SlideShare a Scribd company logo
Introduction Physical models Multi-temporal simulator Land-cover change Conclusion
About High Temporal Resolution
Jordi Inglada
CNES/CESBIO
09-11-2010
Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 1 / 36
Introduction Physical models Multi-temporal simulator Land-cover change Conclusion
Outline
Introduction
Physical models
Multi-temporal simulator
Land-cover change
Conclusion
Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 2 / 36
Introduction Physical models Multi-temporal simulator Land-cover change Conclusion
New sensors
Venus
Sentinel (1,2)
LDCM
New applications . . .
. . . which require to closely monitor the temporal
trajectory of the characteristics of land surfaces.
real time classification
evolving nomenclatures
Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 3 / 36
Introduction Physical models Multi-temporal simulator Land-cover change Conclusion
Challenges
Global coverage every few days
Expectations for land cover change monitoring
Real-time: update the land-cover maps for every
new acquisition
Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 4 / 36
Introduction Physical models Multi-temporal simulator Land-cover change Conclusion
Approaches
It's not about methods but about
needs/applications
spatio-temporal trajectories of clusters in a
kernelized feature space are cool . . .
but a hard threshold on NDVI can sometimes work
Many scientists have developed models for the
physical processes
Some are easy to use; some are complex
Some can be spatialized; some can't
Many are Open Source (more on this later)
Expert knowledge
i.e. agricultural practices
Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 5 / 36
Introduction Physical models Multi-temporal simulator Land-cover change Conclusion
Outline
Introduction
Physical models
Multi-temporal simulator
Land-cover change
Conclusion
Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 6 / 36
Introduction Physical models Multi-temporal simulator Land-cover change Conclusion
Essential Climate Variables
For climate change assessment, mitigation and
adaptation:
River discharge,
Water use,
Groundwater,
Lakes,
Snow cover,
Glaciers and ice caps,
Permafrost,
Albedo,
Land cover (including vegetation type),
Fraction of absorbed photosynthetically active
radiation (FAPAR),
Leaf area index (LAI),
Above-ground biomass,
Fire disturbance
Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 7 / 36
Introduction Physical models Multi-temporal simulator Land-cover change Conclusion
Models
Areas of interest:
hydrology, agriculture, forestry,
Media:
Aerial, terrestrial, aquatic, mixed
How to find the good balance
complexity,
number of input parameters and variables,
computational cost
Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 8 / 36
Introduction Physical models Multi-temporal simulator Land-cover change Conclusion
Models
They describe the physical reality
Their assumptions/simplifications are clear
Naturally use/need ancillary data (meteo, ground
measures)
They can be multi-sensor or better . . .
. . . Sensor Agnostic
benefit from the synergy between sensors
increase temporal sampling!
Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 9 / 36
Introduction Physical models Multi-temporal simulator Land-cover change Conclusion
Open source models - some examples
Prospect: optical model for estimating leaf-level
reflectance and transmittance
Sail: canopy reflectance model
Daisy: mechanistic simulation model of the physical
and biological processes in an agricultural field
6s: a basic RT code used for calculation of
look-up tables in the MODIS atmospheric
correction algorithm
Arts: radiative transfer model for the millimeter
and sub-millimeter spectral range.
etc.
have a look at ecobas.org
Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 10 / 36
Introduction Physical models Multi-temporal simulator Land-cover change Conclusion
Outline
Introduction
Physical models
Multi-temporal simulator
Land-cover change
Conclusion
Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 11 / 36
Introduction Physical models Multi-temporal simulator Land-cover change Conclusion
Purpose
Which is the best sensor to recognize these:
60
40
20
0
0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,0 2,2 2,4 2,6
sol nu sec
végétation
eau
visible proche infrarouge moyen infrarouge
Longueur d'onde (µm)
Réflectance(%)
Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 12 / 36
Introduction Physical models Multi-temporal simulator Land-cover change Conclusion
Purpose
Or these
Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 13 / 36
Introduction Physical models Multi-temporal simulator Land-cover change Conclusion
Principle
Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 14 / 36
Introduction Physical models Multi-temporal simulator Land-cover change Conclusion
Architecture
Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 15 / 36
Introduction Physical models Multi-temporal simulator Land-cover change Conclusion
Results
0
0.2
0.4
0.6
0.8
1
Vegetation
Soils
M
an-m
ade
M
inerals
Accuracy
Spot 5
Quickbird
Pleiades
Landsat TM
Ikonos
Formosat
Meris
Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 16 / 36
Introduction Physical models Multi-temporal simulator Land-cover change Conclusion
Results
0
0.2
0.4
0.6
0.8
1
R
oad
C
oncretesC
onstructions
R
oof
Igneous
M
etam
orphic
Sedim
entary
Alfisol
Aridisol
Entisol
InceptisolM
ollisol
Accuracy
Spot 5
Quickbird
Pleiades
Landsat TM
Ikonos
Formosat
Meris
Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 17 / 36
Introduction Physical models Multi-temporal simulator Land-cover change Conclusion
Results
0
0.2
0.4
0.6
0.8
1
brow
nc
om
ps
hr
f
dkg
rayc
om
ps
hr
f
ltg
rayc
om
ps
hr
f
orangg
rayc
