Download free for 30 days
Sign in
Upload
Language (EN)
Support
Business
Mobile
Social Media
Marketing
Technology
Art & Photos
Career
Design
Education
Presentations & Public Speaking
Government & Nonprofit
Healthcare
Internet
Law
Leadership & Management
Automotive
Engineering
Software
Recruiting & HR
Retail
Sales
Services
Science
Small Business & Entrepreneurship
Food
Environment
Economy & Finance
Data & Analytics
Investor Relations
Sports
Spiritual
News & Politics
Travel
Self Improvement
Real Estate
Entertainment & Humor
Health & Medicine
Devices & Hardware
Lifestyle
Change Language
Language
English
Español
Português
Français
Deutsche
Cancel
Save
Submit search
EN
TM
Uploaded by
Takanobu Mizuta
722 views
20101002 cd sigfin_spx_ss
Read more
0
Save
Share
Embed
Embed presentation
Download
Download to read offline
1
/ 13
2
/ 13
3
/ 13
4
/ 13
5
/ 13
6
/ 13
7
/ 13
8
/ 13
9
/ 13
10
/ 13
11
/ 13
12
/ 13
13
/ 13
More Related Content
PDF
ãã¡ã¯ã¿ãŒæè³ã𿩿¢°åŠç¿
by
Kei Nakagawa
Â
PPTX
Cfa 20190620
by
Kei Nakagawa
Â
PDF
è²©ä¿æ åœã®ããªãããããªããã°ãããªããªã ããã£ãã«åãšã¯
by
schoowebcampus
Â
PDF
ãçæŸééå®ãã©ã€ããããçåœä¿éºã»åºå£CEOã«åŠã¶ãåªããããŒãããŒã®èŠã€ãæ¹ å çïŒåºå£ æ²»æ
by
schoowebcampus
Â
PDF
Finance02
by
Takanobu Mizuta
Â
PDF
Internet Explorerã¯IEç¹åã¢ãããªããäžæçã«æ¥æ¬ãæã£ãŠãããããšã次åã¯ããå©ããŠãããªãããšããèŠå
by
Hiroshi Kawada
Â
PDF
ããããã¹ã¯ã©ã åºå³¶ïŒåããããã¯ãããã¯ãã°ãã€ãã£ãŠã¿ãã
by
çš å·å£
Â
PDF
ãšã¹ã»ãšã ã»ãšã¹ã2015幎3ææç¬¬1ååæã決ç®ããã³äŒç€Ÿèª¬æäŒè³æ
by
smsir
Â
ãã¡ã¯ã¿ãŒæè³ã𿩿¢°åŠç¿
by
Kei Nakagawa
Â
Cfa 20190620
by
Kei Nakagawa
Â
è²©ä¿æ åœã®ããªãããããªããã°ãããªããªã ããã£ãã«åãšã¯
by
schoowebcampus
Â
ãçæŸééå®ãã©ã€ããããçåœä¿éºã»åºå£CEOã«åŠã¶ãåªããããŒãããŒã®èŠã€ãæ¹ å çïŒåºå£ æ²»æ
by
schoowebcampus
Â
Finance02
by
Takanobu Mizuta
Â
