SlideShare a Scribd company logo
1 of 50
Download to read offline
Chapter 2. Thermal Control System
Dr Minkwan Kim
Semester 1
Outline and Contents
1. Overview of the Thermal Control System
2. Thermal Design
Passive
Active
3. Thermal Modelling and Testing
[Online Quiz] by 1/Nov (Monday)
Learning outcomes on Ch2
β€’ Able to answer the following questions
⎻ What are the differences between active and passive systems?
⎻ What are the physical parameters affecting the temperature of S/C?
⎻ How does the orbit of a spacecraft affect on the Thermal control
system design?
⎻ What are the external sources of heat?
β€’ Able to estimate the temperature of S/C.
β€’ Able to select materials which can maintain the
temperature of S/C in acceptable level.
β€’ Able to determine the required power of heater/cooler
1. Introduction of Thermal Control System
β€’ Functions
⎻ Monitors temperatures of key components.
⎻ Maintains the temperature of these components within
acceptable limits
⎻ Control the temperature of ALL individual components
throughout the Entire mission.
β€’ Design Considerations:
⎻ Controlling the average spacecraft temperature requires a
balance of heat absorbed, generated and radiated
⎻ Once the average temperature is controlled effectively, the
temperature if individual components within the spacecraft can
be controlled via a wide variety of measures
⎻ Control system can be active, passive or a combination of the
two
1. Introduction of Thermal Control System
β€’ Typical spacecraft component temperature limits
Component / Subsystem
Operating
temperature (℃)
Survival
temperature (℃)
General electronics -10 ~ 45 -30 ~ 60
Batteries 0 ~ 10 -5 to 20
Motors 0 ~ 50 -20 ~ 70
Solar panels -100 ~ 125 -100 ~ 125
2. Thermal Analysis
β€’ All thermal analysis begins with the first law of
thermodynamics
Q = heat added to the system
W = rate of work production by the system
dU/dt = change in the internal energy U of the system
=
Thermal Analysis
𝑄𝑄 βˆ’ π‘Šπ‘Š =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝐴𝐴 𝑑𝑑𝑑𝑑 𝜌𝜌 𝐢𝐢𝑝𝑝
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
For a uniform solid with cross-section area A and length dx
2. Thermal Analysis
β€’ Assume:
⎻ spacecraft is in thermal equilibrium, and balance the heat
emitted with heat absorbed
Spacecraft Thermal Balance
Qin Qout
Qnet = Qin - Qout
2. Thermal Analysis
Conductive Heat Transfer:
⎻ heat moves through a solid
⎻ microscopic diffusion and collision of particles
⎻ Fourier’s law:
Conduction
where = heat flux, W/m2
= material conductivity
𝑄𝑄π‘₯π‘₯ = βˆ’πœ…πœ…πœ…πœ…
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
2. Thermal Analysis
Convection
Convective Heat Transfer:
⎻ heat transfer by the movement of fluids
⎻ dominant form of heat transfer in liquids and gases
⎻ Newton’s cooling law: (set of differential equation given by Fourier’s law)
where = convection coefficient
= surface temperature
𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = β„Ž 𝑇𝑇𝑀𝑀 βˆ’ 𝑇𝑇𝑓𝑓𝑓𝑓 β‹… 𝐴𝐴
2. Thermal Analysis
Radiation
Radiative Heat Transfer:
⎻ heat transfer vehicle in space and its external environment
⎻ transport of energy by electromagnetic waves emitted by all bodies
⎻ Stefan-Boltzmann law: where = emissivity
= Stefan-Boltzmann constant
π‘žπ‘žπ‘π‘ = πœŽπœŽπ‘‡π‘‡4
2. Thermal Analysis
β€’ Black body radiation
⎻ All bodies emit radiation due to their temperature. A black body is
an ideal emitter. A black body at temperature T emits radiation
with power per unit area of its surface given by the Stefan-
Boltzmann Law:
⎻ Absorptance (α)
β€’ The ratio of radiant energy absorbed by a body to that incident on it
⎻ Emittance (Ρ)
β€’ The ratio of energy emitted by a body to that emitted by a black body at the
same temperature.
Radiation
π‘žπ‘ž = 𝜎𝜎 𝑇𝑇4
W
m2 where 𝜎𝜎 = 5.67 Γ— 10βˆ’8
π‘Šπ‘Š
π‘šπ‘š2 β‹… 𝐾𝐾4
2. Thermal Analysis
Radiation properties
𝛼𝛼 + π‘…π‘…πœŒπœŒ + 𝜏𝜏 = 1
Incident radiation Reflection, R𝜌𝜌
Transmission, 𝜏𝜏
Absorption, 𝛼𝛼
β€’ Amount of heat radiating from a real surface is
β€’ For bodies in thermal equilibrium at the same temperature,
2. Thermal Analysis
Radiation properties
π‘„π‘„π‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Ž = πœ€πœ€ 𝑄𝑄𝑏𝑏
Energy being absorbed = Energy emitted
2. Thermal Analysis
β€’ Spacecraft thermal emission
Spacecraft Heat Emission
𝑄𝑄𝑠𝑠𝑠𝑠 = πœ€πœ€ β‹… 𝜎𝜎T4 β‹… 𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 [W]
NOTE: Internal dissipation, Qdis
𝑄𝑄𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑃𝑃 [W]
2. Thermal Analysis
i. Solar Radiation
ii. Planetary Radiation
iii. Albedo
A. Solar Radiation
⎻ Intensity Js of solar radiation at distance D:
External Heat Sources
Sun
𝐽𝐽𝑠𝑠 =
𝑃𝑃
4πœ‹πœ‹π·π·2
W
m2
where 𝑃𝑃 = 3.8 Γ— 1026
π‘Šπ‘Š
𝑄𝑄𝑠𝑠 = 𝐽𝐽𝑠𝑠 β‹… π΄π΄π‘π‘π‘π‘π‘π‘π‘π‘βˆ’π‘†π‘†π‘†π‘†π‘†π‘† β‹… 𝛼𝛼𝑠𝑠 W
2. Thermal Analysis
B. Planetary Radiation
⎻ All planets have temperatures above 0K so they emit
radiation
External Heat Sources
𝑄𝑄𝑝𝑝 = 𝐽𝐽𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 β‹… π΄π΄π‘π‘π‘π‘π‘π‘π‘π‘βˆ’π‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒ β‹… πΉπΉπ‘ π‘ βˆ’π‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒ β‹… πœ€πœ€πΌπΌπΌπΌ W
S/C
2. Thermal Analysis
C. Albedo
⎻ Albedo is the solar radiation that is reflected from a planet,
which is generally much more significant than planetary
radiation
External Heat Sources
v
S/C
Js
πœ™πœ™
π‘„π‘„π‘Žπ‘Ž = πœŒπœŒπ‘Žπ‘Ž β‹… 𝐽𝐽𝑠𝑠 β‹… π΄π΄π‘π‘π‘π‘π‘π‘π‘π‘βˆ’π‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒ β‹… πΉπΉπ‘ π‘ βˆ’π‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒ β‹… cos πœ™πœ™ β‹… 𝛼𝛼𝑠𝑠 W
2. Thermal Analysis
C. Albedo
External Heat Sources
S/C
πœ™πœ™2
πœ™πœ™1
2. Thermal Analysis
C. Albedo
External Heat Sources
π‘„π‘„π‘Žπ‘Ž = πœŒπœŒπ‘Žπ‘Ž β‹… 𝐽𝐽𝑠𝑠 β‹… π΄π΄π‘π‘π‘π‘π‘π‘π‘π‘βˆ’π‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒ β‹… πΉπΉπ‘ π‘ βˆ’π‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒ β‹… cos πœ™πœ™ β‹… 𝛼𝛼𝑠𝑠 W
π‘„π‘„π‘Žπ‘Ž = πœŒπœŒπ‘Žπ‘Ž β‹… 𝐽𝐽𝑠𝑠 β‹… π΄π΄π‘π‘π‘π‘π‘π‘π‘π‘βˆ’π‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒ β‹… πΉπΉπ‘ π‘ βˆ’π‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒ β‹… cos πœ™πœ™1 β‹… cos πœ™πœ™2 β‹… 𝛼𝛼𝑠𝑠 W
3. Thermal Design
β€’ Principal trade-off in thermal control design
Passive and Active Systems
Passive:
οƒΌNo power requirement
οƒΌNo moving parts
οƒΌSimple (reliable)
οƒΌLow cost
 Inflexible
 Low heat transfer rates
 Performance variability
(e.g. Surface coatings)
Active:
οƒΌFlexible and adaptive
οƒΌHigh heat transfer rate
 Power required
 Mechanisms / moving
components (reliability)
 Mass
 High(er) cost
(e.g. fluid loop systems)
3. Thermal Design
β€’ Passive thermal control design has been proven on
Earth-orbiting missions (with β€˜average’ power
requirements).
β€’ Active systems are required for:
⎻ high (variable) power dissipation missions (e.g. high power
comms or military S/C).
⎻ S/C encountering extreme variations in thermal environment
(e.g. interplanetary missions).
⎻ precise thermal control (e.g. crewed missions).
β€’ Cost drives use of passive methods wherever
possible.
Passive and Active Systems
3. Thermal Design
i. Surface Coating
A. Passive Technique
3. Thermal Design
i. Surface Coating
⎻ Temperature control by choice of surface coatings.
⎻ Use appropriate absorptance and emittance
A. Passive Technique
3. Thermal Design
i. Surface Coating
⎻ Recall thermal balance equation: Qin+ Qdis = Qout
A. Passive Technique
𝑄𝑄𝑖𝑖𝑖𝑖 = 𝑄𝑄𝑠𝑠 + π‘„π‘„π‘Žπ‘Ž + 𝑄𝑄𝑝𝑝 =
T =
𝐽𝐽𝑠𝑠
𝜎𝜎
β‹…
𝛼𝛼
πœ€πœ€
β‹…
𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝐴𝐴𝑠𝑠/𝑐𝑐
1
4
+ β‹―
π‘„π‘„π‘œπ‘œπ‘œπ‘œπ‘œπ‘œ
𝑄𝑄𝑑𝑑𝑑𝑑𝑑𝑑
+
3. Thermal Design
i. Surface Coating
- There are four basic thermal material categories
A. Passive Technique
a. Solar absorber
β€’ High 𝛼𝛼, low πœ€πœ€
β€’ Example:
