SlideShare a Scribd company logo
Accommodating
clustered divergences in
phylogenetic inference
Jamie R. Oaks1,2
1Department of Biology, University of
Washington
2Department of Biological Sciences,
Auburn University
October 21, 2015
c 2007 Boris Kulikov boris-kulikov.blogspot.com
Clustered diversification Jamie Oaks – phyletica.org 1/27
Phylogenetics is rapidly
progressing as an endeavor
of statistical inference
c 2007 Boris Kulikov boris-kulikov.blogspot.com
Clustered diversification Jamie Oaks – phyletica.org 2/27
Phylogenetics is rapidly
progressing as an endeavor
of statistical inference
“Big data” present exciting
possibilities and
computational challenges
c 2007 Boris Kulikov boris-kulikov.blogspot.com
Clustered diversification Jamie Oaks – phyletica.org 2/27
Phylogenetics is rapidly
progressing as an endeavor
of statistical inference
“Big data” present exciting
possibilities and
computational challenges
Exciting opportunities to
develop new ways to study
biology in the light of
phylogeny
c 2007 Boris Kulikov boris-kulikov.blogspot.com
Clustered diversification Jamie Oaks – phyletica.org 2/27
Current state of phylogenetics
Clustered diversification Jamie Oaks – phyletica.org 3/27
Current state of phylogenetics
Assumption: Divergences are independent across the tree
Clustered diversification Jamie Oaks – phyletica.org 3/27
Current state of phylogenetics
Assumption: Divergences are independent across the tree
We know this assumption
is frequently violated
Clustered diversification Jamie Oaks – phyletica.org 3/27
Current state of phylogenetics
Assumption: Divergences are independent across the tree
We know this assumption
is frequently violated
Clustered diversification Jamie Oaks – phyletica.org 3/27
Current state of phylogenetics
Assumption: Divergences are independent across the tree
We know this assumption
is frequently violated
Why account for this
non-independence?
Clustered diversification Jamie Oaks – phyletica.org 3/27
Current state of phylogenetics
Assumption: Divergences are independent across the tree
We know this assumption
is frequently violated
Why account for this
non-independence?
1. Improve inference
Clustered diversification Jamie Oaks – phyletica.org 3/27
Current state of phylogenetics
Assumption: Divergences are independent across the tree
We know this assumption
is frequently violated
Why account for this
non-independence?
1. Improve inference
2. Provide a framework
for studying processes
of co-diversification
Clustered diversification Jamie Oaks – phyletica.org 3/27
Current state of phylogenetics
Assumption: Divergences are independent across the tree
We know this assumption
is frequently violated
Why account for this
non-independence?
1. Improve inference
2. Provide a framework
for studying processes
of co-diversification
This is a model-choice
problem
Clustered diversification Jamie Oaks – phyletica.org 3/27
Divergence model choice
τ1
T1
T2
T3
Clustered diversification Jamie Oaks – phyletica.org 4/27
Divergence model choice
τ1
T1
T2
T3
Clustered diversification Jamie Oaks – phyletica.org 4/27
Divergence model choice
τ2 τ1
T1
T2
T3
Clustered diversification Jamie Oaks – phyletica.org 4/27
Divergence model choice
τ1τ2
T1
T2
T3
Clustered diversification Jamie Oaks – phyletica.org 4/27
Divergence model choice
τ1τ2
T1
T2
T3
Clustered diversification Jamie Oaks – phyletica.org 4/27
Divergence model choice
τ3 τ1τ2
T1
T2
T3
Clustered diversification Jamie Oaks – phyletica.org 4/27
Inferring co-diversification
m1 m2 m3 m4 m5
τ1
T1
T2
T3
τ2 τ1
T1
T2
T3
τ1τ2
T1
T2
T3
τ1τ2
T1
T2
T3
τ3 τ1τ2
T1
T2
T3
J. R. Oaks et al. (2013). Evolution 67: 991–1010, J. R. Oaks (2014). BMC Evolutionary Biology 14: 150
Clustered diversification Jamie Oaks – phyletica.org 5/27
Inferring co-diversification
m1 m2 m3 m4 m5
τ1
T1
T2
T3
τ2 τ1
T1
T2
T3
τ1τ2
T1
T2
T3
τ1τ2
T1
T2
T3
τ3 τ1τ2
T1
T2
T3
We want to infer m and T given DNA sequence alignments X
J. R. Oaks et al. (2013). Evolution 67: 991–1010, J. R. Oaks (2014). BMC Evolutionary Biology 14: 150
Clustered diversification Jamie Oaks – phyletica.org 5/27
Inferring co-diversification
p(m1 | X) p(m2 | X) p(m3 | X) p(m4 | X) p(m5 | X)
τ1
T1
T2
T3
τ2 τ1
T1
T2
T3
τ1τ2
T1
T2
T3
τ1τ2
T1
T2
T3
τ3 τ1τ2
T1
T2
T3
We want to infer m and T given DNA sequence alignments X
J. R. Oaks et al. (2013). Evolution 67: 991–1010, J. R. Oaks (2014). BMC Evolutionary Biology 14: 150
Clustered diversification Jamie Oaks – phyletica.org 5/27
Inferring co-diversification
p(m1 | X) p(m2 | X) p(m3 | X) p(m4 | X) p(m5 | X)
τ1
T1
T2
T3
τ2 τ1
T1
T2
T3
τ1τ2
T1
T2
T3
τ1τ2
T1
T2
T3
τ3 τ1τ2
T1
T2
T3
We want to infer m and T given DNA sequence alignments X
p(mi | X) ∝ p(X | mi )p(mi )
J. R. Oaks et al. (2013). Evolution 67: 991–1010, J. R. Oaks (2014). BMC Evolutionary Biology 14: 150
Clustered diversification Jamie Oaks – phyletica.org 5/27
Inferring co-diversification
p(m1 | X) p(m2 | X) p(m3 | X) p(m4 | X) p(m5 | X)
τ1
T1
T2
T3
τ2 τ1
T1
T2
T3
τ1τ2
T1
T2
T3
τ1τ2
T1
T2
T3
τ3 τ1τ2
T1
T2
T3
We want to infer m and T given DNA sequence alignments X
p(mi | X) ∝ p(X | mi )p(mi )
p(X | mi ) =
θ
p(X | θ, mi )p(θ | mi )dθ
J. R. Oaks et al. (2013). Evolution 67: 991–1010, J. R. Oaks (2014). BMC Evolutionary Biology 14: 150
Clustered diversification Jamie Oaks – phyletica.org 5/27
Inferring co-diversification
p(m1 | X) p(m2 | X) p(m3 | X) p(m4 | X) p(m5 | X)
τ1
T1
T2
T3
τ2 τ1
T1
T2
T3
τ1τ2
T1
T2
T3
τ1τ2
T1
T2
T3
τ3 τ1τ2
T1
T2
T3
We want to infer m and T given DNA sequence alignments X
p(mi | X) ∝ p(X | mi )p(mi )
p(X | mi ) =
θ
p(X | θ, mi )p(θ | mi )dθ
Divergence times
Gene trees
Substitution parameters
Demographic parameters
J. R. Oaks et al. (2013). Evolution 67: 991–1010, J. R. Oaks (2014). BMC Evolutionary Biology 14: 150
Clustered diversification Jamie Oaks – phyletica.org 5/27
Inferring co-diversification
p(m1 | X) p(m2 | X) p(m3 | X) p(m4 | X) p(m5 | X)
τ1
T1
T2
T3
τ2 τ1
T1
T2
T3
τ1τ2
T1
T2
T3
τ1τ2
T1
T2
T3
τ3 τ1τ2
T1
T2
T3
Challenges:
J. R. Oaks et al. (2013). Evolution 67: 991–1010, J. R. Oaks (2014). BMC Evolutionary Biology 14: 150
Clustered diversification Jamie Oaks – phyletica.org 5/27
Inferring co-diversification
p(m1 | X) p(m2 | X) p(m3 | X) p(m4 | X) p(m5 | X)
τ1
T1
T2
T3
τ2 τ1
T1
T2
T3
τ1τ2
T1
T2
T3
τ1τ2
T1
T2
T3
τ3 τ1τ2
T1
T2
T3
Challenges:
1. Cannot solve all the integrals analytically
J. R. Oaks et al. (2013). Evolution 67: 991–1010, J. R. Oaks (2014). BMC Evolutionary Biology 14: 150
Clustered diversification Jamie Oaks – phyletica.org 5/27
Inferring co-diversification
p(m1 | X) p(m2 | X) p(m3 | X) p(m4 | X) p(m5 | X)
τ1
T1
T2
T3
τ2 τ1
T1
T2
T3
τ1τ2
T1
T2
T3
τ1τ2
T1
T2
T3
τ3 τ1τ2
T1
T2
T3
Challenges:
1. Cannot solve all the integrals analytically
Numerical approximation via approximate-likelihood Bayesian
computation (ABC)
J. R. Oaks et al. (2013). Evolution 67: 991–1010, J. R. Oaks (2014). BMC Evolutionary Biology 14: 150
Clustered diversification Jamie Oaks – phyletica.org 5/27
Inferring co-diversification
p(m1 | X) p(m2 | X) p(m3 | X) p(m4 | X) p(m5 | X)
τ1
T1
T2
T3
τ2 τ1
T1
T2
T3
τ1τ2
T1
T2
T3
τ1τ2
T1
T2
T3
τ3 τ1τ2
T1
T2
T3
Challenges:
1. Cannot solve all the integrals analytically
Numerical approximation via approximate-likelihood Bayesian
computation (ABC)
2. Sampling over all possible models
J. R. Oaks et al. (2013). Evolution 67: 991–1010, J. R. Oaks (2014). BMC Evolutionary Biology 14: 150
Clustered diversification Jamie Oaks – phyletica.org 5/27
Inferring co-diversification
p(m1 | X) p(m2 | X) p(m3 | X) p(m4 | X) p(m5 | X)
τ1
T1
T2
T3
τ2 τ1
T1
T2
T3
τ1τ2
T1
T2
T3
τ1τ2
T1
T2
T3
τ3 τ1τ2
T1
T2
T3
Challenges:
1. Cannot solve all the integrals analytically
Numerical approximation via approximate-likelihood Bayesian
computation (ABC)
2. Sampling over all possible models
5 taxa = 52 models
J. R. Oaks et al. (2013). Evolution 67: 991–1010, J. R. Oaks (2014). BMC Evolutionary Biology 14: 150
Clustered diversification Jamie Oaks – phyletica.org 5/27
