Analysis) Unsupervised
Topic Determination Latent Dirichlet Allocation (LDA) Unsupervised
Neural Topic Model (NTM) Unsupervised,
Neural Network Based
CA
“With Amazon SageMaker, we can accelerate our Artificial Intelligence
initiatives at scale by building and deploying our algorithms on the
platform. We will create novel large-scale machine learning and AI
algorithms and deploy them on this platform to solve complex problems
that can power prosperity for our customers."
- Ashok Srivastava, Chief Data Officer, Intuit
Mdt h
z r bg S
Yo
z
2
U k$ nw
c a$ aW w
( e s s
aW p LS
0C K 7 5 B
c 097 4 C m
10
MIN
NEW!
HD video camera
Custom-designed
deep learning
inference engine
Micro-SD
Mini-HDMI
USB
USB
Reset
Audio out
Power
• Intel Atom Processor
• Intel Gen9 graphics
• Ubuntu OS- 16.04 LTS
• 100 GFLOPS performance
• Dual band Wi-Fi
• 8 GB RAM
• 16 GB Storage (eMMC)
• 32 GB SD card
n P ) .
A / C K C 1 ,: 23
• 4 MP camera with MJPEG
• H.264 encoding at 1080p
resolution
• 2 USB ports
• Micro HDMI
• Audio out
• AWS Greengrass
• clDNN Optimized for MXNet
FRAMEWORKS AND INTERFACES
AWS DEEP LEARNING AMI
Apache MXNet TensorFlowCaffe2 Torch KerasCNTK PyTorch GluonTheano
PLATFORM SERVICES
AWS DeepLensAmazon SageMaker Amazon Machine Learning Amazon EMR & SparkMechanical Turk
INSTANCES
GPU (G2/P2/P3) CPU (C5) FPGA (F1)
VISION LANGUAGE
Amazon Rekognition
Image
Amazon
Polly
Amazon
Lex
Amazon Rekognition
Video
Amazon
Transcribe
Amazon
Comprehend
Alexa for
Business
VR/AR
Amazon
Sumerian
APPLICATION SERVICES
Amazon
Translate
• L B A M 2
• ,
,
?
,
2
.4
4
3
3
1
43
2, 43
1
.
) 4A
d
) 4A
m
I
f
W
TRg
TRg M
a n o
e ck
i
L
à i lb
TRg P o S
(1 2 352
( 2
( 2
A
( 2
C
(1
( 2
2A
( 2
2 2A
( 2
2 4 3
( 2 2 2
AWS ML Customers
APPLICATION SERVICES
Amazon Lex
Amazon Polly
Amazon Comprehend
Amazon Translate
Amazon Transcribe
Amazon Rekognition Image
Amazon Rekognition Video
PLATFORM SERVICES
Amazon SageMaker AWS DeepLens
FRAMEWORKS AND INTERFACES
AWS Deep Learning AMI
Apache MXNet
Caffe2
CNTK
PyTorch
TensorFlow
Theano
Torch
Gluon
Keras
AWS ML Platform
DATA LAKE STORAGE
Amazon S3
SECURITY
Access Control
Encryption
COMPUTE
Powerful GPU and CPU Instances
ANALYTICS
Amazon Athena
Amazon Redshift
and Redshift Spectrum
Amazon EMR
(Spark, Hive, Presto, Pig)
AWS Glue
Amazon Kinesis
Amazon QuickSight
Amazon Macie
AWS Organizations
AWS Cloud Platform
1 1 7
• FC S TF ITTQS BWS BNBZP DPN LP NBDI F MFB
• 1FFQ 6FB .7 ITTQS BWS BNBZP DPN LP NBDI F MFB BN S
• 7?8FT ITTQS BWS BNBZP DPN LP NX FT
• F SP 2MPW ITTQS BWS BNBZP DPN LP TF SP GMPW
1 7 017
• . F F T 7BDI F 6FB 7 0P
• ITTQS WWWYPUTUCF DPN QMBYM ST-M ST 96I AQ ZULFX 8D K /CN K U QU
• . F F T 7BDI F 6FB FSS P S
• ITTQS WWWYPUTUCF DPN QMBYM ST-M ST 96I AQ ZULF =0IA QL 8WQI:N
7 1 7 21 1 1
• FC S TF ITTQS WWWB G P T F S DPN
• M FS ITTQ WWWSM FSIB F FT . 2 P T F S Q FSF TBT P S
© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

아마존의 딥러닝 기술 활용 사례 - 윤석찬 (AWS 테크니컬 에반젤리스트)

  • 1.