- gold: 𝛼𝛼 = 0.3 and πœ€πœ€ = 0.02
- Teq ~ + 380 β—¦C
High
𝛼𝛼
πœ€πœ€
> 1
3. Thermal Design
i. Surface Coating
A. Passive Technique
b. Solar reflector
β€’ Low 𝛼𝛼, high πœ€πœ€
β€’ Example:
- White paint: 𝛼𝛼 = 0.15 and πœ€πœ€ = 0.9
- Teq ~ +380 β—¦C
Low
𝛼𝛼
πœ€πœ€
< 1
3. Thermal Design
i. Surface Coating
A. Passive Technique
c. Flat absorber
β€’ high 𝛼𝛼, high πœ€πœ€
β€’ Example:
- black paint: 𝛼𝛼 = 0.9 and πœ€πœ€ = 0.9
- Teq ~ +60 β—¦C
d. Flat reflector
β€’ low 𝛼𝛼, low πœ€πœ€
β€’ Example:
- Aluminium paint: 𝛼𝛼 = 0.3 and πœ€πœ€ =
0.3
- Teq ~ +60 β—¦C
𝛼𝛼
πœ€πœ€
β‰ˆ 1
𝛼𝛼
πœ€πœ€
β‰ˆ 1
3. Thermal Design
i. Surface Coating
Example:
Evaluate the equilibrium temperature, Teq, of the given solar
array for a 3-axis stabilised GEO satellite in equinox conditions
(a) at local noon
(b) at local midnight
A. Passive Technique
𝑅𝑅𝐸𝐸 = 6378 π‘˜π‘˜π‘˜π‘˜
𝑅𝑅𝐺𝐺𝐺𝐺𝐺𝐺 = 42164 π‘˜π‘˜π‘˜π‘˜
𝐽𝐽𝑠𝑠 = 1400 π‘Šπ‘Š/π‘šπ‘š2
𝐽𝐽𝐸𝐸 = 240 π‘Šπ‘Š/π‘šπ‘š2
Albedo = 0.34
𝛼𝛼𝑠𝑠,𝐹𝐹 = ?
πœ€πœ€πΉπΉ = 0.8
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 6 π‘šπ‘š2
𝛼𝛼𝑠𝑠,𝐡𝐡 = 0.7
πœ€πœ€π΅π΅ = 0.7
Solar cell efficiency = 0.14
Solar cell packing efficiency = 0.95
Average solar cell array absorptance = 0.8
3. Thermal Design
ii. Bimetallic fins
β€’ Fins provide:
⎻ an increase in spacecraft surface area
⎻ a change in effective 𝛼𝛼/πœ€πœ€ ratio
β€’ Can be made an β€˜active’ device in combination with a
heater.
A. Passive Technique
3. Thermal Design
iii. Multi-layer insulation (MLI)
β€’ Used to reduce heat loss by thermal radiation
⎻ Kapton is often used for inner and outer layers of a mylar MLI
blanket.
⎻ Number of layers: typically 20 to 25 per cm.
A. Passive Technique
3. Thermal Design
iii. Multi-layer insulation (MLI)
β€’ Applications
A. Passive Technique
3. Thermal Design
iii. Multi-layer insulation (MLI)
A. Passive Technique
Effective venting of MLI blanket is necessary to prevent failure.
Assumes:
β€’ No contact of layers
β€’ Vacuum between sheets
β€’ No edge leakages
Ξ΅ =
Ξ΅i
N + 1
where
πœ€πœ€π‘–π‘– = original emittance
N = number of layers
3. Thermal Design
iv. Heat Pipes
A. Passive Technique
3. Thermal Design
iv. Heat Pipes
⎻ Heat pipes in space applications
A. Passive Technique
3. Thermal Design
v. Passive Radiators
a. 3-Axis Stabilised:
A. Passive Technique
3. Thermal Design
v. Passive Radiators
b. Dual-spin Stabilised:
A. Passive Technique
3. Thermal Design
v. Passive Radiators
A. Passive Technique
3. Thermal Design
i. Heater elements
B. Active Technique
β€’ Particularly for eclipse operation:
─ e.g. hydrazine tanks / pipes / valves, thrusters, payload, battery environment
β€’ Kapton laminate with etched wiring element
β€’ Controlled automatically (by thermostats) or by ground command.
3. Thermal Design
ii. Louver systems
B. Active Technique
3. Thermal Design
iii. Thermoelectric System
B. Active Technique
4. Thermal Modelling and Testing
β€’ A Comprehensive Thermal Mathematical Model (CTMM) is
constructed in early Phase C/D:
- Model incorporates full S/C configuration details
- Typically 400 to 600 nodes
- Typically 10,000 to 15,000 thermal couplings
A. Modelling
4. Thermal Modelling and Testing
Thermal-vacuum testing
B. Testing
4. Thermal Modelling and Testing
β€’ Conservation of energy:
β€’
For transparent materials with NO INTERNAL DISSIPATION
Thermal Analysis
𝑄𝑄𝑖𝑖𝑖𝑖 βˆ’ π‘„π‘„π‘œπ‘œπ‘œπ‘œπ‘œπ‘œ + 𝑄𝑄𝑑𝑑𝑑𝑑𝑑𝑑 =
πœ•πœ•πΈπΈπ‘–π‘–π‘–π‘–π‘–π‘–
πœ•πœ•πœ•πœ•
𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = π‘„π‘„π‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Ž + π‘„π‘„π‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿ + 𝑄𝑄𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
4. Thermal Modelling and Testing
β€’ Assume:
⎻ Only has a Solar radiation
⎻ No internal energy dissipation
Steady State Temperature of Insulated Surfaces
𝑄𝑄𝑖𝑖𝑖𝑖 =
π‘„π‘„π‘œπ‘œπ‘œπ‘œπ‘œπ‘œ=
𝐽𝐽𝑠𝑠 𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑠𝑠 𝛼𝛼𝑠𝑠
πœ€πœ€ 𝜎𝜎 𝑇𝑇4 𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
∴ 𝑇𝑇= 𝐽𝐽𝑠𝑠 𝛼𝛼𝑠𝑠
πœ€πœ€ 𝜎𝜎
𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
1
4
4. Thermal Modelling and Testing
β€’ Assume:
⎻ Only has a Solar radiation
⎻ No internal energy dissipation
Space Radiators
𝑄𝑄𝑖𝑖𝑖𝑖 =
π‘„π‘„π‘œπ‘œπ‘œπ‘œπ‘œπ‘œ=
𝐽𝐽𝑠𝑠 𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑠𝑠 𝛼𝛼𝑠𝑠
πœ€πœ€ 𝜎𝜎 𝑇𝑇4
𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
∴ π‘„π‘„π‘Šπ‘Š= πœ€πœ€ 𝜎𝜎 𝑇𝑇4 𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 βˆ’ 𝐽𝐽𝑠𝑠 𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑠𝑠 𝛼𝛼𝑠𝑠
+ π‘„π‘„π‘Šπ‘Š
𝐽𝐽𝑠𝑠 𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑠𝑠 𝛼𝛼𝑠𝑠 + π‘„π‘„π‘Šπ‘Š βˆ’ πœ€πœ€ 𝜎𝜎 𝑇𝑇4
𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 0
4. Thermal Modelling and Testing
Solar Array/Plat Plate Min/Max Temperatures
Earth
sun πœ™πœ™
β„Ž
πœƒπœƒ
Solar array/plat plate, A
𝑄𝑄𝑖𝑖𝑖𝑖 =
π‘„π‘„π‘œπ‘œπ‘œπ‘œπ‘œπ‘œ=
𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑄𝑄𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐼𝐼𝐼𝐼 + π‘„π‘„π‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Ž
𝑄𝑄𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 + 𝑄𝑄𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
β€’ Assume:
⎻ No internal energy dissipation
⎻ Solar Array / plat plat is VERY thin
⎻ Different materials on front and back
4. Thermal Modelling and Testing
Solar Array/Plat Plate Min/Max Temperatures
Earth
sun
β„Ž
πœƒπœƒ
Solar array/plat plate, A
𝑄𝑄𝑖𝑖𝑖𝑖 = 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑄𝑄𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐼𝐼𝐼𝐼 + π‘„π‘„π‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Ž
𝐽𝐽𝑠𝑠 𝛼𝛼𝑠𝑠,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐴𝐴 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝐽𝐽𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐴𝐴
𝑅𝑅𝐸𝐸
𝑅𝑅𝐸𝐸 + β„Ž
2
πœ€πœ€πΌπΌπΌπΌ, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
πœ™πœ™
𝐽𝐽𝑠𝑠 πœŒπœŒπ‘Žπ‘Ž 𝐴𝐴
𝑅𝑅𝐸𝐸
𝑅𝑅𝐸𝐸 + β„Ž
2
cos πœ™πœ™ 𝛼𝛼𝑠𝑠, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
= 𝐽𝐽𝑠𝑠 πœŒπœŒπ‘Žπ‘Ž 𝐴𝐴 sin2 𝜌𝜌 cos πœ™πœ™ 𝛼𝛼𝑠𝑠, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
4. Thermal Modelling and Testing
Solar Array/Plat Plate Min/Max Temperatures
Earth
sun
𝜌𝜌
β„Ž
πœƒπœƒ
Solar array/plat plate, A
π‘„π‘„π‘œπ‘œπ‘œπ‘œπ‘œπ‘œ = emitted energy
= 𝜎𝜎 πœ€πœ€π‘π‘π‘π‘π‘π‘π‘π‘ 𝐴𝐴 𝑇𝑇4 + 𝜎𝜎 πœ€πœ€π‘“π‘“π‘“π‘“π‘“π‘“π‘“π‘“π‘“π‘“ 𝐴𝐴 𝑇𝑇4
πœ™πœ™
𝑄𝑄𝑖𝑖𝑖𝑖 βˆ’ π‘„π‘„π‘œπ‘œπ‘œπ‘œπ‘œπ‘œ = 0
βˆ’π‘„π‘„π‘π‘π‘π‘π‘π‘π‘π‘π‘π‘ 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
𝐽𝐽𝑠𝑠𝐴𝐴 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 πœ‚πœ‚
4. Thermal Modelling and Testing
Solar Array/Plat Plate Min/Max Temperatures
Earth
sun
𝜌𝜌
β„Ž
πœƒπœƒ
Solar array/plat plate, A
π‘‡π‘‡π‘šπ‘šπ‘šπ‘šπ‘šπ‘š =
𝐽𝐽𝑠𝑠 𝛼𝛼𝑠𝑠,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 + 𝐽𝐽𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 sin2 𝜌𝜌 πœ€πœ€πΌπΌπΌπΌ,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝐽𝐽𝑠𝑠 πœŒπœŒπ‘Žπ‘Ž sin2 𝜌𝜌 𝛼𝛼𝑠𝑠, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 βˆ’ π½π½π‘ π‘ πœ‚πœ‚
𝜎𝜎 πœ€πœ€π‘“π‘“π‘“π‘“π‘“π‘“π‘“π‘“π‘“π‘“ + πœ€πœ€π‘π‘π‘π‘π‘π‘π‘π‘
1
4
πœ™πœ™
π‘‡π‘‡π‘šπ‘šπ‘šπ‘šπ‘šπ‘š =
𝐽𝐽𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 sin2 𝜌𝜌 πœ€πœ€πΌπΌπΌπΌ,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝜎𝜎 πœ€πœ€π‘“π‘“π‘“π‘“π‘“π‘“π‘“π‘“π‘“π‘“ + πœ€πœ€π‘π‘π‘π‘π‘π‘π‘π‘
1
4
4. Thermal Modelling and Testing
Spherical Satellite Max/Min Temperatures
Earth
sun
𝜌𝜌
β„Ž
Satellite
π‘‡π‘‡π‘šπ‘šπ‘šπ‘šπ‘šπ‘š =
𝐴𝐴𝑐𝑐 𝐽𝐽𝑠𝑠 𝛼𝛼𝑠𝑠 + 𝐴𝐴 𝐽𝐽𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐹𝐹 πœ€πœ€ + 𝐴𝐴 𝐽𝐽𝑠𝑠 πœŒπœŒπ‘Žπ‘Ž 𝐹𝐹 𝛼𝛼𝑠𝑠 + 𝑄𝑄𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝐴𝐴 𝜎𝜎 πœ€πœ€
1
4
πœ™πœ™
π‘‡π‘‡π‘šπ‘šπ‘šπ‘šπ‘šπ‘š =
𝐴𝐴 𝐽𝐽𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐹𝐹 πœ€πœ€ + 𝑄𝑄𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝐴𝐴 𝜎𝜎 πœ€πœ€
1
4