Inferring co-diversification
p(m1 | X) p(m2 | X) p(m3 | X) p(m4 | X) p(m5 | X)
τ1
T1
T2
T3
τ2 τ1
T1
T2
T3
τ1τ2
T1
T2
T3
τ1τ2
T1
T2
T3
τ3 τ1τ2
T1
T2
T3
Challenges:
1. Cannot solve all the integrals analytically
Numerical approximation via approximate-likelihood Bayesian
computation (ABC)
2. Sampling over all possible models
5 taxa = 52 models
10 taxa = 115,975 models
J. R. Oaks et al. (2013). Evolution 67: 991–1010, J. R. Oaks (2014). BMC Evolutionary Biology 14: 150
Clustered diversification Jamie Oaks – phyletica.org 5/27
Inferring co-diversification
p(m1 | X) p(m2 | X) p(m3 | X) p(m4 | X) p(m5 | X)
τ1
T1
T2
T3
τ2 τ1
T1
T2
T3
τ1τ2
T1
T2
T3
τ1τ2
T1
T2
T3
τ3 τ1τ2
T1
T2
T3
Challenges:
1. Cannot solve all the integrals analytically
Numerical approximation via approximate-likelihood Bayesian
computation (ABC)
2. Sampling over all possible models
5 taxa = 52 models
10 taxa = 115,975 models
20 taxa = 51,724,158,235,372 models!!
J. R. Oaks et al. (2013). Evolution 67: 991–1010, J. R. Oaks (2014). BMC Evolutionary Biology 14: 150
Clustered diversification Jamie Oaks – phyletica.org 5/27
Inferring co-diversification
p(m1 | X) p(m2 | X) p(m3 | X) p(m4 | X) p(m5 | X)
τ1
T1
T2
T3
τ2 τ1
T1
T2
T3
τ1τ2
T1
T2
T3
τ1τ2
T1
T2
T3
τ3 τ1τ2
T1
T2
T3
Challenges:
1. Cannot solve all the integrals analytically
Numerical approximation via approximate-likelihood Bayesian
computation (ABC)
2. Sampling over all possible models
5 taxa = 52 models
10 taxa = 115,975 models
20 taxa = 51,724,158,235,372 models!!
A “diffuse” Dirichlet process prior (DPP)
J. R. Oaks et al. (2013). Evolution 67: 991–1010, J. R. Oaks (2014). BMC Evolutionary Biology 14: 150
Clustered diversification Jamie Oaks – phyletica.org 5/27
“Easy” as ABC
A
A
A
G
G
G
C
C
C
C
C
C
G
G
G
G
G
G
A
A
A
A
A
T
A
A
A
A
A
A
T
T
C
C
C
C
G
G
G
G
G
G
T
T
T
T
T
T
G
G
G
G
G
G
C
C
C
T
T
T
T
T
T
C
C
C
C
C
C
C
C
C
G
G
G
G
G
G
C
C
T
T
T
T
A
A
A
A
A
A
C
C
C
C
C
C
G
G
G
G
G
G
T
T
T
T
T
T
A
A
A
G
G
G
C
C
C
C
C
C
C
C
C
C
C
C
A
A
A
T
T
T
G
G
G
G
G
G
T
T
T
T
C
C
A
A
A
A
A
A
C
C
C
C
C
C
C
C
C
T
T
T
G
G
G
G
G
G
G
G
G
G
G
G
T
T
T
T
T
T
S1
S2
S3
Clustered diversification Jamie Oaks – phyletica.org 6/27
“Easy” as ABC
A
A
A
G
G
G
C
C
C
C
C
C
G
G
G
G
G
G
A
A
A
A
A
T
A
A
A
A
A
A
T
T
C
C
C
C
G
G
G
G
G
G
T
T
T
T
T
T
G
G
G
G
G
G
C
C
C
T
T
T
T
T
T
C
C
C
C
C
C
C
C
C
G
G
G
G
G
G
C
C
T
T
T
T
A
A
A
A
A
A
C
C
C
C
C
C
G
G
G
G
G
G
T
T
T
T
T
T
A
A
A
G
G
G
C
C
C
C
C
C
C
C
C
C
C
C
A
A
A
T
T
T
G
G
G
G
G
G
T
T
T
T
C
C
A
A
A
A
A
A
C
C
C
C
C
C
C
C
C
T
T
T
G
G
G
G
G
G
G
G
G
G
G
G
T
T
T
T
T
T
S1
S2
S3
Clustered diversification Jamie Oaks – phyletica.org 6/27
“Easy” as ABC
A
A
A
G
G
G
C
C
C
C
C
C
G
G
G
G
G
G
A
A
A
A
A
T
A
A
A
A
A
A
T
T
C
C
C
C
G
G
G
G
G
G
T
T
T
T
T
T
G
G
G
G
G
G
C
C
C
T
T
T
T
T
T
C
C
C
C
C
C
C
C
C
G
G
G
G
G
G
C
C
T
T
T
T
A
A
A
A
A
A
C
C
C
C
C
C
G
G
G
G
G
G
T
T
T
T
T
T
A
A
A
G
G
G
C
C
C
C
C
C
C
C
C
C
C
C
A
A
A
T
T
T
G
G
G
G
G
G
T
T
T
T
C
C
A
A
A
A
A
A
C
C
C
C
C
C
C
C
C
T
T
T
G
G
G
G
G
G
G
G
G
G
G
G
T
T
T
T
T
T
S1
S2
S3
Clustered diversification Jamie Oaks – phyletica.org 6/27
“Easy” as ABC
0.0
0.2
0.4
0.6
0.8
1.0 0.0
0.2
0.4
0.6
0.8
1.0
0.0
0.2
0.4
0.6
0.8
1.0
S1
S2
S3
Clustered diversification Jamie Oaks – phyletica.org 7/27
“Easy” as ABC
0.0
0.2
0.4
0.6
0.8
1.0 0.0
0.2
0.4
0.6
0.8
1.0
0.0
0.2
0.4
0.6
0.8
1.0
S1
S2
S3
Clustered diversification Jamie Oaks – phyletica.org 7/27
“Easy” as ABC
0.0
0.2
0.4
0.6
0.8
1.0 0.0
0.2
0.4
0.6
0.8
1.0
0.0
0.2
0.4
0.6
0.8
1.0
S1
S2
S3
Clustered diversification Jamie Oaks – phyletica.org 7/27
“Easy” as ABC
0.0
0.2
0.4
0.6
0.8
1.0 0.0
0.2
0.4
0.6
0.8
1.0
0.0
0.2
0.4
0.6
0.8
1.0
S1
S2
S3
Clustered diversification Jamie Oaks – phyletica.org 7/27
“Easy” as ABC
0.0
0.2
0.4
0.6
0.8
1.0 0.0
0.2
0.4
0.6
0.8
1.0
0.0
0.2
0.4
0.6
0.8
1.0
S1
S2
S3
Clustered diversification Jamie Oaks – phyletica.org 7/27
“Easy” as ABC
0.0
0.2
0.4
0.6
0.8
1.0 0.0
0.2
0.4
0.6
0.8
1.0
0.0
0.2
0.4
0.6
0.8
1.0
S1
S2
S3
Clustered diversification Jamie Oaks – phyletica.org 7/27
“Easy” as ABC
0.0
0.2
0.4
0.6
0.8
1.0 0.0
0.2
0.4
0.6
0.8
1.0
0.0
0.2
0.4
0.6
0.8
1.0
S1
S2
S3
Clustered diversification Jamie Oaks – phyletica.org 7/27
“Easy” as ABC
0.0
0.2
0.4
0.6
0.8
1.0 0.0
0.2
0.4
0.6
0.8
1.0
0.0
0.2
0.4
0.6
0.8
1.0
S1
S2
S3
Clustered diversification Jamie Oaks – phyletica.org 7/27
“Easy” as ABC
0.0
0.2
0.4
0.6
0.8
1.0 0.0
0.2
0.4
0.6
0.8
1.0
0.0
0.2
0.4
0.6
0.8
1.0
S1
S2
S3
Clustered diversification Jamie Oaks – phyletica.org 7/27
Inferring co-diversification
p(m1 | X) p(m2 | X) p(m3 | X) p(m4 | X) p(m5 | X)
τ1
T1
T2
T3
τ2 τ1
T1
T2
T3
τ1τ2
T1
T2
T3
τ1τ2
T1
T2
T3
τ3 τ1τ2
T1
T2
T3
Challenges:
1. Cannot solve all the integrals analytically
Numerical approximation via approximate-likelihood Bayesian
computation (ABC)
2. Sampling over all possible models
5 taxa = 52 models
10 taxa = 115,975 models
20 taxa = 51,724,158,235,372 models!!
A “diffuse” Dirichlet process prior (DPP)
J. R. Oaks et al. (2013). Evolution 67: 991–1010, J. R. Oaks (2014). BMC Evolutionary Biology 14: 150
Clustered diversification Jamie Oaks – phyletica.org 9/27
Sampling divergence models—a novel approach
The divergence models are ways of assigning our taxa to
events
Clustered diversification Jamie Oaks – phyletica.org 10/27
Sampling divergence models—a novel approach
The divergence models are ways of assigning our taxa to
events
A Dirichlet process prior (DPP) model is a convenient and
flexible solution
Peter Dirichlet
Clustered diversification Jamie Oaks – phyletica.org 10/27
Sampling divergence models—a novel approach
The divergence models are ways of assigning our taxa to
events
A Dirichlet process prior (DPP) model is a convenient and
flexible solution
Common Bayesian approach to assigning variables to an
unknown number of categories
Peter Dirichlet
Clustered diversification Jamie Oaks – phyletica.org 10/27
Sampling divergence models—a novel approach
The divergence models are ways of assigning our taxa to
events
A Dirichlet process prior (DPP) model is a convenient and
flexible solution
Common Bayesian approach to assigning variables to an
unknown number of categories
Controlled by “concentration” parameter: α
Peter Dirichlet
Clustered diversification Jamie Oaks – phyletica.org 10/27
α
α+2
1
α+2
1
α+2
α
α+1
α
α+2
2
α+2
1
α+1
Clustered diversification Jamie Oaks – phyletica.org 11/27
α
α+2
1
α+2
1
α+2
α
α+1
α
α+2
2
α+2
1
α+1
Clustered diversification Jamie Oaks – phyletica.org 11/27
α
α+2
1
α+2
1
α+2
α
α+1
α
α+2
2
α+2
1
α+1
Clustered diversification Jamie Oaks – phyletica.org 11/27
α
α+2
1
α+2
1
α+2
α
α+1
α
α+2
2
α+2
1
α+1
Clustered diversification Jamie Oaks – phyletica.org 11/27
α
α+1
α
α+2
α
α+2
α
α+1
1
α+2
1
α+2
α
α+1
1
α+21
α+2
α
α+1
1
α+1
α
α+2
α
α+2
1
α+1
2
α+2
2
α+2
1
α+1
Clustered diversification Jamie Oaks – phyletica.org 11/27
α = 0.5
α
α+1
α
α+2 = 0.067
α
α+2
α
α+1
1
α+2 = 0.133
1
α+2
α
α+1
1
α+2 = 0.1331
α+2
α
α+1
1
α+1
α
α+2 = 0.133
α
α+2
1
α+1
2
α+2 = 0.5332
α+2
1
α+1
Clustered diversification Jamie Oaks – phyletica.org 11/27
α = 10.0
α
α+1
α
α+2 = 0.758
α
α+2
α
α+1
1
α+2 = 0.076
1
α+2
α
α+1
1
α+2 = 0.0761
α+2
α
α+1
1
α+1
α
α+2 = 0.076
α
α+2
1
α+1
2
α+2 = 0.0152
α+2
1
α+1
Clustered diversification Jamie Oaks – phyletica.org 11/27
New method: dpp-msbayes
Flexible Dirichlet-process prior (DPP) over all possible
divergence models
J. R. Oaks (2014). BMC Evolutionary Biology 14: 150
Clustered diversification Jamie Oaks – phyletica.org 12/27
New method: dpp-msbayes
Flexible Dirichlet-process prior (DPP) over all possible
divergence models
Flexible priors on parameters to avoid strongly weighted
posteriors
J. R. Oaks (2014). BMC Evolutionary Biology 14: 150
Clustered diversification Jamie Oaks – phyletica.org 12/27
New method: dpp-msbayes
Flexible Dirichlet-process prior (DPP) over all possible
divergence models
Flexible priors on parameters to avoid strongly weighted
posteriors
Multi-processing to accommodate genomic datasets
J. R. Oaks (2014). BMC Evolutionary Biology 14: 150
Clustered diversification Jamie Oaks – phyletica.org 12/27