om
ps
hr
f
grayg
ravelr
fredg
ravelr
fbrow
nm
etalr
f
ltg
raym
etalr
fltg
raya
sphaltlr
f
redtiler
f
brow
ng
raytiler
f
tarr
f
w
oods
hingler
f
greenv
egnpv
bares
oil
openw
atersw
imp
oollta
sphaltr
ddka
sphaltr
dconcreter
dgravelr
d
parkinglotrailroadtracktennisc
ourtreds
porttartan
Accuracy
Spot 5
Quickbird
Pleiades
Landsat TM
Ikonos
Formosat
Meris
Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 18 / 36
Introduction Physical models Multi-temporal simulator Land-cover change Conclusion
Results
0
0.2
0.4
0.6
0.8
1
M
an-m
ade
Igneous
M
etam
orphic
Sedim
entary
Soils
Accuracy
Spot 5
Pleiades
Pleiades+MIR
Spot5-MIR
Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 19 / 36
Introduction Physical models Multi-temporal simulator Land-cover change Conclusion
But we said HTR . . .
How to simulate a multi-t mission?
Venus, Sentinel-2
Realistic temporal evolutions
Use existing image time series
Formosat-2
8 m., 4 bands (B,V,R,NIR), 3 days
Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 20 / 36
Introduction Physical models Multi-temporal simulator Land-cover change Conclusion
Spectral bands
500 1000 1500 2000
wavelength
0.0
0.2
0.4
0.6
0.8
1.0
Formosat-2
Relative Spectral Responses
500 1000 1500 2000
wavelength
0.0
0.2
0.4
0.6
0.8
1.0
Venus
500 1000 1500 2000
wavelength
0.0
0.2
0.4
0.6
0.8
1.0
Sentinel-2
Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 21 / 36
Introduction Physical models Multi-temporal simulator Land-cover change Conclusion
Example of series
March 14, 2006
Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 22 / 36
Introduction Physical models Multi-temporal simulator Land-cover change Conclusion
Example of series
July 17, 2006
Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 23 / 36
Introduction Physical models Multi-temporal simulator Land-cover change Conclusion
Example of series
November 2, 2006
Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 24 / 36
Introduction Physical models Multi-temporal simulator Land-cover change Conclusion
Available data
49 images in 2006
Orthorectification OK
Radiometric corrections OK
TOC and aerosol corrections
Cloud screening
Land-cover map available
Leaf pigments data base for several vegetation
types (LOPEX'93)
Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 25 / 36
Introduction Physical models Multi-temporal simulator Land-cover change Conclusion
Simulator architecture
Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 26 / 36
Introduction Physical models Multi-temporal simulator Land-cover change Conclusion
Example of application
Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 27 / 36
Introduction Physical models Multi-temporal simulator Land-cover change Conclusion
Outline
Introduction
Physical models
Multi-temporal simulator
Land-cover change
Conclusion
Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 28 / 36
Introduction Physical models Multi-temporal simulator Land-cover change Conclusion
Soil work
Main goal: improve real-time crop classification; soil
work can give hints on the type of crop
Soil map: is also interesting in itself as a product
Inter-crop Stubble disking Deep ploughing
Harrowing Sowing preparation Emergence
Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 29 / 36
Introduction Physical models Multi-temporal simulator Land-cover change Conclusion
Approach
Radiometry only: only the reflectances and
combinations of them (indexes) are used; no
texture, statistics, nor object-based features.
Index Formula
NDVI NIR−R
NIR+R
Color R−B
R
Brightness √
G2 + R2 + NIR2
Shape 2R−G−B
G−B
Redness R−V
R+V
Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 30 / 36
Introduction Physical models Multi-temporal simulator Land-cover change Conclusion
Approach
Statistical analysis: the temporal evolution of the
reflectances and the indexes (globally and per
class) are studied.
2 kinds of analysis:
Identification of the soil state: classification
Identification of the transitions between states:
change detection
SVM classification: both used as separability
measure and as classification tool
Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 31 / 36
Introduction Physical models Multi-temporal simulator Land-cover change Conclusion
Results for change detection
Transition D→H H→SP H→E SP→E
Accuracy (%) 97.0 88.74 87.91 96.76
The number of transitions is very low for some
cases (between 12 and 50 plots; or between 1k
and 10k pixels)
Many transitions between states can't be
detected accurately
However, some changes are well detected (about
90% and more)
Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 32 / 36
Introduction Physical models Multi-temporal simulator Land-cover change Conclusion
Outline
Introduction
Physical models
Multi-temporal simulator
Land-cover change
Conclusion
Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 33 / 36
Introduction Physical models Multi-temporal simulator Land-cover change Conclusion
What we've got
Source code available for many simulators
Ongoing work for
Prospect, Sail & Daisy integration
new hyper/multi- spectral/temporal algorithm
integration
Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 34 / 36
Introduction Physical models Multi-temporal simulator Land-cover change Conclusion
What we need
Engineering - Development
Improve image simulation: MTF, realistic landscapes
Hide physical models under common interfaces
Research
Learn to select the best model set for a given
problem
Incorporate domain expert knowledge
Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 35 / 36
Introduction Physical models Multi-temporal simulator Land-cover change Conclusion
Creative Commons Attribution-ShareAlike 3.0 Unported License
Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 36 / 36