More Related Content

Similar to 2 Thermal Control.pdf

Radial Heat conduction.docx
Radial Heat conduction.docxRadial Heat conduction.docx
Radial Heat conduction.docxEngDiyar
Β 
Linear heat conduction
Linear heat conductionLinear heat conduction
Linear heat conductionAree Salah
Β 
HT I&II - Copy-1.pdf all chapters are covered
HT I&II - Copy-1.pdf all chapters are coveredHT I&II - Copy-1.pdf all chapters are covered
HT I&II - Copy-1.pdf all chapters are coveredamitbhalerao23
Β 
httpscatatanabimanyu.files.wordpress.com201109heat-transfer-cengel-solution-m...
httpscatatanabimanyu.files.wordpress.com201109heat-transfer-cengel-solution-m...httpscatatanabimanyu.files.wordpress.com201109heat-transfer-cengel-solution-m...
httpscatatanabimanyu.files.wordpress.com201109heat-transfer-cengel-solution-m...AbdlaDoski
Β 
Exergy analysis of magnetic refrigeration
Exergy analysis of magnetic refrigerationExergy analysis of magnetic refrigeration
Exergy analysis of magnetic refrigerationManoj maurya
Β 
Astec Engineer Guide
Astec Engineer GuideAstec Engineer Guide
Astec Engineer GuideTony Loup
Β 
Laws of Thermodynamics (1).ppt
Laws of Thermodynamics (1).pptLaws of Thermodynamics (1).ppt
Laws of Thermodynamics (1).pptTalhaRhman
Β 
Laws of Thermodynamics (1).ppt
Laws of Thermodynamics (1).pptLaws of Thermodynamics (1).ppt
Laws of Thermodynamics (1).pptAltabPatel1
Β 
LET THE FIRE BLOW
LET THE FIRE BLOW LET THE FIRE BLOW
LET THE FIRE BLOW HENRY BASTIAN.C
Β 
HEAT TRANSFER unit1_complete
HEAT TRANSFER unit1_completeHEAT TRANSFER unit1_complete
HEAT TRANSFER unit1_completeBhushan Dusane
Β 
heat transfer operation
heat transfer operationheat transfer operation
heat transfer operationRanaahsan31
Β 
One dim, steady-state, heat conduction_with_heat_generation
One dim, steady-state, heat conduction_with_heat_generationOne dim, steady-state, heat conduction_with_heat_generation
One dim, steady-state, heat conduction_with_heat_generationtmuliya
Β 
Heat transfer(HT) lab manual
Heat transfer(HT) lab manualHeat transfer(HT) lab manual
Heat transfer(HT) lab manualnmahi96
Β 
Experimental Investigation of Heat Transfer by Electrically Heated Rectangula...
Experimental Investigation of Heat Transfer by Electrically Heated Rectangula...Experimental Investigation of Heat Transfer by Electrically Heated Rectangula...
Experimental Investigation of Heat Transfer by Electrically Heated Rectangula...IRJET Journal
Β 
Thermal and Electrical conductivity of metals
Thermal and Electrical conductivity of metalsThermal and Electrical conductivity of metals
Thermal and Electrical conductivity of metalsSangram Kadam
Β 
PC-ME 501.pdf
 PC-ME 501.pdf PC-ME 501.pdf
PC-ME 501.pdfKushalBaral4
Β 

Similar to 2 Thermal Control.pdf (20)