    © 2018, AmazonWeb Services, Inc. or its Affiliates. All rights reserved. @ A ,
  • 2.
    . • : :: : N • : I LP MF D N G • & A , : : • , : : • :
  • 3.
  • 4.
  • 5.
    ( 5 ) •E ) • C -- ( ) - ) • ) ) ) ) 9 13 % 5
  • 6.
    - ( 2 • ,, 3 P B D • S I W M - ) 1, 0
  • 7.
    1) 0 (/ •, • ' 2 1 5 5
  • 8.
    43 , 21 • 5 6 : 7 2 • % % • 0 1 % • 5 0 43 ) 2 1 (
  • 10.
    Transforming Industrial Processeswith Deep Learning (MAC301), AWS re:Invent 2016 https://www.youtube.com/watch?v=AHUaor0odh4
  • 11.
  • 13.
  • 14.
  • 15.
    - Original image Activationmap Binarymap 2.0 1.0 Google Net Conv Conv (3*3) Avg Pool 3*3 1024 channels
  • 16.
  • 17.
  • 18.
    - 12 -.0 ,2 • , • 7 ( ) 8 ( https://www.amazon.com/b?node=16008589011
  • 19.
    Active Customers Up Nearly5X Tens of Millions of Alexa-Enabled Devices
  • 20.
  • 21.
  • 22.
    Deep Learning inAlexa (MAC202), AWS re:Invent 2016 https://www.youtube.com/watch?v=TYRckcVm4WE
  • 23.
    S A 8 B 20 M3 S E Corpus size 20K+ hours GPUs - g2.2xlarge B A G P U C B S Distributed SGD
  • 24.
    0 100,000 200,000 300,000 400,000 500,000 600,000 0 10 2030 40 50 60 70 80 Framespersecond Number of GPU workers DNN training speed Strom, Nikko. "Scalable Distributed DNN Training using Commodity GPU Cloud Computing." INTERSPEECH. Vol. 7. 2015.
  • 25.
    1 4.75 8.5 12.25 16 1 4.75 8.512.25 16 Speedup(x) # GPUs Resnet 152 Inceptin V3 Alexnet Ideal P2.16xlarge (8 Nvidia Tesla K80 - 16 GPUs) Synchronous SGD (Stochastic Gradient Descent) 91% Efficiency 88% Efficiency 16x P2.16xlarge by AWS CloudFormation Mounted on Amazon EFS # GPUs
  • 26.
    ## train num_gpus =4 gpus = [mx.gpu(i) for i in range(num_gpus)] model = mx.model.FeedForward( ctx = gpus, symbol = softmax, num_round = 20, learning_rate = 0.01, momentum = 0.9, wd = 0.00001) model.fit(X = train, eval_data = val, batch_end_callback = mx.callback.Speedometer(batch_size=batch_size))
  • 27.
    http://gluon.mxnet.io - • ,W NTcaI • ( P C W d MS K H b • ) A ) A A A X • A ,C C X NEW!
  • 28.
    • A Kumar,et al, Just ASK: Building an Architecture for Extensible Self-Service Spoken Language Understanding, https://arxiv.org/abs/1711.00549 • R Maas, et al, Domain-Specific Utterance End-Point Detection for Speech Recognition - Proc. Interspeech 2017, http://www.isca-speech.org/archive/Interspeech_2017/pdfs/1673.PDF • B King et al, Robust Speech Recognition Via Anchor Word Representations - Proc. Interspeech 2017, http://www.isca-speech.org/archive/Interspeech_2017/pdfs/1570.PDF • A Kumar et al, Zero-shot learning across heterogeneous overlapping domains - Proc. Interspeech 2017, http://www.isca-speech.org/archive/Interspeech_2017/pdfs/0516.PDF • M Sun et al, Max-pooling loss training of long short-term memory networks for small-footprint keyword spotting, Spoken Language Technology Workshop (SLT), 2016 IEEE • F Ladhak et al, LatticeRnn: Recurrent Neural Networks Over Lattices - Proc. Interspeech 2016, http://www.isca- speech.org/archive/Interspeech_2016/pdfs/1583.PDF • S Panchapagesan et al, Multi-Task Learning and Weighted Cross-Entropy for DNN-Based Keyword Spotting - Proc. Interspeech 2016, http://www.isca-speech.org/archive/Interspeech_2016/pdfs/1485.PDF • R Maas et al, Anchored Speech Detection - Proc. Interspeech 2016, http://www.isca- speech.org/archive/Interspeech_2016/pdfs/1346.PDF • M Sun et al, Model Shrinking for Embedded Keyword Spotting, 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA) • N Strom, Scalable distributed DNN training using commodity GPU cloud computing, Annual Conference of the International Speech Communication Association 2015, http://www.isca- speech.org/archive/interspeech_2015/papers/i15_1488.pdf
  • 29.
