Statistical hypothesis testing is an important tool for scientists to critically evaluate hypotheses using empirical data. It helps keep scientists honest by requiring them to statistically test their ideas rather than accepting them uncritically. One should be skeptical of any paper that claims an alternative hypothesis is supported without providing a statistical test. A key statistical test is the chi-square test, which compares observed data to expected frequencies under the null hypothesis. It calculates a test statistic and compares it to critical values in tables to determine if the null hypothesis can be rejected in favor of the alternative hypothesis. Proper use of statistical testing is part of the scientific method and moral imperative for scientists.