dpp-msbayes: Simulation-based assessment
Validation:
Simulate 50,000 datasets and analyze each under the same
model
Clustered diversification Jamie Oaks – phyletica.org 13/27
dpp-msbayes: Simulation-based assessment
Validation:
Simulate 50,000 datasets and analyze each under the same
model
Robustness:
Simulate datasets that violate model assumptions and analyze
each of them
Clustered diversification Jamie Oaks – phyletica.org 13/27
dpp-msbayes: Validation results
0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0
Posterior probability of one divergence
Trueprobabilityofonedivergence
J. R. Oaks (2014). BMC Evolutionary Biology 14: 150
Clustered diversification Jamie Oaks – phyletica.org 14/27
dpp-msbayes: Robustness results
0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0
0.0 0.2 0.4 0.6 0.8 1.0
Posterior probability of one divergence
Trueprobabilityofonedivergence
J. R. Oaks (2014). BMC Evolutionary Biology 14: 150
Clustered diversification Jamie Oaks – phyletica.org 15/27
dpp-msbayes: Performance
New method for estimating shared evolutionary history shows:
1. Model-choice accuracy
2. Robustness to model violations
3. Power to detect variation in divergence times
4. It’s fast!
J. R. Oaks (2014). BMC Evolutionary Biology 14: 150
Clustered diversification Jamie Oaks – phyletica.org 16/27
dpp-msbayes: Performance
New method for estimating shared evolutionary history shows:
1. Model-choice accuracy
2. Robustness to model violations
3. Power to detect variation in divergence times
4. It’s fast!
A new tool for biologists to leverage comparative
genomic data to explore processes of co-diversification
J. R. Oaks (2014). BMC Evolutionary Biology 14: 150
Clustered diversification Jamie Oaks – phyletica.org 16/27
Empirical applications
Clustered diversification Jamie Oaks – phyletica.org 17/27
Empirical applications
Did repeated
fragmentation of islands
during inter-glacial rises
in sea level promote
diversification?
Clustered diversification Jamie Oaks – phyletica.org 17/27
Climate-driven diversification
Clustered diversification Jamie Oaks – phyletica.org 18/27
Climate-driven diversification
Clustered diversification Jamie Oaks – phyletica.org 18/27
Climate-driven diversification
Clustered diversification Jamie Oaks – phyletica.org 18/27
Results
1 3 5 7 9 11 13 15 17 19 21
Number of divergence events
0.00
0.02
0.04
0.06
0.08
0.10
Posteriorprobability
J. R. Oaks (2014). BMC Evolutionary Biology 14: 150
Clustered diversification Jamie Oaks – phyletica.org 19/27
Results
1 3 5 7 9 11 13 15 17 19 21
Number of divergence events
0.00
0.02
0.04
0.06
0.08
0.10
Posteriorprobability
0100200300400500
Time (kya)
0
-50
-100
Sealevel(m)
J. R. Oaks (2014). BMC Evolutionary Biology 14: 150
Clustered diversification Jamie Oaks – phyletica.org 19/27
More data!
Collecting genomic data from taxa co-distributed across
Southeast Asian Islands and Mainland
Clustered diversification Jamie Oaks – phyletica.org 20/27
More data!
Collecting genomic data from taxa co-distributed across
Southeast Asian Islands and Mainland
Preliminary results for 1000 loci from 5 pairs of Gekko
mindorensis populations
1 2 3 4 5
Number of divergence events, j¿j
-5.0
-4.0
-3.0
-2.0
-1.0
0.0
1.0
2.0
3.02ln(Bayesfactor)
Clustered diversification Jamie Oaks – phyletica.org 20/27
Diversification across African rainforests
Did climate cycles drive
diversification and
community assembly across
rainforest taxa?
Clustered diversification Jamie Oaks – phyletica.org 21/27
Diversification across African rainforests
Did climate cycles drive
diversification and
community assembly across
rainforest taxa?
Preliminary results with 300
loci from 3 taxa
1 2 3
Number of divergence events, j¿j
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2ln(Bayesfactor)
Clustered diversification Jamie Oaks – phyletica.org 21/27
Conclusions
New method for estimating shared evolutionary history
Shows good “frequentist” behavior
Relatively robust to model violations
Clustered diversification Jamie Oaks – phyletica.org 22/27
Conclusions
New method for estimating shared evolutionary history
Shows good “frequentist” behavior
Relatively robust to model violations
Finding support for temporally clustered divergences in
multiple systems
Clustered diversification Jamie Oaks – phyletica.org 22/27
Conclusions
New method for estimating shared evolutionary history
Shows good “frequentist” behavior
Relatively robust to model violations
Finding support for temporally clustered divergences in
multiple systems
However, there is a lot of uncertainty!
Clustered diversification Jamie Oaks – phyletica.org 22/27
Current work: More power
Full-likelihood Bayesian implementation
1
D. Bryant et al. (2012). Molecular Biology And Evolution 29: 1917–1932
Clustered diversification Jamie Oaks – phyletica.org 23/27
Current work: More power
Full-likelihood Bayesian implementation
Uses all the information in the data
Applicable to deeper timescales
1
D. Bryant et al. (2012). Molecular Biology And Evolution 29: 1917–1932
Clustered diversification Jamie Oaks – phyletica.org 23/27
Current work: More power
Full-likelihood Bayesian implementation
Uses all the information in the data
Applicable to deeper timescales
Analytically integrate over gene trees 1
1
D. Bryant et al. (2012). Molecular Biology And Evolution 29: 1917–1932
Clustered diversification Jamie Oaks – phyletica.org 23/27
Current work: More power
Full-likelihood Bayesian implementation
Uses all the information in the data
Applicable to deeper timescales
Analytically integrate over gene trees 1
Very efficient numerical approximation of posterior
Applicable to NGS datasets
1
D. Bryant et al. (2012). Molecular Biology And Evolution 29: 1917–1932
Clustered diversification Jamie Oaks – phyletica.org 23/27
Next step: A general framework
Develop a framework for inferring
shared divergences across
phylogenies
τ1τ2
T1
T2
T3
Clustered diversification Jamie Oaks – phyletica.org 24/27
Next step: A general framework
Develop a framework for inferring
shared divergences across
phylogenies
τ1τ2
T1
T2
T3
Clustered diversification Jamie Oaks – phyletica.org 24/27
Next step: A general framework
Develop a framework for inferring
shared divergences across
phylogenies
Generalize Bayesian phylogenetics
to incorporate shared divergences
τ1τ2
T1
T2
T3
Clustered diversification Jamie Oaks – phyletica.org 24/27
Next step: A general framework
Develop a framework for inferring
shared divergences across
phylogenies
Generalize Bayesian phylogenetics
to incorporate shared divergences
Sample models numerically via
reversible-jump Markov chain
Monte Carlo
τ1τ2
T1
T2
T3
Clustered diversification Jamie Oaks – phyletica.org 24/27
Next step: A general framework
Develop a framework for inferring
shared divergences across
phylogenies
Generalize Bayesian phylogenetics
to incorporate shared divergences
Sample models numerically via
reversible-jump Markov chain
Monte Carlo
Benefits:
Improve phylogenetic inference
Framework for studying processes
of co-diversification
τ1τ2
T1
T2
T3
Clustered diversification Jamie Oaks – phyletica.org 24/27
Everything is on GitHub. . .
Software:
dpp-msbayes: https://github.com/joaks1/dpp-msbayes
PyMsBayes: https://joaks1.github.io/PyMsBayes
ABACUS: Approximate BAyesian C UtilitieS.
https://github.com/joaks1/abacus
Open-Science Notebook:
msbayes-experiments:
https://github.com/joaks1/msbayes-experiments
Clustered diversification Jamie Oaks – phyletica.org 25/27
Acknowledgments
Ideas and feedback:
Leach´e Lab
Minin Lab
Holder Lab
Brown Lab/KU Herpetology
Computation:
Funding:
Photo credits:
Rafe Brown, Cam Siler, Jesse
Grismer, & Jake Esselstyn
FMNH Philippine Mammal
Website:
D.S. Balete, M.R.M. Duya,
& J. Holden
PhyloPic!
Clustered diversification Jamie Oaks – phyletica.org 26/27
Questions?
joaks@auburn.edu
c 2007 Boris Kulikov boris-kulikov.blogspot.com
Clustered diversification Jamie Oaks – phyletica.org 27/27