    NEW! “Alexa, start themeeting.” “Alexa, dial 555-8000.” “Alexa, lower the blinds.” “Alexa, ask Salesforce which big deals closed today.”
  • 31.
  • 32.
    2012 2013 201520172014 20162008 2009 2010 2011 516 24 48 61 82 159 280 722 1,017 LAUNCHES 1,300+
  • 34.
    Most robust, fullyfeatured technology infrastructure platform
  • 35.
    - - FRAMEWORKS ANDINTERFACES AWS DEEP LEARNING AMI Apache MXNet TensorFlowCaffe2 Torch KerasCNTK PyTorch GluonTheano PLATFORM SERVICES VISION AWS DeepLensAmazon SageMaker LANGUAGE Amazon Rekognition Amazon Polly Amazon Lex Amazon Rekognition Video Amazon Transcribe Amazon Comprehend Alexa for Business VR/AR Amazon Sumerian APPLICATION SERVICES Amazon Machine Learning Amazon EMR & SparkMechanical Turk INSTANCES GPU (G2/P2/P3) CPU (C5) FPGA (F1) Amazon Translate
  • 36.
    F R AM E W O R K S A N D I N T E R FA C E S NVIDIA Tesla V100 GPUs P3 1 Petaflop of compute NVLink 2.0 5,120 Tensor cores 128GB of memory ~14X faster than P2 P3 Instance Deep Learning AMI Frameworks PLATFORM SERVICES VISION LANGUAGE VR/IR APPLICATION SERVICE AWS DeepLensAmazon SageMaker Amazon Machine Learning Amazon EMR & SparkMechanical Turk AWS DEEP LEARNING AMI Apache MXNet TensorFlowCaffe2 Torch KerasCNTK PyTorch GluonTheano INSTANCES GPU (G2/P2/P3) CPU (C5) FPGA (F1)
  • 37.
    2 0 3 p3.2xlarge =$5 per hour p3.2xlarge x 20 = $100 per hour ) ( 1 20
  • 38.
    Spot Instances (75%↓) = $30 per hour
  • 39.
    3 $aws ec2-run-instances ami-b232d0db --instance-count20 --instance-type p3.2xlarge --region us-east-1 $aws ec2-stop-instances i-10a64379 i-10a64280 ...
  • 40.
  • 41.
  • 42.
    H J . 31 N 31 , -N 31 2 , - , - - NEW!
  • 43.
    FRAMEWORKS AND INTERFACES AWSDEEP LEARNING AMI Apache MXNet TensorFlowCaffe2 Torch KerasCNTK PyTorch GluonTheano PLATFORM SERVICES VISION AWS DeepLensAmazon SageMaker LANGUAGE Amazon Rekognition Amazon Polly Amazon Lex Amazon Rekognition Video Amazon Transcribe Amazon Comprehend Alexa for Business VR/AR Amazon Sumerian APPLICATION SERVICES Amazon Machine Learning Amazon EMR & SparkMechanical Turk INSTANCES GPU (G2/P2/P3) CPU (C5) FPGA (F1) Amazon Translate
  • 44.
    C A D ,65.88 387 9 ,41 g g 2 8 a g C 55 ES 2 8 re t D J t M Ip i J D L J n 2 8 g g ,65 y a 2 8 D D W L J n 2 + 2 2 2 H D t t A u H Discrete Classification, Regression Linear Learner Supervised XGBoost Algorithm Supervised Discrete Recommendations Factorization Machines Supervised Image Classification Image Classification Algorithm Supervised, CNN Neural Machine Translation Sequence to Sequence Supervised, seq2seq Time-series Prediction DeepAR Supervised, RNN Discrete Groupings K-Means Algorithm Unsupervised Dimensionality Reduction PCA (Principal Component Analysis) Unsupervised Topic Determination Latent Dirichlet Allocation (LDA) Unsupervised Neural Topic Model (NTM) Unsupervised, Neural Network Based
  • 45.
