SlideShare a Scribd company logo
1 of 73
12
The Rigors of
Kidney DialYsis
for Robert Banes
Laurie Kaye Abraham
Robert Banes' sloty reveals the daily rou,tine o'f'
a patient vtho ntust luve dialysis or di.e.
R<tbert's story tells ntore, however, thctn a saga
ol'sickne-ss. Tltis chapter links the personal ex-
perience of illness to Larger trends in incidence
ol disease and diflbrerttials by race and class in
receiving care. Like anyone else with a chronic
tlhrcss, Rr,tbert experiences the vicissitudes of
kidney dialysis within tlrc parcLntelers of a lilb.
End Stage Renal Disease (ESRD) yvith sub-
seqLtenl dia,5i5 is iiot the crisis in Robert's life.
Rather, it is one nrore crisis in a life riddenwith
crises born out of poverty, lhnited education,
and lacl< ofopportunity. For people like Robert
and his wife, Jackie, disability and death are
routine events. Pooled resources and shared
housing ruith relatives help some but poverty
and ill health prove to be relentless.
As yott read this selection, look for places
wlrcre both Robert and Tbmmy could have
1 lbeett ltel1ted, wlrcre a further slide downhill
could have been prevented. Note the contrast
tn econorttic circutnstances between Robert
and D r. lning. Assess the structure and quality
ol treatment available to Robert.
D
rober-t ivas thinking about frying some ba-
con for breakfast when the driver who takes
him to the kidney dialysis center sounded his
horn foom the street. This was unusual be-
cause it was iust a little after 5:30 A.M., and
Robert is scheduled for a six o'clock pickup,
Mondays, Wednesdays, and Fridays. Robert
has knor,r,n drivers to be late, sometimes by
The Rigors of Kidney Dialysis for Robert Banes l13
hours; he has known drivers not to show.
They are rarely early.
Still sleepy, he dropped down on the couch
to pull on his leather high-tops. A lamp
glowed orange in one corner of the living
room; cltherwise, it was early-morning gray.
Latrice slept next to him. Her long, brown
legs stretched the length of the couch that
does double-duty as her bed. She lay on top
of a mst-colored throw that Jackie uses to
cover the couchs thinning, stained uphol-
stery. Jackie was zrlready up, washing in the
bathroom. Her grandmother lay still in her
bed: she had not vet called for her breakfast
or a morning drink cllt waten
T h e l i v i n g r o o m i s s u b s t a n t i a l l y l o n g e r
than it is wide ancl is divided into two rnain
sections. The back area, where Robert sat
and Latrice slept, holds Jackie s furniture, the
couch zrnd a matching love seat she brought
when she, Robert, and Latrice moved in with
h e r g r a n d m o t h e r i n 1 9 8 6 . A d a r k w o o d h u t
c h ,
br-rilt into the back wall, is filled with pictures
of the family. Some of the photos are old and
tattered, their frarnes tarnished, but none of
that seems to matter mtrch. The pictures look
as it they have been there for a long time and
will remain for-a long time to come. A light-
colored wood bookshelf next to the hutch is
overflowing with knickknacks: ceramic figu-
rines Jackie gave to her grandmother mixed
with animals made from shells (souvenirs oF
a craft project at a nursing home where Mrs.
Jackson worked), mixed with a dozen basket-
ball trophies that Robert won in high school
and junior college.
Toward the front, outside Mrs. Jackson's
bedroom doo4 sits a more formal-looking
couch, upholstered in faded gold, that the olJ
woman has owned since Jackie was a girl. De-
Marest is an active little boy and has torn and
poked through its plastic slipcover until it no
longer provides much protection, but Jackie
resists removing it. Her grandmother in-
sisted on the plastic covel, and Jackie does
not want her to think the family is defying her
now that she cannot do anything about it. A
low-slung credenza, about thirty years old,
with a working radio and a broken turntable
inside, is across the room from Mrs. Jack-
son's couch. Three color TVs are stacked to-
gether near it, although only one works.