More Related Content

What's hot

Current Projects Summary
Current Projects SummaryCurrent Projects Summary
Current Projects Summary
Justin C. Bagley
 
ICAWC 2011: Steve Goward - Environmental Enrichment on a Shoestring
ICAWC 2011: Steve Goward - Environmental Enrichment on a ShoestringICAWC 2011: Steve Goward - Environmental Enrichment on a Shoestring
ICAWC 2011: Steve Goward - Environmental Enrichment on a ShoestringDogs Trust
 
0deec51f3134948755000000
0deec51f31349487550000000deec51f3134948755000000
0deec51f3134948755000000Emily Young
 
Stuy on inheritence pattern and frequency of genetic trait for earlobes
Stuy on inheritence pattern and frequency of genetic trait for earlobesStuy on inheritence pattern and frequency of genetic trait for earlobes
Stuy on inheritence pattern and frequency of genetic trait for earlobes
Pradip Subedi
 
Project Overview: Ecological & Evolutionary Genetics of Southwestern White Pi...
Project Overview: Ecological & Evolutionary Genetics of Southwestern White Pi...Project Overview: Ecological & Evolutionary Genetics of Southwestern White Pi...
Project Overview: Ecological & Evolutionary Genetics of Southwestern White Pi...
Justin C. Bagley
 
Is phylogenetic diversity a useful measure of evolutionary potential for deve...
Is phylogenetic diversity a useful measure of evolutionary potential for deve...Is phylogenetic diversity a useful measure of evolutionary potential for deve...
Is phylogenetic diversity a useful measure of evolutionary potential for deve...Alec Christie
 
An augmented review_about_lighting_programs_for_broiler_production
An augmented review_about_lighting_programs_for_broiler_productionAn augmented review_about_lighting_programs_for_broiler_production
An augmented review_about_lighting_programs_for_broiler_production
ghulam abbas
 
Correlación Eficacia vs Heterosigosidad
Correlación Eficacia vs HeterosigosidadCorrelación Eficacia vs Heterosigosidad
Correlación Eficacia vs Heterosigosidad
Politécnico Colombiano Jaime Isaza Cadavid
 
Generating new models for detecting phylogenetic signals of endemism and disp...
Generating new models for detecting phylogenetic signals of endemism and disp...Generating new models for detecting phylogenetic signals of endemism and disp...
Generating new models for detecting phylogenetic signals of endemism and disp...
Graeme Lloyd
 

What's hot (12)

FRUGE CV
FRUGE CVFRUGE CV
FRUGE CV
 
Current Projects Summary
Current Projects SummaryCurrent Projects Summary
Current Projects Summary
 
ICAWC 2011: Steve Goward - Environmental Enrichment on a Shoestring
ICAWC 2011: Steve Goward - Environmental Enrichment on a ShoestringICAWC 2011: Steve Goward - Environmental Enrichment on a Shoestring
ICAWC 2011: Steve Goward - Environmental Enrichment on a Shoestring
 
0deec51f3134948755000000
0deec51f31349487550000000deec51f3134948755000000
0deec51f3134948755000000
 
D0562022
D0562022D0562022
D0562022
 
Stuy on inheritence pattern and frequency of genetic trait for earlobes
Stuy on inheritence pattern and frequency of genetic trait for earlobesStuy on inheritence pattern and frequency of genetic trait for earlobes
Stuy on inheritence pattern and frequency of genetic trait for earlobes
 
Project Overview: Ecological & Evolutionary Genetics of Southwestern White Pi...
Project Overview: Ecological & Evolutionary Genetics of Southwestern White Pi...Project Overview: Ecological & Evolutionary Genetics of Southwestern White Pi...
Project Overview: Ecological & Evolutionary Genetics of Southwestern White Pi...
 
Is phylogenetic diversity a useful measure of evolutionary potential for deve...
Is phylogenetic diversity a useful measure of evolutionary potential for deve...Is phylogenetic diversity a useful measure of evolutionary potential for deve...
Is phylogenetic diversity a useful measure of evolutionary potential for deve...
 
dissertation complete
dissertation completedissertation complete
dissertation complete
 
An augmented review_about_lighting_programs_for_broiler_production
An augmented review_about_lighting_programs_for_broiler_productionAn augmented review_about_lighting_programs_for_broiler_production
An augmented review_about_lighting_programs_for_broiler_production
 
Correlación Eficacia vs Heterosigosidad
Correlación Eficacia vs HeterosigosidadCorrelación Eficacia vs Heterosigosidad
Correlación Eficacia vs Heterosigosidad
 
Generating new models for detecting phylogenetic signals of endemism and disp...
Generating new models for detecting phylogenetic signals of endemism and disp...Generating new models for detecting phylogenetic signals of endemism and disp...
Generating new models for detecting phylogenetic signals of endemism and disp...
 

Viewers also liked

joaks-evolution-2014
joaks-evolution-2014joaks-evolution-2014
joaks-evolution-2014
Jamie Oaks
 
Dirichlet-process probability tree
Dirichlet-process probability treeDirichlet-process probability tree
Dirichlet-process probability tree
Jamie Oaks
 
Islands and Integrals
Islands and IntegralsIslands and Integrals
Islands and Integrals
Jamie Oaks
 
CHD Avenue 71 by CHD Developers Ltd. Sector 71, Gurgaon‎, Call for more @ +91...
CHD Avenue 71 by CHD Developers Ltd. Sector 71, Gurgaon‎, Call for more @ +91...CHD Avenue 71 by CHD Developers Ltd. Sector 71, Gurgaon‎, Call for more @ +91...
CHD Avenue 71 by CHD Developers Ltd. Sector 71, Gurgaon‎, Call for more @ +91...
Aadhar Homes
 
Logika bag-3-
Logika bag-3-Logika bag-3-
Câu hỏi ôn tập quá trình cơ học trắc nghiệm
Câu hỏi ôn tập quá trình cơ học trắc nghiệmCâu hỏi ôn tập quá trình cơ học trắc nghiệm
Câu hỏi ôn tập quá trình cơ học trắc nghiệm
Phùng Minh Tân
 
Approximate-rejection sampler
Approximate-rejection samplerApproximate-rejection sampler
Approximate-rejection sampler
Jamie Oaks
 
The wonderful world of genre
The wonderful world of genreThe wonderful world of genre
The wonderful world of genreEdward Towers
 
The wonderful world of genre copy
The wonderful world of genre   copyThe wonderful world of genre   copy
The wonderful world of genre copyEdward Towers
 
20100104 fungsi determinan
20100104 fungsi determinan20100104 fungsi determinan
20100104 fungsi determinan
Jonathan Andreas Saragih
 
Anh văn chuyên ngành hóa 3
Anh văn chuyên ngành hóa 3Anh văn chuyên ngành hóa 3
Anh văn chuyên ngành hóa 3
Phùng Minh Tân
 
Bài 1 thời gian lưu
Bài 1 thời gian lưuBài 1 thời gian lưu
Bài 1 thời gian lưu
Phùng Minh Tân
 
Vipul Aarohan Sector-53, Vipul Aarohan in Gurgaon, Vipul Aarohan Sector 53 Gu...
Vipul Aarohan Sector-53, Vipul Aarohan in Gurgaon, Vipul Aarohan Sector 53 Gu...Vipul Aarohan Sector-53, Vipul Aarohan in Gurgaon, Vipul Aarohan Sector 53 Gu...
Vipul Aarohan Sector-53, Vipul Aarohan in Gurgaon, Vipul Aarohan Sector 53 Gu...
Aadhar Homes
 

Viewers also liked (14)

joaks-evolution-2014
joaks-evolution-2014joaks-evolution-2014
joaks-evolution-2014
 
Dirichlet-process probability tree
Dirichlet-process probability treeDirichlet-process probability tree
Dirichlet-process probability tree
 
Islands and Integrals
Islands and IntegralsIslands and Integrals
Islands and Integrals
 
CHD Avenue 71 by CHD Developers Ltd. Sector 71, Gurgaon‎, Call for more @ +91...
CHD Avenue 71 by CHD Developers Ltd. Sector 71, Gurgaon‎, Call for more @ +91...CHD Avenue 71 by CHD Developers Ltd. Sector 71, Gurgaon‎, Call for more @ +91...
CHD Avenue 71 by CHD Developers Ltd. Sector 71, Gurgaon‎, Call for more @ +91...
 
Chapter003
Chapter003Chapter003
Chapter003
 
Logika bag-3-
Logika bag-3-Logika bag-3-
Logika bag-3-
 
Câu hỏi ôn tập quá trình cơ học trắc nghiệm
Câu hỏi ôn tập quá trình cơ học trắc nghiệmCâu hỏi ôn tập quá trình cơ học trắc nghiệm
Câu hỏi ôn tập quá trình cơ học trắc nghiệm
 
Approximate-rejection sampler
Approximate-rejection samplerApproximate-rejection sampler
Approximate-rejection sampler
 
The wonderful world of genre
The wonderful world of genreThe wonderful world of genre
The wonderful world of genre
 
The wonderful world of genre copy
The wonderful world of genre   copyThe wonderful world of genre   copy
The wonderful world of genre copy
 
20100104 fungsi determinan
20100104 fungsi determinan20100104 fungsi determinan
20100104 fungsi determinan
 
Anh văn chuyên ngành hóa 3
Anh văn chuyên ngành hóa 3Anh văn chuyên ngành hóa 3
Anh văn chuyên ngành hóa 3
 
Bài 1 thời gian lưu
Bài 1 thời gian lưuBài 1 thời gian lưu
Bài 1 thời gian lưu
 
Vipul Aarohan Sector-53, Vipul Aarohan in Gurgaon, Vipul Aarohan Sector 53 Gu...
Vipul Aarohan Sector-53, Vipul Aarohan in Gurgaon, Vipul Aarohan Sector 53 Gu...Vipul Aarohan Sector-53, Vipul Aarohan in Gurgaon, Vipul Aarohan Sector 53 Gu...
Vipul Aarohan Sector-53, Vipul Aarohan in Gurgaon, Vipul Aarohan Sector 53 Gu...
 