Internet Explorerã¯IEç¹åã¢ãããªããäžæçã«æ¥æ¬ãæã£ãŠãããããšã次åã¯ããå©ããŠãããªãããšããèŠå
by
Hiroshi Kawada
Â
ããããã¹ã¯ã©ã åºå³¶ïŒåããããã¯ãããã¯ãã°ãã€ãã£ãŠã¿ãã
by
çš å·å£
Â
ãšã¹ã»ãšã ã»ãšã¹ã2015幎3ææç¬¬1ååæã決ç®ããã³äŒç€Ÿèª¬æäŒè³æ
by
smsir
Â
Viewers also liked
PDF
ã¯ã€ã¯ã€Cafe ideaworkshop
by
Rikie Ishii
Â
PPTX
ãããã¿ãã¯ããããã¯ãã¯ã
by
Kakigi Katuyuki
Â
PDF
Windows 10 ã® ããããã Web ãã©ãŠã¶ãŒ ã«ã€ããŠ
by
Osamu Monoe
Â
PDF
äŒæ¥ãã€ãã¿ãŒæŽ»çšäºäŸéïŒãã¬ãŒã³è³æïŒ
by
Toru Saito
Â
PDF
Webãã¶ã€ã³å ¥éïŒïŒHTML5ã»CSSã«ã€ããŠïŒ
by
Yossy Taka
Â
PDF
å€§åŠæ ¡ çµå¶ç®¡çè ã³ãŒã¹ 2013idea
by
Rikie Ishii
Â
PPTX
ãããããããã¬ã»ãã³è³æã倧谷ç¿å¹³éžæãæ¥æ¬ãã å ¥å£ã«å°ããäŒèª¬ã®ããã¬ã»ãã³è³æãšã¯
by
SKET
Â
PDF
GTMF2016:æ ªåŒäŒç€ŸTooã»ãã·ã§ã³ ãCSã²ãŒã éçºçŸå Žã§ã® UXãã¶ã€ã³å®€ã®åãçµã¿ãš UIãã¶ã€ããŒã®å°éæ§ãby æ ªåŒäŒç€Ÿã«ãã³ã³
by
Game Tools & Middleware Forum
Â
PDF
ãšã¹ã»ãšã ã»ãšã¹ã2015幎3ææç¬¬3ååæã決ç®ããã³äŒç€Ÿèª¬æäŒè³æ
by
smsir
Â
PDF
ãIMJãWebæ¥çãšHCD
by
IMJ Corporation
Â
PDF
Dsltç¥ã2å€
by
Akifumi Eguchi
Â
PDF
人工ç¥èœãã³ãºãªã³
by
yaju88
Â
PDF
#cwt2016 Apache Kudu æ§æãšããŒãã«èšèš
by
Cloudera Japan
Â
PDF
#cwt2016 Cloudera Managerãçšãã Hadoop ã®ãã©ãã«ã·ã¥ãŒãã£ã³ã°
by
Cloudera Japan
Â
PDF
ãã€ãã£ãã¢ãããªã«ããããUI/ã€ã³ã¿ã©ã¯ã·ã§ã³ã®ãã¬ã³ãã
by
yosuke sato
Â
PDF
ã¹ãããµãŒãã¹ã«ããããUIãã¶ã€ã³ã®ããŠããŠãšå®äŸ
by
yosuke sato
Â
PPTX
ã人工ç¥èœã®ããã®å²åŠå¡Ÿãåè¡èšå¿µã€ãã³ããã人工ç¥èœÃããžãã¹ãã
by
Youichiro Miyake
Â
PDF
ãã£ãŒãã©ãŒãã³ã°ã®ææ°åå
by
Preferred Networks
Â
PDF
ç°å¢ååŠããŒã¿è§£æå ¥é: æåªå€§è¬æŒè³æ 160728
by
Akifumi Eguchi
Â
PPTX
決å®çïŒãµãŒãã¹ã®çãäžããå ·åããŠãŒã¶ã®æ°(DAU)ããèªã¿è§£ãæ¹æ³
by
Daisuke Nogami
Â
ã¯ã€ã¯ã€Cafe ideaworkshop
by
Rikie Ishii
Â
ãããã¿ãã¯ããããã¯ãã¯ã
by
Kakigi Katuyuki
Â
Windows 10 ã® ããããã Web ãã©ãŠã¶ãŒ ã«ã€ããŠ
by
Osamu Monoe
Â
äŒæ¥ãã€ãã¿ãŒæŽ»çšäºäŸéïŒãã¬ãŒã³è³æïŒ
by
Toru Saito
Â
Webãã¶ã€ã³å ¥éïŒïŒHTML5ã»CSSã«ã€ããŠïŒ
by
Yossy Taka
Â