I
t-
114 Section 2 * The Selfin Social Context
Robert finished tying his shoes' Eyes half
shut, he pushed uiial a vinyl recliner the
B".r"r", put in front of the door at night.for
extra security and descended the stairs that
lead down io a small front porch' "Heh,
Banes, I knew I'd get you today," called the
driven who has transported Robert before'
Each weekday, private companies that con-
tract with the Chicago Transit Authority take
Robert and twenty-five hundred other dis-
abled Cook County residents to medical ap-
pointments and wherever else they need to
go. In the summer of 1989, there were five
iransportation companies working for the
CTA (subsequently one of them was kicked
out of the program for frar.rd, as another had
been earlier in the year). Rober-t used SCR
Transportation, which had the worst on-time
record in the program. SCR arrived on time
for about half of its I'ides; the rest of the time,
drivers were anywhere liom ten minutes to
m o r c t l r a n a r r h o u r l a t e . l
N o n e t h e l e s s , t h e r i d e w a s a b l e s s i n g b e -
cause the dialysis clinic is a good hour away
on tl-rc bus ot- train. Robert rvould have to
leave for the clinic in the dzrrk, an unsettling
proposition in a neighborhoocl irnprisoned
b y n i g h t f a l l . T h e B a n e s e s r a r e l y g o o t r t a
t
night, and even zrt dusk, when Latrice wants
to r-Lln down to her cousin'.s aptrrtment less
than ur block away, Jackie watches her come
and go from the tront porch. Roberl also ap-
preciates the ride home al'ter dialysis because
sometimes he f-eels weak and shaky, not at all
i n t h e m o o d t o b e j o s t l e d o n t h e b t t s .
As soon as Robert got into the cal, he
pulled a pack of cigarettes out of his jacket
and lit one. "My wife doesn't know I sntoke,"
he said. Robert tries to curry Jackiei favor
with small gestures such as pretending not to
smoke and buying her-a box of candy when
she gets mad. What Jackie wants most,
though, is for him to stay away from cocaine,
and that he has a harder time doing. He
sometimes goes weeks, even a month or two,
without using cocaine but then binges and
spends every cent he can find on drugs. That
leaves Jackie strainins to meet her household
budget, and it canndt be good for Robert's
health. Robert refuses to discuss drugs with
anyone but Jackie and then only if she pushes
the issue.
The twenty-minute ride to Neomedica Di-
alvsis Center, located in the most exclusive
arla of Chicago, had the feel of a boys' night
out. The two men bantered about NBA stars
they had met, gangsters the driver had chatrf-
feured, and the high cost of dating.
"Give me some cash and I can go out, buy
some drinks for the ladies," the driver boasted.
"So you can make things happen," Roben
said with a vicarious thrill.
Robert wears a dialysis uniform of sorts: a
navy and white nylon sweatsuit and a rcd
Bulls cap. His arms are still sculpted lrom his
basketball-playing days, but the muscles look
as if they have been sanded down. All thats
left are a few bulges covered by a thin layer
of skin. He has lost twenty pounds in the srx
months since he began dialysis, a big enough
droo that the clinic nutritionist said she plzrns
t o p u t h i m o n a s u p p l e m e n t a l d i e t . O n t h e
warmest davs. Roberl sets cold, and whc'n he
sees a *o-in walk clown the stt'ec't in shorts
zrnd a sleeveless shirt, he often says, "I rvish I
h a d h e r b l o o d . " L i k e m o s t d i a l v s i s p a t i c n
t s ,
R o b c r t i s c h r o n i c a l l y a n e r n i c .
