SlideShare a Scribd company logo
1 of 50
Download to read offline
Cathodoluminescence in semiconductor structures
under local tunneling electron injection
Petr Polovodov
M. Fabrice Charra CEA/Saclay, Gif sur Yvette Rapporteur
M. Philippe Dumas CINaM, Marseille Rapporteur
M. Razvigor Ossikovski LPICM, Ecole Polytechnique, Palaiseau Examinateur
M. Oleg Tereshchenko Rzhanov Institute of Semiconductor
Physics, Novosibirsk, Russie
Examinateur
M. Yves Lassailly LPMC, Ecole Polytechnique, Palaiseau Directeur de thèse
M. Jacques Peretti LPMC, Ecole Polytechnique, Palaiseau Co-Directeur de thèse
1
Context
2
e-
𝐼𝐼
A. Filipe et al., PRL 80 (1997) 2425
Polarized electron transport in ferromagnetic metal/semiconductorstructures.
,
X. Li et al., APL 105 (2014) 052402
3
Transport and recombination in semiconductors
J. Iveland et al., PRL 110 (2013) 177406
V f
Electroemission spectroscopy
hn
Context
e-
𝐼𝐼
A. Filipe et al., PRL 80 (1997) 2425
,
X. Li et al., APL 105 (2014) 052402
Polarized electron transport in ferromagnetic metal/semiconductorstructures.
Objectives and approach
Studying transport and recombination phenomena at the
nanoscale in semiconductor structures incorporating
quantum wells
QW
Local injection
e-
Ballistic Electron Emission Microscopy configuration
Injection
layer semiconductor
e-
STM tip
It
IC
Advantages: overcome limits of electronic
measurements (Resistance of the junction, low
current detection, conductive wafer)
Injection
layer QW semiconductor
e-
STM tip
hn
Scanning Tunneling Luminescence (STL) configuration
It
Limits:
• Ra/RJ
• Analogic
• 2 terminals
• Spin-valve (2 layer)
4
BEEL: injection layer – ferromagnetic metal (spin filter)
STL: injection layer – semiconductor
tip
hnLEF
semiconductor
QW
Approach
Injection
layer QW semiconductor
e-
STM tip
hn
Scanning Tunneling Luminescence configuration
It
IL  transmission
PL  spin asymetery
5
Issues
Exploiting spin filtering effects for imaging magnetic domains:
• Domain imaging in buried single ferromagnetic layer
• Transport in “isolated” single nanostructure
• High resolution magnetic imaging in ferromagnetic metal/semiconductor structures
Understanding fundamental processes in large bandgap nitride semiconductors:
• Hot electron transport in heterostructures
• Recombination efficiency in optoelectronic devices
6
Outlook
1. Motivation: localization effects in InGaN/GaN structures
2. Experimental setup: optical detection
3. InGaN/GaN samples: structure and characterization
4. STL excitation spectroscopy
5. STL microscopy
6. Tip-induced surface oxidation
7. Conclusions and perspectives
7
1. Motivation: localization effects in InGaN/GaN structures
Context : lightning = 20% of the electricity consumption
GaN LEDs : white light + efficiency > 80 %
 50% energy saving is expected
Problem: efficiency droop at high injection current
0 1 2 3 4 5 6 7
0,0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
Externalquantumefficiency Current (mA)
 Low injection operation
Increased device number
Increased price 8
hν
p-type GaN
n-type GaN
Ec
Ev
Vpol
A
1. Motivation: localization effects in InGaN/GaN structures
9
0 1 2 3 4 5 6 7
0,0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
Externalquantumefficiency
Current (mA)
1. Motivation: localization effects in InGaN/GaN structures
10
p-type GaN
n-type GaN
Ec
Ev
Vpol
A
hν
Efficiency droop at high current density
0 1 2 3 4 5 6 7
0,0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
Externalquantumefficiency
Current (mA)
eeh-processehh-process
hν hν
Ec
Ev
Auger processes limit light emission in low
dimensional semiconducting structures.
Auger processes depend on n3 / radiative
recombination depends on n2
Efficiency droop at high current density
Major droop mechanism:Auger recombination
1. Motivation: localization effects in InGaN/GaN structures
11
p-type GaN
n-type GaN
Ec
Ev
Vpol
A
hν
Auger processes limit light emission in low
dimensional semiconducting structures.
Auger processes depend on n3 / radiative
recombination depends on n2
Carrier localization effect due to indium
concentration fluctuations
1. Motivation: localization effects in InGaN/GaN structures
T.-J. Yang et al., J. Appl. Phys. 116, 113104 (2014)
12
Efficiency droop at high current density
Major droop mechanism:Auger recombination
p-type GaN
n-type GaN
Ec
Ev
Vpol
A
hν
0 1 2 3 4 5 6 7
0,0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
Externalquantumefficiency
Current (mA)
Outlook
1. Motivation: localization effects in InGaN/GaN structures
2. Experimental setup: optical detection
3. InGaN/GaN samples: structure and characterization
4. STL excitation spectroscopy
5. STL microscopy
6. Tip-induced surface oxidation
7. Conclusions and perspectives
13
2. Experimental optical setup
QWs
Pt/Ir tip
Spectrometer
+
GaAs-Cs-O PMT
QW
Spectrometer
+
GaAs-Cs-O PMT
Pt/Ir tip
Optical
fiber
Cryostat Cryostat
Configurationwith mirrors Configurationwith optical fiber
N2
atmosphere
N2
atmosphere
14
Pt/Ir tip
Sample
transparent
substrate
light
2. Experimental optical setup
15
2. Experimental setup
Tip after measurements
Magnification x4
0,2 nm
Atomic resolution HOPG
16
2. Experimental setup: alignment with LED
LED
Spectrometer
+
GaAs-Cs-O PMT
Multimode
optical fiber
p-contact
SiO2 SiO2
p+ GaN cap
100 or 200 nm p-GaN [Mg] = 2·1020
cm-3
In0.18Ga0.82N/GaN X 5, 25 nm in total
SiO2 n-contact SiO2 InGaN region 150 nm SiO2 n-contact SiO2
n-type GaN [Si]
Sapphire (0001)
17
2. Experimental setup: alignment with LED
400 410 420 430 440 450 460 470 480 490 500
0.0
5.0x105
1.0x106
1.5x106
Intensity(counts/s)
Wavelength (nm)
0 5 10 15 20 25 30
0,0 2,5 5,0 7,5 10,0 12,5 15,0
0,00
0,05
0,10
0,15
0,20
0,25
0,30
Current density (A/cm2
)
EQE
Current (mA)
LED
18
2. Experimental optical setup: alignment with LED
Summary
• We have built STM experiment allowing working with contacted devices
and coupled to an optical spectroscopysetup
• STM imaging allows achieving atomic resolution.
• The collection efficiency is 2·10-6 (configuration using mirrors) and 6·10-4
(configuration using optical fiber)
• The LED is used to align and to calibrate our optical system
19
Outlook
1. Motivation: localization effects in InGaN/GaN structures
2. Experimental setup: optical detection
3. InGaN/GaN samples: structure and characterization
4. STL excitation spectroscopy
5. STL microscopy
6. Tip-induced surface oxidation
7. Conclusions and perspectives
20
3. InGaN/GaN samples: structure and characterization
QW in p-type GaN samples
p++-GaN cap - 10 nm
p-GaN [Mg]=2·1019 cm-3 – 10 or 90 nm
UID GaN - 10 nm
UID In0.18Ga0.82N QW - 3 nm
UID GaN - 100 nm
p-GaN [Mg]=2·1019 cm-3 - 1 µm
AlGaN [Mg]=2·1019
cm-3
- 15 nm
p-GaN [Mg]=2·1019
cm-3
- 10 nm
n-GaN [Si]=5·1018 cm-3 - 1-4 µm
(0001) Sapphire substrate
Injection energy is varied
by changing V
hνVth
p-type GaN
Unintentialy doped GaN
In0.18Ga0.78N
L = 30, 110 nm
Vgap
EF
L = 30, 110 nm
21
3. InGaN/GaN samples: structure and characterization
SEM: hexagonal pits
Cross section
STM
 etch pits
 Atomic steps
Ha = 7 Å
STM
AFM
22
300 nm
100 nm
400 420 440 460 480 500
110 nm p-type GaN
30 nm p-type GaN
Model
PLintensity(arb.units)
Wavelength (nm)
EF
hν-lum
hν-ex.
3. InGaN/GaN samples: structure and characterization
PL spectroscopyof InGaN/GaN samples
23
STL spectroscopyof InGaN/GaN samples
EF,m
EF,p hν
400 420 440 460 480 500
110 nm p-type GaN; Vg = 4V, It = 20nA
30 nm p-type GaN: Vg = 4V, It = 35 nA
30 nm p-type GaN: Vg = 4.V, It = 35 nAIntensity(counts/s)
wavelength (nm)
400 420 440 460 480 500
110 nm p-type GaN
30 nm p-type GaN
Model
PLintensity(arb.units)
Wavelength (nm)
EF
hν-lum
hν-ex.
3. InGaN/GaN samples: structure and characterization
PL spectroscopyof InGaN/GaN samples
24
25
3. InGaN/GaN samples: structure and characterization
Summary
• STM images show atomic steps on the GaN surface and etch pits related
to emerging dislocations
• AFM images confirm these features. Etch pits with hexagonal structure
are typical for c-plane GaN are resolved in SEM
• STL spectroscopyperformed for electron injection well above the
minimum of the GaN conduction band shows that luminescence signal
all comes from carrier recombination in QW’s (no signal at the GaN
bandgap energy is observed) which is confirmed by PL measurement.
Outlook
1. Motivation: localization effects in InGaN/GaN structures
2. Experimental setup: optical detection
3. InGaN/GaN samples: structure and characterization
4. STL excitation spectroscopy
5. STL microscopy
6. Tip-induced surface oxidation