å€§åŠæ ¡ çµå¶ç®¡çè ã³ãŒã¹ 2013idea
by
Rikie Ishii
Â
ãããããããã¬ã»ãã³è³æã倧谷ç¿å¹³éžæãæ¥æ¬ãã å ¥å£ã«å°ããäŒèª¬ã®ããã¬ã»ãã³è³æãšã¯
by
SKET
Â
GTMF2016:æ ªåŒäŒç€ŸTooã»ãã·ã§ã³ ãCSã²ãŒã éçºçŸå Žã§ã® UXãã¶ã€ã³å®€ã®åãçµã¿ãš UIãã¶ã€ããŒã®å°éæ§ãby æ ªåŒäŒç€Ÿã«ãã³ã³
by
Game Tools & Middleware Forum
Â
ãšã¹ã»ãšã ã»ãšã¹ã2015幎3ææç¬¬3ååæã決ç®ããã³äŒç€Ÿèª¬æäŒè³æ
by
smsir
Â
ãIMJãWebæ¥çãšHCD
by
IMJ Corporation
Â
Dsltç¥ã2å€
by
Akifumi Eguchi
Â
人工ç¥èœãã³ãºãªã³
by
yaju88
Â
#cwt2016 Apache Kudu æ§æãšããŒãã«èšèš
by
Cloudera Japan
Â
#cwt2016 Cloudera Managerãçšãã Hadoop ã®ãã©ãã«ã·ã¥ãŒãã£ã³ã°
by
Cloudera Japan
Â
ãã€ãã£ãã¢ãããªã«ããããUI/ã€ã³ã¿ã©ã¯ã·ã§ã³ã®ãã¬ã³ãã
by
yosuke sato
Â
ã¹ãããµãŒãã¹ã«ããããUIãã¶ã€ã³ã®ããŠããŠãšå®äŸ
by
yosuke sato
Â
ã人工ç¥èœã®ããã®å²åŠå¡Ÿãåè¡èšå¿µã€ãã³ããã人工ç¥èœÃããžãã¹ãã
by
Youichiro Miyake
Â
ãã£ãŒãã©ãŒãã³ã°ã®ææ°åå
by
Preferred Networks
Â
ç°å¢ååŠããŒã¿è§£æå ¥é: æåªå€§è¬æŒè³æ 160728
by
Akifumi Eguchi
Â
決å®çïŒãµãŒãã¹ã®çãäžããå ·åããŠãŒã¶ã®æ°(DAU)ããèªã¿è§£ãæ¹æ³
by
Daisuke Nogami
Â
Similar to 20101002 cd sigfin_spx_ss
PDF
芳枬äžå¯ãªç¢ºç倿°ã«é¢ããæšèšãšãã¡ã€ãã³ã¹å·¥åŠãžã®å¿çš
by
Terutoshi Mita
Â
PDF
第4åDARMååŒ·äŒ (æ§é æ¹çšåŒã¢ããªã³ã°)
by
Yoshitake Takebayashi
Â
PPTX
ã¢ãã«äºèŠå¶åŸ¡ã«åºã¥ããã¢ãã¬ãŒãæŠç¥
by
Kei Nakagawa
Â
PDF
Data assim r
by
Xiangze
Â
PDF
inter seminar ã€ã³ãŒãè³æ
by
Osaka-univ Yasuda Seminar å®ç°ãŒã
Â
PDF
R Study Tokyo03
by
Yohei Sato
Â
PDF
2018RãŠãŒã¶äŒçš
by
wada, kazumi
Â
PDF
20110421
by
Takanobu Mizuta
Â
PDF
CF-FinML éèæç³»åäºæž¬ã®ããã®æ©æ¢°åŠç¿
by
Katsuya Ito
Â
PDF
TokyoWebminingçµ±èšåŠéš 第1å
by
Issei Kurahashi
Â
PDF
Tokyo r15 ç°åžžæ€ç¥å ¥é
by
Yohei Sato
Â
PPT
20120624 wacate2012 s_ã€ããã³ã°ã»ãã·ã§ã³(åœæ¥çš)
by
Masaki Kase
Â
PDF
ãã¿ãŒã³èªè 第01ç« -å€å¥èœåã®è©äŸ¡
by
sleipnir002
Â
PDF
Letäžéš2012ã·ã³ããã¹ã©ã€ãã
by
Mizumoto Atsushi
Â
PPT
Model seminar shibata_100710