Neomedica'.s clerk calls patients back for
dialysis two or three at a tin-re, so Roltert
found a chzrir in thc rvaiting room ancl turned
to tl.re Serrr-7.i/7?e-s sports pzrges. Othcr patients
k i l l e d t i m e r v i t h t a l k o f t l r e B u l l s a n d h i
g h
b l o o d p r e s s u r e p i l l s , t h e C u b s a n d t h e r e s
t r i c -
tive diets patients are supposed to follow
Robert was one of the last patients left when
he was sumrnoned at 7:30. That is his regr-rlar
dizrlysis tin're, but Roberl gets to the clinic a
little after six becatrse he has found that the
earlier the pickup, the n-rore likely the trans-
portation company is to be on time. When
patients are late getting to Neomedica, thev
may wait hours to be dialyzed.
Upon hearing his name, Robert pitched
his paper and walked to his reclinel, past a
sco.e of patients tethered to blinking, beep-
ing machines. Two thin plastic tubis, red'
d#ed by, steady ,t."u-r'of blood, sna.ked
trom each of the patients' forearms. On.their
inner arms, diaiysis patients have knots
called fistulzrs, rvh-ere cloctors connect a.veln
and an artery to enable them to receive dtatl-
sis. The arteiial tube feeds blood into the dta-
Iyzeq where a six-inch filter composed of doz'
ens of tiny strawlike tubes draws out 'astes
qi ! nger expel. The cleansed) r h e k i d n e Y s c a n n o I o
l
It t^.,d is then pumped Sack into patients'bod-i iJl,''*l; n ;' t'd
ialys i s.-R:b"X ii$^ :le other
kidnev failure cattsed by hypertension, a dis-
ease that usually can be controlled by medi-
cation. In other words, a significant portion
of the kidney failure among blacks is largely
preventable with r:egular care. For those who
or. p,ror, thc reasons they do not receive care
range l'ron-t inadeqtratc or nonexistent insur-
ance, to :r misltndet'stzrncling of the serious-
n e s s o f t h e c o n d i t i o n , t o a n i n a b i l i t y t o c
o p e
u , i t h a n y t h i r - r g o t h e r t h a n i m m e d i a t e t h r
e a t s
t o t h e i r w e l l - b c i n g . A s a d m i x o f a l l t h r e
e
causecl Jackie'.s lather, Tommy Markham, to
suffer another of the conseouences of uncon-
trolled high blood presslrre, a stroke, when he
was only fbrtv-eight.
Tommy givcs only sketchy details about
his youth, br-rt he apparcntly had a conten-
tior-rs relzrtionship with his parents, Mrs.
Jackson ancl her first husband. He stayed be-
h i n d i n M i s s i s s i p p i w h e n t h e c o u p l e ' m o v
e d
north, to Garry, Indiana, though his young
daughter, Jackie, went with them. Jackie's
teenage mother had given her daughter to
Mrs. Jackson to raise. After Tommy got into
trotrble for car theft, he moved to Chicago,
where Mrs. Jackson had gone after she split
from her htrsband. Tommy's mn-ins with the
law did not stop, howevei. The way Tommy
tells it, he got led up with a man who wrongly
acclrsed hirn o[ "going with his woman" and
"beat the shit otrt of him." He was convicted
of armed lobbery and spent seven years in
Illinoiss Stateville Correctional Center dur-
ing his trventies. (Tommy huffily denies the
robberv': "I didn't rob the dude. I just beat him
up. . . . He r.r'as laying there in the gangway,
and peoples from the lounge ran out. They
took the money off him.")
The Rigors of Kidney Dialysis for Robert Banes ll5
When Tommy was released in 1971, Mrs.
Jackson continued to raise Jackie. He lived
with his mother and ten-year-old Jackie for a
few days, but Mrs. Jackson threw him out be-
cause of his "attitude," Jackie said, and he re-
turned to the West Side's streets. He worked
off and on as a bartendet', butcher. and exter-
minatol all the while guzzling beer, whiskey,
and cognac. Six feet, two inches tall, with
muscle built in the prison gym and still evi-
dent today, Tommy was menacing to Jackie
and, evidently, to a lot of other people. "Everry-
body would be scared of Tommy, Tommy,
Tommy," Jackie chanted. So intimidated by
her violent father was Jackie that she hzrs
fonder memories of him when he was impris-
oned than when he came ollt. She ancl her
grandmother took the Greyhound bus to visit
him in Joliet once a year. "I remember my
father giving me bottlecl pop and peanlrts,"
she said. "It used to be a nicc ritual fior me,
The prison hacl beautifurl f-lower gardens arrd
aftenvard we'd go shopping in Jolict."
