STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
PLASTIC ANALYSIS
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
1.- ELASTIC ANALYSIS OF GRIDS
1.1.- COMPATIBILITY METHOD
1.2- SLOPE DEFLECTION METHOD
2.- PLASTIC ANALYSIS OF STRUCTURES
2.1- PLASTIC ANALYSIS OF BEAMS
2.2- PLASTIC ANALYSIS OF FRAMES
2.2.1- KINEMATIC METHOD
2.2.2- INCREMENTAL ANALYSIS. HINGE BY HINGE METHOD
3.- INTRODUCTION TO SECOND ORDER ANALYSIS OF STRUCTURES
2.3- PLASTIC ANALYSIS OF SLABS.
FEBRUARY
MARCH
APRIL
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
PLASTIC ANALYSIS of beams
Specially useful to calculate one way slabs small continuous beams
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
ELASTIC BEHAVIOUR: The original position is recovered
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
PLASTIC BEHAVIOUR: The original position is NOT recovered
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
Force per unit area
Displacement per unit area
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
https://www.youtube.com/watch?v=0qGrbZPeQew
https://www.youtube.com/watch?v=WSRqJdT2COE
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
ALLOWABLE STRESS?
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
ELASTIC ANALYSIS PLASTIC ANALYSIS
≠ RESULTS*
Part of the structure
material is working beyond
the plastic limit
The material should be
ductile enough to have a
plastic behaviour
All the structure material is
working below the plastic
limit
The material can be fragile
or ductile to apply elastic
analysis
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
ELASTIC ANALYSIS PLASTIC ANALYSIS
≠ RESULTS*
Part of the structure
material is working beyond
the plastic limit
The structure should be
ductile enough to have a
plastic behaviour
All the structure material is
working below the plastic
limit
The structure can be
fragile or ductile to apply
elastic analysis
SAFER?
SAFER
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS
ELASTIC ANALYSIS PLASTIC ANALYSIS
≠ RESULTS*
Part of the structure
material is working beyond
the plastic limit
The material should be
ductile enough to have a
plastic behaviour
All the structure material is
working below the plastic
limit
The material can be fragile
or ductile to apply elastic
analysis
CHEAPER?
SAFER CHEAPER
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
ELASTIC ANALYSIS PLASTIC ANALYSIS
≠ RESULTS*
Part of the structure
material is working beyond
the plastic limit
The material should be
ductile enough to have a
plastic behaviour
All the structure material is
working below the plastic
limit
The material can be fragile
or ductile to apply elastic
analysis
SAFER CHEAPER
Superposition Principle
cannot be applied
Superposition Principle can
be applied
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
A = 200 mm2
E = 210 kN/mm2
fy = 260 MPa (N/mm2)
Maximun load supported by each cable Nmax = fy x A = 52000 N = 52 kN
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
ELASTIC ANALYSIS? PLASTIC ANALYSIS?
A = 200 mm2
E = 210 kN/mm2
fy = 260 MPa (N/mm2)
Nmax = 52 kN
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS
ELASTIC ANALYSIS
Compatibility Method: v1 = v2 = v3
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
ELASTIC ANALYSIS
v1 = ∆ L 1 = N 1 x L 1 / EA = v2 = ∆ L 2 = N 2 x L 2 / EA
Symmetry N1 = N3
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
ELASTIC ANALYSIS
N2 = 2 N1
Symmetry N1 = N3
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
ELASTIC ANALYSIS
As Nmax = 52 kN , N2 = 52 kN and N1 = 26 kN
Symmetry N1 = N3
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
ELASTIC ANALYSIS P = 104 kN
As Nmax = 52 kN , N2 = 52 kN and N1 = 26 kN
Symmetry N1 = N3
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
PLASTIC ANALYSIS?
A = 200 mm2
E = 210 kN/mm2
fy = 260 MPa (N/mm2)
Nmax = 52 kN
N1 = N2 = N3
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
PLASTIC ANALYSIS?