by
Kazuya Nishina
Â
PDF
Rã§åŠã¶çŸä»£ããŒããã©ãªãªçè«å ¥é - TokyoR #18
by
horihorio
Â
PDF
çµå¶è ã®å©çäºæ³ãã€ã¢ã¹ãšåžå Žã®éåçæ§
by
Takashi, ASANO
Â
PDF
çµå¶è ã®å©çäºæ³ãã€ã¢ã¹ãšåžå Žã®éåçæ§
by
guest7b4d4e0b
Â
PDF
ãããã¹ã¿até座
by
Issei Kurahashi
Â
PDF
æç³»åè§£æã®äœ¿ãæ¹ - TokyoWebMining #17
by
horihorio
Â
芳枬äžå¯ãªç¢ºç倿°ã«é¢ããæšèšãšãã¡ã€ãã³ã¹å·¥åŠãžã®å¿çš
by
Terutoshi Mita
Â
第4åDARMååŒ·äŒ (æ§é æ¹çšåŒã¢ããªã³ã°)
by
Yoshitake Takebayashi
Â
ã¢ãã«äºèŠå¶åŸ¡ã«åºã¥ããã¢ãã¬ãŒãæŠç¥
by
Kei Nakagawa
Â
Data assim r
by
Xiangze
Â
inter seminar ã€ã³ãŒãè³æ
by
Osaka-univ Yasuda Seminar å®ç°ãŒã
Â
R Study Tokyo03
by
Yohei Sato
Â
2018RãŠãŒã¶äŒçš
by
wada, kazumi
Â
20110421
by
Takanobu Mizuta
Â
CF-FinML éèæç³»åäºæž¬ã®ããã®æ©æ¢°åŠç¿
by
Katsuya Ito
Â
TokyoWebminingçµ±èšåŠéš 第1å
by
Issei Kurahashi
Â
Tokyo r15 ç°åžžæ€ç¥å ¥é
by
Yohei Sato
Â
20120624 wacate2012 s_ã€ããã³ã°ã»ãã·ã§ã³(åœæ¥çš)
by
Masaki Kase
Â
ãã¿ãŒã³èªè 第01ç« -å€å¥èœåã®è©äŸ¡
by
sleipnir002
Â
Letäžéš2012ã·ã³ããã¹ã©ã€ãã
by
Mizumoto Atsushi
Â
Model seminar shibata_100710
by
Kazuya Nishina
Â
Rã§åŠã¶çŸä»£ããŒããã©ãªãªçè«å ¥é - TokyoR #18
by
horihorio
Â
çµå¶è ã®å©çäºæ³ãã€ã¢ã¹ãšåžå Žã®éåçæ§
by
Takashi, ASANO
Â
çµå¶è ã®å©çäºæ³ãã€ã¢ã¹ãšåžå Žã®éåçæ§
by
guest7b4d4e0b
Â
ãããã¹ã¿até座
by
Issei Kurahashi
Â
æç³»åè§£æã®äœ¿ãæ¹ - TokyoWebMining #17
by
horihorio
Â
More from Takanobu Mizuta
PDF
人工ç¥èœã®å¯èœæ§ãšéç ãŒãã®ïŒå¹Žéã®çºå±ãŒ
by
Takanobu Mizuta
Â
PDF
人工åžå Žã«ããåžå Žå¶åºŠã®èšèš
by
Takanobu Mizuta
Â
PDF
人工åžå Žã·ãã¥ã¬ãŒã·ã§ã³ã«ãã å€å¹ å¶éãšãµãŒããããã¬ã€ã«ãŒã®å¹ææ¯èŒ
by
Takanobu Mizuta
Â
PDF
éèæ¥çã«ããã人工ç¥èœãé«éååŒã人工åžå Žã«ããåžå Žå¶åºŠã®èšèš
by
Takanobu Mizuta
Â
PPTX
æ¥æ¬CFAåäŒã¢ããã«ã·ãŒãŠã§ãã㌠è³ç£éçšæ¥çã«ããã人工ç¥èœ
by
Takanobu Mizuta
Â
PDF
Chapter 13 Artificial Intelligence (AI) for Financial Markets: A Good AI for ...
