DevSecOps Day 2024
A gentle introduction to
MLSecOps
DevSecOps Day 2024
DevSecOps Day 2024
DevSecOps Day 2024
DevSecOps Day 2024
Data & Automation Specialist @ Corley Cloud
alessandra.bilardi@corley.it
corley.it
Alessandra Bilardi
DevSecOps Day 2024
Data & Automation Specialist @ Corley Cloud
alessandra.bilardi@corley.it
corley.it
Alessandra Bilardi
DevSecOps Day 2024
Data & Automation Specialist @ Corley Cloud
alessandra.bilardi@corley.it
corley.it
Alessandra Bilardi
DevSecOps Day 2024
Corley Cloud è
Advanced Partner AWS
Soluzioni & servizi offerti da Corley Cloud
DevSecOps Day 2024
SUMMARY
From MLOps to MLSecOps
The Responsible Machine Learning Principles
Top 10 Vulnerabilities
Takeaways
DevSecOps Day 2024
From MLOps to MLSecOps
DevSecOps Day 2024
ML system
DevSecOps Day 2024
ML system
DevSecOps Day 2024
ML system
DevSecOps Day 2024
ML system
DevSecOps Day 2024
MLOps
DevSecOps Day 2024
➔ CI / CD for software development (code)
➔ Automation of the distribution of the
environment with fault alerts
➔ Versioning of code about each
components
➔ Testing of code
➔ Monitoring instances metrics & logs,
autoscaling
DevOps
DevSecOps Day 2024
➔ CI / CD for software development (code)
➔ Automation of the distribution of the
environment with fault alerts
➔ Versioning of code about each
components
➔ Testing of code
➔ Monitoring instances metrics & logs,
autoscaling
➔ CI / CD for software development (code)
➔ Automation of the distribution of the
environment with fault alerts
➔ Versioning of data, model and code
about each machine learning step
➔ Testing of data, model and code
➔ Monitoring instances metrics & logs,
autoscaling, model decay, data bias
DevOps MLOps
DevSecOps Day 2024
[S|L] LM system
DevSecOps Day 2024
[S|L] LM system
DevSecOps Day 2024
[S|L] LM system
DevSecOps Day 2024
[S|L] LMOps
DevSecOps Day 2024
➔ CI / CD for software development (code)
➔ Automation of the distribution of the
environment with fault alerts
➔ Versioning of code about each
components
➔ Testing of code
➔ Monitoring instances metrics & logs,
autoscaling
➔ CI / CD for software development (code)
➔ Automation of the distribution of the
environment with fault alerts
➔ Versioning of data, model and code
about each machine learning step
➔ Testing of data, model and code
➔ Monitoring instances metrics & logs,
autoscaling, model decay, data bias
DevOps MLOps / [S|L] LMOps
DevSecOps Day 2024
MLSecOps
DevSecOps Day 2024
Domains
1. Supply Chain
Vulnerability
DevSecOps Day 2024
Domains
1. Supply Chain
Vulnerability
DevSecOps Day 2024
Domains
1. Supply Chain
Vulnerability
DevSecOps Day 2024
Domains ● maintenance
● monitoring
● identify vulnerabilities
● secure software supply chains
● integrity and reliability
● data and infrastructure documented
1. Supply Chain
Vulnerability
DevSecOps Day 2024
Domains
1. Supply Chain
Vulnerability
2. Model Provenance
DevSecOps Day 2024
Domains
1. Supply Chain
Vulnerability
2. Model Provenance
Pedigree
DevSecOps Day 2024
Domains
1. Supply Chain
Vulnerability
2. Model Provenance
3. Governance, Risk &
Compliance (GRC)
DevSecOps Day 2024
Domains
1. Supply Chain
Vulnerability
2. Model Provenance
3. Governance, Risk &
Compliance (GRC)
Machine Learning Bill of Materials (MLBoM)
DevSecOps Day 2024
With great power comes
great responsibility.