Radial Heat conduction.docx
Radial Heat conduction.docxRadial Heat conduction.docx
Radial Heat conduction.docx
Β 
Linear heat conduction
Linear heat conductionLinear heat conduction
Linear heat conduction
Β 
HT I&II - Copy-1.pdf all chapters are covered
HT I&II - Copy-1.pdf all chapters are coveredHT I&II - Copy-1.pdf all chapters are covered
HT I&II - Copy-1.pdf all chapters are covered
Β 
httpscatatanabimanyu.files.wordpress.com201109heat-transfer-cengel-solution-m...
httpscatatanabimanyu.files.wordpress.com201109heat-transfer-cengel-solution-m...httpscatatanabimanyu.files.wordpress.com201109heat-transfer-cengel-solution-m...
httpscatatanabimanyu.files.wordpress.com201109heat-transfer-cengel-solution-m...
Β 
Experimental and Theoretical Study of Heat Transfer by Natural Convection of ...
Experimental and Theoretical Study of Heat Transfer by Natural Convection of ...Experimental and Theoretical Study of Heat Transfer by Natural Convection of ...
Experimental and Theoretical Study of Heat Transfer by Natural Convection of ...
Β 
Exergy analysis of magnetic refrigeration
Exergy analysis of magnetic refrigerationExergy analysis of magnetic refrigeration
Exergy analysis of magnetic refrigeration
Β 
Astec Engineer Guide
Astec Engineer GuideAstec Engineer Guide
Astec Engineer Guide
Β 
Laws of Thermodynamics (1).ppt
Laws of Thermodynamics (1).pptLaws of Thermodynamics (1).ppt
Laws of Thermodynamics (1).ppt
Β 
LOT.ppt
LOT.pptLOT.ppt
LOT.ppt
Β 
Laws of Thermodynamics (1).ppt
Laws of Thermodynamics (1).pptLaws of Thermodynamics (1).ppt
Laws of Thermodynamics (1).ppt
Β 
LET THE FIRE BLOW
LET THE FIRE BLOW LET THE FIRE BLOW
LET THE FIRE BLOW
Β 
HEAT TRANSFER unit1_complete
HEAT TRANSFER unit1_completeHEAT TRANSFER unit1_complete
HEAT TRANSFER unit1_complete
Β 
heat transfer operation
heat transfer operationheat transfer operation
heat transfer operation
Β 
One dim, steady-state, heat conduction_with_heat_generation
One dim, steady-state, heat conduction_with_heat_generationOne dim, steady-state, heat conduction_with_heat_generation
One dim, steady-state, heat conduction_with_heat_generation
Β 
Heat transfer(HT) lab manual
Heat transfer(HT) lab manualHeat transfer(HT) lab manual
Heat transfer(HT) lab manual
Β 
Experimental Investigation of Heat Transfer by Electrically Heated Rectangula...
Experimental Investigation of Heat Transfer by Electrically Heated Rectangula...Experimental Investigation of Heat Transfer by Electrically Heated Rectangula...
Experimental Investigation of Heat Transfer by Electrically Heated Rectangula...
Β 
thermodynamics-mcqs.pdf
thermodynamics-mcqs.pdfthermodynamics-mcqs.pdf
thermodynamics-mcqs.pdf
Β 
Heat_All.pdf
Heat_All.pdfHeat_All.pdf
Heat_All.pdf
Β 
Thermal and Electrical conductivity of metals
Thermal and Electrical conductivity of metalsThermal and Electrical conductivity of metals
Thermal and Electrical conductivity of metals
Β 
PC-ME 501.pdf
 PC-ME 501.pdf PC-ME 501.pdf
PC-ME 501.pdf
Β 

More from a a

12 Perterbations.pdf
12 Perterbations.pdf12 Perterbations.pdf
12 Perterbations.pdfa a
Β 
4 3d orbits.pdf
4 3d orbits.pdf4 3d orbits.pdf
4 3d orbits.pdfa a
Β 
9 rigid body dynamics.pdf
9 rigid body dynamics.pdf9 rigid body dynamics.pdf
9 rigid body dynamics.pdfa a
Β 
10 Sat attitude.pdf
10 Sat attitude.pdf10 Sat attitude.pdf
10 Sat attitude.pdfa a
Β 
8 Interplanetary traj.pdf
8 Interplanetary traj.pdf8 Interplanetary traj.pdf
8 Interplanetary traj.pdfa a
Β 
6 maneuvres.pdf
6 maneuvres.pdf6 maneuvres.pdf
6 maneuvres.pdfa a
Β 
7 relative motion.pdf
7 relative motion.pdf7 relative motion.pdf
7 relative motion.pdfa a
Β 
3 position by time.pdf
3 position by time.pdf3 position by time.pdf
3 position by time.pdfa a
Β 
5 prelim determination.pdf
5 prelim determination.pdf5 prelim determination.pdf
5 prelim determination.pdfa a
Β 
11 rocket dyanmics.pdf
11 rocket dyanmics.pdf11 rocket dyanmics.pdf
11 rocket dyanmics.pdfa a
Β 
3 EDL.pdf
3 EDL.pdf3 EDL.pdf
3 EDL.pdfa a
Β 
1 Power Sys.pdf
1 Power Sys.pdf1 Power Sys.pdf
1 Power Sys.pdfa a
Β 
59.pdf
59.pdf59.pdf
59.pdfa a
Β 
48.pdf
48.pdf48.pdf
48.pdfa a
Β 
50.pdf
50.pdf50.pdf
50.pdfa a
Β 
52.pdf
52.pdf52.pdf
52.pdfa a
Β 
56.pdf
56.pdf56.pdf
56.pdfa a
Β 
57.pdf
57.pdf57.pdf
57.pdfa a
Β 
55.pdf
55.pdf55.pdf
55.pdfa a
Β 
54.pdf
54.pdf54.pdf
54.pdfa a
Β 

More from a a (20)

12 Perterbations.pdf
12 Perterbations.pdf12 Perterbations.pdf
12 Perterbations.pdf
Β 
4 3d orbits.pdf
4 3d orbits.pdf4 3d orbits.pdf
4 3d orbits.pdf
Β 
9 rigid body dynamics.pdf
9 rigid body dynamics.pdf9 rigid body dynamics.pdf
9 rigid body dynamics.pdf
Β 
10 Sat attitude.pdf
10 Sat attitude.pdf10 Sat attitude.pdf
10 Sat attitude.pdf
Β 
8 Interplanetary traj.pdf
8 Interplanetary traj.pdf8 Interplanetary traj.pdf
8 Interplanetary traj.pdf
Β 
6 maneuvres.pdf
6 maneuvres.pdf6 maneuvres.pdf
6 maneuvres.pdf
Β 
7 relative motion.pdf
7 relative motion.pdf7 relative motion.pdf
7 relative motion.pdf
Β 
3 position by time.pdf
3 position by time.pdf3 position by time.pdf
3 position by time.pdf
Β 
5 prelim determination.pdf
5 prelim determination.pdf5 prelim determination.pdf
5 prelim determination.pdf
Β 
11 rocket dyanmics.pdf
11 rocket dyanmics.pdf11 rocket dyanmics.pdf
11 rocket dyanmics.pdf
Β 
3 EDL.pdf
3 EDL.pdf3 EDL.pdf
3 EDL.pdf
Β 
1 Power Sys.pdf
1 Power Sys.pdf1 Power Sys.pdf
1 Power Sys.pdf
Β 
59.pdf
59.pdf59.pdf
59.pdf
Β 
48.pdf
48.pdf48.pdf
48.pdf
Β 
50.pdf
50.pdf50.pdf
50.pdf
Β 
52.pdf
52.pdf52.pdf
52.pdf
Β 
56.pdf
56.pdf56.pdf
56.pdf
Β 
57.pdf
57.pdf57.pdf
57.pdf
Β 
55.pdf
55.pdf55.pdf
55.pdf
Β 
54.pdf
54.pdf54.pdf
54.pdf
Β 