by
Takanobu Mizuta
Â
PDF
æè³æŠç¥ã®æé©åã®äžå®å®æ§ã«ããéèåžå Žã®äžå®å®æ§ -人工åžå Žãçšããåæ-
by
Takanobu Mizuta
Â
PDF
人工åžå Žã«ããåžå Žå¶åºŠã®èšèš
by
Takanobu Mizuta
Â
PDF
æè³æŠç¥ã®æé©åã®äžå®å®æ§ã«ããéèåžå Žã®äžå®å®æ§ -人工åžå Žãçšããåæ-
by
Takanobu Mizuta
Â
PDF
人工åžå Žã«ããåžå Žå¶åºŠã®èšèš
by
Takanobu Mizuta
Â
PDF
2022CIFEr
by
Takanobu Mizuta
Â
PDF
L'intelligence artificielle utilisée sur les marchés financiers
by
Takanobu Mizuta
Â
PDF
Artificial Intelligence Used in Financial Markets
by
Takanobu Mizuta
Â
PDF
æè³æŠç¥ã®æé©åã®äžå®å®æ§ã«ããéèåžå Žã®äžå®å®æ§ -人工åžå Žãçšããåæ-
by
Takanobu Mizuta
Â
PDF
éèã»çµæžåéã«ããããã«ããšãŒãžã§ã³ãã·ã¹ãã ïœ ç°¡åãªã¬ãã¥ãŒ ïœ
by
Takanobu Mizuta
Â
PDF
Zoomäžã«ã¿ã€ããŒã衚瀺ããã
by
Takanobu Mizuta
Â
PDF
éèæ¥çã«ããã人工ç¥èœ 2022/1/17
by
Takanobu Mizuta
Â
PDF
æ ªåŒã®é«éååŒãšååŒæã®é«éå
by
Takanobu Mizuta
Â
PDF
人工åžå Žã«ããåžå Žå¶åºŠã®èšèš
by
Takanobu Mizuta
Â
PDF
What is a Hight-Speed Trade? Why does a Stock Exchange Speed-Up?
by
Takanobu Mizuta
Â
人工ç¥èœã®å¯èœæ§ãšéç ãŒãã®ïŒå¹Žéã®çºå±ãŒ
by
Takanobu Mizuta
Â
人工åžå Žã«ããåžå Žå¶åºŠã®èšèš
by
Takanobu Mizuta
Â
人工åžå Žã·ãã¥ã¬ãŒã·ã§ã³ã«ãã å€å¹ å¶éãšãµãŒããããã¬ã€ã«ãŒã®å¹ææ¯èŒ
by
Takanobu Mizuta
Â
éèæ¥çã«ããã人工ç¥èœãé«éååŒã人工åžå Žã«ããåžå Žå¶åºŠã®èšèš
by
Takanobu Mizuta
Â
æ¥æ¬CFAåäŒã¢ããã«ã·ãŒãŠã§ãã㌠è³ç£éçšæ¥çã«ããã人工ç¥èœ
by
Takanobu Mizuta
Â
Chapter 13 Artificial Intelligence (AI) for Financial Markets: A Good AI for ...