More Related Content

What's hot

Geospatial Research At UCL
Geospatial Research At UCLGeospatial Research At UCL
Geospatial Research At UCL
Jeremy Morley
 
INSPIRE Data Specifications on Geology and Mineral Resources
INSPIRE Data Specifications on Geology and Mineral ResourcesINSPIRE Data Specifications on Geology and Mineral Resources
INSPIRE Data Specifications on Geology and Mineral Resources
Tomasz Nałęcz
 
Progress_on_Understanding_Satellite_Clus
Progress_on_Understanding_Satellite_ClusProgress_on_Understanding_Satellite_Clus
Progress_on_Understanding_Satellite_ClusVladimir Martinusi
 
Spaceborne Imagery For Environmental & Disaster Monitoring
Spaceborne Imagery For Environmental & Disaster MonitoringSpaceborne Imagery For Environmental & Disaster Monitoring
Spaceborne Imagery For Environmental & Disaster Monitoring
gpetrie
 

What's hot (6)

Usuda_2014p91452F
Usuda_2014p91452FUsuda_2014p91452F
Usuda_2014p91452F
 
PellegrinoHonorsThesis
PellegrinoHonorsThesisPellegrinoHonorsThesis
PellegrinoHonorsThesis
 
Geospatial Research At UCL
Geospatial Research At UCLGeospatial Research At UCL
Geospatial Research At UCL
 
INSPIRE Data Specifications on Geology and Mineral Resources
INSPIRE Data Specifications on Geology and Mineral ResourcesINSPIRE Data Specifications on Geology and Mineral Resources
INSPIRE Data Specifications on Geology and Mineral Resources
 
Progress_on_Understanding_Satellite_Clus
Progress_on_Understanding_Satellite_ClusProgress_on_Understanding_Satellite_Clus
Progress_on_Understanding_Satellite_Clus
 
Spaceborne Imagery For Environmental & Disaster Monitoring
Spaceborne Imagery For Environmental & Disaster MonitoringSpaceborne Imagery For Environmental & Disaster Monitoring
Spaceborne Imagery For Environmental & Disaster Monitoring
 

Viewers also liked

What is spatial Resolution
What is spatial ResolutionWhat is spatial Resolution
What is spatial Resolution
Sayed Abulhasan Quadri
 
Invariant-Free Clausal Temporal Resolution
Invariant-Free Clausal Temporal ResolutionInvariant-Free Clausal Temporal Resolution
Invariant-Free Clausal Temporal Resolution
Jornadas SISTEDES 2012 {JISBD; PROLE; JCIS}
 
Neuroimaging: Intracortical, fMRI, EEG
Neuroimaging: Intracortical, fMRI, EEGNeuroimaging: Intracortical, fMRI, EEG
Neuroimaging: Intracortical, fMRI, EEG
Ilya Kuzovkin
 
image processing-spatial resolution
image processing-spatial resolutionimage processing-spatial resolution
image processing-spatial resolution
bagavath85
 