STAN LEE VOLTAIRE
DevSecOps Day 2024
Domains
1. Supply Chain
Vulnerability
2. Model Provenance
3. Governance, Risk &
Compliance (GRC)
4. Trusted AI: Bias,
Fairness &
Explainability
https://github.com/Trusted-AI
DevSecOps Day 2024
Domains
1. Supply Chain
Vulnerability
2. Model Provenance
3. Governance, Risk &
Compliance (GRC)
4. Trusted AI: Bias,
Fairness &
Explainability
5. Adversarial ML
https://github.com/Trusted-AI
DevSecOps Day 2024
Domains
1. Supply Chain
Vulnerability
2. Model Provenance
3. Governance, Risk &
Compliance (GRC)
4. Trusted AI: Bias,
Fairness &
Explainability
5. Adversarial ML
https://adversarial-robustness-toolbox.readthedocs.io/
DevSecOps Day 2024
Machine learning Security Operations
➔ Supply Chain Vulnerability with
maintenance and monitoring for
software development (code)
➔ Model Provenance lineage of model
➔ Governance, Risk & Compliance with
Machine Learning Bill of Materials
(MLBoM) for data, model, algos & code
➔ Trusted AI with Fairness &
Explainability tools for data & model
➔ Adversarial Machine Learning as
another tool against malicious attacks
DevSecOps Day 2024
MLSecOps DevSecOps
➔ Supply Chain Vulnerability with
maintenance, monitoring and
application security testing (DAST, SAST,
IAST, SCA) for software development
(code)
➔ Governance, Risk & Compliance for
code and infrastructure
➔ WAF to manage filtering, injection,
intrusion prevention, inspections, ..
➔ Mesh to manage traffic routing
➔ DDos mitigation
➔ Supply Chain Vulnerability with
maintenance and monitoring for
software development (code)
➔ Model Provenance lineage of model
➔ Governance, Risk & Compliance with
Machine Learning Bill of Materials
(MLBoM) for data, model, algos & code
➔ Trusted AI with Fairness &
Explainability tools for data & model
➔ Adversarial Machine Learning as
another tool against model attacks
DevSecOps Day 2024
AI system
DevSecOps Day 2024
The Responsible ML Principles
DevSecOps Day 2024
Principles
I commit ..
1. Human augmentation
DevSecOps Day 2024
Principles
I commit ..
1. Human augmentation
2. Bias evaluation
DevSecOps Day 2024
Principles
I commit ..
1. Human augmentation
2. Bias evaluation
3. Explainability by
justification
DevSecOps Day 2024
Principles
I commit ..
1. Human augmentation
2. Bias evaluation
3. Explainability by
justification
4. Reproducible
operations
DevSecOps Day 2024
Principles
I commit ..
1. Human augmentation
2. Bias evaluation
3. Explainability by
justification
4. Reproducible
operations
5. Displacement strategy
DevSecOps Day 2024
Principles
I commit ..
1. Human augmentation
2. Bias evaluation
3. Explainability by
justification
4. Reproducible
operations
5. Displacement strategy
6. Practical accuracy
DevSecOps Day 2024
Principles
I commit ..
1. Human augmentation
2. Bias evaluation
3. Explainability by
justification
4. Reproducible
operations
5. Displacement strategy
6. Practical accuracy
7. Trust by privacy
DevSecOps Day 2024
Principles
I commit ..
1. Human augmentation
2. Bias evaluation
3. Explainability by
justification
4. Reproducible
operations
5. Displacement strategy
6. Practical accuracy
7. Trust by privacy
8. Data risk awareness
DevSecOps Day 2024
Top 10 Vulnerabilities
DevSecOps Day 2024
OWASP Vulnerability
1. Broken Access Control
2. Cryptographic Failures
3. Injection
4. Insecure Design
5. Security Misconfigurations
6. Vulnerable and Outdated
Components
7. Identification and Auth Failures
8. Software and Data Integrity
Failures
9. Logging and Monitoring Failures
10. Server-side Request Forgery
DevSecOps Day 2024
OWASP Vulnerability - MLSecOps Equivalent
1. Unrestricted Model Endpoints
2. Access to Model Artifacts
3. Artifact Exploit Injection
4. Insecure ML Systems/Pipeline Design
5. Data and ML Infra Misconfigurations
6. Supply Chain Vulnerabilities
in ML Code
7. IAM and RBAC Failures for ML Services
8. ML infra / ETL / CI / CD integrity
Failures
9. Observability, Reproducibility & Lineage
10. ML-Server Side Request Forgery
1. Broken Access Control
2. Cryptographic Failures
3. Injection
4. Insecure Design
5. Security Misconfigurations
6. Vulnerable and Outdated
Components
7. Identification and Auth Failures
8. Software and Data Integrity
Failures
9. Logging and Monitoring Failures
10. Server-side Request Forgery
DevSecOps Day 2024
Takeaways
DevSecOps Day 2024
Concepts
MLSecOps Domains
1. Supply Chain Vulnerability
2. Model Provenance
3. Governance, Risk & Compliance
4. Trusted AI
5. Adversarial Machine Learning
The Responsible ML Principles
1. Human augmentation
2. Bias evaluation
3. Explainability by justification
4. Reproducible operations
5. Displacement strategy
6. Practical accuracy
7. Trust by privacy
8. Data risk awareness
DevSecOps Day 2024
Thanks
for listening!
DevSecOps Day 2024
References
● https://mlsecops.com/
● https://huntr.com/
● https://owasp.org/www-project-top-ten/
● https://ethical.institute/
● https://github.com/EthicalML/fml-security

A gentle introduction to MLSecOps - 2024-10-11

  • 1.