by
Takanobu Mizuta
Â
æè³æŠç¥ã®æé©åã®äžå®å®æ§ã«ããéèåžå Žã®äžå®å®æ§ -人工åžå Žãçšããåæ-
by
Takanobu Mizuta
Â
人工åžå Žã«ããåžå Žå¶åºŠã®èšèš
by
Takanobu Mizuta
Â
æè³æŠç¥ã®æé©åã®äžå®å®æ§ã«ããéèåžå Žã®äžå®å®æ§ -人工åžå Žãçšããåæ-
by
Takanobu Mizuta
Â
人工åžå Žã«ããåžå Žå¶åºŠã®èšèš
by
Takanobu Mizuta
Â
2022CIFEr
by
Takanobu Mizuta
Â
L'intelligence artificielle utilisée sur les marchés financiers
by
Takanobu Mizuta
Â
Artificial Intelligence Used in Financial Markets
by
Takanobu Mizuta
Â
æè³æŠç¥ã®æé©åã®äžå®å®æ§ã«ããéèåžå Žã®äžå®å®æ§ -人工åžå Žãçšããåæ-
by
Takanobu Mizuta
Â
éèã»çµæžåéã«ããããã«ããšãŒãžã§ã³ãã·ã¹ãã ïœ ç°¡åãªã¬ãã¥ãŒ ïœ
by
Takanobu Mizuta
Â
Zoomäžã«ã¿ã€ããŒã衚瀺ããã
by
Takanobu Mizuta
Â
éèæ¥çã«ããã人工ç¥èœ 2022/1/17
by
Takanobu Mizuta
Â
æ ªåŒã®é«éååŒãšååŒæã®é«éå
by
Takanobu Mizuta
Â
人工åžå Žã«ããåžå Žå¶åºŠã®èšèš
by
Takanobu Mizuta
Â
What is a Hight-Speed Trade? Why does a Stock Exchange Speed-Up?
by
Takanobu Mizuta
Â
20101002 cd sigfin_spx_ss
1.
åžå Žæ¥å€ã«å¯Ÿå¿ããäºæž¬ã¢ãã«ã®ææ¡
å€å¹¡åŸå²1 æ°Žç°åä¿¡2 æ¹ æ²»å¹³2 1 ç¥èç§åŠç ç©¶ç§ - åéžå 端ç§åŠæè¡å€§åŠ é¢å€§åŠ http://www.geocities.jp/furuhata1120/index.html 2 ã¹ããŒã¯ã¹ã»ã¢ã»ããã»ãããžã¡ã³ãæ ªåŒäŒç€Ÿ ã¹ããŒã¯ã¹ã»ã¢ã»ããã»ãããžã¡ã³ãæ ªåŒäŒç€Ÿ 2010幎10æ02æ¥ 1 1 1
2.
çºè¡šå 容ïŒåžå Žæ¥å€ã«å¯Ÿå¿ããäº
åžå Žæ¥å€ã«å¯Ÿå¿ãã åžå Žæ¥å€ ããäº æž¬ã¢ãã«ã®ææ¡ ã¢ãã«ã®ææ¡ïŒ â¢ èæ¯ ⢠æ¢åã¢ãããŒã â¢ ææ¡ææ³ ⢠ããŒããã©ãªãªã»ãããžã¡ã³ããžã®å¿çš â¢ äºæž¬ææ³ã®æ§èœè©äŸ¡ ⢠ãŸãšã 2 2
3.
1. èæ¯ ⢠å®åžžç¶æ ãäžå¿ãšããŠäºæž¬ã¢ãã«
â 芳枬æ°å¢å â äºæž¬èª€å·®ãäœæž â äºæž¬èª€å·®å¢å€§ â ã¢ãã«èŠçŽã / ã¢ãã«ã®ãã© ã¡ã¿ã»ãã¥ãŒãã³ã° ⢠å€ãã®ç€ŸäŒçŸè±¡ïŒ éå®åžžç¶æ â è€éãªèŠå â åçã«å€åããç°å¢ïŒå±é¢ïŒ 3 3
4.