A = 200 mm2
E = 210 kN/mm2
fy = 260 MPa (N/mm2)
Nmax = 52 kN
N1 = N2 = N3 = 52 kN
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
PLASTIC ANALYSIS P = 156 kN
A = 200 mm2
E = 210 kN/mm2
fy = 260 MPa (N/mm2)
Nmax = 52 kN
N1 = N2 = N3 = 52 kN
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
ELASTIC ANALYSIS PLASTIC ANALYSIS
A = 200 mm2
E = 210 kN/mm2
fy = 260 MPa (N/mm2)
P = 104 kN Pu = 156 kN
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
SAFETY FACTOR? 156 / 104 = 1,5
A = 200 mm2
E = 210 kN/mm2
fy = 260 MPa (N/mm2)
Nmax = 52 kN
P = 104 kN Pu = 156 kN
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
IF L = 3 m
DL = 26 x 3 /EA DL = 52 x 3 /EA
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
CONCLUSIONS?
Plastic analysis:
tells us that the same system can resist more load
Plastic analysis:
bigger displacements
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
PLASTIC ANALYSIS in a cross section
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
PLASTIC ANALYSIS in a cross section
Neutral axis
Fibers in compression
Fibers in tension
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
PLASTIC ANALYSIS in a cross section
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
PLASTIC ANALYSIS in a cross section
Elastic section modulus
We =
𝑏 𝑥 ℎ2
6
Plastic section modulus
Wp =
𝑏 𝑥 ℎ2
4
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
SHAPE FACTOR
PLASTIC ANALYSIS in a cross section
Elastic section modulus / Plastic section modulus
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
PLASTIC ANALYSIS in SIMPLE BEAMS
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
PLASTIC ANALYSIS in SIMPLE BEAMS
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
PLASTIC ANALYSIS in SIMPLE BEAMS
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
PLASTIC ANALYSIS in SIMPLE BEAMS
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
PLASTIC ANALYSIS in SIMPLE BEAMS
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
PLASTIC ANALYSIS in CONTINOUS BEAMS
30 kN/ m
4 m 5 m 6 m
20 kN/ m
10 kN/ m
vano AB vano BC vano CD
A
B C
D
HIPÓTESIS1 considerando la carga dada, calcular el momento plástico mínimo necesario para construir toda la viga
3
HIPÓTESIS2 considerando que la viga se construye con un IPE240 (Mp = 105,1 cm ) determina la carga de rotura.
HIPÓTESIS3 considerando la carga dada y el perfil IPE240 determina el factor de seguridad de la viga.
3
(mínimo momento de diseño)
1.- DESIGNING PROCESS: Minimum plastic moment capacity
required to build the beam (if we use a smaller profile, the beam
breaks)
2.- CHECKING PROCESS: Maximum load the beam can carry (if we
apply a higher load the beam breaks)
3.- SAFETY FACTOR
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
30 kN/ m
4 m 5 m 6 m
20 kN/ m
10 kN/ m
vano AB vano BC vano CD
A
B C
D
HIPÓTESIS1 considerando la carga dada, calcular el momento plástico mínimo necesario para construir toda la viga
3
HIPÓTESIS2 considerando que la viga se construye con un IPE240 (Mp = 105,1 cm ) determina la carga de rotura.
HIPÓTESIS3 considerando la carga dada y el perfil IPE240 determina el factor de seguridad de la viga.
3
(mínimo momento de diseño)
SPAN AB
SPAN BC
SPAN CD
Mp(AB) = q L2 / 11,67= 41,13 kNm
Mp(BC) = q L2 / 16= 20 x 25/16 = 31,25 kNm
Mp(CD) = q L2 / 11,67= 10 x 36/11,67 = 30,84 kNm
CAN WE TELL WHICH SPAN IS GOING TO FAIL FIRST?