7. Conclusions and perspectives
26
1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,0 5,5 6,0
0
200
400
600
800
1000
0
2x10-2
4x10-2
6x10-2
8x10-2
1x10-1
Externalquantumefficiency
Luminescence(counts/s)
-Vgap
Vth
110 nm GaN/InGaN
It = 20 nA
4. STL excitation spectroscopy
Vth
EF
EF,p
hν detection
STL threshold: eVth = Ec,bulk-EF
Vgap
27
1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,0 5,5 6,0
0
200
400
600
800
1000
0
2x10-2
4x10-2
6x10-2
8x10-2
1x10-1
Externalquantumefficiency
Luminescence(counts/s)
-Vgap
Vth
110 nm GaN/InGaN
It = 20 nA
4. STL excitation spectroscopy
Vth
EF
EF,p
hν detection
STL threshold: eVth = Ec,bulk-EF
Vgap
S. K. Manson-Smith et al., Phys. Stat. Sol. B 228, No. 2 (2001)
Electron Injection in LED
28
hν
p-type GaN
n-type GaN
Ec
Ev
1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,0 5,5 6,0
0
200
400
600
800
1000
0
2x10-2
4x10-2
6x10-2
8x10-2
1x10-1
Externalquantumefficiency
Luminescence(counts/s)
-Vgap
Vth
110 nm GaN/InGaN
It = 20 nA
4. STL excitation spectroscopy
Vth
EF
EF,p
hν detection
STL threshold: eVth = Ec,bulk-EF
Vgap
Hole injection in n-type GaN
29Evoy et al., Appl. Phys. Lett., Vol. 74, No. 10, 8 (1999)
4. STL excitation spectroscopy
1 eV
Vgap
We observe a saturation at 1 eV above the threshold.
Vth
EF
EF,p
hν detection
1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,0 5,5 6,0
0
200
400
600
800
1000
0
2x10-2
4x10-2
6x10-2
8x10-2
1x10-1
Externalquantumefficiency
Luminescence(counts/s)
-Vgap
Vth
30
4. STL excitation spectroscopy
1 eV
EF
G-valley
L-valley
Vgap
We observe a saturation at 1 eV above the threshold.  Injection in side-valley
Y. C. Yeo et al., J. Appl. Phys. 83 (3) (1998)
 2 eV
(ab initio calculations)
1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,0 5,5 6,0
0
200
400
600
800
1000
0
2x10-2
4x10-2
6x10-2
8x10-2
1x10-1
Externalquantumefficiency
Luminescence(counts/s)
-Vgap
Vth
31
CB
VB
4. STL excitation spectroscopy
1 eV
EF
G-valley
L-valley
Vgap
We observe a saturation at 1 eV above the threshold.  Injection in side-valley
M. Piccardo et al., Phys. Rev. B 89, 235124 (2014)
1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,0 5,5 6,0
0
200
400
600
800
1000
0
2x10-2
4x10-2
6x10-2
8x10-2
1x10-1
Externalquantumefficiency
Luminescence(counts/s)
-Vgap
Vth
 1 eV
(Experiment)
E
k
32
4. STL excitation spectroscopy
1 eV
EF
G-valley
L-valley
Vgap
Similar saturation is observed in another system: AlGaAs/GaAs
Interpretation: dip in DOS ???
1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,0 5,5 6,0
0
200
400
600
800
1000
0
2x10-2
4x10-2
6x10-2
8x10-2
1x10-1
Externalquantumefficiency
Luminescence(counts/s)
-Vgap
Vth
T. Tsuruoka et al., Appl. Phys. Lett., Vol. 73 ,No. 11 (1998) 33
1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,0 5,5 6,0
0
200
400
600
800
1000
0
2x10-2
4x10-2
6x10-2
8x10-2
1x10-1
Externalquantumefficiency
Luminescence(counts/s)
-Vgap
Vth
4. STL excitation spectroscopy
STL threshold: eVth = Ec,bulk-EF
STL saturation: injection in bulk side-valley.
Dependence on the QW position
2 3 4 5 6
0
10
20
30
40
50
60
70
Luminescence(counts/s)
-Vgap
110 nm GaN/InGaN
30 nm GaN/InGaN
400 420 440 460 480 500
110 nm p-type GaN90 nm p-type GaN
30 nm p-type GaN10 nm p-type GaN
Model
PLintensity(arb.units)
Wavelength (nm)
EF
G-valley
L-valley
It = 20 nA
It = 5 nA
Vgap
34
4. STL excitation spectroscopy
Summary
• The Vth value of 3.2 eV corresponds to the electron injection in the bulk
GaN conductionband
• The STL saturation at injection energy of 1 eV above G coincides with
electron injection in the bulk first side-valley of GaN and confirms the G-L
separation measured by photoemission.
• Radiative recombination efficiency is lower in the structure with QW
close to the surface, but threshold and saturation are identical
35
Outlook
1. Motivation: localization effects in InGaN/GaN structures
2. Experimental setup: optical detection
3. InGaN/GaN samples: structure and characterization
4. STL excitation spectroscopy
5. STL microscopy
6. Tip-induced surface oxidation
7. Conclusions and perspectives
36
5. STL microscopy in InGaN/GaN structures: localization effects
110 nm GaN/InGaN
Vth
EF,m
EF,p
hν
detection
Topography Luminescence
Vg = -6V, It = 20 nA
Luminescence 3D
37
We observe localized luminescence features.
Light fluctuations are much larger than the statistical fluctuations (by about one order of magnitude)
5. STL microscopy in InGaN/GaN structures: localization effects
110 nm GaN/InGaN
Vth
EF,m
EF,p
hν
detection
EF,nEF,p
EF,m
S. K. Manson-Smith et al., Phys. Stat. Sol. (b) 228, No. 2, 445–448 (2001)
LED
38
Vg = -3.3 V, It = 0,5 nA
Topography Luminescence
Topography Luminescence
Vg = -6V, It = 20 nA
5. STL microscopy in InGaN/GaN structures: localization effects
110 nm GaN/InGaN
Vth
EF,m
EF,p
hν
detection
S. K. Manson-Smith et al., Phys. Stat. Sol. (b) 228, No. 2, 445–448 (2001)
39
Electron Injection in LED
Vg = -3.3 V, It = 0,5 nA
Topography Luminescence
Topography Luminescence
Vg = -6V, It = 20 nA
5. STL microscopy in InGaN/GaN structures: localization effects
Scan 1
Scan 4 Scan 5 Scan 6
40Significant variations in the topograpy and luminescence images vs time
Scan 2 Scan 3
5. STL microscopy in InGaN/GaN structures: localization effects
Topographical images Tunneling current images 2D luminescence images 3D luminescence images
100 nm
0
100
200
300
400
500 ct/s
40 nm
0
40
80
120
160
200 ct/s
41
STL microscopyat smaller scale
5. STL microscopy in InGaN/GaN structures: localization effects
Summary
• Light emission localization is observed in the range of 10 to 100 nm
• The tunneling current does not change during the experiment
• There is no correlation with etch pits related to emerging dislocations
• But there are significant changes in the topography and STL images during experiment
42
Possible interpretation of observed localized luminescence:
• Preferential transport path
• Fluctuations of indium composition
T.-J. Yang et al., J. Appl. Phys. 116, 113104 (2014)
Outlook
1. Motivation: localization effects in InGaN/GaN structures
2. Experimental setup: optical detection
3. InGaN/GaN samples: structure and characterization
4. STL excitation spectroscopy
5. STL microscopy
6. Tip-induced surface oxidation
7. Conclusions and perspectives
43
Before STL measurement After STL measurement
6. Tip-induced surface oxidation
STL spectroscopy
44
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
0
200
400
600
800
1000
Luminescence(counts/s)
-Vgap
6. Tip-induced surface oxidation
AFM, after line scan STM, after line scan
45
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
0
200
400
600
800
1000
Luminescence(counts/s)
-Vgap
Before STL measurement After STL measurementSTL spectroscopy
After STL measurement:Before STL measurement:
6. Tip-induced surface oxidation
46
Apparent
depth
Accelerating voltage 3 keV
6. Tip-induced surface oxidation
EDX - oxygen
47
• STL experiments on wide band gap semiconductors require high injection conditions:
large tip-to-sample bias (between 4 to 6 V)
large tunneling current (a few 10 nA)
• Surface is strongly modified during spectroscopyand microscopy experiment
• The tip-induced surface modification is found to be due to GaN oxidation
Summary
6. Tip-induced surface oxidation
48
7. Conclusions and perspectives
• STL spectroscopy:light is emitted from QW
• STL excitation spectroscopy:
threshold corresponds to injection in G bulk
saturation corresponds to injection in L bulk
• STL microscopy: radiative recombination and localization are
observed
• Tip-induced surface oxidation is observed in high injection
conditions,it influences the STL
Conclusions
49
400 420 440 460 480 500
110 nm p-type GaN; Vg = 4V, It = 20nA
30 nm p-type GaN: Vg = 4V, It = 35 nA
30 nm p-type GaN: Vg = 4.V, It = 35 nA
Intensity(counts/s)
wavelength (nm)
1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,0 5,5 6,0
0
200
400
600
800
1000
0
2x10-2
4x10-2
6x10-2
8x10-2
1x10-1
Externalquantumefficiency
Luminescence(counts/s)
-Vgap
Vth
• Limit oxidation process:
Working in vacuum condition
Covering the GaN surface with a metal layer
• Working at low temperature (freezing out the non-recombination processes )
• Modelling transport in the band bending region
• STL experiment in biased LED
7. Conclusion and perspectives
Perspectives
50
400 410 420 430 440 450 460 470 480 490 500 510 520
0
5
10
15
20
25
signal with electron injection
No electron injection
Intensity(counts/s)
Wavelength (nm)
Topography Tunneling current