2. æ¢åã¢ãããŒã ⢠åç §æéã®éžæïŒ
芳枬ããŒã¿ããç°å¢ã®å€åãå€å®ããéå» ããŒã¿ã®åç §æéãåçã«å€åããã éåç §æé åç §æé -7 -6 -5 -4 -3 -2 -1 0 1 Time ç°å¢æ¥å€ Competing Windows Algorithm (CWA): ææ°ããŒã¿ 芳枬ããããšã« éå»ã« ã£ãŠèŠ³æž¬ããŒã¿ãšã®å·®ç°ã枬å®ãããéŸå€ ããŒã¿ã ããããšã«ã 芳枬ããŒã¿ãšã®å·®ç° ææ°ããŒã¿ã芳枬ããããšã«ãéå»ã«é¡ã£ãŠèŠ³æž¬ããŒã¿ãšã®å·®ç°ã枬å®ãããéŸå€ã® éŸå€ã® ç¯å²å ã«ãããªãã° ããé· åç §æéãšãã ç¯å²å ã«ãããªãã°ãããé·ãåç §æéãšããã ã«ãããªãã°ã ãšããã FLORA: 芳枬ãããææ°ããŒã¿ããã以åã®éå»ããŒã¿ãšã®äžè²«æ§ããã§ãã¯ãã éå»ã® 芳枬ãããææ°ããŒã¿ããã以åã®éå»ããŒã¿ãšã®äžè²«æ§ããã§ãã¯ãããéå»ã® ãããææ°ããŒã¿ããã以å ããŒã¿ãšã®äžè²«æ§ ããã äºæž¬ç²ŸåºŠãåèã« éå»ããŒã¿ éåç §åãæ±ºå®ãã ããŒã¿ã® ããã äºæž¬ç²ŸåºŠãåèã«ãéå»ããŒã¿ã®éåç §åãæ±ºå®ããã 4 4
5.
3. ææ¡ææ³ (Paired
Evaluators Methods (PEM)) ⢠æé©ãªåç §æéãéžã¶âæé©ãªåç §æéãéžã°ãã â¢ äºæž¬æé F = { f i }in=1 â 倿°ã®åºç€äºæž¬ææ³ã䞊åã«èµ°ããã ÎŽ ti = yt â f i (X tH ) â èª€å·®æž¬å® E = {s, r} â åºç€äºæž¬ææ³ã®æ§èœè©äŸ¡åºæº ⢠å®å®éèŠå(s) ⢠å€å察å¿å(r) è©äŸ¡ã® è©äŸ¡ã®éã¿ Ws è©äŸ¡ã® è©äŸ¡ã®éã¿ Wr æ -Tæ æ æ -1æ 0æ æ -Tæ æ æ -1æ 0æ å®å®éèŠå å€å察å¿å 5 5
6.
3. ææ¡ææ³ (Paired
Evaluators Methods (PEM)) â ããããã®åºæºã§éžã°ããåºç€äºæž¬ææ³ ~s ~r i = arg min â wtsÎŽ ti i = arg min â wtrÎŽ ti iâI iâI tâH tâH â æé©åºç€äºæž¬ææ³ã以äžã®ã«ãŒã«ã§éžæ ⢠ããã©ã«ãã§å®å®éèŠåè©äŸ¡ã§æé©åºç€äºæž¬ææ³ãéžæ Ί ⢠äžã€åã®æã§ãå®å®éèŠåã®äºæž¬èª€å·®ãããéžæåºæº ãæºãããªãå Žåã å€å察å¿åã§æé©åºç€äºæž¬ææ³ãéžæ ~ s if Ί t (ÎŽ tiËââ11 ) ⥠Ξ s  it t it = ~ Ë ï£Ž it r otherwise.  â éžæåºæºã®æŽæ° ⢠åæå€ïŒ 0 ⢠å®å®éèŠåã®äºæž¬ç²ŸåºŠãå€å察å¿åãäžåãå ŽåïŒ ÎŠ t (ÎŽ ) := Ί t (ÎŽ ) + λ for all ÎŽ †Ύ tiââ11 t Ës Ί t (ÎŽ ) := Ί t (ÎŽ ) â λ for all ÎŽ ⥠Ύ its 1 Ëâ ⢠ãã以å€ã®å ŽåïŒ t â1 6 6
7.