Similar to Accommodating clustered divergences in phylogenetic inference

SSB 2018 Comparative Phylogeography Workshop
SSB 2018 Comparative Phylogeography WorkshopSSB 2018 Comparative Phylogeography Workshop
SSB 2018 Comparative Phylogeography Workshop
Jamie Oaks
 
Generalizing phylogenetics to infer shared evolutionary events
Generalizing phylogenetics to infer shared evolutionary eventsGeneralizing phylogenetics to infer shared evolutionary events
Generalizing phylogenetics to infer shared evolutionary events
Jamie Oaks
 
Generalizing phylogenetics to infer patterns predicted by processes of divers...
Generalizing phylogenetics to infer patterns predicted by processes of divers...Generalizing phylogenetics to infer patterns predicted by processes of divers...
Generalizing phylogenetics to infer patterns predicted by processes of divers...
Jamie Oaks
 
Franz et al evol 2016 representing phylogeny as a logically tractable variable
Franz et al evol 2016 representing phylogeny as a logically tractable variable  Franz et al evol 2016 representing phylogeny as a logically tractable variable
Franz et al evol 2016 representing phylogeny as a logically tractable variable
taxonbytes
 
Why is it important to study reactions norms to understand phenotypi.pdf
Why is it important to study reactions norms to understand phenotypi.pdfWhy is it important to study reactions norms to understand phenotypi.pdf
Why is it important to study reactions norms to understand phenotypi.pdf
arrowmobile
 
Full Bayesian comparative biogeography of Philippine geckos challenges predic...
Full Bayesian comparative biogeography of Philippine geckos challenges predic...Full Bayesian comparative biogeography of Philippine geckos challenges predic...
Full Bayesian comparative biogeography of Philippine geckos challenges predic...
Jamie Oaks
 
EEB 321 Community Ecology: phylogenetics lecture
EEB 321 Community Ecology: phylogenetics lecture EEB 321 Community Ecology: phylogenetics lecture
EEB 321 Community Ecology: phylogenetics lecture Rachel Germain
 
Comparing the Amount and Quality of Information from Different Sequencing Str...
Comparing the Amount and Quality of Information from Different Sequencing Str...Comparing the Amount and Quality of Information from Different Sequencing Str...
Comparing the Amount and Quality of Information from Different Sequencing Str...
jembrown
 
EVE 161 Lecture 4
EVE 161 Lecture 4EVE 161 Lecture 4
EVE 161 Lecture 4
Jonathan Eisen
 
UC Davis EVE161 Lecture 8 - rRNA ecology - by Jonathan Eisen @phylogenomics
UC Davis EVE161 Lecture 8 - rRNA ecology - by Jonathan Eisen @phylogenomicsUC Davis EVE161 Lecture 8 - rRNA ecology - by Jonathan Eisen @phylogenomics
UC Davis EVE161 Lecture 8 - rRNA ecology - by Jonathan Eisen @phylogenomics
Jonathan Eisen
 
zoology syllabus.pdf
zoology syllabus.pdfzoology syllabus.pdf
zoology syllabus.pdf
aloknayak47
 
Marine Host-Microbiome Interactions: Challenges and Opportunities
Marine Host-Microbiome Interactions: Challenges and OpportunitiesMarine Host-Microbiome Interactions: Challenges and Opportunities
Marine Host-Microbiome Interactions: Challenges and Opportunities
Jonathan Eisen
 
Classification_and_Ordination_Methods_as_a_Tool.pdf
Classification_and_Ordination_Methods_as_a_Tool.pdfClassification_and_Ordination_Methods_as_a_Tool.pdf
Classification_and_Ordination_Methods_as_a_Tool.pdf
AgathaHaselvin
 
Inferring shared demographic changes from genomic data
Inferring shared demographic changes from genomic dataInferring shared demographic changes from genomic data
Inferring shared demographic changes from genomic data
Jamie Oaks
 
Bioinformatics A Biased Overview
Bioinformatics A Biased OverviewBioinformatics A Biased Overview
Bioinformatics A Biased Overview
Philip Bourne
 
Vivo vitrothingamajig
Vivo vitrothingamajigVivo vitrothingamajig
Vivo vitrothingamajig
Kevin Thornton
 
Determining evolutionary mechanisms of species diversification in Eriogonoid...
Determining evolutionary mechanisms of species diversification in Eriogonoid...Determining evolutionary mechanisms of species diversification in Eriogonoid...
Determining evolutionary mechanisms of species diversification in Eriogonoid...
Anna Kostikova
 
Anne Duputié | MEE 2013 | Modelling range shifts in dynamic environments – Ho...
Anne Duputié | MEE 2013 | Modelling range shifts in dynamic environments – Ho...Anne Duputié | MEE 2013 | Modelling range shifts in dynamic environments – Ho...
Anne Duputié | MEE 2013 | Modelling range shifts in dynamic environments – Ho...loicdiato
 
"Phylogeny-Driven Approaches to Genomics and Metagenomics" talk by Jonathan E...
"Phylogeny-Driven Approaches to Genomics and Metagenomics" talk by Jonathan E..."Phylogeny-Driven Approaches to Genomics and Metagenomics" talk by Jonathan E...
"Phylogeny-Driven Approaches to Genomics and Metagenomics" talk by Jonathan E...
Jonathan Eisen
 

Similar to Accommodating clustered divergences in phylogenetic inference (20)

SSB 2018 Comparative Phylogeography Workshop
SSB 2018 Comparative Phylogeography WorkshopSSB 2018 Comparative Phylogeography Workshop
SSB 2018 Comparative Phylogeography Workshop
 
Generalizing phylogenetics to infer shared evolutionary events
Generalizing phylogenetics to infer shared evolutionary eventsGeneralizing phylogenetics to infer shared evolutionary events
Generalizing phylogenetics to infer shared evolutionary events
 
Generalizing phylogenetics to infer patterns predicted by processes of divers...
Generalizing phylogenetics to infer patterns predicted by processes of divers...Generalizing phylogenetics to infer patterns predicted by processes of divers...
Generalizing phylogenetics to infer patterns predicted by processes of divers...
 
Franz et al evol 2016 representing phylogeny as a logically tractable variable
Franz et al evol 2016 representing phylogeny as a logically tractable variable  Franz et al evol 2016 representing phylogeny as a logically tractable variable
Franz et al evol 2016 representing phylogeny as a logically tractable variable
 
Why is it important to study reactions norms to understand phenotypi.pdf
Why is it important to study reactions norms to understand phenotypi.pdfWhy is it important to study reactions norms to understand phenotypi.pdf
Why is it important to study reactions norms to understand phenotypi.pdf
 
Full Bayesian comparative biogeography of Philippine geckos challenges predic...
Full Bayesian comparative biogeography of Philippine geckos challenges predic...Full Bayesian comparative biogeography of Philippine geckos challenges predic...
Full Bayesian comparative biogeography of Philippine geckos challenges predic...
 
EEB 321 Community Ecology: phylogenetics lecture
EEB 321 Community Ecology: phylogenetics lecture EEB 321 Community Ecology: phylogenetics lecture
EEB 321 Community Ecology: phylogenetics lecture
 
Comparing the Amount and Quality of Information from Different Sequencing Str...
Comparing the Amount and Quality of Information from Different Sequencing Str...Comparing the Amount and Quality of Information from Different Sequencing Str...
Comparing the Amount and Quality of Information from Different Sequencing Str...
 
EVE 161 Lecture 4
EVE 161 Lecture 4EVE 161 Lecture 4
EVE 161 Lecture 4
 
UC Davis EVE161 Lecture 8 - rRNA ecology - by Jonathan Eisen @phylogenomics
UC Davis EVE161 Lecture 8 - rRNA ecology - by Jonathan Eisen @phylogenomicsUC Davis EVE161 Lecture 8 - rRNA ecology - by Jonathan Eisen @phylogenomics
UC Davis EVE161 Lecture 8 - rRNA ecology - by Jonathan Eisen @phylogenomics
 
zoology syllabus.pdf
zoology syllabus.pdfzoology syllabus.pdf
zoology syllabus.pdf
 
Marine Host-Microbiome Interactions: Challenges and Opportunities
Marine Host-Microbiome Interactions: Challenges and OpportunitiesMarine Host-Microbiome Interactions: Challenges and Opportunities
Marine Host-Microbiome Interactions: Challenges and Opportunities
 
Classification_and_Ordination_Methods_as_a_Tool.pdf
Classification_and_Ordination_Methods_as_a_Tool.pdfClassification_and_Ordination_Methods_as_a_Tool.pdf
Classification_and_Ordination_Methods_as_a_Tool.pdf
 
Inferring shared demographic changes from genomic data
Inferring shared demographic changes from genomic dataInferring shared demographic changes from genomic data
Inferring shared demographic changes from genomic data
 
Bioinformatics A Biased Overview
Bioinformatics A Biased OverviewBioinformatics A Biased Overview
Bioinformatics A Biased Overview
 
eg.poster
eg.postereg.poster
eg.poster
 
Vivo vitrothingamajig
Vivo vitrothingamajigVivo vitrothingamajig
Vivo vitrothingamajig
 
Determining evolutionary mechanisms of species diversification in Eriogonoid...
Determining evolutionary mechanisms of species diversification in Eriogonoid...Determining evolutionary mechanisms of species diversification in Eriogonoid...
Determining evolutionary mechanisms of species diversification in Eriogonoid...
 
Anne Duputié | MEE 2013 | Modelling range shifts in dynamic environments – Ho...
Anne Duputié | MEE 2013 | Modelling range shifts in dynamic environments – Ho...Anne Duputié | MEE 2013 | Modelling range shifts in dynamic environments – Ho...
Anne Duputié | MEE 2013 | Modelling range shifts in dynamic environments – Ho...
 
"Phylogeny-Driven Approaches to Genomics and Metagenomics" talk by Jonathan E...
"Phylogeny-Driven Approaches to Genomics and Metagenomics" talk by Jonathan E..."Phylogeny-Driven Approaches to Genomics and Metagenomics" talk by Jonathan E...
"Phylogeny-Driven Approaches to Genomics and Metagenomics" talk by Jonathan E...
 