Tommys stroke did not come out of the
blue. He knew he had high blood pressLu'c,
but he stopped taking antihypertensive rnedi-
cation becausc of its side el'fects-impotence,
for one. IIis alcoholism and smoking also arl-
most certainly contributed to the stroke. Br"rt
high blood pressure does not cause any dis-
comfort for most people, which is why doc-
tors call it the "silent killer," and so Tommy,
who generally cloes not look past the r-rext day,
paid no attention. "Nature will takes its
course," he likes to say. And it did. The left
side of his body is now paralyzed, and he
spends most of his time in a wheelchai4
though he can walk very slowly with the as-
sistance of a brace and cane. As Tommy tells
the Currency Exchange clerk with whom he
flirts when he picks up his welfare check, "I
can't rarn no more yards; the All-American
Tom Cat done slowed down."
The casualties that high blood pressure in-
flicts on blacks are enormous: thev suffer
strokes at twice the rate of whites,a und the.e
are sixty thousand excess deaths a year
among blacks from hyperlension-related dis-
eases.5 In Chicago, where the population of
blacks and whites is roughly equal, there are
more blacks with kidney failure caused by
l'^'' ;;;;"tld di'e within a few weeks'P"
")-,,i""" of
the patients on Robert's morn-
,."'."n]t u, Neomedica are black, five are His-
ir^?i.],*t are white, and one is Asian' The
i^.i"r'"ti^ of the group nearly matches that
oT'chi.ugot dialysis population, though the
i""r.. his fewer whites than the city as a
,-fr.i".' Nation-wide, the incidence of kidney
ioll,rr" among- blacks is four times that
a m o n g w h i t e s ' r
Much of that racial difference results fi-om
116 Section 2 i
The Self in Social Context
- r'r^^- l"ic enkleS began to swell
at La-
H:'?# fr;:::f ian
whi'es wi'h kidnev fy# it!'#fH$':$'tt1-tt#i$
*i{;1rfi#flti:}iqt;pl;;"i}"1 "1
f"i$J;#'
iln Hrd{ H$#$i :ffi ;"{,f;," tgffii11ffi
*lfif**ilffinil {iii g1.gg*}gfi'ffi{i5*fifr*':*,r****u,l'*ffi ffi
#,u,g*:ffi
ffi ffi$$ffi*ro-* **** *'"*,"', * l{ip$;gfffi ilfi
*",u1g*g**@ ff
rfi:.^:*li'#:i,;: *.s;*$$ffiff$ ff{*tg,t^;ln.":g,5*$t***l*#*}|*$U*$
fffu*tl+:E:'l+,i1:"]{+r'trgl ffiff**ffi
Hlr*'ffiffi tr4
*:?"iti?i.ili:1i""*{:**l'1,f "*''J#Till#It';;;iheUniversi'lv
i
I
I
I
I
i .
1isi
li:
fi
lr
]tj[
i{s*€
&
{
,-r.o.i Robert through his first kidney
il]i"nr""i i" 1e82. rn January 1989, his bodv
::i.,'"",t the transplanted organ' and Barber
l,','""p'" p "' i" e h i m 9- qe1 :1t
t""3:]:A'-Y].1l l
: ]l:,i i,tr iirt fol' a second time' "when patients
r l].],... irtt Cook County with chronic renal
' ij'i,".' ""a
say' 'Nobocly ever to,ld me this
, i.,ri.r rt^ppen,' the,v're partlv right'. Thelr've
i.i.ltr ,ota but not in a way that sticks," says
t: iu t ... "Robert was t'efet-r'ed back for treat-
I l.'rt, btrt being.young and feeling well, he
.: Ji,l not have a lot of motivation to follow
thlrlr-rgh'"
Then, too, people who can barely afford
f 6 o d a n d s h c l t e r n l a Y n o t t h i r - r k t h e y h a
v e
nruch to gzrin From sper-rding scarce dollars
fur cl<lctors' visits. "For s()meone who is poor,
h e a l t h c : r r c i s n o t t h e h i g h c s t p r i o r i t y , "
D r .