4. ããŒããã©ãªãªã»ãããžã¡ã³ããž â¢
ã®å¿çš ãã¡ã¯ã¿ã»ããŒããŒã·ã§ã³ â ãã¡ã¯ã¿ïŒ æè³å€æã®åºæºã«ããéæã®å±æ§ ïŒäŸïŒæäŸ¡ç·é¡ïŒ â ãã¡ã¯ã¿éžå®ïŒ ããäžå®æéã®éã«æè³ã«å¯Ÿãããªã¿ãŒã³ ãæãäžæïŒäžéïŒãããã¡ã¯ã¿ãéžæ ãã¡ã¯ã¿éžå® ãã¡ã¯ã¿éžå® ãã¡ã¯ã¿ã«ãã ãã¡ã¯ã¿ã«ãã ãœãŒã ãã¡ã¯ã¿ã«ãã ãã¡ã¯ã¿ã«ãã éæã®ãœãŒãã» éæã®ãœãŒãã»ãªã¹ã äžäœ è²·ã éæã® éæã® çµã¿æãæ¥å äžäœ 売ã 7 7
8.
5. ãã¡ã¯ã¿éžå® â¢
å©çšããŒã¿ â Fama/French Factors in U.S. Research Returns Data (http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html) â 1964幎1æïœ2009幎12æïŒææ¬¡ãã¡ã¯ã¿ãªã¿ãŒã³ïŒ â å©çšãã¡ã¯ã¿ ⢠Momentum: ïŒïŒãµæã®äžææ ªäŸ¡ (Winner-Minus-Loser) Carhart (1997) ⢠Value: çŽè³ç£æ ªäŸ¡æ¯ç (High-Minus-Low) Fama&French (1993) ⢠Size:æ ªåŒæäŸ¡ç·é¡ (Small-Minus-Big) Fama&French (1993) ⢠ãã¡ã¯ã¿éžå® â æ¯æãäžã€ã®ãã¡ã¯ã¿ã»ã¹ãã¬ããïŒäžäœïŒïŒïŒ ïŒäžäœïŒïŒïŒ ïŒã«æè³ â é 匵ã / é匵ã 8 8
9.
5. ãã¡ã¯ã¿éžå® ãã¡ã¯ã¿å¥çޝåãªã¿ãŒã³ïŒ ïŒ ãã¡ã¯ã¿å¥çޝåãªã¿ãŒã³ïŒUSïŒ
å¥çޝåãªã¿ãŒã³ 9 9
10.
6. äºæž¬ææ³ã®æ§èœ äºæž¬ææ³å¥çޝåãªã¿ãŒã³ïŒ
ïŒ äºæž¬ææ³å¥çޝåãªã¿ãŒã³ïŒUSïŒ ãªã¿ãŒã³ 10 10
11.
7. å žåçãªæ¥å€ã®åé¡ â¢ Sudden
Drift ⢠Incremental Drift ⢠Gradual Drift ⢠Recurring Context 11 11
12.
8. æ¥å€ãã¿ãŒã³ãžã®é©å¿
12 12
13.
9. ãŸãšã ⢠åžå Žæ¥å€ã«å¯Ÿå¿ãããããïŒã€ã®è©äŸ¡æ¹æ³ïŒå®å®éèŠåãå€
å察å¿åïŒãå©çšããäºæž¬ææ³ãææ¡ â éå»ã®å±¥æŽãéã¿ã€ã€ãåæã®äºæž¬ç²ŸåºŠã«åºã¥ãè©äŸ¡æ¹æ³ãéžæ ïŒè©äŸ¡æ¹æ³ãéžæããããšåºç€ææ³ãäžæã«æ±ºãŸãïŒ â¢ äºæž¬ã¢ãã«ã®æ§èœè©äŸ¡ãããããã®ããŒããã©ãªãªã»ãããžã¡ ã³ããžã®å¿ç𿹿³ãæç€º ⢠ãã¡ã¯ã¿éžæåé¡ã§ãåç §æéãåçã«éžæããã¢ãã«ã𿝠èŒããŠãæ§èœã®åäžãæç€º â ããŸããŸãªæéã§é«ç²ŸåºŠãç¶æïŒãªãŒãã³ã·ã§ãã¯ä»¥éã®å±é¢ãå€å ããææãå«ãïŒ â¢ ä»åŸã®èª²é¡ãšããŠ â æ¥æ¬æ ªãžã®å¿çš 13 â ãã«ãã»ãã¡ã¯ã¿éžæ 13
Download