Recently uploaded

THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
Sérgio Sacani
 
Orion Air Quality Monitoring Systems - CWS
Orion Air Quality Monitoring Systems - CWSOrion Air Quality Monitoring Systems - CWS
Orion Air Quality Monitoring Systems - CWS
Columbia Weather Systems
 
Richard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlandsRichard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlands
Richard Gill
 
extra-chromosomal-inheritance[1].pptx.pdfpdf
extra-chromosomal-inheritance[1].pptx.pdfpdfextra-chromosomal-inheritance[1].pptx.pdfpdf
extra-chromosomal-inheritance[1].pptx.pdfpdf
DiyaBiswas10
 
GBSN- Microbiology (Lab 3) Gram Staining
GBSN- Microbiology (Lab 3) Gram StainingGBSN- Microbiology (Lab 3) Gram Staining
GBSN- Microbiology (Lab 3) Gram Staining
Areesha Ahmad
 
What is greenhouse gasses and how many gasses are there to affect the Earth.
What is greenhouse gasses and how many gasses are there to affect the Earth.What is greenhouse gasses and how many gasses are there to affect the Earth.
What is greenhouse gasses and how many gasses are there to affect the Earth.
moosaasad1975
 
in vitro propagation of plants lecture note.pptx
in vitro propagation of plants lecture note.pptxin vitro propagation of plants lecture note.pptx
in vitro propagation of plants lecture note.pptx
yusufzako14
 
Richard's entangled aventures in wonderland
Richard's entangled aventures in wonderlandRichard's entangled aventures in wonderland
Richard's entangled aventures in wonderland
Richard Gill
 
Structures and textures of metamorphic rocks
Structures and textures of metamorphic rocksStructures and textures of metamorphic rocks
Structures and textures of metamorphic rocks
kumarmathi863
 
SCHIZOPHRENIA Disorder/ Brain Disorder.pdf
SCHIZOPHRENIA Disorder/ Brain Disorder.pdfSCHIZOPHRENIA Disorder/ Brain Disorder.pdf
SCHIZOPHRENIA Disorder/ Brain Disorder.pdf
SELF-EXPLANATORY
 
GBSN - Microbiology (Lab 4) Culture Media
GBSN - Microbiology (Lab 4) Culture MediaGBSN - Microbiology (Lab 4) Culture Media
GBSN - Microbiology (Lab 4) Culture Media
Areesha Ahmad
 
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATIONPRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
ChetanK57
 
Lateral Ventricles.pdf very easy good diagrams comprehensive
Lateral Ventricles.pdf very easy good diagrams comprehensiveLateral Ventricles.pdf very easy good diagrams comprehensive
Lateral Ventricles.pdf very easy good diagrams comprehensive
silvermistyshot
 
RNA INTERFERENCE: UNRAVELING GENETIC SILENCING
RNA INTERFERENCE: UNRAVELING GENETIC SILENCINGRNA INTERFERENCE: UNRAVELING GENETIC SILENCING
RNA INTERFERENCE: UNRAVELING GENETIC SILENCING
AADYARAJPANDEY1
 
erythropoiesis-I_mechanism& clinical significance.pptx
erythropoiesis-I_mechanism& clinical significance.pptxerythropoiesis-I_mechanism& clinical significance.pptx
erythropoiesis-I_mechanism& clinical significance.pptx
muralinath2
 
(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...
(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...
(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...
Scintica Instrumentation
 
role of pramana in research.pptx in science
role of pramana in research.pptx in sciencerole of pramana in research.pptx in science
role of pramana in research.pptx in science
sonaliswain16
 
insect taxonomy importance systematics and classification
insect taxonomy importance systematics and classificationinsect taxonomy importance systematics and classification
insect taxonomy importance systematics and classification
anitaento25
 
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Ana Luísa Pinho
 
NuGOweek 2024 Ghent - programme - final version
NuGOweek 2024 Ghent - programme - final versionNuGOweek 2024 Ghent - programme - final version
NuGOweek 2024 Ghent - programme - final version
pablovgd
 

Recently uploaded (20)

THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
 
Orion Air Quality Monitoring Systems - CWS
Orion Air Quality Monitoring Systems - CWSOrion Air Quality Monitoring Systems - CWS
Orion Air Quality Monitoring Systems - CWS
 
Richard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlandsRichard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlands
 
extra-chromosomal-inheritance[1].pptx.pdfpdf
extra-chromosomal-inheritance[1].pptx.pdfpdfextra-chromosomal-inheritance[1].pptx.pdfpdf
extra-chromosomal-inheritance[1].pptx.pdfpdf
 
GBSN- Microbiology (Lab 3) Gram Staining
GBSN- Microbiology (Lab 3) Gram StainingGBSN- Microbiology (Lab 3) Gram Staining
GBSN- Microbiology (Lab 3) Gram Staining
 
What is greenhouse gasses and how many gasses are there to affect the Earth.
What is greenhouse gasses and how many gasses are there to affect the Earth.What is greenhouse gasses and how many gasses are there to affect the Earth.
What is greenhouse gasses and how many gasses are there to affect the Earth.
 
in vitro propagation of plants lecture note.pptx
in vitro propagation of plants lecture note.pptxin vitro propagation of plants lecture note.pptx
in vitro propagation of plants lecture note.pptx
 
Richard's entangled aventures in wonderland
Richard's entangled aventures in wonderlandRichard's entangled aventures in wonderland
Richard's entangled aventures in wonderland
 
Structures and textures of metamorphic rocks
Structures and textures of metamorphic rocksStructures and textures of metamorphic rocks
Structures and textures of metamorphic rocks
 
SCHIZOPHRENIA Disorder/ Brain Disorder.pdf
SCHIZOPHRENIA Disorder/ Brain Disorder.pdfSCHIZOPHRENIA Disorder/ Brain Disorder.pdf
SCHIZOPHRENIA Disorder/ Brain Disorder.pdf
 
GBSN - Microbiology (Lab 4) Culture Media
GBSN - Microbiology (Lab 4) Culture MediaGBSN - Microbiology (Lab 4) Culture Media
GBSN - Microbiology (Lab 4) Culture Media
 
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATIONPRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
 
Lateral Ventricles.pdf very easy good diagrams comprehensive
Lateral Ventricles.pdf very easy good diagrams comprehensiveLateral Ventricles.pdf very easy good diagrams comprehensive
Lateral Ventricles.pdf very easy good diagrams comprehensive
 
RNA INTERFERENCE: UNRAVELING GENETIC SILENCING
RNA INTERFERENCE: UNRAVELING GENETIC SILENCINGRNA INTERFERENCE: UNRAVELING GENETIC SILENCING
RNA INTERFERENCE: UNRAVELING GENETIC SILENCING
 
erythropoiesis-I_mechanism& clinical significance.pptx
erythropoiesis-I_mechanism& clinical significance.pptxerythropoiesis-I_mechanism& clinical significance.pptx
erythropoiesis-I_mechanism& clinical significance.pptx
 
(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...
(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...
(May 29th, 2024) Advancements in Intravital Microscopy- Insights for Preclini...
 
role of pramana in research.pptx in science
role of pramana in research.pptx in sciencerole of pramana in research.pptx in science
role of pramana in research.pptx in science
 
insect taxonomy importance systematics and classification
insect taxonomy importance systematics and classificationinsect taxonomy importance systematics and classification
insect taxonomy importance systematics and classification
 
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
 
NuGOweek 2024 Ghent - programme - final version
NuGOweek 2024 Ghent - programme - final versionNuGOweek 2024 Ghent - programme - final version
NuGOweek 2024 Ghent - programme - final version
 

