SlideShare a Scribd company logo
1 of 10
Second Law of Thermodynamics (YAC Ch.5)
• Identifies the direction of a process. (e.g.: Heat can only spontaneously t
ransfer from a hot object to a cold object, not vice versa)
• Used to determine the “Quality” of energy. (e.g.: A high-temperature en
ergy source has a higher quality since it is easier to extract energy from it t
o deliver useable work.)
• Used to exclude the possibility of constructing 100% efficient heat engin
e and perpetual-motion machines. (violates the Kevin-Planck and the Cla
usius statements of the second law)
• Used to introduce concepts of reversible processes and irreversibilities.
• Determines the theoretical performance limits of engineering systems. (
e.g.: A Carnot engine is theoretically the most efficient heat engine; its per
formance can be used as a standard for other practical engines)
Second-law.ppt
Modified 10/9/02
Second Law (cont)
• A process can not happen unless it satisfies both the first and seco
nd laws of thermodynamics. The first law characterizes the balance
of energy which defines the “quantity” of energy. The second law d
efines the direction which the process can take place and its “quality
”.
• Define a “Heat Engine”: A device that converts heat into work wh
ile operating in a cycle.
Heat engine
QH
QL
TH
TL
Wnet
DQ-Wnet=DU (since DU=0 for a cycle)
Wnet=QH-QL
Thermal efficiency, hth is defined as
hth=Wnet/QH=(QH-QL)/QH
=1-(QL/QH)
Question: Can we produce an 100% hea
t engine, i.e. a heat engine where QL=0?
Steam Power Plant
• A steam power plant is a good example of a heat engine where the
working fluid, water, undergoes a thermodynamic cycle
Wnet= Wout - Win = Qin-Qout
Qinis the heat transferred from the high temp. reservoir,
and is generally referred to as QH
Qoutis the heat transferred to the low temp. reservoir, a
nd is generally referred to as QL
Thermal efficiency
hth = Wnet/QH= (QH-QL)/QH =1-(QL/QH)
Typical Efficiency of a large commercial steam power
plant  40%
Thermal Reservoir
A hypothetical body with a very large thermal capacity
(relative to the system beig examined) to/from which h
eat can be transferred without changing its temperature
. E.g. the ocean, atmosphere, large lakes.
Back
Kevin-Planck Statement
• The Kelvin-Planck Statement is another expression of the second law of thermod
ynamics. It states that:
It is impossible for any device that operates on a cycle to receive heat from
a single reservoir and produce net work.
• This statement is without proof, however it has not been violated yet.
• Consequently, it is impossible to built a heat engine that is 100%.
Heat engine
QH
TH
Wnet
• A heat engine has to reject some en
ergy into a lower temperature sink in
order to complete the cycle.
• TH>TL in order to operate the engin
e. Therefore, the higher the temperat
ure, TH, the higher the quality of the e
nergy source and more work is produ
ced.
Impossible because it violates the Kelvin-Planck Statement/Second Law
Heat Pumps and Refrigerators
• A “heat pump” is defined as a device that transfers heat from a low-temperature
source to a high-temperature one. E.g. a heat pump is used to extract energy from
outside cold outdoor air into the warm indoors.
• A refrigerator performs the same function; the difference between the two is in t
he type of heat transfer that needs to be optimized.
• The efficiencies of heat pumps and refrigerators are denoted by the Coefficient
of Performance (COP) where
Heat pump/
Refrigerator
QH
QL
TH
TL
Wnet
For a Heat Pump:
COPHP=QH/Wnet=QH/(QH-QL) = 1/(1-QL/QH)
For a Refrigerator:
COPR=QL/Wnet=QL/(QH-QL) = 1/(QH/QL-1)
Note: COPHP = COPR + 1
• COPHP>1, ex: a typical heat pump has a COP i
n the order of 3
• Question: Can one build a heat pump operatin
g COP= , that is Wnet= 0 and QH=Q?
Clausius Statement
• The Clausius Statement is another expression of the second law of thermodynamics. I
t states that:
It is impossible to construct a device that operates in a cycle and produces no
effect other than the transfer of heat from a lower-temperature body to a higher-temp
erature body.
• Similar to the K-P Statement, it is a negative statement and has no proof, it is based o
n experimental observations and has yet to be violated.
• Heat can not be transferred from low temperature to higher temperature unless externa
l work is supplied.
Heat pump
QH
QL
TH
TL
Therefore, it is impossible to build a h
eat pump or a refrigerator without exter
nal work input.
Equivalence of the Two Statements
It can be shown that the violation of one statement leads to a violation
of the other statement, i.e. they are equivalent.
A 100% efficient heat engine; violates K-P Statement
Heat pump
QL
QL
TH
TL
Heat transfer from low-temp body to
high-temp body without work; A vi
olation of the Clausius statement
Heat pump
QH+QL
QL
TH
TL
Wnet
=QH
Heat engine
QH
Perpetual-Motion Machines (YAC: 5-5)
Imagine that we can extract energy from unlimited low-temperature energy sources
such as the ocean or the atmosphere (both can be thought of as thermal reservoirs).
Heat
engine
Heat
pump
QL
QH
QH
Win = QH-QL
Wnet=QL
TH
Ocean TL
It is against the Kevin-Planck st
atement: it is impossible to build
an 100% heat engine.
Perpetual Motion Machines, PMM, are classified into two types:
PMM1- Perpetual Motion Machines of the First Kind: They violate the First Law
of Thermodynamics
PMM2 - Perpetual Motion Machines of the Second Kind : Violate the Second La
w of Thermodynamics
Reversible Processes and Irreversibilities (YAC: 5-6)
• A reversible process is one that can be executed in the reverse direction
with no net change in the system or the surroundings.
• At the end of a forwards and backwards reversible process, both system
and the surroundings are returned to their initial states.
• No real processes are reversible.
• However, reversible processes are theoretically the most efficient proce
sses.
• All real processes are irreversible due to irreversibilities. Hence, real pr
ocesses are less efficient than reversible processes.
Common Sources of Irreversibility:
• Friction
• Sudden Expansion and compression
• Heat Transfer between bodies with a finite temperature difference.
• A quasi-equilibrium process, e.g. very slow, frictionless expansion or c
ompression is a reversible process.
Reversible Processes and Irreversibilities (cont’d)
• A work-producing device which employs quasi-equlibrium or rev
ersible processes produces the maximum amount of work theoretic
ally possible.
•A work-consuming device which employs quasi-equilibrium or re
versible processes requires the minimum amount of work theoretic
ally possible.
• One of the most common idealized cycles that employs all reversi
ble processes is called the Carnot Cycle proposed in 1824 by Sadi
Carnot.