    DevSecOps Day 2024 Agentle introduction to MLSecOps
  • 2.
  • 3.
  • 4.
  • 5.
    DevSecOps Day 2024 Data& Automation Specialist @ Corley Cloud alessandra.bilardi@corley.it corley.it Alessandra Bilardi
  • 6.
    DevSecOps Day 2024 Data& Automation Specialist @ Corley Cloud alessandra.bilardi@corley.it corley.it Alessandra Bilardi
  • 7.
    DevSecOps Day 2024 Data& Automation Specialist @ Corley Cloud alessandra.bilardi@corley.it corley.it Alessandra Bilardi
  • 8.
    DevSecOps Day 2024 CorleyCloud è Advanced Partner AWS Soluzioni & servizi offerti da Corley Cloud
  • 9.
    DevSecOps Day 2024 SUMMARY FromMLOps to MLSecOps The Responsible Machine Learning Principles Top 10 Vulnerabilities Takeaways
  • 10.
    DevSecOps Day 2024 FromMLOps to MLSecOps
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
    DevSecOps Day 2024 ➔CI / CD for software development (code) ➔ Automation of the distribution of the environment with fault alerts ➔ Versioning of code about each components ➔ Testing of code ➔ Monitoring instances metrics & logs, autoscaling DevOps
  • 17.
    DevSecOps Day 2024 ➔CI / CD for software development (code) ➔ Automation of the distribution of the environment with fault alerts ➔ Versioning of code about each components ➔ Testing of code ➔ Monitoring instances metrics & logs, autoscaling ➔ CI / CD for software development (code) ➔ Automation of the distribution of the environment with fault alerts ➔ Versioning of data, model and code about each machine learning step ➔ Testing of data, model and code ➔ Monitoring instances metrics & logs, autoscaling, model decay, data bias DevOps MLOps
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
    DevSecOps Day 2024 ➔CI / CD for software development (code) ➔ Automation of the distribution of the environment with fault alerts ➔ Versioning of code about each components ➔ Testing of code ➔ Monitoring instances metrics & logs, autoscaling ➔ CI / CD for software development (code) ➔ Automation of the distribution of the environment with fault alerts ➔ Versioning of data, model and code about each machine learning step ➔ Testing of data, model and code ➔ Monitoring instances metrics & logs, autoscaling, model decay, data bias DevOps MLOps / [S|L] LMOps
  • 23.
  • 24.
    DevSecOps Day 2024 Domains 1.Supply Chain Vulnerability
  • 25.
    DevSecOps Day 2024 Domains 1.Supply Chain Vulnerability
  • 26.
    DevSecOps Day 2024 Domains 1.Supply Chain Vulnerability
  • 27.
    DevSecOps Day 2024 Domains● maintenance ● monitoring ● identify vulnerabilities ● secure software supply chains ● integrity and reliability ● data and infrastructure documented 1. Supply Chain Vulnerability
  • 28.
    DevSecOps Day 2024 Domains 1.Supply Chain Vulnerability 2. Model Provenance
  • 29.
    DevSecOps Day 2024 Domains 1.Supply Chain Vulnerability 2. Model Provenance Pedigree
  • 30.
    DevSecOps Day 2024 Domains 1.Supply Chain Vulnerability 2. Model Provenance 3. Governance, Risk & Compliance (GRC)
  • 31.
    DevSecOps Day 2024 Domains 1.Supply Chain Vulnerability 2. Model Provenance 3. Governance, Risk & Compliance (GRC) Machine Learning Bill of Materials (MLBoM)
  • 32.
    DevSecOps Day 2024 Withgreat power comes great responsibility. STAN LEE VOLTAIRE
  • 33.
    DevSecOps Day 2024 Domains 1.Supply Chain Vulnerability 2. Model Provenance 3. Governance, Risk & Compliance (GRC) 4. Trusted AI: Bias, Fairness & Explainability https://github.com/Trusted-AI
  • 34.
    DevSecOps Day 2024 Domains 1.Supply Chain Vulnerability 2. Model Provenance 3. Governance, Risk & Compliance (GRC) 4. Trusted AI: Bias, Fairness & Explainability 5. Adversarial ML https://github.com/Trusted-AI
  • 35.
    DevSecOps Day 2024 Domains 1.Supply Chain Vulnerability 2. Model Provenance 3. Governance, Risk & Compliance (GRC) 4. Trusted AI: Bias, Fairness & Explainability 5. Adversarial ML https://adversarial-robustness-toolbox.readthedocs.io/
  • 36.