Interaction of EMR with atmosphere and earth surface
Interaction of EMR with atmosphere and earth surfaceInteraction of EMR with atmosphere and earth surface
Interaction of EMR with atmosphere and earth surfaceSumant Diwakar
 
Pixel
PixelPixel
Remote sensing
Remote sensing Remote sensing
Remote sensing
John Lanser
 
BRAIN COMPUTER INTERFACE
BRAIN COMPUTER INTERFACEBRAIN COMPUTER INTERFACE
BRAIN COMPUTER INTERFACEnitish_kumar
 

Viewers also liked (11)

What is spatial Resolution
What is spatial ResolutionWhat is spatial Resolution
What is spatial Resolution
 
Invariant-Free Clausal Temporal Resolution
Invariant-Free Clausal Temporal ResolutionInvariant-Free Clausal Temporal Resolution
Invariant-Free Clausal Temporal Resolution
 
Neuroimaging: Intracortical, fMRI, EEG
Neuroimaging: Intracortical, fMRI, EEGNeuroimaging: Intracortical, fMRI, EEG
Neuroimaging: Intracortical, fMRI, EEG
 
image processing-spatial resolution
image processing-spatial resolutionimage processing-spatial resolution
image processing-spatial resolution
 
Interaction of EMR with atmosphere and earth surface
Interaction of EMR with atmosphere and earth surfaceInteraction of EMR with atmosphere and earth surface
Interaction of EMR with atmosphere and earth surface
 
Pixel
PixelPixel
Pixel
 
Remote sensing
Remote sensing Remote sensing
Remote sensing
 
EEG
EEGEEG
EEG
 
Eeg basics.drjma
Eeg basics.drjmaEeg basics.drjma
Eeg basics.drjma
 
BRAIN COMPUTER INTERFACE
BRAIN COMPUTER INTERFACEBRAIN COMPUTER INTERFACE
BRAIN COMPUTER INTERFACE
 
EEG: Basics
EEG: BasicsEEG: Basics
EEG: Basics
 

Similar to About hight temporal resolution

The physics background of the BDE SC5 pilot cases
The physics background of the BDE SC5 pilot casesThe physics background of the BDE SC5 pilot cases
The physics background of the BDE SC5 pilot cases
BigData_Europe
 
Physical based models of Landslides' triggering
Physical based models of Landslides' triggeringPhysical based models of Landslides' triggering
Physical based models of Landslides' triggering
Riccardo Rigon
 
Earth Observation Systems Evolution- Thales Alenia Space at Paris Air Show 2013
Earth Observation Systems Evolution- Thales Alenia Space at Paris Air Show 2013Earth Observation Systems Evolution- Thales Alenia Space at Paris Air Show 2013
Earth Observation Systems Evolution- Thales Alenia Space at Paris Air Show 2013Leonardo
 
Validation_SWOT_ground_airborne_Fjortoft.ppt
Validation_SWOT_ground_airborne_Fjortoft.pptValidation_SWOT_ground_airborne_Fjortoft.ppt
Validation_SWOT_ground_airborne_Fjortoft.pptgrssieee
 
TH4.L10.1: SMOS SMAP SYNERGISMS FOR THE RETRIEVAL OF SOIL MOISTURE
  TH4.L10.1: SMOS SMAP SYNERGISMS FOR THE RETRIEVAL OF SOIL MOISTURE  TH4.L10.1: SMOS SMAP SYNERGISMS FOR THE RETRIEVAL OF SOIL MOISTURE
TH4.L10.1: SMOS SMAP SYNERGISMS FOR THE RETRIEVAL OF SOIL MOISTUREgrssieee
 
DustDection_liuyang_Final.ppt
DustDection_liuyang_Final.pptDustDection_liuyang_Final.ppt
DustDection_liuyang_Final.pptgrssieee
 
Investigation of 2-phase evaporative reacting flows in micro-scale
Investigation of 2-phase evaporative reacting flows in micro-scaleInvestigation of 2-phase evaporative reacting flows in micro-scale
Investigation of 2-phase evaporative reacting flows in micro-scale
SIMTEC Software and Services
 