More Related Content

Similar to 1_Second-law Thermodynamics-Sonntag.pptx

L7 - SecondLawThermo 2023.pptx
L7 - SecondLawThermo 2023.pptxL7 - SecondLawThermo 2023.pptx
L7 - SecondLawThermo 2023.pptxKeith Vaugh
 
Second law of thermodynamics
Second law of thermodynamicsSecond law of thermodynamics
Second law of thermodynamicsJaimin Patel
 
Ch 6a 2nd law
Ch 6a  2nd lawCh 6a  2nd law
Ch 6a 2nd lawabfisho
 
Ch 6a 2nd law
Ch 6a  2nd lawCh 6a  2nd law
Ch 6a 2nd lawabfisho
 
Unit-II second law of thermodynamics.pptx
Unit-II second law of thermodynamics.pptxUnit-II second law of thermodynamics.pptx
Unit-II second law of thermodynamics.pptxsamygs1
 
basics of thermodynamics.pptx
basics of thermodynamics.pptxbasics of thermodynamics.pptx
basics of thermodynamics.pptxAnas332323
 
JJ207 Thermodynamics I Chapter 4
JJ207 Thermodynamics I Chapter 4JJ207 Thermodynamics I Chapter 4
JJ207 Thermodynamics I Chapter 4nhaikalhassan
 
The Second Law of Thermodynamics--Thermodynamics: An Engineering Approach
The Second Law of Thermodynamics--Thermodynamics: An Engineering ApproachThe Second Law of Thermodynamics--Thermodynamics: An Engineering Approach
The Second Law of Thermodynamics--Thermodynamics: An Engineering Approachxdarlord
 
chemistry lecture chemical thermodynamics
chemistry lecture chemical thermodynamicschemistry lecture chemical thermodynamics
chemistry lecture chemical thermodynamicsiqbalSIDDIQUEY
 
equivelence of statements.ppt
equivelence of statements.pptequivelence of statements.ppt
equivelence of statements.pptPankajChhabra31
 
Thermo I chapter five.pptx
Thermo I chapter five.pptxThermo I chapter five.pptx
Thermo I chapter five.pptxmihretu7
 

Similar to 1_Second-law Thermodynamics-Sonntag.pptx (20)

L7 - SecondLawThermo 2023.pptx
L7 - SecondLawThermo 2023.pptxL7 - SecondLawThermo 2023.pptx
L7 - SecondLawThermo 2023.pptx
 
Second law of thermodynamic
Second law of thermodynamic              Second law of thermodynamic
Second law of thermodynamic
 