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
2.- CHECKING PROCESS: Maximum load the beam can carry (if we
apply a higher load the beam breaks) (we know Wp, this is, the profile
capacity)
3.- SAFETY FACTOR (we know both the load and the profile
and the load value)
1.- DESIGNING PROCESS: Minimum plastic moment capacity
required to build the beam (if we use a smaller profile, the beam
breaks) (we know the load values)
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
1.- DESIGNING PROCESS: q = 20 kN/m P = 10 kN
Mp(AB) = q L2 / 16 + P L /8 = 45 + 7,5 = 52,5 kNm
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
1.- DESIGNING PROCESS: q = 20 kN/m P = 10 kN
Mp(BC) = q L2 / 16 = 20 kNm
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
1.- DESIGNING PROCESS: q = 20 kN/m P = 10 kN
¿Mp(CD)? Mp + (Mp+60)/2 = q L2 / 8 + P L /4 = 90 + 15 = 105
Mp(CD) = (210 – 60) / 3 = 50 kNm
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
1.- DESIGNING PROCESS: q = 20 kN/m P = 10 kN
Mp(D) = q v2 / 2 + P v = 40 + 20 = 60 kNm
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
1.- DESIGNING PROCESS: q = 20 kN/m P = 10 kN
Mp(AB) = q L2 / 16 + P L /8 = 45 + 7,5 = 52,5 kNm
Mp(BC) = q L2 / 16 = 20 kNm
Mp(D) = q v2 / 2 + P v = 40 + 20 = 60 kNm
¿Mp(CD)? Mp + (Mp+60)/2 = q L2 / 8 + P L /4 = 90 + 15 = 105
Mp(CD) = (210 – 60) / 3 = 50 kNm
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION
3.- SAFETY FACTOR if HEB300? Sx = 934 cm3 fy = 0,275 kN/mm2
DESIGNED Mp(D) = 60 kNm
Wp(HEB300) = 2 Sx = 1868 cm3
Mp (HEB300)= Wp x fy = 1868 x 0,275 = 513,7 kNm
Safety factor (or factor load) = 8,56
STRUCTURAL ANALYSIS II
PLASTIC ANALYSIS. INTRODUCTION

Ae2_21_3_plastic analysis_beams

  • 1.
    STRUCTURAL ANALYSIS II PLASTICANALYSIS. INTRODUCTION PLASTIC ANALYSIS
  • 2.
    STRUCTURAL ANALYSIS II PLASTICANALYSIS. INTRODUCTION 1.- ELASTIC ANALYSIS OF GRIDS 1.1.- COMPATIBILITY METHOD 1.2- SLOPE DEFLECTION METHOD 2.- PLASTIC ANALYSIS OF STRUCTURES 2.1- PLASTIC ANALYSIS OF BEAMS 2.2- PLASTIC ANALYSIS OF FRAMES 2.2.1- KINEMATIC METHOD 2.2.2- INCREMENTAL ANALYSIS. HINGE BY HINGE METHOD 3.- INTRODUCTION TO SECOND ORDER ANALYSIS OF STRUCTURES 2.3- PLASTIC ANALYSIS OF SLABS. FEBRUARY MARCH APRIL
  • 3.
    STRUCTURAL ANALYSIS II PLASTICANALYSIS. INTRODUCTION PLASTIC ANALYSIS of beams Specially useful to calculate one way slabs small continuous beams
  • 4.
    STRUCTURAL ANALYSIS II PLASTICANALYSIS. INTRODUCTION
  • 5.
    STRUCTURAL ANALYSIS II PLASTICANALYSIS. INTRODUCTION ELASTIC BEHAVIOUR: The original position is recovered
  • 6.
    STRUCTURAL ANALYSIS II PLASTICANALYSIS. INTRODUCTION PLASTIC BEHAVIOUR: The original position is NOT recovered
  • 7.
    STRUCTURAL ANALYSIS II PLASTICANALYSIS. INTRODUCTION Force per unit area Displacement per unit area
  • 8.
    STRUCTURAL ANALYSIS II PLASTICANALYSIS. INTRODUCTION https://www.youtube.com/watch?v=0qGrbZPeQew https://www.youtube.com/watch?v=WSRqJdT2COE
  • 9.
    STRUCTURAL ANALYSIS II PLASTICANALYSIS. INTRODUCTION ALLOWABLE STRESS?
  • 10.
    STRUCTURAL ANALYSIS II PLASTICANALYSIS. INTRODUCTION
  • 11.