3178_IGARSS11.ppt
3178_IGARSS11.ppt3178_IGARSS11.ppt
3178_IGARSS11.pptgrssieee
 
Constraining terrestrial carbon fluxes by assimilating the SMOS soil moisture...
Constraining terrestrial carbon fluxes by assimilating the SMOS soil moisture...Constraining terrestrial carbon fluxes by assimilating the SMOS soil moisture...
Constraining terrestrial carbon fluxes by assimilating the SMOS soil moisture...
Integrated Carbon Observation System (ICOS)
 
inglada-AFrameworkfortheSimulationofHighTemporalResolutionImageSeries.pdf
inglada-AFrameworkfortheSimulationofHighTemporalResolutionImageSeries.pdfinglada-AFrameworkfortheSimulationofHighTemporalResolutionImageSeries.pdf
inglada-AFrameworkfortheSimulationofHighTemporalResolutionImageSeries.pdfgrssieee
 
IGARSS 2011 - FR3.T02 Clement ALBINET.ppt
IGARSS 2011 - FR3.T02 Clement ALBINET.pptIGARSS 2011 - FR3.T02 Clement ALBINET.ppt
IGARSS 2011 - FR3.T02 Clement ALBINET.pptgrssieee
 
IGARSS 2011 - TU4.T05 Clement ALBINET.ppt
IGARSS 2011 - TU4.T05 Clement ALBINET.pptIGARSS 2011 - TU4.T05 Clement ALBINET.ppt
IGARSS 2011 - TU4.T05 Clement ALBINET.pptgrssieee
 
The system dynamics modeling of geosynthetic clay landfill liners
The system dynamics modeling of geosynthetic clay landfill linersThe system dynamics modeling of geosynthetic clay landfill liners
The system dynamics modeling of geosynthetic clay landfill liners
Samson Olakunle OJOAWO
 
02we-Scarpelli-Worked-example-strip-foundation.pdf
02we-Scarpelli-Worked-example-strip-foundation.pdf02we-Scarpelli-Worked-example-strip-foundation.pdf
02we-Scarpelli-Worked-example-strip-foundation.pdf
JoeBankerS1
 
Wu, Mousong: Using SMOS soil moisture data combining CO2 flask samples to con...
Wu, Mousong: Using SMOS soil moisture data combining CO2 flask samples to con...Wu, Mousong: Using SMOS soil moisture data combining CO2 flask samples to con...
Wu, Mousong: Using SMOS soil moisture data combining CO2 flask samples to con...
Integrated Carbon Observation System (ICOS)
 
Hirlam20 HIRLAM Project
Hirlam20 HIRLAM Project Hirlam20 HIRLAM Project
Hirlam20 HIRLAM Project
Per Unden
 
Hirlam20
Hirlam20Hirlam20
Hirlam20
Per Unden
 

Similar to About hight temporal resolution (20)

The physics background of the BDE SC5 pilot cases
The physics background of the BDE SC5 pilot casesThe physics background of the BDE SC5 pilot cases
The physics background of the BDE SC5 pilot cases
 
Physical based models of Landslides' triggering
Physical based models of Landslides' triggeringPhysical based models of Landslides' triggering
Physical based models of Landslides' triggering
 
Climate Modelling for Ireland -Dr Ray McGrath, Met Eireann
Climate Modelling for Ireland -Dr Ray McGrath, Met EireannClimate Modelling for Ireland -Dr Ray McGrath, Met Eireann
Climate Modelling for Ireland -Dr Ray McGrath, Met Eireann
 
Earth Observation Systems Evolution- Thales Alenia Space at Paris Air Show 2013
Earth Observation Systems Evolution- Thales Alenia Space at Paris Air Show 2013Earth Observation Systems Evolution- Thales Alenia Space at Paris Air Show 2013
Earth Observation Systems Evolution- Thales Alenia Space at Paris Air Show 2013
 
Validation_SWOT_ground_airborne_Fjortoft.ppt
Validation_SWOT_ground_airborne_Fjortoft.pptValidation_SWOT_ground_airborne_Fjortoft.ppt
Validation_SWOT_ground_airborne_Fjortoft.ppt
 
TH4.L10.1: SMOS SMAP SYNERGISMS FOR THE RETRIEVAL OF SOIL MOISTURE
  TH4.L10.1: SMOS SMAP SYNERGISMS FOR THE RETRIEVAL OF SOIL MOISTURE  TH4.L10.1: SMOS SMAP SYNERGISMS FOR THE RETRIEVAL OF SOIL MOISTURE
TH4.L10.1: SMOS SMAP SYNERGISMS FOR THE RETRIEVAL OF SOIL MOISTURE
 