Recently uploaded

Akola Call Girls #9907093804 Contact Number Escorts Service Akola
Akola Call Girls #9907093804 Contact Number Escorts Service AkolaAkola Call Girls #9907093804 Contact Number Escorts Service Akola
Akola Call Girls #9907093804 Contact Number Escorts Service Akolasrsj9000
Β 
Laxmi Nagar Call Girls : ☎ 8527673949, Low rate Call Girls
Laxmi Nagar Call Girls : ☎ 8527673949, Low rate Call GirlsLaxmi Nagar Call Girls : ☎ 8527673949, Low rate Call Girls
Laxmi Nagar Call Girls : ☎ 8527673949, Low rate Call Girlsashishs7044
Β 
Jagat Puri Call Girls : ☎ 8527673949, Low rate Call Girls
Jagat Puri Call Girls : ☎ 8527673949, Low rate Call GirlsJagat Puri Call Girls : ☎ 8527673949, Low rate Call Girls
Jagat Puri Call Girls : ☎ 8527673949, Low rate Call Girlsashishs7044
Β 
Hazratganj ] (Call Girls) in Lucknow - 450+ Call Girl Cash Payment πŸ§„ 89231135...
Hazratganj ] (Call Girls) in Lucknow - 450+ Call Girl Cash Payment πŸ§„ 89231135...Hazratganj ] (Call Girls) in Lucknow - 450+ Call Girl Cash Payment πŸ§„ 89231135...
Hazratganj ] (Call Girls) in Lucknow - 450+ Call Girl Cash Payment πŸ§„ 89231135...akbard9823
Β 
FULL ENJOY - 9953040155 Call Girls in New Ashok Nagar | Delhi
FULL ENJOY - 9953040155 Call Girls in New Ashok Nagar | DelhiFULL ENJOY - 9953040155 Call Girls in New Ashok Nagar | Delhi
FULL ENJOY - 9953040155 Call Girls in New Ashok Nagar | DelhiMalviyaNagarCallGirl
Β 
9654467111 Full Enjoy @24/7 Call Girls In Saket Delhi Ncr
9654467111 Full Enjoy @24/7 Call Girls In Saket Delhi Ncr9654467111 Full Enjoy @24/7 Call Girls In Saket Delhi Ncr
9654467111 Full Enjoy @24/7 Call Girls In Saket Delhi NcrSapana Sha
Β 
FULL ENJOY - 9953040155 Call Girls in Paschim Vihar | Delhi
FULL ENJOY - 9953040155 Call Girls in Paschim Vihar | DelhiFULL ENJOY - 9953040155 Call Girls in Paschim Vihar | Delhi
FULL ENJOY - 9953040155 Call Girls in Paschim Vihar | DelhiMalviyaNagarCallGirl
Β 
Burari Call Girls : ☎ 8527673949, Low rate Call Girls
Burari Call Girls : ☎ 8527673949, Low rate Call GirlsBurari Call Girls : ☎ 8527673949, Low rate Call Girls
Burari Call Girls : ☎ 8527673949, Low rate Call Girlsashishs7044
Β 
Call Girl Service in Karachi +923081633338 Karachi Call Girls
Call Girl Service in Karachi +923081633338 Karachi Call GirlsCall Girl Service in Karachi +923081633338 Karachi Call Girls
Call Girl Service in Karachi +923081633338 Karachi Call GirlsAyesha Khan
Β 
Low Rate Call Girls in Laxmi Nagar Delhi Call 9990771857
Low Rate Call Girls in Laxmi Nagar Delhi Call 9990771857Low Rate Call Girls in Laxmi Nagar Delhi Call 9990771857
Low Rate Call Girls in Laxmi Nagar Delhi Call 9990771857delhimodel235
Β 
How Can You Get Dubai Call Girls +971564860409 Call Girls Dubai?
How Can You Get Dubai Call Girls +971564860409 Call Girls Dubai?How Can You Get Dubai Call Girls +971564860409 Call Girls Dubai?
How Can You Get Dubai Call Girls +971564860409 Call Girls Dubai?kexey39068
Β 
Roadrunner Lodge, Motel/Residence, Tucumcari NM
Roadrunner Lodge, Motel/Residence, Tucumcari NMRoadrunner Lodge, Motel/Residence, Tucumcari NM
Roadrunner Lodge, Motel/Residence, Tucumcari NMroute66connected
Β 
FULL ENJOY - 9953040155 Call Girls in Gandhi Vihar | Delhi
FULL ENJOY - 9953040155 Call Girls in Gandhi Vihar | DelhiFULL ENJOY - 9953040155 Call Girls in Gandhi Vihar | Delhi
FULL ENJOY - 9953040155 Call Girls in Gandhi Vihar | DelhiMalviyaNagarCallGirl
Β 
Patrakarpuram ) Cheap Call Girls In Lucknow (Adult Only) 🧈 8923113531 𓀓 Esco...
Patrakarpuram ) Cheap Call Girls In Lucknow  (Adult Only) 🧈 8923113531 𓀓 Esco...Patrakarpuram ) Cheap Call Girls In Lucknow  (Adult Only) 🧈 8923113531 𓀓 Esco...
Patrakarpuram ) Cheap Call Girls In Lucknow (Adult Only) 🧈 8923113531 𓀓 Esco...akbard9823
Β 
FULL ENJOY - 9953040155 Call Girls in Moti Nagar | Delhi
FULL ENJOY - 9953040155 Call Girls in Moti Nagar | DelhiFULL ENJOY - 9953040155 Call Girls in Moti Nagar | Delhi
FULL ENJOY - 9953040155 Call Girls in Moti Nagar | DelhiMalviyaNagarCallGirl
Β 
Faridabad Call Girls : ☎ 8527673949, Low rate Call Girls
Faridabad Call Girls : ☎ 8527673949, Low rate Call GirlsFaridabad Call Girls : ☎ 8527673949, Low rate Call Girls
Faridabad Call Girls : ☎ 8527673949, Low rate Call Girlsashishs7044
Β 
Govindpuri Call Girls : ☎ 8527673949, Low rate Call Girls
Govindpuri Call Girls : ☎ 8527673949, Low rate Call GirlsGovindpuri Call Girls : ☎ 8527673949, Low rate Call Girls
Govindpuri Call Girls : ☎ 8527673949, Low rate Call Girlsashishs7044
Β 
Russian⚑ Call Girls In Sector 104 Noida✨8375860717⚑Escorts Service
Russian⚑ Call Girls In Sector 104 Noida✨8375860717⚑Escorts ServiceRussian⚑ Call Girls In Sector 104 Noida✨8375860717⚑Escorts Service
Russian⚑ Call Girls In Sector 104 Noida✨8375860717⚑Escorts Servicedoor45step
Β 
Zagor VČ OP 055 - Oluja nad Haitijem.pdf
Zagor VČ OP 055 - Oluja nad Haitijem.pdfZagor VČ OP 055 - Oluja nad Haitijem.pdf
Zagor VČ OP 055 - Oluja nad Haitijem.pdfStripovizijacom
Β 

Recently uploaded (20)