    DevSecOps Day 2024 Machinelearning Security Operations ➔ Supply Chain Vulnerability with maintenance and monitoring for software development (code) ➔ Model Provenance lineage of model ➔ Governance, Risk & Compliance with Machine Learning Bill of Materials (MLBoM) for data, model, algos & code ➔ Trusted AI with Fairness & Explainability tools for data & model ➔ Adversarial Machine Learning as another tool against malicious attacks
  • 37.
    DevSecOps Day 2024 MLSecOpsDevSecOps ➔ Supply Chain Vulnerability with maintenance, monitoring and application security testing (DAST, SAST, IAST, SCA) for software development (code) ➔ Governance, Risk & Compliance for code and infrastructure ➔ WAF to manage filtering, injection, intrusion prevention, inspections, .. ➔ Mesh to manage traffic routing ➔ DDos mitigation ➔ Supply Chain Vulnerability with maintenance and monitoring for software development (code) ➔ Model Provenance lineage of model ➔ Governance, Risk & Compliance with Machine Learning Bill of Materials (MLBoM) for data, model, algos & code ➔ Trusted AI with Fairness & Explainability tools for data & model ➔ Adversarial Machine Learning as another tool against model attacks
  • 38.
  • 39.
    DevSecOps Day 2024 TheResponsible ML Principles
  • 40.
    DevSecOps Day 2024 Principles Icommit .. 1. Human augmentation
  • 41.
    DevSecOps Day 2024 Principles Icommit .. 1. Human augmentation 2. Bias evaluation
  • 42.
    DevSecOps Day 2024 Principles Icommit .. 1. Human augmentation 2. Bias evaluation 3. Explainability by justification
  • 43.
    DevSecOps Day 2024 Principles Icommit .. 1. Human augmentation 2. Bias evaluation 3. Explainability by justification 4. Reproducible operations
  • 44.
    DevSecOps Day 2024 Principles Icommit .. 1. Human augmentation 2. Bias evaluation 3. Explainability by justification 4. Reproducible operations 5. Displacement strategy
  • 45.
    DevSecOps Day 2024 Principles Icommit .. 1. Human augmentation 2. Bias evaluation 3. Explainability by justification 4. Reproducible operations 5. Displacement strategy 6. Practical accuracy
  • 46.
    DevSecOps Day 2024 Principles Icommit .. 1. Human augmentation 2. Bias evaluation 3. Explainability by justification 4. Reproducible operations 5. Displacement strategy 6. Practical accuracy 7. Trust by privacy
  • 47.
    DevSecOps Day 2024 Principles Icommit .. 1. Human augmentation 2. Bias evaluation 3. Explainability by justification 4. Reproducible operations 5. Displacement strategy 6. Practical accuracy 7. Trust by privacy 8. Data risk awareness
  • 48.
    DevSecOps Day 2024 Top10 Vulnerabilities
  • 49.
    DevSecOps Day 2024 OWASPVulnerability 1. Broken Access Control 2. Cryptographic Failures 3. Injection 4. Insecure Design 5. Security Misconfigurations 6. Vulnerable and Outdated Components 7. Identification and Auth Failures 8. Software and Data Integrity Failures 9. Logging and Monitoring Failures 10. Server-side Request Forgery
  • 50.
    DevSecOps Day 2024 OWASPVulnerability - MLSecOps Equivalent 1. Unrestricted Model Endpoints 2. Access to Model Artifacts 3. Artifact Exploit Injection 4. Insecure ML Systems/Pipeline Design 5. Data and ML Infra Misconfigurations 6. Supply Chain Vulnerabilities in ML Code 7. IAM and RBAC Failures for ML Services 8. ML infra / ETL / CI / CD integrity Failures 9. Observability, Reproducibility & Lineage 10. ML-Server Side Request Forgery 1. Broken Access Control 2. Cryptographic Failures 3. Injection 4. Insecure Design 5. Security Misconfigurations 6. Vulnerable and Outdated Components 7. Identification and Auth Failures 8. Software and Data Integrity Failures 9. Logging and Monitoring Failures 10. Server-side Request Forgery
  • 51.
  • 52.
    DevSecOps Day 2024 Concepts MLSecOpsDomains 1. Supply Chain Vulnerability 2. Model Provenance 3. Governance, Risk & Compliance 4. Trusted AI 5. Adversarial Machine Learning The Responsible ML Principles 1. Human augmentation 2. Bias evaluation 3. Explainability by justification 4. Reproducible operations 5. Displacement strategy 6. Practical accuracy 7. Trust by privacy 8. Data risk awareness
  • 53.
  • 54.
    DevSecOps Day 2024 References ●https://mlsecops.com/ ● https://huntr.com/ ● https://owasp.org/www-project-top-ten/ ● https://ethical.institute/ ● https://github.com/EthicalML/fml-security