DustDection_liuyang_Final.ppt
DustDection_liuyang_Final.pptDustDection_liuyang_Final.ppt
DustDection_liuyang_Final.ppt
 
Investigation of 2-phase evaporative reacting flows in micro-scale
Investigation of 2-phase evaporative reacting flows in micro-scaleInvestigation of 2-phase evaporative reacting flows in micro-scale
Investigation of 2-phase evaporative reacting flows in micro-scale
 
3178_IGARSS11.ppt
3178_IGARSS11.ppt3178_IGARSS11.ppt
3178_IGARSS11.ppt
 
Constraining terrestrial carbon fluxes by assimilating the SMOS soil moisture...
Constraining terrestrial carbon fluxes by assimilating the SMOS soil moisture...Constraining terrestrial carbon fluxes by assimilating the SMOS soil moisture...
Constraining terrestrial carbon fluxes by assimilating the SMOS soil moisture...
 
inglada-AFrameworkfortheSimulationofHighTemporalResolutionImageSeries.pdf
inglada-AFrameworkfortheSimulationofHighTemporalResolutionImageSeries.pdfinglada-AFrameworkfortheSimulationofHighTemporalResolutionImageSeries.pdf
inglada-AFrameworkfortheSimulationofHighTemporalResolutionImageSeries.pdf
 
IGARSS 2011 - FR3.T02 Clement ALBINET.ppt
IGARSS 2011 - FR3.T02 Clement ALBINET.pptIGARSS 2011 - FR3.T02 Clement ALBINET.ppt
IGARSS 2011 - FR3.T02 Clement ALBINET.ppt
 
IGARSS 2011 - TU4.T05 Clement ALBINET.ppt
IGARSS 2011 - TU4.T05 Clement ALBINET.pptIGARSS 2011 - TU4.T05 Clement ALBINET.ppt
IGARSS 2011 - TU4.T05 Clement ALBINET.ppt
 
a3-4.park.pdf
a3-4.park.pdfa3-4.park.pdf
a3-4.park.pdf
 
The system dynamics modeling of geosynthetic clay landfill liners
The system dynamics modeling of geosynthetic clay landfill linersThe system dynamics modeling of geosynthetic clay landfill liners
The system dynamics modeling of geosynthetic clay landfill liners
 
02we-Scarpelli-Worked-example-strip-foundation.pdf
02we-Scarpelli-Worked-example-strip-foundation.pdf02we-Scarpelli-Worked-example-strip-foundation.pdf
02we-Scarpelli-Worked-example-strip-foundation.pdf
 
Wu, Mousong: Using SMOS soil moisture data combining CO2 flask samples to con...
Wu, Mousong: Using SMOS soil moisture data combining CO2 flask samples to con...Wu, Mousong: Using SMOS soil moisture data combining CO2 flask samples to con...
Wu, Mousong: Using SMOS soil moisture data combining CO2 flask samples to con...
 
Hirlam20 HIRLAM Project
Hirlam20 HIRLAM Project Hirlam20 HIRLAM Project
Hirlam20 HIRLAM Project
 