Akola Call Girls #9907093804 Contact Number Escorts Service Akola
Akola Call Girls #9907093804 Contact Number Escorts Service AkolaAkola Call Girls #9907093804 Contact Number Escorts Service Akola
Akola Call Girls #9907093804 Contact Number Escorts Service Akola
Β 
Laxmi Nagar Call Girls : ☎ 8527673949, Low rate Call Girls
Laxmi Nagar Call Girls : ☎ 8527673949, Low rate Call GirlsLaxmi Nagar Call Girls : ☎ 8527673949, Low rate Call Girls
Laxmi Nagar Call Girls : ☎ 8527673949, Low rate Call Girls
Β 
Jagat Puri Call Girls : ☎ 8527673949, Low rate Call Girls
Jagat Puri Call Girls : ☎ 8527673949, Low rate Call GirlsJagat Puri Call Girls : ☎ 8527673949, Low rate Call Girls
Jagat Puri Call Girls : ☎ 8527673949, Low rate Call Girls
Β 
Hazratganj ] (Call Girls) in Lucknow - 450+ Call Girl Cash Payment πŸ§„ 89231135...
Hazratganj ] (Call Girls) in Lucknow - 450+ Call Girl Cash Payment πŸ§„ 89231135...Hazratganj ] (Call Girls) in Lucknow - 450+ Call Girl Cash Payment πŸ§„ 89231135...
Hazratganj ] (Call Girls) in Lucknow - 450+ Call Girl Cash Payment πŸ§„ 89231135...
Β 
FULL ENJOY - 9953040155 Call Girls in New Ashok Nagar | Delhi
FULL ENJOY - 9953040155 Call Girls in New Ashok Nagar | DelhiFULL ENJOY - 9953040155 Call Girls in New Ashok Nagar | Delhi
FULL ENJOY - 9953040155 Call Girls in New Ashok Nagar | Delhi
Β 
9654467111 Full Enjoy @24/7 Call Girls In Saket Delhi Ncr
9654467111 Full Enjoy @24/7 Call Girls In Saket Delhi Ncr9654467111 Full Enjoy @24/7 Call Girls In Saket Delhi Ncr
9654467111 Full Enjoy @24/7 Call Girls In Saket Delhi Ncr
Β 
FULL ENJOY - 9953040155 Call Girls in Paschim Vihar | Delhi
FULL ENJOY - 9953040155 Call Girls in Paschim Vihar | DelhiFULL ENJOY - 9953040155 Call Girls in Paschim Vihar | Delhi
FULL ENJOY - 9953040155 Call Girls in Paschim Vihar | Delhi
Β 
Burari Call Girls : ☎ 8527673949, Low rate Call Girls
Burari Call Girls : ☎ 8527673949, Low rate Call GirlsBurari Call Girls : ☎ 8527673949, Low rate Call Girls
Burari Call Girls : ☎ 8527673949, Low rate Call Girls
Β 
Call Girl Service in Karachi +923081633338 Karachi Call Girls
Call Girl Service in Karachi +923081633338 Karachi Call GirlsCall Girl Service in Karachi +923081633338 Karachi Call Girls
Call Girl Service in Karachi +923081633338 Karachi Call Girls
Β 
Low Rate Call Girls in Laxmi Nagar Delhi Call 9990771857
Low Rate Call Girls in Laxmi Nagar Delhi Call 9990771857Low Rate Call Girls in Laxmi Nagar Delhi Call 9990771857
Low Rate Call Girls in Laxmi Nagar Delhi Call 9990771857
Β 
How Can You Get Dubai Call Girls +971564860409 Call Girls Dubai?
How Can You Get Dubai Call Girls +971564860409 Call Girls Dubai?How Can You Get Dubai Call Girls +971564860409 Call Girls Dubai?
How Can You Get Dubai Call Girls +971564860409 Call Girls Dubai?
Β 
Roadrunner Lodge, Motel/Residence, Tucumcari NM
Roadrunner Lodge, Motel/Residence, Tucumcari NMRoadrunner Lodge, Motel/Residence, Tucumcari NM
Roadrunner Lodge, Motel/Residence, Tucumcari NM
Β 
Dxb Call Girls # +971529501107 # Call Girls In Dxb Dubai || (UAE)
Dxb Call Girls # +971529501107 # Call Girls In Dxb Dubai || (UAE)Dxb Call Girls # +971529501107 # Call Girls In Dxb Dubai || (UAE)
Dxb Call Girls # +971529501107 # Call Girls In Dxb Dubai || (UAE)
Β 
FULL ENJOY - 9953040155 Call Girls in Gandhi Vihar | Delhi
FULL ENJOY - 9953040155 Call Girls in Gandhi Vihar | DelhiFULL ENJOY - 9953040155 Call Girls in Gandhi Vihar | Delhi
FULL ENJOY - 9953040155 Call Girls in Gandhi Vihar | Delhi
Β 
Patrakarpuram ) Cheap Call Girls In Lucknow (Adult Only) 🧈 8923113531 𓀓 Esco...
Patrakarpuram ) Cheap Call Girls In Lucknow  (Adult Only) 🧈 8923113531 𓀓 Esco...Patrakarpuram ) Cheap Call Girls In Lucknow  (Adult Only) 🧈 8923113531 𓀓 Esco...
Patrakarpuram ) Cheap Call Girls In Lucknow (Adult Only) 🧈 8923113531 𓀓 Esco...
Β 
FULL ENJOY - 9953040155 Call Girls in Moti Nagar | Delhi
FULL ENJOY - 9953040155 Call Girls in Moti Nagar | DelhiFULL ENJOY - 9953040155 Call Girls in Moti Nagar | Delhi
FULL ENJOY - 9953040155 Call Girls in Moti Nagar | Delhi
Β 
Faridabad Call Girls : ☎ 8527673949, Low rate Call Girls
Faridabad Call Girls : ☎ 8527673949, Low rate Call GirlsFaridabad Call Girls : ☎ 8527673949, Low rate Call Girls
Faridabad Call Girls : ☎ 8527673949, Low rate Call Girls
Β 
Govindpuri Call Girls : ☎ 8527673949, Low rate Call Girls
Govindpuri Call Girls : ☎ 8527673949, Low rate Call GirlsGovindpuri Call Girls : ☎ 8527673949, Low rate Call Girls
Govindpuri Call Girls : ☎ 8527673949, Low rate Call Girls
Β 
Russian⚑ Call Girls In Sector 104 Noida✨8375860717⚑Escorts Service
Russian⚑ Call Girls In Sector 104 Noida✨8375860717⚑Escorts ServiceRussian⚑ Call Girls In Sector 104 Noida✨8375860717⚑Escorts Service
Russian⚑ Call Girls In Sector 104 Noida✨8375860717⚑Escorts Service
Β 
Zagor VČ OP 055 - Oluja nad Haitijem.pdf
Zagor VČ OP 055 - Oluja nad Haitijem.pdfZagor VČ OP 055 - Oluja nad Haitijem.pdf
Zagor VČ OP 055 - Oluja nad Haitijem.pdf
Β 