More Related Content

What's hot

Al gan nanocolumns and algan gan_algan nanostructures grown by molecular beam...
Al gan nanocolumns and algan gan_algan nanostructures grown by molecular beam...Al gan nanocolumns and algan gan_algan nanostructures grown by molecular beam...
Al gan nanocolumns and algan gan_algan nanostructures grown by molecular beam...Kal Tar
 
Synthesis and characterization of pani ti o2 nanocomposite for solar
Synthesis and characterization of pani ti o2 nanocomposite for solarSynthesis and characterization of pani ti o2 nanocomposite for solar
Synthesis and characterization of pani ti o2 nanocomposite for solarShashi Kumar
 
Puurunen invited lecture AVS-ALD 2009 090719
Puurunen invited lecture AVS-ALD 2009 090719Puurunen invited lecture AVS-ALD 2009 090719
Puurunen invited lecture AVS-ALD 2009 090719Riikka Puurunen
 
Asymmetric Multipole Plasmon-Mediated Catalysis Shifts the Product Selectivit...
Asymmetric Multipole Plasmon-Mediated Catalysis Shifts the Product Selectivit...Asymmetric Multipole Plasmon-Mediated Catalysis Shifts the Product Selectivit...
Asymmetric Multipole Plasmon-Mediated Catalysis Shifts the Product Selectivit...Pawan Kumar
 
Molecular Spintronics with SAMs
Molecular Spintronics with SAMsMolecular Spintronics with SAMs
Molecular Spintronics with SAMsseta667
 
Kesterite workshop 2012 Luxembourg
Kesterite workshop 2012 LuxembourgKesterite workshop 2012 Luxembourg
Kesterite workshop 2012 Luxembourgbrammert
 
Hints elfos for_slide_sahre
Hints elfos for_slide_sahreHints elfos for_slide_sahre
Hints elfos for_slide_sahreseta667
 
Na based supercapacitors
Na based supercapacitorsNa based supercapacitors
Na based supercapacitorsCharu Lakshmi
 
C3N5: A Low Bandgap Semiconductor Containing an Azo-linked Carbon Nitride Fra...
C3N5: A Low Bandgap Semiconductor Containing an Azo-linked Carbon Nitride Fra...C3N5: A Low Bandgap Semiconductor Containing an Azo-linked Carbon Nitride Fra...
C3N5: A Low Bandgap Semiconductor Containing an Azo-linked Carbon Nitride Fra...Pawan Kumar
 
Simulation of AlGaN/Si and InN/Si ELECTRIC –DEVICES
Simulation of AlGaN/Si and InN/Si ELECTRIC –DEVICESSimulation of AlGaN/Si and InN/Si ELECTRIC –DEVICES
Simulation of AlGaN/Si and InN/Si ELECTRIC –DEVICESijrap
 