Hirlam20
Hirlam20Hirlam20
Hirlam20
 
Debris Aerospatiaux
Debris AerospatiauxDebris Aerospatiaux
Debris Aerospatiaux
 

About hight temporal resolution

  • 1. Introduction Physical models Multi-temporal simulator Land-cover change Conclusion About High Temporal Resolution Jordi Inglada CNES/CESBIO 09-11-2010 Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 1 / 36
  • 2. Introduction Physical models Multi-temporal simulator Land-cover change Conclusion Outline Introduction Physical models Multi-temporal simulator Land-cover change Conclusion Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 2 / 36
  • 3. Introduction Physical models Multi-temporal simulator Land-cover change Conclusion New sensors Venus Sentinel (1,2) LDCM New applications . . . . . . which require to closely monitor the temporal trajectory of the characteristics of land surfaces. real time classification evolving nomenclatures Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 3 / 36
  • 4. Introduction Physical models Multi-temporal simulator Land-cover change Conclusion Challenges Global coverage every few days Expectations for land cover change monitoring Real-time: update the land-cover maps for every new acquisition Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 4 / 36
  • 5. Introduction Physical models Multi-temporal simulator Land-cover change Conclusion Approaches It's not about methods but about needs/applications spatio-temporal trajectories of clusters in a kernelized feature space are cool . . . but a hard threshold on NDVI can sometimes work Many scientists have developed models for the physical processes Some are easy to use; some are complex Some can be spatialized; some can't Many are Open Source (more on this later) Expert knowledge i.e. agricultural practices Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 5 / 36
  • 6. Introduction Physical models Multi-temporal simulator Land-cover change Conclusion Outline Introduction Physical models Multi-temporal simulator Land-cover change Conclusion Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 6 / 36
  • 7. Introduction Physical models Multi-temporal simulator Land-cover change Conclusion Essential Climate Variables For climate change assessment, mitigation and adaptation: River discharge, Water use, Groundwater, Lakes, Snow cover, Glaciers and ice caps, Permafrost, Albedo, Land cover (including vegetation type), Fraction of absorbed photosynthetically active radiation (FAPAR), Leaf area index (LAI), Above-ground biomass, Fire disturbance Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 7 / 36
  • 8. Introduction Physical models Multi-temporal simulator Land-cover change Conclusion Models Areas of interest: hydrology, agriculture, forestry, Media: Aerial, terrestrial, aquatic, mixed How to find the good balance complexity, number of input parameters and variables, computational cost Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 8 / 36
  • 9. Introduction Physical models Multi-temporal simulator Land-cover change Conclusion Models They describe the physical reality Their assumptions/simplifications are clear Naturally use/need ancillary data (meteo, ground measures) They can be multi-sensor or better . . . . . . Sensor Agnostic benefit from the synergy between sensors increase temporal sampling! Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 9 / 36
  • 10. Introduction Physical models Multi-temporal simulator Land-cover change Conclusion Open source models - some examples Prospect: optical model for estimating leaf-level reflectance and transmittance Sail: canopy reflectance model Daisy: mechanistic simulation model of the physical and biological processes in an agricultural field 6s: a basic RT code used for calculation of look-up tables in the MODIS atmospheric correction algorithm Arts: radiative transfer model for the millimeter and sub-millimeter spectral range. etc. have a look at ecobas.org Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 10 / 36
  • 11. Introduction Physical models Multi-temporal simulator Land-cover change Conclusion Outline Introduction Physical models Multi-temporal simulator Land-cover change Conclusion Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 11 / 36
  • 12. Introduction Physical models Multi-temporal simulator Land-cover change Conclusion Purpose Which is the best sensor to recognize these: 60 40 20 0 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,0 2,2 2,4 2,6 sol nu sec végétation eau visible proche infrarouge moyen infrarouge Longueur d'onde (µm) Réflectance(%) Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 12 / 36
  • 13. Introduction Physical models Multi-temporal simulator Land-cover change Conclusion Purpose Or these Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 13 / 36
  • 14. Introduction Physical models Multi-temporal simulator Land-cover change Conclusion Principle Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 14 / 36
  • 15. Introduction Physical models Multi-temporal simulator Land-cover change Conclusion Architecture Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 15 / 36
  • 16. Introduction Physical models Multi-temporal simulator Land-cover change Conclusion Results 0 0.2 0.4 0.6 0.8 1 Vegetation Soils M an-m ade M inerals Accuracy Spot 5 Quickbird Pleiades Landsat TM Ikonos Formosat Meris Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 16 / 36
  • 17. Introduction Physical models Multi-temporal simulator Land-cover change Conclusion Results 0 0.2 0.4 0.6 0.8 1 R oad C oncretesC onstructions R oof Igneous M etam orphic Sedim entary Alfisol Aridisol Entisol InceptisolM ollisol Accuracy Spot 5 Quickbird Pleiades Landsat TM Ikonos Formosat Meris Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 17 / 36