    STRUCTURAL ANALYSIS II PLASTICANALYSIS. INTRODUCTION ELASTIC ANALYSIS PLASTIC ANALYSIS ≠ RESULTS* Part of the structure material is working beyond the plastic limit The material should be ductile enough to have a plastic behaviour All the structure material is working below the plastic limit The material can be fragile or ductile to apply elastic analysis
  • 12.
    STRUCTURAL ANALYSIS II PLASTICANALYSIS. INTRODUCTION ELASTIC ANALYSIS PLASTIC ANALYSIS ≠ RESULTS* Part of the structure material is working beyond the plastic limit The structure should be ductile enough to have a plastic behaviour All the structure material is working below the plastic limit The structure can be fragile or ductile to apply elastic analysis SAFER? SAFER
  • 13.
    STRUCTURAL ANALYSIS II PLASTICANALYSIS. INTRODUCTION STRUCTURAL ANALYSIS II PLASTIC ANALYSIS ELASTIC ANALYSIS PLASTIC ANALYSIS ≠ RESULTS* Part of the structure material is working beyond the plastic limit The material should be ductile enough to have a plastic behaviour All the structure material is working below the plastic limit The material can be fragile or ductile to apply elastic analysis CHEAPER? SAFER CHEAPER
  • 14.
    STRUCTURAL ANALYSIS II PLASTICANALYSIS. INTRODUCTION ELASTIC ANALYSIS PLASTIC ANALYSIS ≠ RESULTS* Part of the structure material is working beyond the plastic limit The material should be ductile enough to have a plastic behaviour All the structure material is working below the plastic limit The material can be fragile or ductile to apply elastic analysis SAFER CHEAPER Superposition Principle cannot be applied Superposition Principle can be applied
  • 15.
    STRUCTURAL ANALYSIS II PLASTICANALYSIS. INTRODUCTION A = 200 mm2 E = 210 kN/mm2 fy = 260 MPa (N/mm2) Maximun load supported by each cable Nmax = fy x A = 52000 N = 52 kN
  • 16.
    STRUCTURAL ANALYSIS II PLASTICANALYSIS. INTRODUCTION ELASTIC ANALYSIS? PLASTIC ANALYSIS? A = 200 mm2 E = 210 kN/mm2 fy = 260 MPa (N/mm2) Nmax = 52 kN
  • 17.
    STRUCTURAL ANALYSIS II PLASTICANALYSIS. INTRODUCTION STRUCTURAL ANALYSIS II PLASTIC ANALYSIS ELASTIC ANALYSIS Compatibility Method: v1 = v2 = v3
  • 18.
    STRUCTURAL ANALYSIS II PLASTICANALYSIS. INTRODUCTION ELASTIC ANALYSIS v1 = ∆ L 1 = N 1 x L 1 / EA = v2 = ∆ L 2 = N 2 x L 2 / EA Symmetry N1 = N3
  • 19.
    STRUCTURAL ANALYSIS II PLASTICANALYSIS. INTRODUCTION ELASTIC ANALYSIS N2 = 2 N1 Symmetry N1 = N3
  • 20.
    STRUCTURAL ANALYSIS II PLASTICANALYSIS. INTRODUCTION ELASTIC ANALYSIS As Nmax = 52 kN , N2 = 52 kN and N1 = 26 kN Symmetry N1 = N3
  • 21.
    STRUCTURAL ANALYSIS II PLASTICANALYSIS. INTRODUCTION ELASTIC ANALYSIS P = 104 kN As Nmax = 52 kN , N2 = 52 kN and N1 = 26 kN Symmetry N1 = N3
  • 22.
    STRUCTURAL ANALYSIS II PLASTICANALYSIS. INTRODUCTION PLASTIC ANALYSIS? A = 200 mm2 E = 210 kN/mm2 fy = 260 MPa (N/mm2) Nmax = 52 kN N1 = N2 = N3
  • 23.
    STRUCTURAL ANALYSIS II PLASTICANALYSIS. INTRODUCTION PLASTIC ANALYSIS? A = 200 mm2 E = 210 kN/mm2 fy = 260 MPa (N/mm2) Nmax = 52 kN N1 = N2 = N3 = 52 kN
  • 24.