2 Thermal Control.pdf

  • 1. Chapter 2. Thermal Control System Dr Minkwan Kim Semester 1
  • 2. Outline and Contents 1. Overview of the Thermal Control System 2. Thermal Design Passive Active 3. Thermal Modelling and Testing [Online Quiz] by 1/Nov (Monday)
  • 3. Learning outcomes on Ch2 β€’ Able to answer the following questions ⎻ What are the differences between active and passive systems? ⎻ What are the physical parameters affecting the temperature of S/C? ⎻ How does the orbit of a spacecraft affect on the Thermal control system design? ⎻ What are the external sources of heat? β€’ Able to estimate the temperature of S/C. β€’ Able to select materials which can maintain the temperature of S/C in acceptable level. β€’ Able to determine the required power of heater/cooler
  • 4. 1. Introduction of Thermal Control System β€’ Functions ⎻ Monitors temperatures of key components. ⎻ Maintains the temperature of these components within acceptable limits ⎻ Control the temperature of ALL individual components throughout the Entire mission. β€’ Design Considerations: ⎻ Controlling the average spacecraft temperature requires a balance of heat absorbed, generated and radiated ⎻ Once the average temperature is controlled effectively, the temperature if individual components within the spacecraft can be controlled via a wide variety of measures ⎻ Control system can be active, passive or a combination of the two
  • 5. 1. Introduction of Thermal Control System β€’ Typical spacecraft component temperature limits Component / Subsystem Operating temperature (℃) Survival temperature (℃) General electronics -10 ~ 45 -30 ~ 60 Batteries 0 ~ 10 -5 to 20 Motors 0 ~ 50 -20 ~ 70 Solar panels -100 ~ 125 -100 ~ 125
  • 6. 2. Thermal Analysis β€’ All thermal analysis begins with the first law of thermodynamics Q = heat added to the system W = rate of work production by the system dU/dt = change in the internal energy U of the system = Thermal Analysis 𝑄𝑄 βˆ’ π‘Šπ‘Š = 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 𝐴𝐴 𝑑𝑑𝑑𝑑 𝜌𝜌 𝐢𝐢𝑝𝑝 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 For a uniform solid with cross-section area A and length dx
  • 7. 2. Thermal Analysis β€’ Assume: ⎻ spacecraft is in thermal equilibrium, and balance the heat emitted with heat absorbed Spacecraft Thermal Balance Qin Qout Qnet = Qin - Qout
  • 8. 2. Thermal Analysis Conductive Heat Transfer: ⎻ heat moves through a solid ⎻ microscopic diffusion and collision of particles ⎻ Fourier’s law: Conduction where = heat flux, W/m2 = material conductivity 𝑄𝑄π‘₯π‘₯ = βˆ’πœ…πœ…πœ…πœ… 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑
  • 9. 2. Thermal Analysis Convection Convective Heat Transfer: ⎻ heat transfer by the movement of fluids ⎻ dominant form of heat transfer in liquids and gases ⎻ Newton’s cooling law: (set of differential equation given by Fourier’s law) where = convection coefficient = surface temperature 𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = β„Ž 𝑇𝑇𝑀𝑀 βˆ’ 𝑇𝑇𝑓𝑓𝑓𝑓 β‹… 𝐴𝐴
  • 10. 2. Thermal Analysis Radiation Radiative Heat Transfer: ⎻ heat transfer vehicle in space and its external environment ⎻ transport of energy by electromagnetic waves emitted by all bodies ⎻ Stefan-Boltzmann law: where = emissivity = Stefan-Boltzmann constant π‘žπ‘žπ‘π‘ = πœŽπœŽπ‘‡π‘‡4
  • 11. 2. Thermal Analysis β€’ Black body radiation ⎻ All bodies emit radiation due to their temperature. A black body is an ideal emitter. A black body at temperature T emits radiation with power per unit area of its surface given by the Stefan- Boltzmann Law: ⎻ Absorptance (Ξ±) β€’ The ratio of radiant energy absorbed by a body to that incident on it ⎻ Emittance (Ξ΅) β€’ The ratio of energy emitted by a body to that emitted by a black body at the same temperature. Radiation π‘žπ‘ž = 𝜎𝜎 𝑇𝑇4 W m2 where 𝜎𝜎 = 5.67 Γ— 10βˆ’8 π‘Šπ‘Š π‘šπ‘š2 β‹… 𝐾𝐾4
  • 12. 2. Thermal Analysis Radiation properties 𝛼𝛼 + π‘…π‘…πœŒπœŒ + 𝜏𝜏 = 1 Incident radiation Reflection, R𝜌𝜌 Transmission, 𝜏𝜏 Absorption, 𝛼𝛼
  • 13. β€’ Amount of heat radiating from a real surface is β€’ For bodies in thermal equilibrium at the same temperature, 2. Thermal Analysis Radiation properties π‘„π‘„π‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Ž = πœ€πœ€ 𝑄𝑄𝑏𝑏 Energy being absorbed = Energy emitted
  • 14. 2. Thermal Analysis β€’ Spacecraft thermal emission Spacecraft Heat Emission 𝑄𝑄𝑠𝑠𝑠𝑠 = πœ€πœ€ β‹… 𝜎𝜎T4 β‹… 𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 [W] NOTE: Internal dissipation, Qdis 𝑄𝑄𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑃𝑃 [W]
  • 15. 2. Thermal Analysis i. Solar Radiation ii. Planetary Radiation iii. Albedo A. Solar Radiation ⎻ Intensity Js of solar radiation at distance D: External Heat Sources Sun 𝐽𝐽𝑠𝑠 = 𝑃𝑃 4πœ‹πœ‹π·π·2 W m2 where 𝑃𝑃 = 3.8 Γ— 1026 π‘Šπ‘Š 𝑄𝑄𝑠𝑠 = 𝐽𝐽𝑠𝑠 β‹… π΄π΄π‘π‘π‘π‘π‘π‘π‘π‘βˆ’π‘†π‘†π‘†π‘†π‘†π‘† β‹… 𝛼𝛼𝑠𝑠 W
  • 16. 2. Thermal Analysis B. Planetary Radiation ⎻ All planets have temperatures above 0K so they emit radiation External Heat Sources 𝑄𝑄𝑝𝑝 = 𝐽𝐽𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 β‹… π΄π΄π‘π‘π‘π‘π‘π‘π‘π‘βˆ’π‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒ β‹… πΉπΉπ‘ π‘ βˆ’π‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒ β‹… πœ€πœ€πΌπΌπΌπΌ W S/C
  • 17. 2. Thermal Analysis C. Albedo ⎻ Albedo is the solar radiation that is reflected from a planet, which is generally much more significant than planetary radiation External Heat Sources v S/C Js πœ™πœ™ π‘„π‘„π‘Žπ‘Ž = πœŒπœŒπ‘Žπ‘Ž β‹… 𝐽𝐽𝑠𝑠 β‹… π΄π΄π‘π‘π‘π‘π‘π‘π‘π‘βˆ’π‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒ β‹… πΉπΉπ‘ π‘ βˆ’π‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒ β‹… cos πœ™πœ™ β‹… 𝛼𝛼𝑠𝑠 W
  • 18. 2. Thermal Analysis C. Albedo External Heat Sources S/C πœ™πœ™2 πœ™πœ™1
  • 19. 2. Thermal Analysis C. Albedo External Heat Sources π‘„π‘„π‘Žπ‘Ž = πœŒπœŒπ‘Žπ‘Ž β‹… 𝐽𝐽𝑠𝑠 β‹… π΄π΄π‘π‘π‘π‘π‘π‘π‘π‘βˆ’π‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒ β‹… πΉπΉπ‘ π‘ βˆ’π‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒ β‹… cos πœ™πœ™ β‹… 𝛼𝛼𝑠𝑠 W π‘„π‘„π‘Žπ‘Ž = πœŒπœŒπ‘Žπ‘Ž β‹… 𝐽𝐽𝑠𝑠 β‹… π΄π΄π‘π‘π‘π‘π‘π‘π‘π‘βˆ’π‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒ β‹… πΉπΉπ‘ π‘ βˆ’π‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒπ‘ƒ β‹… cos πœ™πœ™1 β‹… cos πœ™πœ™2 β‹… 𝛼𝛼𝑠𝑠 W
  • 20. 3. Thermal Design β€’ Principal trade-off in thermal control design Passive and Active Systems Passive: οƒΌNo power requirement οƒΌNo moving parts οƒΌSimple (reliable) οƒΌLow cost  Inflexible  Low heat transfer rates  Performance variability (e.g. Surface coatings) Active: οƒΌFlexible and adaptive οƒΌHigh heat transfer rate  Power required  Mechanisms / moving components (reliability)  Mass  High(er) cost (e.g. fluid loop systems)
  • 21. 3. Thermal Design β€’ Passive thermal control design has been proven on Earth-orbiting missions (with β€˜average’ power requirements). β€’ Active systems are required for: ⎻ high (variable) power dissipation missions (e.g. high power comms or military S/C). ⎻ S/C encountering extreme variations in thermal environment (e.g. interplanetary missions). ⎻ precise thermal control (e.g. crewed missions). β€’ Cost drives use of passive methods wherever possible. Passive and Active Systems
  • 22. 3. Thermal Design i. Surface Coating A. Passive Technique
  • 23. 3. Thermal Design i. Surface Coating ⎻ Temperature control by choice of surface coatings. ⎻ Use appropriate absorptance and emittance A. Passive Technique
  • 24. 3. Thermal Design i. Surface Coating ⎻ Recall thermal balance equation: Qin+ Qdis = Qout A. Passive Technique 𝑄𝑄𝑖𝑖𝑖𝑖 = 𝑄𝑄𝑠𝑠 + π‘„π‘„π‘Žπ‘Ž + 𝑄𝑄𝑝𝑝 = T = 𝐽𝐽𝑠𝑠 𝜎𝜎 β‹… 𝛼𝛼 πœ€πœ€ β‹… 𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝐴𝐴𝑠𝑠/𝑐𝑐 1 4 + β‹― π‘„π‘„π‘œπ‘œπ‘œπ‘œπ‘œπ‘œ 𝑄𝑄𝑑𝑑𝑑𝑑𝑑𝑑 +
  • 25. 3. Thermal Design i. Surface Coating - There are four basic thermal material categories A. Passive Technique a. Solar absorber β€’ High 𝛼𝛼, low πœ€πœ€ β€’ Example: - gold: 𝛼𝛼 = 0.3 and πœ€πœ€ = 0.02 - Teq ~ + 380 β—¦C High 𝛼𝛼 πœ€πœ€ > 1