Second law of thermodynamics
Second law of thermodynamicsSecond law of thermodynamics
Second law of thermodynamics
 
Ch 6a 2nd law
Ch 6a  2nd lawCh 6a  2nd law
Ch 6a 2nd law
 
Ch 6a 2nd law
Ch 6a  2nd lawCh 6a  2nd law
Ch 6a 2nd law
 
Unit-II second law of thermodynamics.pptx
Unit-II second law of thermodynamics.pptxUnit-II second law of thermodynamics.pptx
Unit-II second law of thermodynamics.pptx
 
basics of thermodynamics.pptx
basics of thermodynamics.pptxbasics of thermodynamics.pptx
basics of thermodynamics.pptx
 
heat engine
heat engineheat engine
heat engine
 
Thermodynamics
ThermodynamicsThermodynamics
Thermodynamics
 
JJ207 Thermodynamics I Chapter 4
JJ207 Thermodynamics I Chapter 4JJ207 Thermodynamics I Chapter 4
JJ207 Thermodynamics I Chapter 4
 
Second law of thermodynamics
Second law of thermodynamicsSecond law of thermodynamics
Second law of thermodynamics
 
chapter06_2 (1).ppt
chapter06_2 (1).pptchapter06_2 (1).ppt
chapter06_2 (1).ppt
 
The Second Law of Thermodynamics--Thermodynamics: An Engineering Approach
The Second Law of Thermodynamics--Thermodynamics: An Engineering ApproachThe Second Law of Thermodynamics--Thermodynamics: An Engineering Approach
The Second Law of Thermodynamics--Thermodynamics: An Engineering Approach
 
chapter06_2.ppt
chapter06_2.pptchapter06_2.ppt
chapter06_2.ppt
 
chemistry lecture chemical thermodynamics
chemistry lecture chemical thermodynamicschemistry lecture chemical thermodynamics
chemistry lecture chemical thermodynamics
 
equivelence of statements.ppt
equivelence of statements.pptequivelence of statements.ppt
equivelence of statements.ppt
 
Second law of thermodynamics
Second law of thermodynamicsSecond law of thermodynamics
Second law of thermodynamics
 
ch.5.pptx
ch.5.pptxch.5.pptx
ch.5.pptx
 
Thermo I chapter five.pptx
Thermo I chapter five.pptxThermo I chapter five.pptx
Thermo I chapter five.pptx
 
Ch 6a 2nd law
Ch 6a  2nd lawCh 6a  2nd law
Ch 6a 2nd law
 

Recently uploaded

Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsKarinaGenton
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxRoyAbrique
 
Micromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersMicromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersChitralekhaTherkar
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfUmakantAnnand
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application ) Sakshi Ghasle
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsanshu789521
 

Recently uploaded (20)

Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its Characteristics
 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
 
Micromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersMicromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of Powders
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.Compdf
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application )
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha elections
 