    STRUCTURAL ANALYSIS II PLASTICANALYSIS. INTRODUCTION PLASTIC ANALYSIS P = 156 kN A = 200 mm2 E = 210 kN/mm2 fy = 260 MPa (N/mm2) Nmax = 52 kN N1 = N2 = N3 = 52 kN
  • 25.
    STRUCTURAL ANALYSIS II PLASTICANALYSIS. INTRODUCTION ELASTIC ANALYSIS PLASTIC ANALYSIS A = 200 mm2 E = 210 kN/mm2 fy = 260 MPa (N/mm2) P = 104 kN Pu = 156 kN
  • 26.
    STRUCTURAL ANALYSIS II PLASTICANALYSIS. INTRODUCTION SAFETY FACTOR? 156 / 104 = 1,5 A = 200 mm2 E = 210 kN/mm2 fy = 260 MPa (N/mm2) Nmax = 52 kN P = 104 kN Pu = 156 kN
  • 27.
    STRUCTURAL ANALYSIS II PLASTICANALYSIS. INTRODUCTION IF L = 3 m DL = 26 x 3 /EA DL = 52 x 3 /EA
  • 28.
    STRUCTURAL ANALYSIS II PLASTICANALYSIS. INTRODUCTION CONCLUSIONS? Plastic analysis: tells us that the same system can resist more load Plastic analysis: bigger displacements
  • 29.
    STRUCTURAL ANALYSIS II PLASTICANALYSIS. INTRODUCTION PLASTIC ANALYSIS in a cross section
  • 30.
    STRUCTURAL ANALYSIS II PLASTICANALYSIS. INTRODUCTION PLASTIC ANALYSIS in a cross section Neutral axis Fibers in compression Fibers in tension
  • 31.
    STRUCTURAL ANALYSIS II PLASTICANALYSIS. INTRODUCTION PLASTIC ANALYSIS in a cross section
  • 32.
    STRUCTURAL ANALYSIS II PLASTICANALYSIS. INTRODUCTION
  • 33.
    STRUCTURAL ANALYSIS II PLASTICANALYSIS. INTRODUCTION PLASTIC ANALYSIS in a cross section Elastic section modulus We = 𝑏 𝑥 ℎ2 6 Plastic section modulus Wp = 𝑏 𝑥 ℎ2 4
  • 34.
    STRUCTURAL ANALYSIS II PLASTICANALYSIS. INTRODUCTION SHAPE FACTOR PLASTIC ANALYSIS in a cross section Elastic section modulus / Plastic section modulus
  • 35.
    STRUCTURAL ANALYSIS II PLASTICANALYSIS. INTRODUCTION PLASTIC ANALYSIS in SIMPLE BEAMS
  • 36.
    STRUCTURAL ANALYSIS II PLASTICANALYSIS. INTRODUCTION PLASTIC ANALYSIS in SIMPLE BEAMS
  • 37.
    STRUCTURAL ANALYSIS II PLASTICANALYSIS. INTRODUCTION PLASTIC ANALYSIS in SIMPLE BEAMS
  • 38.
    STRUCTURAL ANALYSIS II PLASTICANALYSIS. INTRODUCTION PLASTIC ANALYSIS in SIMPLE BEAMS
  • 39.
    STRUCTURAL ANALYSIS II PLASTICANALYSIS. INTRODUCTION PLASTIC ANALYSIS in SIMPLE BEAMS
  • 40.
    STRUCTURAL ANALYSIS II PLASTICANALYSIS. INTRODUCTION PLASTIC ANALYSIS in CONTINOUS BEAMS 30 kN/ m 4 m 5 m 6 m 20 kN/ m 10 kN/ m vano AB vano BC vano CD A B C D HIPÓTESIS1 considerando la carga dada, calcular el momento plástico mínimo necesario para construir toda la viga 3 HIPÓTESIS2 considerando que la viga se construye con un IPE240 (Mp = 105,1 cm ) determina la carga de rotura. HIPÓTESIS3 considerando la carga dada y el perfil IPE240 determina el factor de seguridad de la viga. 3 (mínimo momento de diseño) 1.- DESIGNING PROCESS: Minimum plastic moment capacity required to build the beam (if we use a smaller profile, the beam breaks) 2.- CHECKING PROCESS: Maximum load the beam can carry (if we apply a higher load the beam breaks) 3.- SAFETY FACTOR
  • 41.