  • 26. 3. Thermal Design i. Surface Coating A. Passive Technique b. Solar reflector β€’ Low 𝛼𝛼, high πœ€πœ€ β€’ Example: - White paint: 𝛼𝛼 = 0.15 and πœ€πœ€ = 0.9 - Teq ~ +380 β—¦C Low 𝛼𝛼 πœ€πœ€ < 1
  • 27. 3. Thermal Design i. Surface Coating A. Passive Technique c. Flat absorber β€’ high 𝛼𝛼, high πœ€πœ€ β€’ Example: - black paint: 𝛼𝛼 = 0.9 and πœ€πœ€ = 0.9 - Teq ~ +60 β—¦C d. Flat reflector β€’ low 𝛼𝛼, low πœ€πœ€ β€’ Example: - Aluminium paint: 𝛼𝛼 = 0.3 and πœ€πœ€ = 0.3 - Teq ~ +60 β—¦C 𝛼𝛼 πœ€πœ€ β‰ˆ 1 𝛼𝛼 πœ€πœ€ β‰ˆ 1
  • 28. 3. Thermal Design i. Surface Coating Example: Evaluate the equilibrium temperature, Teq, of the given solar array for a 3-axis stabilised GEO satellite in equinox conditions (a) at local noon (b) at local midnight A. Passive Technique 𝑅𝑅𝐸𝐸 = 6378 π‘˜π‘˜π‘˜π‘˜ 𝑅𝑅𝐺𝐺𝐺𝐺𝐺𝐺 = 42164 π‘˜π‘˜π‘˜π‘˜ 𝐽𝐽𝑠𝑠 = 1400 π‘Šπ‘Š/π‘šπ‘š2 𝐽𝐽𝐸𝐸 = 240 π‘Šπ‘Š/π‘šπ‘š2 Albedo = 0.34 𝛼𝛼𝑠𝑠,𝐹𝐹 = ? πœ€πœ€πΉπΉ = 0.8 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 6 π‘šπ‘š2 𝛼𝛼𝑠𝑠,𝐡𝐡 = 0.7 πœ€πœ€π΅π΅ = 0.7 Solar cell efficiency = 0.14 Solar cell packing efficiency = 0.95 Average solar cell array absorptance = 0.8
  • 29. 3. Thermal Design ii. Bimetallic fins β€’ Fins provide: ⎻ an increase in spacecraft surface area ⎻ a change in effective 𝛼𝛼/πœ€πœ€ ratio β€’ Can be made an β€˜active’ device in combination with a heater. A. Passive Technique
  • 30. 3. Thermal Design iii. Multi-layer insulation (MLI) β€’ Used to reduce heat loss by thermal radiation ⎻ Kapton is often used for inner and outer layers of a mylar MLI blanket. ⎻ Number of layers: typically 20 to 25 per cm. A. Passive Technique
  • 31. 3. Thermal Design iii. Multi-layer insulation (MLI) β€’ Applications A. Passive Technique
  • 32. 3. Thermal Design iii. Multi-layer insulation (MLI) A. Passive Technique Effective venting of MLI blanket is necessary to prevent failure. Assumes: β€’ No contact of layers β€’ Vacuum between sheets β€’ No edge leakages Ξ΅ = Ξ΅i N + 1 where πœ€πœ€π‘–π‘– = original emittance N = number of layers
  • 33. 3. Thermal Design iv. Heat Pipes A. Passive Technique
  • 34. 3. Thermal Design iv. Heat Pipes ⎻ Heat pipes in space applications A. Passive Technique
  • 35. 3. Thermal Design v. Passive Radiators a. 3-Axis Stabilised: A. Passive Technique
  • 36. 3. Thermal Design v. Passive Radiators b. Dual-spin Stabilised: A. Passive Technique
  • 37. 3. Thermal Design v. Passive Radiators A. Passive Technique
  • 38. 3. Thermal Design i. Heater elements B. Active Technique β€’ Particularly for eclipse operation: ─ e.g. hydrazine tanks / pipes / valves, thrusters, payload, battery environment β€’ Kapton laminate with etched wiring element β€’ Controlled automatically (by thermostats) or by ground command.
  • 39. 3. Thermal Design ii. Louver systems B. Active Technique
  • 40. 3. Thermal Design iii. Thermoelectric System B. Active Technique
  • 41. 4. Thermal Modelling and Testing β€’ A Comprehensive Thermal Mathematical Model (CTMM) is constructed in early Phase C/D: - Model incorporates full S/C configuration details - Typically 400 to 600 nodes - Typically 10,000 to 15,000 thermal couplings A. Modelling
  • 42. 4. Thermal Modelling and Testing Thermal-vacuum testing B. Testing
  • 43. 4. Thermal Modelling and Testing β€’ Conservation of energy: β€’ For transparent materials with NO INTERNAL DISSIPATION Thermal Analysis 𝑄𝑄𝑖𝑖𝑖𝑖 βˆ’ π‘„π‘„π‘œπ‘œπ‘œπ‘œπ‘œπ‘œ + 𝑄𝑄𝑑𝑑𝑑𝑑𝑑𝑑 = πœ•πœ•πΈπΈπ‘–π‘–π‘–π‘–π‘–π‘– πœ•πœ•πœ•πœ• 𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = π‘„π‘„π‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Ž + π‘„π‘„π‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿπ‘Ÿ + 𝑄𝑄𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
  • 44. 4. Thermal Modelling and Testing β€’ Assume: ⎻ Only has a Solar radiation ⎻ No internal energy dissipation Steady State Temperature of Insulated Surfaces 𝑄𝑄𝑖𝑖𝑖𝑖 = π‘„π‘„π‘œπ‘œπ‘œπ‘œπ‘œπ‘œ= 𝐽𝐽𝑠𝑠 𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑠𝑠 𝛼𝛼𝑠𝑠 πœ€πœ€ 𝜎𝜎 𝑇𝑇4 𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∴ 𝑇𝑇= 𝐽𝐽𝑠𝑠 𝛼𝛼𝑠𝑠 πœ€πœ€ 𝜎𝜎 𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 1 4
  • 45. 4. Thermal Modelling and Testing β€’ Assume: ⎻ Only has a Solar radiation ⎻ No internal energy dissipation Space Radiators 𝑄𝑄𝑖𝑖𝑖𝑖 = π‘„π‘„π‘œπ‘œπ‘œπ‘œπ‘œπ‘œ= 𝐽𝐽𝑠𝑠 𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑠𝑠 𝛼𝛼𝑠𝑠 πœ€πœ€ 𝜎𝜎 𝑇𝑇4 𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∴ π‘„π‘„π‘Šπ‘Š= πœ€πœ€ 𝜎𝜎 𝑇𝑇4 𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 βˆ’ 𝐽𝐽𝑠𝑠 𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑠𝑠 𝛼𝛼𝑠𝑠 + π‘„π‘„π‘Šπ‘Š 𝐽𝐽𝑠𝑠 𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑠𝑠 𝛼𝛼𝑠𝑠 + π‘„π‘„π‘Šπ‘Š βˆ’ πœ€πœ€ 𝜎𝜎 𝑇𝑇4 𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 0
  • 46. 4. Thermal Modelling and Testing Solar Array/Plat Plate Min/Max Temperatures Earth sun πœ™πœ™ β„Ž πœƒπœƒ Solar array/plat plate, A 𝑄𝑄𝑖𝑖𝑖𝑖 = π‘„π‘„π‘œπ‘œπ‘œπ‘œπ‘œπ‘œ= 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑄𝑄𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐼𝐼𝐼𝐼 + π‘„π‘„π‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Ž 𝑄𝑄𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 + 𝑄𝑄𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 β€’ Assume: ⎻ No internal energy dissipation ⎻ Solar Array / plat plat is VERY thin ⎻ Different materials on front and back
  • 47. 4. Thermal Modelling and Testing Solar Array/Plat Plate Min/Max Temperatures Earth sun β„Ž πœƒπœƒ Solar array/plat plate, A 𝑄𝑄𝑖𝑖𝑖𝑖 = 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑄𝑄𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐼𝐼𝐼𝐼 + π‘„π‘„π‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Ž 𝐽𝐽𝑠𝑠 𝛼𝛼𝑠𝑠,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐴𝐴 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝐽𝐽𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐴𝐴 𝑅𝑅𝐸𝐸 𝑅𝑅𝐸𝐸 + β„Ž 2 πœ€πœ€πΌπΌπΌπΌ, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 πœ™πœ™ 𝐽𝐽𝑠𝑠 πœŒπœŒπ‘Žπ‘Ž 𝐴𝐴 𝑅𝑅𝐸𝐸 𝑅𝑅𝐸𝐸 + β„Ž 2 cos πœ™πœ™ 𝛼𝛼𝑠𝑠, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝐽𝐽𝑠𝑠 πœŒπœŒπ‘Žπ‘Ž 𝐴𝐴 sin2 𝜌𝜌 cos πœ™πœ™ 𝛼𝛼𝑠𝑠, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
  • 48. 4. Thermal Modelling and Testing Solar Array/Plat Plate Min/Max Temperatures Earth sun 𝜌𝜌 β„Ž πœƒπœƒ Solar array/plat plate, A π‘„π‘„π‘œπ‘œπ‘œπ‘œπ‘œπ‘œ = emitted energy = 𝜎𝜎 πœ€πœ€π‘π‘π‘π‘π‘π‘π‘π‘ 𝐴𝐴 𝑇𝑇4 + 𝜎𝜎 πœ€πœ€π‘“π‘“π‘“π‘“π‘“π‘“π‘“π‘“π‘“π‘“ 𝐴𝐴 𝑇𝑇4 πœ™πœ™ 𝑄𝑄𝑖𝑖𝑖𝑖 βˆ’ π‘„π‘„π‘œπ‘œπ‘œπ‘œπ‘œπ‘œ = 0 βˆ’π‘„π‘„π‘π‘π‘π‘π‘π‘π‘π‘π‘π‘ 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝐽𝐽𝑠𝑠𝐴𝐴 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 πœ‚πœ‚
  • 49. 4. Thermal Modelling and Testing Solar Array/Plat Plate Min/Max Temperatures Earth sun 𝜌𝜌 β„Ž πœƒπœƒ Solar array/plat plate, A π‘‡π‘‡π‘šπ‘šπ‘šπ‘šπ‘šπ‘š = 𝐽𝐽𝑠𝑠 𝛼𝛼𝑠𝑠,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 + 𝐽𝐽𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 sin2 𝜌𝜌 πœ€πœ€πΌπΌπΌπΌ,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝐽𝐽𝑠𝑠 πœŒπœŒπ‘Žπ‘Ž sin2 𝜌𝜌 𝛼𝛼𝑠𝑠, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 βˆ’ π½π½π‘ π‘ πœ‚πœ‚ 𝜎𝜎 πœ€πœ€π‘“π‘“π‘“π‘“π‘“π‘“π‘“π‘“π‘“π‘“ + πœ€πœ€π‘π‘π‘π‘π‘π‘π‘π‘ 1 4 πœ™πœ™ π‘‡π‘‡π‘šπ‘šπ‘šπ‘šπ‘šπ‘š = 𝐽𝐽𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 sin2 𝜌𝜌 πœ€πœ€πΌπΌπΌπΌ,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝜎𝜎 πœ€πœ€π‘“π‘“π‘“π‘“π‘“π‘“π‘“π‘“π‘“π‘“ + πœ€πœ€π‘π‘π‘π‘π‘π‘π‘π‘ 1 4
  • 50. 4. Thermal Modelling and Testing Spherical Satellite Max/Min Temperatures Earth sun 𝜌𝜌 β„Ž Satellite π‘‡π‘‡π‘šπ‘šπ‘šπ‘šπ‘šπ‘š = 𝐴𝐴𝑐𝑐 𝐽𝐽𝑠𝑠 𝛼𝛼𝑠𝑠 + 𝐴𝐴 𝐽𝐽𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐹𝐹 πœ€πœ€ + 𝐴𝐴 𝐽𝐽𝑠𝑠 πœŒπœŒπ‘Žπ‘Ž 𝐹𝐹 𝛼𝛼𝑠𝑠 + 𝑄𝑄𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝐴𝐴 𝜎𝜎 πœ€πœ€ 1 4 πœ™πœ™ π‘‡π‘‡π‘šπ‘šπ‘šπ‘šπ‘šπ‘š = 𝐴𝐴 𝐽𝐽𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐹𝐹 πœ€πœ€ + 𝑄𝑄𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝐴𝐴 𝜎𝜎 πœ€πœ€ 1 4