Fundamental Processes in 
 Organic and Hybrid Solar Cells
Fundamental Processes in 
 Organic and Hybrid Solar CellsFundamental Processes in 
 Organic and Hybrid Solar Cells
Fundamental Processes in 
 Organic and Hybrid Solar Cellsdisorderedmatter
 
лекция 3 дефекты в полупроводниках ga n alsb
лекция 3 дефекты в полупроводниках ga n alsbлекция 3 дефекты в полупроводниках ga n alsb
лекция 3 дефекты в полупроводниках ga n alsbSergey Sozykin
 
Simulation Studies of ZnO Nanowire Field-Effect Transistor
Simulation Studies of ZnO Nanowire Field-Effect TransistorSimulation Studies of ZnO Nanowire Field-Effect Transistor
Simulation Studies of ZnO Nanowire Field-Effect Transistornoelds
 
MOCVD半導體製程即時監控系統
MOCVD半導體製程即時監控系統MOCVD半導體製程即時監控系統
MOCVD半導體製程即時監控系統CHENHuiMei
 
ICDIM 2016 Optical detrapping in persistent phosphors
ICDIM 2016 Optical detrapping in persistent phosphorsICDIM 2016 Optical detrapping in persistent phosphors
ICDIM 2016 Optical detrapping in persistent phosphorsPhilippe Smet
 

What's hot (19)

Thesis Presentation
Thesis PresentationThesis Presentation
Thesis Presentation
 
Al gan nanocolumns and algan gan_algan nanostructures grown by molecular beam...
Al gan nanocolumns and algan gan_algan nanostructures grown by molecular beam...Al gan nanocolumns and algan gan_algan nanostructures grown by molecular beam...
Al gan nanocolumns and algan gan_algan nanostructures grown by molecular beam...
 
Magnetism at oxide interface final
Magnetism at oxide interface finalMagnetism at oxide interface final
Magnetism at oxide interface final
 
Synthesis and characterization of pani ti o2 nanocomposite for solar
Synthesis and characterization of pani ti o2 nanocomposite for solarSynthesis and characterization of pani ti o2 nanocomposite for solar
Synthesis and characterization of pani ti o2 nanocomposite for solar
 
Puurunen invited lecture AVS-ALD 2009 090719
Puurunen invited lecture AVS-ALD 2009 090719Puurunen invited lecture AVS-ALD 2009 090719
Puurunen invited lecture AVS-ALD 2009 090719
 
Rahman-INFN-LNL
Rahman-INFN-LNLRahman-INFN-LNL
Rahman-INFN-LNL
 
Asymmetric Multipole Plasmon-Mediated Catalysis Shifts the Product Selectivit...
Asymmetric Multipole Plasmon-Mediated Catalysis Shifts the Product Selectivit...Asymmetric Multipole Plasmon-Mediated Catalysis Shifts the Product Selectivit...
Asymmetric Multipole Plasmon-Mediated Catalysis Shifts the Product Selectivit...
 
Molecular Spintronics with SAMs
Molecular Spintronics with SAMsMolecular Spintronics with SAMs
Molecular Spintronics with SAMs
 
Kesterite workshop 2012 Luxembourg
Kesterite workshop 2012 LuxembourgKesterite workshop 2012 Luxembourg
Kesterite workshop 2012 Luxembourg
 
Hints elfos for_slide_sahre
Hints elfos for_slide_sahreHints elfos for_slide_sahre
Hints elfos for_slide_sahre
 
Na based supercapacitors
Na based supercapacitorsNa based supercapacitors
Na based supercapacitors
 
C3N5: A Low Bandgap Semiconductor Containing an Azo-linked Carbon Nitride Fra...
C3N5: A Low Bandgap Semiconductor Containing an Azo-linked Carbon Nitride Fra...C3N5: A Low Bandgap Semiconductor Containing an Azo-linked Carbon Nitride Fra...
C3N5: A Low Bandgap Semiconductor Containing an Azo-linked Carbon Nitride Fra...
 
Simulation of AlGaN/Si and InN/Si ELECTRIC –DEVICES
Simulation of AlGaN/Si and InN/Si ELECTRIC –DEVICESSimulation of AlGaN/Si and InN/Si ELECTRIC –DEVICES
Simulation of AlGaN/Si and InN/Si ELECTRIC –DEVICES
 
Fundamental Processes in 
 Organic and Hybrid Solar Cells
Fundamental Processes in 
 Organic and Hybrid Solar CellsFundamental Processes in 
 Organic and Hybrid Solar Cells
Fundamental Processes in 
 Organic and Hybrid Solar Cells
 
16 reise uncertainties_v02
16 reise uncertainties_v0216 reise uncertainties_v02
16 reise uncertainties_v02
 
лекция 3 дефекты в полупроводниках ga n alsb
лекция 3 дефекты в полупроводниках ga n alsbлекция 3 дефекты в полупроводниках ga n alsb
лекция 3 дефекты в полупроводниках ga n alsb
 
Simulation Studies of ZnO Nanowire Field-Effect Transistor
Simulation Studies of ZnO Nanowire Field-Effect TransistorSimulation Studies of ZnO Nanowire Field-Effect Transistor
Simulation Studies of ZnO Nanowire Field-Effect Transistor
 
MOCVD半導體製程即時監控系統
MOCVD半導體製程即時監控系統MOCVD半導體製程即時監控系統
MOCVD半導體製程即時監控系統
 
ICDIM 2016 Optical detrapping in persistent phosphors
ICDIM 2016 Optical detrapping in persistent phosphorsICDIM 2016 Optical detrapping in persistent phosphors
ICDIM 2016 Optical detrapping in persistent phosphors
 

Viewers also liked

Siobhan CV Draft 3 Jobs Club
Siobhan  CV Draft 3 Jobs ClubSiobhan  CV Draft 3 Jobs Club
Siobhan CV Draft 3 Jobs ClubSiobhan M Hearty
 
br-security-connected-top-5-trends
br-security-connected-top-5-trendsbr-security-connected-top-5-trends
br-security-connected-top-5-trendsChristopher Bennett
 
Top-100 U.S. Legal Firms' Websites Research
Top-100 U.S. Legal Firms' Websites ResearchTop-100 U.S. Legal Firms' Websites Research
Top-100 U.S. Legal Firms' Websites ResearchVintage Web Production
 
Abtrex flue gas recovery systems
Abtrex flue gas recovery systems Abtrex flue gas recovery systems
Abtrex flue gas recovery systems Abtrex Inc
 
Rolf_Bryant_catalogue1_embedded
Rolf_Bryant_catalogue1_embeddedRolf_Bryant_catalogue1_embedded
Rolf_Bryant_catalogue1_embeddedRolf Bryant
 
Abtrex rubber systems and suppliers
Abtrex rubber systems and suppliersAbtrex rubber systems and suppliers
Abtrex rubber systems and suppliersAbtrex Inc
 
Analysis of Ferrocement and Textile Reinforced Concrete for Shell Structures
Analysis of Ferrocement and Textile Reinforced Concrete for Shell StructuresAnalysis of Ferrocement and Textile Reinforced Concrete for Shell Structures
Analysis of Ferrocement and Textile Reinforced Concrete for Shell StructuresMile Bezbradica
 
The Edge Amsterdam Connected Lighting Case Study INT
The Edge Amsterdam Connected Lighting Case Study INTThe Edge Amsterdam Connected Lighting Case Study INT
The Edge Amsterdam Connected Lighting Case Study INTDagmar Zweschperova, MBA
 