    STRUCTURAL ANALYSIS II PLASTICANALYSIS. INTRODUCTION 30 kN/ m 4 m 5 m 6 m 20 kN/ m 10 kN/ m vano AB vano BC vano CD A B C D HIPÓTESIS1 considerando la carga dada, calcular el momento plástico mínimo necesario para construir toda la viga 3 HIPÓTESIS2 considerando que la viga se construye con un IPE240 (Mp = 105,1 cm ) determina la carga de rotura. HIPÓTESIS3 considerando la carga dada y el perfil IPE240 determina el factor de seguridad de la viga. 3 (mínimo momento de diseño) SPAN AB SPAN BC SPAN CD Mp(AB) = q L2 / 11,67= 41,13 kNm Mp(BC) = q L2 / 16= 20 x 25/16 = 31,25 kNm Mp(CD) = q L2 / 11,67= 10 x 36/11,67 = 30,84 kNm CAN WE TELL WHICH SPAN IS GOING TO FAIL FIRST?
  • 42.
    STRUCTURAL ANALYSIS II PLASTICANALYSIS. INTRODUCTION 2.- CHECKING PROCESS: Maximum load the beam can carry (if we apply a higher load the beam breaks) (we know Wp, this is, the profile capacity) 3.- SAFETY FACTOR (we know both the load and the profile and the load value) 1.- DESIGNING PROCESS: Minimum plastic moment capacity required to build the beam (if we use a smaller profile, the beam breaks) (we know the load values)
  • 43.
    STRUCTURAL ANALYSIS II PLASTICANALYSIS. INTRODUCTION 1.- DESIGNING PROCESS: q = 20 kN/m P = 10 kN Mp(AB) = q L2 / 16 + P L /8 = 45 + 7,5 = 52,5 kNm
  • 44.
    STRUCTURAL ANALYSIS II PLASTICANALYSIS. INTRODUCTION 1.- DESIGNING PROCESS: q = 20 kN/m P = 10 kN Mp(BC) = q L2 / 16 = 20 kNm
  • 45.
    STRUCTURAL ANALYSIS II PLASTICANALYSIS. INTRODUCTION 1.- DESIGNING PROCESS: q = 20 kN/m P = 10 kN ¿Mp(CD)? Mp + (Mp+60)/2 = q L2 / 8 + P L /4 = 90 + 15 = 105 Mp(CD) = (210 – 60) / 3 = 50 kNm
  • 46.
    STRUCTURAL ANALYSIS II PLASTICANALYSIS. INTRODUCTION 1.- DESIGNING PROCESS: q = 20 kN/m P = 10 kN Mp(D) = q v2 / 2 + P v = 40 + 20 = 60 kNm
  • 47.
    STRUCTURAL ANALYSIS II PLASTICANALYSIS. INTRODUCTION 1.- DESIGNING PROCESS: q = 20 kN/m P = 10 kN Mp(AB) = q L2 / 16 + P L /8 = 45 + 7,5 = 52,5 kNm Mp(BC) = q L2 / 16 = 20 kNm Mp(D) = q v2 / 2 + P v = 40 + 20 = 60 kNm ¿Mp(CD)? Mp + (Mp+60)/2 = q L2 / 8 + P L /4 = 90 + 15 = 105 Mp(CD) = (210 – 60) / 3 = 50 kNm
  • 48.
    STRUCTURAL ANALYSIS II PLASTICANALYSIS. INTRODUCTION 3.- SAFETY FACTOR if HEB300? Sx = 934 cm3 fy = 0,275 kN/mm2 DESIGNED Mp(D) = 60 kNm Wp(HEB300) = 2 Sx = 1868 cm3 Mp (HEB300)= Wp x fy = 1868 x 0,275 = 513,7 kNm Safety factor (or factor load) = 8,56
  • 49.
    STRUCTURAL ANALYSIS II PLASTICANALYSIS. INTRODUCTION