    CA “With Amazon SageMaker,we can accelerate our Artificial Intelligence initiatives at scale by building and deploying our algorithms on the platform. We will create novel large-scale machine learning and AI algorithms and deploy them on this platform to solve complex problems that can power prosperity for our customers." - Ashok Srivastava, Chief Data Officer, Intuit
  • 46.
    Mdt h z rbg S Yo z 2 U k$ nw c a$ aW w ( e s s aW p LS 0C K 7 5 B c 097 4 C m 10 MIN NEW! HD video camera Custom-designed deep learning inference engine Micro-SD Mini-HDMI USB USB Reset Audio out Power • Intel Atom Processor • Intel Gen9 graphics • Ubuntu OS- 16.04 LTS • 100 GFLOPS performance • Dual band Wi-Fi • 8 GB RAM • 16 GB Storage (eMMC) • 32 GB SD card n P ) . A / C K C 1 ,: 23 • 4 MP camera with MJPEG • H.264 encoding at 1080p resolution • 2 USB ports • Micro HDMI • Audio out • AWS Greengrass • clDNN Optimized for MXNet
  • 47.
    FRAMEWORKS AND INTERFACES AWSDEEP LEARNING AMI Apache MXNet TensorFlowCaffe2 Torch KerasCNTK PyTorch GluonTheano PLATFORM SERVICES AWS DeepLensAmazon SageMaker Amazon Machine Learning Amazon EMR & SparkMechanical Turk INSTANCES GPU (G2/P2/P3) CPU (C5) FPGA (F1) VISION LANGUAGE Amazon Rekognition Image Amazon Polly Amazon Lex Amazon Rekognition Video Amazon Transcribe Amazon Comprehend Alexa for Business VR/AR Amazon Sumerian APPLICATION SERVICES Amazon Translate
  • 48.
    • L BA M 2 • ,
  • 49.
  • 50.
  • 51.
  • 52.
    ) 4A d ) 4A m I f W TRg TRgM a n o e ck i L à i lb TRg P o S (1 2 352 ( 2 ( 2 A ( 2 C (1 ( 2 2A ( 2 2 2A ( 2 2 4 3 ( 2 2 2
  • 53.
    AWS ML Customers APPLICATIONSERVICES Amazon Lex Amazon Polly Amazon Comprehend Amazon Translate Amazon Transcribe Amazon Rekognition Image Amazon Rekognition Video PLATFORM SERVICES Amazon SageMaker AWS DeepLens FRAMEWORKS AND INTERFACES AWS Deep Learning AMI Apache MXNet Caffe2 CNTK PyTorch TensorFlow Theano Torch Gluon Keras AWS ML Platform DATA LAKE STORAGE Amazon S3 SECURITY Access Control Encryption COMPUTE Powerful GPU and CPU Instances ANALYTICS Amazon Athena Amazon Redshift and Redshift Spectrum Amazon EMR (Spark, Hive, Presto, Pig) AWS Glue Amazon Kinesis Amazon QuickSight Amazon Macie AWS Organizations AWS Cloud Platform
  • 54.
    1 1 7 •FC S TF ITTQS BWS BNBZP DPN LP NBDI F MFB • 1FFQ 6FB .7 ITTQS BWS BNBZP DPN LP NBDI F MFB BN S • 7?8FT ITTQS BWS BNBZP DPN LP NX FT • F SP 2MPW ITTQS BWS BNBZP DPN LP TF SP GMPW 1 7 017 • . F F T 7BDI F 6FB 7 0P • ITTQS WWWYPUTUCF DPN QMBYM ST-M ST 96I AQ ZULFX 8D K /CN K U QU • . F F T 7BDI F 6FB FSS P S • ITTQS WWWYPUTUCF DPN QMBYM ST-M ST 96I AQ ZULF =0IA QL 8WQI:N 7 1 7 21 1 1 • FC S TF ITTQS WWWB G P T F S DPN • M FS ITTQ WWWSM FSIB F FT . 2 P T F S Q FSF TBT P S
  • 55.
    © 2018, AmazonWeb Services, Inc. or its Affiliates. All rights reserved.