Revue de Veille eTourisme 2009
Revue de Veille eTourisme 2009Revue de Veille eTourisme 2009
Revue de Veille eTourisme 2009Technofutur TIC
 

Viewers also liked (12)

industry_application_guide
industry_application_guideindustry_application_guide
industry_application_guide
 
Siobhan CV Draft 3 Jobs Club
Siobhan  CV Draft 3 Jobs ClubSiobhan  CV Draft 3 Jobs Club
Siobhan CV Draft 3 Jobs Club
 
br-security-connected-top-5-trends
br-security-connected-top-5-trendsbr-security-connected-top-5-trends
br-security-connected-top-5-trends
 
CV Magodo
CV MagodoCV Magodo
CV Magodo
 
Top-100 U.S. Legal Firms' Websites Research
Top-100 U.S. Legal Firms' Websites ResearchTop-100 U.S. Legal Firms' Websites Research
Top-100 U.S. Legal Firms' Websites Research
 
Abtrex flue gas recovery systems
Abtrex flue gas recovery systems Abtrex flue gas recovery systems
Abtrex flue gas recovery systems
 
Rolf_Bryant_catalogue1_embedded
Rolf_Bryant_catalogue1_embeddedRolf_Bryant_catalogue1_embedded
Rolf_Bryant_catalogue1_embedded
 
Ace update april 2016
Ace update april 2016Ace update april 2016
Ace update april 2016
 
Abtrex rubber systems and suppliers
Abtrex rubber systems and suppliersAbtrex rubber systems and suppliers
Abtrex rubber systems and suppliers
 
Analysis of Ferrocement and Textile Reinforced Concrete for Shell Structures
Analysis of Ferrocement and Textile Reinforced Concrete for Shell StructuresAnalysis of Ferrocement and Textile Reinforced Concrete for Shell Structures
Analysis of Ferrocement and Textile Reinforced Concrete for Shell Structures
 
The Edge Amsterdam Connected Lighting Case Study INT
The Edge Amsterdam Connected Lighting Case Study INTThe Edge Amsterdam Connected Lighting Case Study INT
The Edge Amsterdam Connected Lighting Case Study INT
 
Revue de Veille eTourisme 2009
Revue de Veille eTourisme 2009Revue de Veille eTourisme 2009
Revue de Veille eTourisme 2009
 

Similar to LinkedIn_Phd thesis presentation

Technical Presentation Ap4
Technical Presentation Ap4Technical Presentation Ap4
Technical Presentation Ap4guest45b5bb
 
FAST実験3:新型大気蛍光望遠鏡の試験観測報告
FAST実験3:新型大気蛍光望遠鏡の試験観測報告FAST実験3:新型大気蛍光望遠鏡の試験観測報告
FAST実験3:新型大気蛍光望遠鏡の試験観測報告Toshihiro FUJII
 
33 Measurement of beam-recoil observables Ox, Oz and target asymmetry T for t...
33 Measurement of beam-recoil observables Ox, Oz and target asymmetry T for t...33 Measurement of beam-recoil observables Ox, Oz and target asymmetry T for t...
33 Measurement of beam-recoil observables Ox, Oz and target asymmetry T for t...Cristian Randieri PhD
 
EAMTA keynote 2014
EAMTA keynote 2014EAMTA keynote 2014
EAMTA keynote 2014Ariel Cedola
 
Nano Materials to Devices - Charanadhar
Nano Materials to Devices - CharanadharNano Materials to Devices - Charanadhar
Nano Materials to Devices - CharanadharSTS FORUM 2016
 
Oral Defense Presantation 1
Oral Defense Presantation 1Oral Defense Presantation 1
Oral Defense Presantation 1duc0607
 
Simulation of AlGaN/Si and InN/Si ELECTRIC –DEVICES
Simulation of AlGaN/Si and InN/Si ELECTRIC –DEVICESSimulation of AlGaN/Si and InN/Si ELECTRIC –DEVICES
Simulation of AlGaN/Si and InN/Si ELECTRIC –DEVICESijrap
 
IEEE LEOS Optical MEMS
IEEE LEOS Optical MEMSIEEE LEOS Optical MEMS
IEEE LEOS Optical MEMSVaibhav Mathur
 
Simulation Of Algan/Si And Inn/Si Electric - Devices
Simulation Of Algan/Si And Inn/Si Electric - DevicesSimulation Of Algan/Si And Inn/Si Electric - Devices
Simulation Of Algan/Si And Inn/Si Electric - Devicesijrap
 
次世代極高エネルギー宇宙線のための新型大気蛍光望遠鏡の開発
次世代極高エネルギー宇宙線のための新型大気蛍光望遠鏡の開発次世代極高エネルギー宇宙線のための新型大気蛍光望遠鏡の開発
次世代極高エネルギー宇宙線のための新型大気蛍光望遠鏡の開発Toshihiro FUJII
 
First results from the full-scale prototype for the Fluorescence detector Arr...
First results from the full-scale prototype for the Fluorescence detector Arr...First results from the full-scale prototype for the Fluorescence detector Arr...
First results from the full-scale prototype for the Fluorescence detector Arr...Toshihiro FUJII
 
Nelia Zaiats - Research Poster
Nelia Zaiats - Research Poster Nelia Zaiats - Research Poster
Nelia Zaiats - Research Poster NeliaZaiats
 
Enhancement of dye solar cell by adding n ps
Enhancement of dye solar cell by adding n psEnhancement of dye solar cell by adding n ps
Enhancement of dye solar cell by adding n psGufranSattar1
 
Winter workshop-2021 Self-powered hybrid UV photodetectors
Winter workshop-2021 Self-powered hybrid UV photodetectorsWinter workshop-2021 Self-powered hybrid UV photodetectors
Winter workshop-2021 Self-powered hybrid UV photodetectorsKedhareswara Sairam Pasupuleti
 
Role of excitonic effects in nonlinear optical properties of 2D materials
Role of excitonic effects in nonlinear optical properties of 2D materialsRole of excitonic effects in nonlinear optical properties of 2D materials
Role of excitonic effects in nonlinear optical properties of 2D materialsClaudio Attaccalite
 
Presentation-Vacuum.pptx
Presentation-Vacuum.pptxPresentation-Vacuum.pptx
Presentation-Vacuum.pptxVictorKang12
 
Charged-Current Pion Production in T2K
Charged-Current Pion Production in T2KCharged-Current Pion Production in T2K
Charged-Current Pion Production in T2KSon Cao
 

Similar to LinkedIn_Phd thesis presentation (20)

Technical Presentation Ap4
Technical Presentation Ap4Technical Presentation Ap4
Technical Presentation Ap4
 
FAST実験3:新型大気蛍光望遠鏡の試験観測報告
FAST実験3:新型大気蛍光望遠鏡の試験観測報告FAST実験3:新型大気蛍光望遠鏡の試験観測報告
FAST実験3:新型大気蛍光望遠鏡の試験観測報告
 
33 Measurement of beam-recoil observables Ox, Oz and target asymmetry T for t...
33 Measurement of beam-recoil observables Ox, Oz and target asymmetry T for t...33 Measurement of beam-recoil observables Ox, Oz and target asymmetry T for t...
33 Measurement of beam-recoil observables Ox, Oz and target asymmetry T for t...
 