Accommodating clustered divergences in phylogenetic inference

  • 1. Accommodating clustered divergences in phylogenetic inference Jamie R. Oaks1,2 1Department of Biology, University of Washington 2Department of Biological Sciences, Auburn University October 21, 2015 c 2007 Boris Kulikov boris-kulikov.blogspot.com Clustered diversification Jamie Oaks – phyletica.org 1/27
  • 2. Phylogenetics is rapidly progressing as an endeavor of statistical inference c 2007 Boris Kulikov boris-kulikov.blogspot.com Clustered diversification Jamie Oaks – phyletica.org 2/27
  • 3. Phylogenetics is rapidly progressing as an endeavor of statistical inference “Big data” present exciting possibilities and computational challenges c 2007 Boris Kulikov boris-kulikov.blogspot.com Clustered diversification Jamie Oaks – phyletica.org 2/27
  • 4. Phylogenetics is rapidly progressing as an endeavor of statistical inference “Big data” present exciting possibilities and computational challenges Exciting opportunities to develop new ways to study biology in the light of phylogeny c 2007 Boris Kulikov boris-kulikov.blogspot.com Clustered diversification Jamie Oaks – phyletica.org 2/27
  • 5. Current state of phylogenetics Clustered diversification Jamie Oaks – phyletica.org 3/27
  • 6. Current state of phylogenetics Assumption: Divergences are independent across the tree Clustered diversification Jamie Oaks – phyletica.org 3/27
  • 7. Current state of phylogenetics Assumption: Divergences are independent across the tree We know this assumption is frequently violated Clustered diversification Jamie Oaks – phyletica.org 3/27
  • 8. Current state of phylogenetics Assumption: Divergences are independent across the tree We know this assumption is frequently violated Clustered diversification Jamie Oaks – phyletica.org 3/27
  • 9. Current state of phylogenetics Assumption: Divergences are independent across the tree We know this assumption is frequently violated Why account for this non-independence? Clustered diversification Jamie Oaks – phyletica.org 3/27
  • 10. Current state of phylogenetics Assumption: Divergences are independent across the tree We know this assumption is frequently violated Why account for this non-independence? 1. Improve inference Clustered diversification Jamie Oaks – phyletica.org 3/27
  • 11. Current state of phylogenetics Assumption: Divergences are independent across the tree We know this assumption is frequently violated Why account for this non-independence? 1. Improve inference 2. Provide a framework for studying processes of co-diversification Clustered diversification Jamie Oaks – phyletica.org 3/27
  • 12. Current state of phylogenetics Assumption: Divergences are independent across the tree We know this assumption is frequently violated Why account for this non-independence? 1. Improve inference 2. Provide a framework for studying processes of co-diversification This is a model-choice problem Clustered diversification Jamie Oaks – phyletica.org 3/27
  • 13. Divergence model choice τ1 T1 T2 T3 Clustered diversification Jamie Oaks – phyletica.org 4/27
  • 14. Divergence model choice τ1 T1 T2 T3 Clustered diversification Jamie Oaks – phyletica.org 4/27
  • 15. Divergence model choice τ2 τ1 T1 T2 T3 Clustered diversification Jamie Oaks – phyletica.org 4/27
  • 16. Divergence model choice τ1τ2 T1 T2 T3 Clustered diversification Jamie Oaks – phyletica.org 4/27
  • 17. Divergence model choice τ1τ2 T1 T2 T3 Clustered diversification Jamie Oaks – phyletica.org 4/27
  • 18. Divergence model choice τ3 τ1τ2 T1 T2 T3 Clustered diversification Jamie Oaks – phyletica.org 4/27
  • 19. Inferring co-diversification m1 m2 m3 m4 m5 τ1 T1 T2 T3 τ2 τ1 T1 T2 T3 τ1τ2 T1 T2 T3 τ1τ2 T1 T2 T3 τ3 τ1τ2 T1 T2 T3 J. R. Oaks et al. (2013). Evolution 67: 991–1010, J. R. Oaks (2014). BMC Evolutionary Biology 14: 150 Clustered diversification Jamie Oaks – phyletica.org 5/27
  • 20. Inferring co-diversification m1 m2 m3 m4 m5 τ1 T1 T2 T3 τ2 τ1 T1 T2 T3 τ1τ2 T1 T2 T3 τ1τ2 T1 T2 T3 τ3 τ1τ2 T1 T2 T3 We want to infer m and T given DNA sequence alignments X J. R. Oaks et al. (2013). Evolution 67: 991–1010, J. R. Oaks (2014). BMC Evolutionary Biology 14: 150 Clustered diversification Jamie Oaks – phyletica.org 5/27
  • 21. Inferring co-diversification p(m1 | X) p(m2 | X) p(m3 | X) p(m4 | X) p(m5 | X) τ1 T1 T2 T3 τ2 τ1 T1 T2 T3 τ1τ2 T1 T2 T3 τ1τ2 T1 T2 T3 τ3 τ1τ2 T1 T2 T3 We want to infer m and T given DNA sequence alignments X J. R. Oaks et al. (2013). Evolution 67: 991–1010, J. R. Oaks (2014). BMC Evolutionary Biology 14: 150 Clustered diversification Jamie Oaks – phyletica.org 5/27
  • 22. Inferring co-diversification p(m1 | X) p(m2 | X) p(m3 | X) p(m4 | X) p(m5 | X) τ1 T1 T2 T3 τ2 τ1 T1 T2 T3 τ1τ2 T1 T2 T3 τ1τ2 T1 T2 T3 τ3 τ1τ2 T1 T2 T3 We want to infer m and T given DNA sequence alignments X p(mi | X) ∝ p(X | mi )p(mi ) J. R. Oaks et al. (2013). Evolution 67: 991–1010, J. R. Oaks (2014). BMC Evolutionary Biology 14: 150 Clustered diversification Jamie Oaks – phyletica.org 5/27
  • 23. Inferring co-diversification p(m1 | X) p(m2 | X) p(m3 | X) p(m4 | X) p(m5 | X) τ1 T1 T2 T3 τ2 τ1 T1 T2 T3 τ1τ2 T1 T2 T3 τ1τ2 T1 T2 T3 τ3 τ1τ2 T1 T2 T3 We want to infer m and T given DNA sequence alignments X p(mi | X) ∝ p(X | mi )p(mi ) p(X | mi ) = θ p(X | θ, mi )p(θ | mi )dθ J. R. Oaks et al. (2013). Evolution 67: 991–1010, J. R. Oaks (2014). BMC Evolutionary Biology 14: 150 Clustered diversification Jamie Oaks – phyletica.org 5/27
  • 24. Inferring co-diversification p(m1 | X) p(m2 | X) p(m3 | X) p(m4 | X) p(m5 | X) τ1 T1 T2 T3 τ2 τ1 T1 T2 T3 τ1τ2 T1 T2 T3 τ1τ2 T1 T2 T3 τ3 τ1τ2 T1 T2 T3 We want to infer m and T given DNA sequence alignments X p(mi | X) ∝ p(X | mi )p(mi ) p(X | mi ) = θ p(X | θ, mi )p(θ | mi )dθ Divergence times Gene trees Substitution parameters Demographic parameters J. R. Oaks et al. (2013). Evolution 67: 991–1010, J. R. Oaks (2014). BMC Evolutionary Biology 14: 150 Clustered diversification Jamie Oaks – phyletica.org 5/27
  • 25. Inferring co-diversification p(m1 | X) p(m2 | X) p(m3 | X) p(m4 | X) p(m5 | X) τ1 T1 T2 T3 τ2 τ1 T1 T2 T3 τ1τ2 T1 T2 T3 τ1τ2 T1 T2 T3 τ3 τ1τ2 T1 T2 T3 Challenges: J. R. Oaks et al. (2013). Evolution 67: 991–1010, J. R. Oaks (2014). BMC Evolutionary Biology 14: 150 Clustered diversification Jamie Oaks – phyletica.org 5/27
  • 26. Inferring co-diversification p(m1 | X) p(m2 | X) p(m3 | X) p(m4 | X) p(m5 | X) τ1 T1 T2 T3 τ2 τ1 T1 T2 T3 τ1τ2 T1 T2 T3 τ1τ2 T1 T2 T3 τ3 τ1τ2 T1 T2 T3 Challenges: 1. Cannot solve all the integrals analytically J. R. Oaks et al. (2013). Evolution 67: 991–1010, J. R. Oaks (2014). BMC Evolutionary Biology 14: 150 Clustered diversification Jamie Oaks – phyletica.org 5/27
  • 27. Inferring co-diversification p(m1 | X) p(m2 | X) p(m3 | X) p(m4 | X) p(m5 | X) τ1 T1 T2 T3 τ2 τ1 T1 T2 T3 τ1τ2 T1 T2 T3 τ1τ2 T1 T2 T3 τ3 τ1τ2 T1 T2 T3 Challenges: 1. Cannot solve all the integrals analytically Numerical approximation via approximate-likelihood Bayesian computation (ABC) J. R. Oaks et al. (2013). Evolution 67: 991–1010, J. R. Oaks (2014). BMC Evolutionary Biology 14: 150 Clustered diversification Jamie Oaks – phyletica.org 5/27
  • 28. Inferring co-diversification p(m1 | X) p(m2 | X) p(m3 | X) p(m4 | X) p(m5 | X) τ1 T1 T2 T3 τ2 τ1 T1 T2 T3 τ1τ2 T1 T2 T3 τ1τ2 T1 T2 T3 τ3 τ1τ2 T1 T2 T3 Challenges: 1. Cannot solve all the integrals analytically Numerical approximation via approximate-likelihood Bayesian computation (ABC) 2. Sampling over all possible models J. R. Oaks et al. (2013). Evolution 67: 991–1010, J. R. Oaks (2014). BMC Evolutionary Biology 14: 150 Clustered diversification Jamie Oaks – phyletica.org 5/27
  • 29. Inferring co-diversification p(m1 | X) p(m2 | X) p(m3 | X) p(m4 | X) p(m5 | X) τ1 T1 T2 T3 τ2 τ1 T1 T2 T3 τ1τ2 T1 T2 T3 τ1τ2 T1 T2 T3 τ3 τ1τ2 T1 T2 T3 Challenges: 1. Cannot solve all the integrals analytically Numerical approximation via approximate-likelihood Bayesian computation (ABC) 2. Sampling over all possible models 5 taxa = 52 models J. R. Oaks et al. (2013). Evolution 67: 991–1010, J. R. Oaks (2014). BMC Evolutionary Biology 14: 150 Clustered diversification Jamie Oaks – phyletica.org 5/27
  • 30. Inferring co-diversification p(m1 | X) p(m2 | X) p(m3 | X) p(m4 | X) p(m5 | X) τ1 T1 T2 T3 τ2 τ1 T1 T2 T3 τ1τ2 T1 T2 T3 τ1τ2 T1 T2 T3 τ3 τ1τ2 T1 T2 T3 Challenges: 1. Cannot solve all the integrals analytically Numerical approximation via approximate-likelihood Bayesian computation (ABC) 2. Sampling over all possible models 5 taxa = 52 models 10 taxa = 115,975 models J. R. Oaks et al. (2013). Evolution 67: 991–1010, J. R. Oaks (2014). BMC Evolutionary Biology 14: 150 Clustered diversification Jamie Oaks – phyletica.org 5/27
  • 31. Inferring co-diversification p(m1 | X) p(m2 | X) p(m3 | X) p(m4 | X) p(m5 | X) τ1 T1 T2 T3 τ2 τ1 T1 T2 T3 τ1τ2 T1 T2 T3 τ1τ2 T1 T2 T3 τ3 τ1τ2 T1 T2 T3 Challenges: 1. Cannot solve all the integrals analytically Numerical approximation via approximate-likelihood Bayesian computation (ABC) 2. Sampling over all possible models 5 taxa = 52 models 10 taxa = 115,975 models 20 taxa = 51,724,158,235,372 models!! J. R. Oaks et al. (2013). Evolution 67: 991–1010, J. R. Oaks (2014). BMC Evolutionary Biology 14: 150 Clustered diversification Jamie Oaks – phyletica.org 5/27
  • 32. Inferring co-diversification p(m1 | X) p(m2 | X) p(m3 | X) p(m4 | X) p(m5 | X) τ1 T1 T2 T3 τ2 τ1 T1 T2 T3 τ1τ2 T1 T2 T3 τ1τ2 T1 T2 T3 τ3 τ1τ2 T1 T2 T3 Challenges: 1. Cannot solve all the integrals analytically Numerical approximation via approximate-likelihood Bayesian computation (ABC) 2. Sampling over all possible models 5 taxa = 52 models 10 taxa = 115,975 models 20 taxa = 51,724,158,235,372 models!! A “diffuse” Dirichlet process prior (DPP) J. R. Oaks et al. (2013). Evolution 67: 991–1010, J. R. Oaks (2014). BMC Evolutionary Biology 14: 150 Clustered diversification Jamie Oaks – phyletica.org 5/27
  • 36. “Easy” as ABC 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 S1 S2 S3 Clustered diversification Jamie Oaks – phyletica.org 7/27
  • 37. “Easy” as ABC 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 S1 S2 S3 Clustered diversification Jamie Oaks – phyletica.org 7/27
  • 38. “Easy” as ABC 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 S1 S2 S3 Clustered diversification Jamie Oaks – phyletica.org 7/27
  • 39. “Easy” as ABC 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 S1 S2 S3 Clustered diversification Jamie Oaks – phyletica.org 7/27
  • 40. “Easy” as ABC 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 S1 S2 S3 Clustered diversification Jamie Oaks – phyletica.org 7/27
  • 41. “Easy” as ABC 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 S1 S2 S3 Clustered diversification Jamie Oaks – phyletica.org 7/27
  • 42. “Easy” as ABC 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 S1 S2 S3 Clustered diversification Jamie Oaks – phyletica.org 7/27
  • 43. “Easy” as ABC 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 S1 S2 S3 Clustered diversification Jamie Oaks – phyletica.org 7/27