1_Second-law Thermodynamics-Sonntag.pptx

  • 1. Second Law of Thermodynamics (YAC Ch.5) • Identifies the direction of a process. (e.g.: Heat can only spontaneously t ransfer from a hot object to a cold object, not vice versa) • Used to determine the “Quality” of energy. (e.g.: A high-temperature en ergy source has a higher quality since it is easier to extract energy from it t o deliver useable work.) • Used to exclude the possibility of constructing 100% efficient heat engin e and perpetual-motion machines. (violates the Kevin-Planck and the Cla usius statements of the second law) • Used to introduce concepts of reversible processes and irreversibilities. • Determines the theoretical performance limits of engineering systems. ( e.g.: A Carnot engine is theoretically the most efficient heat engine; its per formance can be used as a standard for other practical engines) Second-law.ppt Modified 10/9/02
  • 2. Second Law (cont) • A process can not happen unless it satisfies both the first and seco nd laws of thermodynamics. The first law characterizes the balance of energy which defines the “quantity” of energy. The second law d efines the direction which the process can take place and its “quality ”. • Define a “Heat Engine”: A device that converts heat into work wh ile operating in a cycle. Heat engine QH QL TH TL Wnet DQ-Wnet=DU (since DU=0 for a cycle) Wnet=QH-QL Thermal efficiency, hth is defined as hth=Wnet/QH=(QH-QL)/QH =1-(QL/QH) Question: Can we produce an 100% hea t engine, i.e. a heat engine where QL=0?
  • 3. Steam Power Plant • A steam power plant is a good example of a heat engine where the working fluid, water, undergoes a thermodynamic cycle Wnet= Wout - Win = Qin-Qout Qinis the heat transferred from the high temp. reservoir, and is generally referred to as QH Qoutis the heat transferred to the low temp. reservoir, a nd is generally referred to as QL Thermal efficiency hth = Wnet/QH= (QH-QL)/QH =1-(QL/QH) Typical Efficiency of a large commercial steam power plant  40% Thermal Reservoir A hypothetical body with a very large thermal capacity (relative to the system beig examined) to/from which h eat can be transferred without changing its temperature . E.g. the ocean, atmosphere, large lakes. Back
  • 4. Kevin-Planck Statement • The Kelvin-Planck Statement is another expression of the second law of thermod ynamics. It states that: It is impossible for any device that operates on a cycle to receive heat from a single reservoir and produce net work. • This statement is without proof, however it has not been violated yet. • Consequently, it is impossible to built a heat engine that is 100%. Heat engine QH TH Wnet • A heat engine has to reject some en ergy into a lower temperature sink in order to complete the cycle. • TH>TL in order to operate the engin e. Therefore, the higher the temperat ure, TH, the higher the quality of the e nergy source and more work is produ ced. Impossible because it violates the Kelvin-Planck Statement/Second Law
  • 5. Heat Pumps and Refrigerators • A “heat pump” is defined as a device that transfers heat from a low-temperature source to a high-temperature one. E.g. a heat pump is used to extract energy from outside cold outdoor air into the warm indoors. • A refrigerator performs the same function; the difference between the two is in t he type of heat transfer that needs to be optimized. • The efficiencies of heat pumps and refrigerators are denoted by the Coefficient of Performance (COP) where Heat pump/ Refrigerator QH QL TH TL Wnet For a Heat Pump: COPHP=QH/Wnet=QH/(QH-QL) = 1/(1-QL/QH) For a Refrigerator: COPR=QL/Wnet=QL/(QH-QL) = 1/(QH/QL-1) Note: COPHP = COPR + 1 • COPHP>1, ex: a typical heat pump has a COP i n the order of 3 • Question: Can one build a heat pump operatin g COP= , that is Wnet= 0 and QH=Q?
  • 6. Clausius Statement • The Clausius Statement is another expression of the second law of thermodynamics. I t states that: It is impossible to construct a device that operates in a cycle and produces no effect other than the transfer of heat from a lower-temperature body to a higher-temp erature body. • Similar to the K-P Statement, it is a negative statement and has no proof, it is based o n experimental observations and has yet to be violated. • Heat can not be transferred from low temperature to higher temperature unless externa l work is supplied. Heat pump QH QL TH TL Therefore, it is impossible to build a h eat pump or a refrigerator without exter nal work input.
  • 7. Equivalence of the Two Statements It can be shown that the violation of one statement leads to a violation of the other statement, i.e. they are equivalent. A 100% efficient heat engine; violates K-P Statement Heat pump QL QL TH TL Heat transfer from low-temp body to high-temp body without work; A vi olation of the Clausius statement Heat pump QH+QL QL TH TL Wnet =QH Heat engine QH
  • 8. Perpetual-Motion Machines (YAC: 5-5) Imagine that we can extract energy from unlimited low-temperature energy sources such as the ocean or the atmosphere (both can be thought of as thermal reservoirs). Heat engine Heat pump QL QH QH Win = QH-QL Wnet=QL TH Ocean TL It is against the Kevin-Planck st atement: it is impossible to build an 100% heat engine. Perpetual Motion Machines, PMM, are classified into two types: PMM1- Perpetual Motion Machines of the First Kind: They violate the First Law of Thermodynamics PMM2 - Perpetual Motion Machines of the Second Kind : Violate the Second La w of Thermodynamics
  • 9. Reversible Processes and Irreversibilities (YAC: 5-6) • A reversible process is one that can be executed in the reverse direction with no net change in the system or the surroundings. • At the end of a forwards and backwards reversible process, both system and the surroundings are returned to their initial states. • No real processes are reversible. • However, reversible processes are theoretically the most efficient proce sses. • All real processes are irreversible due to irreversibilities. Hence, real pr ocesses are less efficient than reversible processes. Common Sources of Irreversibility: • Friction • Sudden Expansion and compression • Heat Transfer between bodies with a finite temperature difference. • A quasi-equilibrium process, e.g. very slow, frictionless expansion or c ompression is a reversible process.
  • 10. Reversible Processes and Irreversibilities (cont’d) • A work-producing device which employs quasi-equlibrium or rev ersible processes produces the maximum amount of work theoretic ally possible. •A work-consuming device which employs quasi-equilibrium or re versible processes requires the minimum amount of work theoretic ally possible. • One of the most common idealized cycles that employs all reversi ble processes is called the Carnot Cycle proposed in 1824 by Sadi Carnot.