EAMTA keynote 2014
EAMTA keynote 2014EAMTA keynote 2014
EAMTA keynote 2014
 
Nano Materials to Devices - Charanadhar
Nano Materials to Devices - CharanadharNano Materials to Devices - Charanadhar
Nano Materials to Devices - Charanadhar
 
Oral Defense
Oral DefenseOral Defense
Oral Defense
 
Oral Defense Presantation 1
Oral Defense Presantation 1Oral Defense Presantation 1
Oral Defense Presantation 1
 
Simulation of AlGaN/Si and InN/Si ELECTRIC –DEVICES
Simulation of AlGaN/Si and InN/Si ELECTRIC –DEVICESSimulation of AlGaN/Si and InN/Si ELECTRIC –DEVICES
Simulation of AlGaN/Si and InN/Si ELECTRIC –DEVICES
 
IEEE LEOS Optical MEMS
IEEE LEOS Optical MEMSIEEE LEOS Optical MEMS
IEEE LEOS Optical MEMS
 
Simulation Of Algan/Si And Inn/Si Electric - Devices
Simulation Of Algan/Si And Inn/Si Electric - DevicesSimulation Of Algan/Si And Inn/Si Electric - Devices
Simulation Of Algan/Si And Inn/Si Electric - Devices
 
次世代極高エネルギー宇宙線のための新型大気蛍光望遠鏡の開発
次世代極高エネルギー宇宙線のための新型大気蛍光望遠鏡の開発次世代極高エネルギー宇宙線のための新型大気蛍光望遠鏡の開発
次世代極高エネルギー宇宙線のための新型大気蛍光望遠鏡の開発
 
First results from the full-scale prototype for the Fluorescence detector Arr...
First results from the full-scale prototype for the Fluorescence detector Arr...First results from the full-scale prototype for the Fluorescence detector Arr...
First results from the full-scale prototype for the Fluorescence detector Arr...
 
Nelia Zaiats - Research Poster
Nelia Zaiats - Research Poster Nelia Zaiats - Research Poster
Nelia Zaiats - Research Poster
 
Enhancement of dye solar cell by adding n ps
Enhancement of dye solar cell by adding n psEnhancement of dye solar cell by adding n ps
Enhancement of dye solar cell by adding n ps
 
Winter workshop-2021 Self-powered hybrid UV photodetectors
Winter workshop-2021 Self-powered hybrid UV photodetectorsWinter workshop-2021 Self-powered hybrid UV photodetectors
Winter workshop-2021 Self-powered hybrid UV photodetectors
 
Role of excitonic effects in nonlinear optical properties of 2D materials
Role of excitonic effects in nonlinear optical properties of 2D materialsRole of excitonic effects in nonlinear optical properties of 2D materials
Role of excitonic effects in nonlinear optical properties of 2D materials
 
Presentation-Vacuum.pptx
Presentation-Vacuum.pptxPresentation-Vacuum.pptx
Presentation-Vacuum.pptx
 
Charged-Current Pion Production in T2K
Charged-Current Pion Production in T2KCharged-Current Pion Production in T2K
Charged-Current Pion Production in T2K
 
Solar Cell AFM optics
Solar Cell AFM opticsSolar Cell AFM optics
Solar Cell AFM optics
 
Balasubramanian, Prabhu - 2013 RNC Symposium (R)
Balasubramanian, Prabhu - 2013 RNC Symposium (R)Balasubramanian, Prabhu - 2013 RNC Symposium (R)
Balasubramanian, Prabhu - 2013 RNC Symposium (R)
 