  • 44. “Easy” as ABC 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 S1 S2 S3 Clustered diversification Jamie Oaks – phyletica.org 7/27
  • 45.
  • 46. Inferring co-diversification p(m1 | X) p(m2 | X) p(m3 | X) p(m4 | X) p(m5 | X) τ1 T1 T2 T3 τ2 τ1 T1 T2 T3 τ1τ2 T1 T2 T3 τ1τ2 T1 T2 T3 τ3 τ1τ2 T1 T2 T3 Challenges: 1. Cannot solve all the integrals analytically Numerical approximation via approximate-likelihood Bayesian computation (ABC) 2. Sampling over all possible models 5 taxa = 52 models 10 taxa = 115,975 models 20 taxa = 51,724,158,235,372 models!! A “diffuse” Dirichlet process prior (DPP) J. R. Oaks et al. (2013). Evolution 67: 991–1010, J. R. Oaks (2014). BMC Evolutionary Biology 14: 150 Clustered diversification Jamie Oaks – phyletica.org 9/27
  • 47. Sampling divergence models—a novel approach The divergence models are ways of assigning our taxa to events Clustered diversification Jamie Oaks – phyletica.org 10/27
  • 48. Sampling divergence models—a novel approach The divergence models are ways of assigning our taxa to events A Dirichlet process prior (DPP) model is a convenient and flexible solution Peter Dirichlet Clustered diversification Jamie Oaks – phyletica.org 10/27
  • 49. Sampling divergence models—a novel approach The divergence models are ways of assigning our taxa to events A Dirichlet process prior (DPP) model is a convenient and flexible solution Common Bayesian approach to assigning variables to an unknown number of categories Peter Dirichlet Clustered diversification Jamie Oaks – phyletica.org 10/27
  • 50. Sampling divergence models—a novel approach The divergence models are ways of assigning our taxa to events A Dirichlet process prior (DPP) model is a convenient and flexible solution Common Bayesian approach to assigning variables to an unknown number of categories Controlled by “concentration” parameter: α Peter Dirichlet Clustered diversification Jamie Oaks – phyletica.org 10/27
  • 56. α = 0.5 α α+1 α α+2 = 0.067 α α+2 α α+1 1 α+2 = 0.133 1 α+2 α α+1 1 α+2 = 0.1331 α+2 α α+1 1 α+1 α α+2 = 0.133 α α+2 1 α+1 2 α+2 = 0.5332 α+2 1 α+1 Clustered diversification Jamie Oaks – phyletica.org 11/27
  • 57. α = 10.0 α α+1 α α+2 = 0.758 α α+2 α α+1 1 α+2 = 0.076 1 α+2 α α+1 1 α+2 = 0.0761 α+2 α α+1 1 α+1 α α+2 = 0.076 α α+2 1 α+1 2 α+2 = 0.0152 α+2 1 α+1 Clustered diversification Jamie Oaks – phyletica.org 11/27
  • 58. New method: dpp-msbayes Flexible Dirichlet-process prior (DPP) over all possible divergence models J. R. Oaks (2014). BMC Evolutionary Biology 14: 150 Clustered diversification Jamie Oaks – phyletica.org 12/27
  • 59. New method: dpp-msbayes Flexible Dirichlet-process prior (DPP) over all possible divergence models Flexible priors on parameters to avoid strongly weighted posteriors J. R. Oaks (2014). BMC Evolutionary Biology 14: 150 Clustered diversification Jamie Oaks – phyletica.org 12/27
  • 60. New method: dpp-msbayes Flexible Dirichlet-process prior (DPP) over all possible divergence models Flexible priors on parameters to avoid strongly weighted posteriors Multi-processing to accommodate genomic datasets J. R. Oaks (2014). BMC Evolutionary Biology 14: 150 Clustered diversification Jamie Oaks – phyletica.org 12/27
  • 61. dpp-msbayes: Simulation-based assessment Validation: Simulate 50,000 datasets and analyze each under the same model Clustered diversification Jamie Oaks – phyletica.org 13/27
  • 62. dpp-msbayes: Simulation-based assessment Validation: Simulate 50,000 datasets and analyze each under the same model Robustness: Simulate datasets that violate model assumptions and analyze each of them Clustered diversification Jamie Oaks – phyletica.org 13/27
  • 63. dpp-msbayes: Validation results 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 Posterior probability of one divergence Trueprobabilityofonedivergence J. R. Oaks (2014). BMC Evolutionary Biology 14: 150 Clustered diversification Jamie Oaks – phyletica.org 14/27
  • 64. dpp-msbayes: Robustness results 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 Posterior probability of one divergence Trueprobabilityofonedivergence J. R. Oaks (2014). BMC Evolutionary Biology 14: 150 Clustered diversification Jamie Oaks – phyletica.org 15/27
  • 65. dpp-msbayes: Performance New method for estimating shared evolutionary history shows: 1. Model-choice accuracy 2. Robustness to model violations 3. Power to detect variation in divergence times 4. It’s fast! J. R. Oaks (2014). BMC Evolutionary Biology 14: 150 Clustered diversification Jamie Oaks – phyletica.org 16/27
  • 66. dpp-msbayes: Performance New method for estimating shared evolutionary history shows: 1. Model-choice accuracy 2. Robustness to model violations 3. Power to detect variation in divergence times 4. It’s fast! A new tool for biologists to leverage comparative genomic data to explore processes of co-diversification J. R. Oaks (2014). BMC Evolutionary Biology 14: 150 Clustered diversification Jamie Oaks – phyletica.org 16/27
  • 67. Empirical applications Clustered diversification Jamie Oaks – phyletica.org 17/27
  • 68. Empirical applications Did repeated fragmentation of islands during inter-glacial rises in sea level promote diversification? Clustered diversification Jamie Oaks – phyletica.org 17/27
  • 72. Results 1 3 5 7 9 11 13 15 17 19 21 Number of divergence events 0.00 0.02 0.04 0.06 0.08 0.10 Posteriorprobability J. R. Oaks (2014). BMC Evolutionary Biology 14: 150 Clustered diversification Jamie Oaks – phyletica.org 19/27
  • 73. Results 1 3 5 7 9 11 13 15 17 19 21 Number of divergence events 0.00 0.02 0.04 0.06 0.08 0.10 Posteriorprobability 0100200300400500 Time (kya) 0 -50 -100 Sealevel(m) J. R. Oaks (2014). BMC Evolutionary Biology 14: 150 Clustered diversification Jamie Oaks – phyletica.org 19/27
  • 74. More data! Collecting genomic data from taxa co-distributed across Southeast Asian Islands and Mainland Clustered diversification Jamie Oaks – phyletica.org 20/27
  • 75. More data! Collecting genomic data from taxa co-distributed across Southeast Asian Islands and Mainland Preliminary results for 1000 loci from 5 pairs of Gekko mindorensis populations 1 2 3 4 5 Number of divergence events, j¿j -5.0 -4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.02ln(Bayesfactor) Clustered diversification Jamie Oaks – phyletica.org 20/27
  • 76. Diversification across African rainforests Did climate cycles drive diversification and community assembly across rainforest taxa? Clustered diversification Jamie Oaks – phyletica.org 21/27
  • 77. Diversification across African rainforests Did climate cycles drive diversification and community assembly across rainforest taxa? Preliminary results with 300 loci from 3 taxa 1 2 3 Number of divergence events, j¿j -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2ln(Bayesfactor) Clustered diversification Jamie Oaks – phyletica.org 21/27
  • 78. Conclusions New method for estimating shared evolutionary history Shows good “frequentist” behavior Relatively robust to model violations Clustered diversification Jamie Oaks – phyletica.org 22/27
  • 79. Conclusions New method for estimating shared evolutionary history Shows good “frequentist” behavior Relatively robust to model violations Finding support for temporally clustered divergences in multiple systems Clustered diversification Jamie Oaks – phyletica.org 22/27
  • 80. Conclusions New method for estimating shared evolutionary history Shows good “frequentist” behavior Relatively robust to model violations Finding support for temporally clustered divergences in multiple systems However, there is a lot of uncertainty! Clustered diversification Jamie Oaks – phyletica.org 22/27
  • 81. Current work: More power Full-likelihood Bayesian implementation 1 D. Bryant et al. (2012). Molecular Biology And Evolution 29: 1917–1932 Clustered diversification Jamie Oaks – phyletica.org 23/27
  • 82. Current work: More power Full-likelihood Bayesian implementation Uses all the information in the data Applicable to deeper timescales 1 D. Bryant et al. (2012). Molecular Biology And Evolution 29: 1917–1932 Clustered diversification Jamie Oaks – phyletica.org 23/27
  • 83. Current work: More power Full-likelihood Bayesian implementation Uses all the information in the data Applicable to deeper timescales Analytically integrate over gene trees 1 1 D. Bryant et al. (2012). Molecular Biology And Evolution 29: 1917–1932 Clustered diversification Jamie Oaks – phyletica.org 23/27
  • 84. Current work: More power Full-likelihood Bayesian implementation Uses all the information in the data Applicable to deeper timescales Analytically integrate over gene trees 1 Very efficient numerical approximation of posterior Applicable to NGS datasets 1 D. Bryant et al. (2012). Molecular Biology And Evolution 29: 1917–1932 Clustered diversification Jamie Oaks – phyletica.org 23/27
  • 85. Next step: A general framework Develop a framework for inferring shared divergences across phylogenies τ1τ2 T1 T2 T3 Clustered diversification Jamie Oaks – phyletica.org 24/27
  • 86. Next step: A general framework Develop a framework for inferring shared divergences across phylogenies τ1τ2 T1 T2 T3 Clustered diversification Jamie Oaks – phyletica.org 24/27
  • 87. Next step: A general framework Develop a framework for inferring shared divergences across phylogenies Generalize Bayesian phylogenetics to incorporate shared divergences τ1τ2 T1 T2 T3 Clustered diversification Jamie Oaks – phyletica.org 24/27
  • 88. Next step: A general framework Develop a framework for inferring shared divergences across phylogenies Generalize Bayesian phylogenetics to incorporate shared divergences Sample models numerically via reversible-jump Markov chain Monte Carlo τ1τ2 T1 T2 T3 Clustered diversification Jamie Oaks – phyletica.org 24/27
  • 89. Next step: A general framework Develop a framework for inferring shared divergences across phylogenies Generalize Bayesian phylogenetics to incorporate shared divergences Sample models numerically via reversible-jump Markov chain Monte Carlo Benefits: Improve phylogenetic inference Framework for studying processes of co-diversification τ1τ2 T1 T2 T3 Clustered diversification Jamie Oaks – phyletica.org 24/27
  • 90. Everything is on GitHub. . . Software: dpp-msbayes: https://github.com/joaks1/dpp-msbayes PyMsBayes: https://joaks1.github.io/PyMsBayes ABACUS: Approximate BAyesian C UtilitieS. https://github.com/joaks1/abacus Open-Science Notebook: msbayes-experiments: https://github.com/joaks1/msbayes-experiments Clustered diversification Jamie Oaks – phyletica.org 25/27
  • 91. Acknowledgments Ideas and feedback: Leach´e Lab Minin Lab Holder Lab Brown Lab/KU Herpetology Computation: Funding: Photo credits: Rafe Brown, Cam Siler, Jesse Grismer, & Jake Esselstyn FMNH Philippine Mammal Website: D.S. Balete, M.R.M. Duya, & J. Holden PhyloPic! Clustered diversification Jamie Oaks – phyletica.org 26/27
  • 92. Questions? joaks@auburn.edu c 2007 Boris Kulikov boris-kulikov.blogspot.com Clustered diversification Jamie Oaks – phyletica.org 27/27