  • 18. Introduction Physical models Multi-temporal simulator Land-cover change Conclusion Results 0 0.2 0.4 0.6 0.8 1 brow nc om ps hr f dkg rayc om ps hr f ltg rayc om ps hr f orangg rayc om ps hr f grayg ravelr fredg ravelr fbrow nm etalr f ltg raym etalr fltg raya sphaltlr f redtiler f brow ng raytiler f tarr f w oods hingler f greenv egnpv bares oil openw atersw imp oollta sphaltr ddka sphaltr dconcreter dgravelr d parkinglotrailroadtracktennisc ourtreds porttartan Accuracy Spot 5 Quickbird Pleiades Landsat TM Ikonos Formosat Meris Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 18 / 36
  • 19. Introduction Physical models Multi-temporal simulator Land-cover change Conclusion Results 0 0.2 0.4 0.6 0.8 1 M an-m ade Igneous M etam orphic Sedim entary Soils Accuracy Spot 5 Pleiades Pleiades+MIR Spot5-MIR Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 19 / 36
  • 20. Introduction Physical models Multi-temporal simulator Land-cover change Conclusion But we said HTR . . . How to simulate a multi-t mission? Venus, Sentinel-2 Realistic temporal evolutions Use existing image time series Formosat-2 8 m., 4 bands (B,V,R,NIR), 3 days Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 20 / 36
  • 21. Introduction Physical models Multi-temporal simulator Land-cover change Conclusion Spectral bands 500 1000 1500 2000 wavelength 0.0 0.2 0.4 0.6 0.8 1.0 Formosat-2 Relative Spectral Responses 500 1000 1500 2000 wavelength 0.0 0.2 0.4 0.6 0.8 1.0 Venus 500 1000 1500 2000 wavelength 0.0 0.2 0.4 0.6 0.8 1.0 Sentinel-2 Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 21 / 36
  • 22. Introduction Physical models Multi-temporal simulator Land-cover change Conclusion Example of series March 14, 2006 Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 22 / 36
  • 23. Introduction Physical models Multi-temporal simulator Land-cover change Conclusion Example of series July 17, 2006 Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 23 / 36
  • 24. Introduction Physical models Multi-temporal simulator Land-cover change Conclusion Example of series November 2, 2006 Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 24 / 36
  • 25. Introduction Physical models Multi-temporal simulator Land-cover change Conclusion Available data 49 images in 2006 Orthorectification OK Radiometric corrections OK TOC and aerosol corrections Cloud screening Land-cover map available Leaf pigments data base for several vegetation types (LOPEX'93) Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 25 / 36
  • 26. Introduction Physical models Multi-temporal simulator Land-cover change Conclusion Simulator architecture Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 26 / 36
  • 27. Introduction Physical models Multi-temporal simulator Land-cover change Conclusion Example of application Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 27 / 36
  • 28. Introduction Physical models Multi-temporal simulator Land-cover change Conclusion Outline Introduction Physical models Multi-temporal simulator Land-cover change Conclusion Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 28 / 36
  • 29. Introduction Physical models Multi-temporal simulator Land-cover change Conclusion Soil work Main goal: improve real-time crop classification; soil work can give hints on the type of crop Soil map: is also interesting in itself as a product Inter-crop Stubble disking Deep ploughing Harrowing Sowing preparation Emergence Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 29 / 36
  • 30. Introduction Physical models Multi-temporal simulator Land-cover change Conclusion Approach Radiometry only: only the reflectances and combinations of them (indexes) are used; no texture, statistics, nor object-based features. Index Formula NDVI NIR−R NIR+R Color R−B R Brightness √ G2 + R2 + NIR2 Shape 2R−G−B G−B Redness R−V R+V Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 30 / 36
  • 31. Introduction Physical models Multi-temporal simulator Land-cover change Conclusion Approach Statistical analysis: the temporal evolution of the reflectances and the indexes (globally and per class) are studied. 2 kinds of analysis: Identification of the soil state: classification Identification of the transitions between states: change detection SVM classification: both used as separability measure and as classification tool Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 31 / 36
  • 32. Introduction Physical models Multi-temporal simulator Land-cover change Conclusion Results for change detection Transition D→H H→SP H→E SP→E Accuracy (%) 97.0 88.74 87.91 96.76 The number of transitions is very low for some cases (between 12 and 50 plots; or between 1k and 10k pixels) Many transitions between states can't be detected accurately However, some changes are well detected (about 90% and more) Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 32 / 36
  • 33. Introduction Physical models Multi-temporal simulator Land-cover change Conclusion Outline Introduction Physical models Multi-temporal simulator Land-cover change Conclusion Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 33 / 36
  • 34. Introduction Physical models Multi-temporal simulator Land-cover change Conclusion What we've got Source code available for many simulators Ongoing work for Prospect, Sail & Daisy integration new hyper/multi- spectral/temporal algorithm integration Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 34 / 36
  • 35. Introduction Physical models Multi-temporal simulator Land-cover change Conclusion What we need Engineering - Development Improve image simulation: MTF, realistic landscapes Hide physical models under common interfaces Research Learn to select the best model set for a given problem Incorporate domain expert knowledge Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 35 / 36
  • 36. Introduction Physical models Multi-temporal simulator Land-cover change Conclusion Creative Commons Attribution-ShareAlike 3.0 Unported License Jordi Inglada (CNES/CESBIO) About High Temporal Resolution 09-11-2010 36 / 36