LinkedIn_Phd thesis presentation

  • 1. Cathodoluminescence in semiconductor structures under local tunneling electron injection Petr Polovodov M. Fabrice Charra CEA/Saclay, Gif sur Yvette Rapporteur M. Philippe Dumas CINaM, Marseille Rapporteur M. Razvigor Ossikovski LPICM, Ecole Polytechnique, Palaiseau Examinateur M. Oleg Tereshchenko Rzhanov Institute of Semiconductor Physics, Novosibirsk, Russie Examinateur M. Yves Lassailly LPMC, Ecole Polytechnique, Palaiseau Directeur de thèse M. Jacques Peretti LPMC, Ecole Polytechnique, Palaiseau Co-Directeur de thèse 1
  • 2. Context 2 e- 𝐼𝐼 A. Filipe et al., PRL 80 (1997) 2425 Polarized electron transport in ferromagnetic metal/semiconductorstructures. , X. Li et al., APL 105 (2014) 052402
  • 3. 3 Transport and recombination in semiconductors J. Iveland et al., PRL 110 (2013) 177406 V f Electroemission spectroscopy hn Context e- 𝐼𝐼 A. Filipe et al., PRL 80 (1997) 2425 , X. Li et al., APL 105 (2014) 052402 Polarized electron transport in ferromagnetic metal/semiconductorstructures.
  • 4. Objectives and approach Studying transport and recombination phenomena at the nanoscale in semiconductor structures incorporating quantum wells QW Local injection e- Ballistic Electron Emission Microscopy configuration Injection layer semiconductor e- STM tip It IC Advantages: overcome limits of electronic measurements (Resistance of the junction, low current detection, conductive wafer) Injection layer QW semiconductor e- STM tip hn Scanning Tunneling Luminescence (STL) configuration It Limits: • Ra/RJ • Analogic • 2 terminals • Spin-valve (2 layer) 4
  • 5. BEEL: injection layer – ferromagnetic metal (spin filter) STL: injection layer – semiconductor tip hnLEF semiconductor QW Approach Injection layer QW semiconductor e- STM tip hn Scanning Tunneling Luminescence configuration It IL  transmission PL  spin asymetery 5
  • 6. Issues Exploiting spin filtering effects for imaging magnetic domains: • Domain imaging in buried single ferromagnetic layer • Transport in “isolated” single nanostructure • High resolution magnetic imaging in ferromagnetic metal/semiconductor structures Understanding fundamental processes in large bandgap nitride semiconductors: • Hot electron transport in heterostructures • Recombination efficiency in optoelectronic devices 6
  • 7. Outlook 1. Motivation: localization effects in InGaN/GaN structures 2. Experimental setup: optical detection 3. InGaN/GaN samples: structure and characterization 4. STL excitation spectroscopy 5. STL microscopy 6. Tip-induced surface oxidation 7. Conclusions and perspectives 7
  • 8. 1. Motivation: localization effects in InGaN/GaN structures Context : lightning = 20% of the electricity consumption GaN LEDs : white light + efficiency > 80 %  50% energy saving is expected Problem: efficiency droop at high injection current 0 1 2 3 4 5 6 7 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 Externalquantumefficiency Current (mA)  Low injection operation Increased device number Increased price 8
  • 9. hν p-type GaN n-type GaN Ec Ev Vpol A 1. Motivation: localization effects in InGaN/GaN structures 9
  • 10. 0 1 2 3 4 5 6 7 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 Externalquantumefficiency Current (mA) 1. Motivation: localization effects in InGaN/GaN structures 10 p-type GaN n-type GaN Ec Ev Vpol A hν Efficiency droop at high current density
  • 11. 0 1 2 3 4 5 6 7 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 Externalquantumefficiency Current (mA) eeh-processehh-process hν hν Ec Ev Auger processes limit light emission in low dimensional semiconducting structures. Auger processes depend on n3 / radiative recombination depends on n2 Efficiency droop at high current density Major droop mechanism:Auger recombination 1. Motivation: localization effects in InGaN/GaN structures 11 p-type GaN n-type GaN Ec Ev Vpol A hν
  • 12. Auger processes limit light emission in low dimensional semiconducting structures. Auger processes depend on n3 / radiative recombination depends on n2 Carrier localization effect due to indium concentration fluctuations 1. Motivation: localization effects in InGaN/GaN structures T.-J. Yang et al., J. Appl. Phys. 116, 113104 (2014) 12 Efficiency droop at high current density Major droop mechanism:Auger recombination p-type GaN n-type GaN Ec Ev Vpol A hν 0 1 2 3 4 5 6 7 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 Externalquantumefficiency Current (mA)
  • 13. Outlook 1. Motivation: localization effects in InGaN/GaN structures 2. Experimental setup: optical detection 3. InGaN/GaN samples: structure and characterization 4. STL excitation spectroscopy 5. STL microscopy 6. Tip-induced surface oxidation 7. Conclusions and perspectives 13
  • 14. 2. Experimental optical setup QWs Pt/Ir tip Spectrometer + GaAs-Cs-O PMT QW Spectrometer + GaAs-Cs-O PMT Pt/Ir tip Optical fiber Cryostat Cryostat Configurationwith mirrors Configurationwith optical fiber N2 atmosphere N2 atmosphere 14
  • 16. 2. Experimental setup Tip after measurements Magnification x4 0,2 nm Atomic resolution HOPG 16
  • 17. 2. Experimental setup: alignment with LED LED Spectrometer + GaAs-Cs-O PMT Multimode optical fiber p-contact SiO2 SiO2 p+ GaN cap 100 or 200 nm p-GaN [Mg] = 2·1020 cm-3 In0.18Ga0.82N/GaN X 5, 25 nm in total SiO2 n-contact SiO2 InGaN region 150 nm SiO2 n-contact SiO2 n-type GaN [Si] Sapphire (0001) 17
  • 18. 2. Experimental setup: alignment with LED 400 410 420 430 440 450 460 470 480 490 500 0.0 5.0x105 1.0x106 1.5x106 Intensity(counts/s) Wavelength (nm) 0 5 10 15 20 25 30 0,0 2,5 5,0 7,5 10,0 12,5 15,0 0,00 0,05 0,10 0,15 0,20 0,25 0,30 Current density (A/cm2 ) EQE Current (mA) LED 18
  • 19. 2. Experimental optical setup: alignment with LED Summary • We have built STM experiment allowing working with contacted devices and coupled to an optical spectroscopysetup • STM imaging allows achieving atomic resolution. • The collection efficiency is 2·10-6 (configuration using mirrors) and 6·10-4 (configuration using optical fiber) • The LED is used to align and to calibrate our optical system 19
  • 20. Outlook 1. Motivation: localization effects in InGaN/GaN structures 2. Experimental setup: optical detection 3. InGaN/GaN samples: structure and characterization 4. STL excitation spectroscopy 5. STL microscopy 6. Tip-induced surface oxidation 7. Conclusions and perspectives 20
  • 21. 3. InGaN/GaN samples: structure and characterization QW in p-type GaN samples p++-GaN cap - 10 nm p-GaN [Mg]=2·1019 cm-3 – 10 or 90 nm UID GaN - 10 nm UID In0.18Ga0.82N QW - 3 nm UID GaN - 100 nm p-GaN [Mg]=2·1019 cm-3 - 1 µm AlGaN [Mg]=2·1019 cm-3 - 15 nm p-GaN [Mg]=2·1019 cm-3 - 10 nm n-GaN [Si]=5·1018 cm-3 - 1-4 µm (0001) Sapphire substrate Injection energy is varied by changing V hνVth p-type GaN Unintentialy doped GaN In0.18Ga0.78N L = 30, 110 nm Vgap EF L = 30, 110 nm 21
  • 22. 3. InGaN/GaN samples: structure and characterization SEM: hexagonal pits Cross section STM  etch pits  Atomic steps Ha = 7 Å STM AFM 22 300 nm 100 nm
  • 23. 400 420 440 460 480 500 110 nm p-type GaN 30 nm p-type GaN Model PLintensity(arb.units) Wavelength (nm) EF hν-lum hν-ex. 3. InGaN/GaN samples: structure and characterization PL spectroscopyof InGaN/GaN samples 23
  • 24. STL spectroscopyof InGaN/GaN samples EF,m EF,p hν 400 420 440 460 480 500 110 nm p-type GaN; Vg = 4V, It = 20nA 30 nm p-type GaN: Vg = 4V, It = 35 nA 30 nm p-type GaN: Vg = 4.V, It = 35 nAIntensity(counts/s) wavelength (nm) 400 420 440 460 480 500 110 nm p-type GaN 30 nm p-type GaN Model PLintensity(arb.units) Wavelength (nm) EF hν-lum hν-ex. 3. InGaN/GaN samples: structure and characterization PL spectroscopyof InGaN/GaN samples 24
  • 25. 25 3. InGaN/GaN samples: structure and characterization Summary • STM images show atomic steps on the GaN surface and etch pits related to emerging dislocations • AFM images confirm these features. Etch pits with hexagonal structure are typical for c-plane GaN are resolved in SEM • STL spectroscopyperformed for electron injection well above the minimum of the GaN conduction band shows that luminescence signal all comes from carrier recombination in QW’s (no signal at the GaN bandgap energy is observed) which is confirmed by PL measurement.
  • 26. Outlook 1. Motivation: localization effects in InGaN/GaN structures 2. Experimental setup: optical detection 3. InGaN/GaN samples: structure and characterization 4. STL excitation spectroscopy 5. STL microscopy 6. Tip-induced surface oxidation 7. Conclusions and perspectives 26
  • 27. 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,0 5,5 6,0 0 200 400 600 800 1000 0 2x10-2 4x10-2 6x10-2 8x10-2 1x10-1 Externalquantumefficiency Luminescence(counts/s) -Vgap Vth 110 nm GaN/InGaN It = 20 nA 4. STL excitation spectroscopy Vth EF EF,p hν detection STL threshold: eVth = Ec,bulk-EF Vgap 27
  • 28. 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,0 5,5 6,0 0 200 400 600 800 1000 0 2x10-2 4x10-2 6x10-2 8x10-2 1x10-1 Externalquantumefficiency Luminescence(counts/s) -Vgap Vth 110 nm GaN/InGaN It = 20 nA 4. STL excitation spectroscopy Vth EF EF,p hν detection STL threshold: eVth = Ec,bulk-EF Vgap S. K. Manson-Smith et al., Phys. Stat. Sol. B 228, No. 2 (2001) Electron Injection in LED 28 hν p-type GaN n-type GaN Ec Ev
  • 29. 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,0 5,5 6,0 0 200 400 600 800 1000 0 2x10-2 4x10-2 6x10-2 8x10-2 1x10-1 Externalquantumefficiency Luminescence(counts/s) -Vgap Vth 110 nm GaN/InGaN It = 20 nA 4. STL excitation spectroscopy Vth EF EF,p hν detection STL threshold: eVth = Ec,bulk-EF Vgap Hole injection in n-type GaN 29Evoy et al., Appl. Phys. Lett., Vol. 74, No. 10, 8 (1999)
  • 30. 4. STL excitation spectroscopy 1 eV Vgap We observe a saturation at 1 eV above the threshold. Vth EF EF,p hν detection 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,0 5,5 6,0 0 200 400 600 800 1000 0 2x10-2 4x10-2 6x10-2 8x10-2 1x10-1 Externalquantumefficiency Luminescence(counts/s) -Vgap Vth 30
  • 31. 4. STL excitation spectroscopy 1 eV EF G-valley L-valley Vgap We observe a saturation at 1 eV above the threshold.  Injection in side-valley Y. C. Yeo et al., J. Appl. Phys. 83 (3) (1998)  2 eV (ab initio calculations) 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,0 5,5 6,0 0 200 400 600 800 1000 0 2x10-2 4x10-2 6x10-2 8x10-2 1x10-1 Externalquantumefficiency Luminescence(counts/s) -Vgap Vth 31 CB VB
  • 32. 4. STL excitation spectroscopy 1 eV EF G-valley L-valley Vgap We observe a saturation at 1 eV above the threshold.  Injection in side-valley M. Piccardo et al., Phys. Rev. B 89, 235124 (2014) 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,0 5,5 6,0 0 200 400 600 800 1000 0 2x10-2 4x10-2 6x10-2 8x10-2 1x10-1 Externalquantumefficiency Luminescence(counts/s) -Vgap Vth  1 eV (Experiment) E k 32
  • 33. 4. STL excitation spectroscopy 1 eV EF G-valley L-valley Vgap Similar saturation is observed in another system: AlGaAs/GaAs Interpretation: dip in DOS ??? 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,0 5,5 6,0 0 200 400 600 800 1000 0 2x10-2 4x10-2 6x10-2 8x10-2 1x10-1 Externalquantumefficiency Luminescence(counts/s) -Vgap Vth T. Tsuruoka et al., Appl. Phys. Lett., Vol. 73 ,No. 11 (1998) 33
  • 34. 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,0 5,5 6,0 0 200 400 600 800 1000 0 2x10-2 4x10-2 6x10-2 8x10-2 1x10-1 Externalquantumefficiency Luminescence(counts/s) -Vgap Vth 4. STL excitation spectroscopy STL threshold: eVth = Ec,bulk-EF STL saturation: injection in bulk side-valley. Dependence on the QW position 2 3 4 5 6 0 10 20 30 40 50 60 70 Luminescence(counts/s) -Vgap 110 nm GaN/InGaN 30 nm GaN/InGaN 400 420 440 460 480 500 110 nm p-type GaN90 nm p-type GaN 30 nm p-type GaN10 nm p-type GaN Model PLintensity(arb.units) Wavelength (nm) EF G-valley L-valley It = 20 nA It = 5 nA Vgap 34
  • 35. 4. STL excitation spectroscopy Summary • The Vth value of 3.2 eV corresponds to the electron injection in the bulk GaN conductionband • The STL saturation at injection energy of 1 eV above G coincides with electron injection in the bulk first side-valley of GaN and confirms the G-L separation measured by photoemission. • Radiative recombination efficiency is lower in the structure with QW close to the surface, but threshold and saturation are identical 35
  • 36. Outlook 1. Motivation: localization effects in InGaN/GaN structures 2. Experimental setup: optical detection 3. InGaN/GaN samples: structure and characterization 4. STL excitation spectroscopy 5. STL microscopy 6. Tip-induced surface oxidation 7. Conclusions and perspectives 36
  • 37. 5. STL microscopy in InGaN/GaN structures: localization effects 110 nm GaN/InGaN Vth EF,m EF,p hν detection Topography Luminescence Vg = -6V, It = 20 nA Luminescence 3D 37 We observe localized luminescence features. Light fluctuations are much larger than the statistical fluctuations (by about one order of magnitude)
  • 38. 5. STL microscopy in InGaN/GaN structures: localization effects 110 nm GaN/InGaN Vth EF,m EF,p hν detection EF,nEF,p EF,m S. K. Manson-Smith et al., Phys. Stat. Sol. (b) 228, No. 2, 445–448 (2001) LED 38 Vg = -3.3 V, It = 0,5 nA Topography Luminescence Topography Luminescence Vg = -6V, It = 20 nA
  • 39. 5. STL microscopy in InGaN/GaN structures: localization effects 110 nm GaN/InGaN Vth EF,m EF,p hν detection S. K. Manson-Smith et al., Phys. Stat. Sol. (b) 228, No. 2, 445–448 (2001) 39 Electron Injection in LED Vg = -3.3 V, It = 0,5 nA Topography Luminescence Topography Luminescence Vg = -6V, It = 20 nA
  • 40. 5. STL microscopy in InGaN/GaN structures: localization effects Scan 1 Scan 4 Scan 5 Scan 6 40Significant variations in the topograpy and luminescence images vs time Scan 2 Scan 3
  • 41. 5. STL microscopy in InGaN/GaN structures: localization effects Topographical images Tunneling current images 2D luminescence images 3D luminescence images 100 nm 0 100 200 300 400 500 ct/s 40 nm 0 40 80 120 160 200 ct/s 41 STL microscopyat smaller scale
  • 42. 5. STL microscopy in InGaN/GaN structures: localization effects Summary • Light emission localization is observed in the range of 10 to 100 nm • The tunneling current does not change during the experiment • There is no correlation with etch pits related to emerging dislocations • But there are significant changes in the topography and STL images during experiment 42 Possible interpretation of observed localized luminescence: • Preferential transport path • Fluctuations of indium composition T.-J. Yang et al., J. Appl. Phys. 116, 113104 (2014)
  • 43. Outlook 1. Motivation: localization effects in InGaN/GaN structures 2. Experimental setup: optical detection 3. InGaN/GaN samples: structure and characterization 4. STL excitation spectroscopy 5. STL microscopy 6. Tip-induced surface oxidation 7. Conclusions and perspectives 43
  • 44. Before STL measurement After STL measurement 6. Tip-induced surface oxidation STL spectroscopy 44 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 0 200 400 600 800 1000 Luminescence(counts/s) -Vgap
  • 45. 6. Tip-induced surface oxidation AFM, after line scan STM, after line scan 45 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 0 200 400 600 800 1000 Luminescence(counts/s) -Vgap Before STL measurement After STL measurementSTL spectroscopy
  • 46. After STL measurement:Before STL measurement: 6. Tip-induced surface oxidation 46 Apparent depth
  • 47. Accelerating voltage 3 keV 6. Tip-induced surface oxidation EDX - oxygen 47
  • 48. • STL experiments on wide band gap semiconductors require high injection conditions: large tip-to-sample bias (between 4 to 6 V) large tunneling current (a few 10 nA) • Surface is strongly modified during spectroscopyand microscopy experiment • The tip-induced surface modification is found to be due to GaN oxidation Summary 6. Tip-induced surface oxidation 48
  • 49. 7. Conclusions and perspectives • STL spectroscopy:light is emitted from QW • STL excitation spectroscopy: threshold corresponds to injection in G bulk saturation corresponds to injection in L bulk • STL microscopy: radiative recombination and localization are observed • Tip-induced surface oxidation is observed in high injection conditions,it influences the STL Conclusions 49 400 420 440 460 480 500 110 nm p-type GaN; Vg = 4V, It = 20nA 30 nm p-type GaN: Vg = 4V, It = 35 nA 30 nm p-type GaN: Vg = 4.V, It = 35 nA Intensity(counts/s) wavelength (nm) 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,0 5,5 6,0 0 200 400 600 800 1000 0 2x10-2 4x10-2 6x10-2 8x10-2 1x10-1 Externalquantumefficiency Luminescence(counts/s) -Vgap Vth
  • 50. • Limit oxidation process: Working in vacuum condition Covering the GaN surface with a metal layer • Working at low temperature (freezing out the non-recombination processes ) • Modelling transport in the band bending region • STL experiment in biased LED 7. Conclusion and perspectives Perspectives 50 400 410 420 430 440 450 460 470 480 490 500 510 520 0 5 10 15 20 25 signal with electron injection No electron injection Intensity(counts/s) Wavelength (nm) Topography Tunneling current