Corru,zrv said, an obscrvation offeled repeat-
edlv by doctcir-s ancl nttLses who work with
p ( x ) r p i l t l e n t s .
It'.s al.so possible thart l'riends and family
'ere nol purshing Robert to go to the doctor,
Dr: Conway continrlccl. "People in Chic:rgois
poorer ncighborhoocls arre used to zr lot of sick
people arouncl. Wherr someone says 'Some-
t h i n g l s w r o n g w i t h r n v k i d n e y s , ' t h e a u t o
r n a t -
ic lesponse is not 'Wcll, what dcictor arc you
g o i n g t o / ' W h c n y o t r l i v e o n t l - r e N o r t h S
h o r e
I t h e a f f l r r c n t s u b u r b s n o r t h o f C h i c a g o ] ,
t h a t ' s
thi: first thing pcr>ple ask yor-r."
Dt'. Conr,vay also speculated that since
Robcrt'.s clisezrse is zr chronic one, doctors
may have told him that "there was nothing
t h c v c o r r l c l t l o , " a p h r a s e t h a t c a n m e a n
o n e
t l t i n g t o p a t i e n t s a n d e r n o t h e r t o d o c t o r s
. " I t
souncis blzrck-ancl-r,r,hite, but it'.s not. We can't
cure AIDS, but we don't say 'You're on your
o l n . D o n ' t c c l n t e b a c k . ' W e c a n d o t h i n s s
t o
p r i r l o n g l i t e . "
Doctors mav face er particular challenge
gettirrg that message across to people as fa-
talistic as Robefi ancl Jackie. Asked at least a
half-clozen times to discuss her feelinss about
h e r f a m i l y s u n r e l e n t i n g i l l n e s s - E i d s h e
think they were Lrnusual or especially cursed?
_-Jackie got exasperated. "Look," she finally
said, obviously hoping to close the subject, "I
just sav it happens."
The f:rntastic and horrid deaths that mark
their daily lives feed such fatalism. Perhaps
onlv the most stout-hearted-or delusional-
The Rigors of Kidney Dialysis for Robert Banes ll7
could retain a sense of control over their des-
tiny. One day, a thirtyish-looking man spotted
Jackie in a car and ran up to the side window,
puckering his lips in an exaggerated kiss. "I
w,ent to school rvith him," Jackie said, lar"rgh-
ing at his foolishness. Then, without skrpping
a beat: "Thev fbund his brother dead right up
uncler the house, this tall building right up on
the corner'. I heard rllmors when I was rl
g r a m m a l s c h o o l . T h e k i d s w a s p l a y i n g a n
d
they kept saying the,v smellecl something toul,
like dead rats, and it was his brothers body
down in the server."
Then there is the death of Robeft s beloved
mother-. Thc official version of her story is
that she went out clrinkins with friends after
work on a Friclay, returnecl home, zrncl passed
out in the garagc with the car running. The
unofficizrl vcrsion is considerably more vivicl.
"She rvas rnurrclcrcd," Jackie said once. Then
s h e c o r r e c t e c l h c r s e l f . " C a r b o n m o n o x i d
c ,
that'.s ',vhat'.s cln the cleath certificzrte. Btrt
I R o b e r t a n d h i s f a m i l y ] s a y t h e r e w a s
scratches zrncl blorid. And I've heard that she
wers disrobecl halfrvav. And I remember
Robert gctting hcl bra and there wzrs blood
stains or.r it, so rve feel like, the family felt,
therc was foul play somewhere."
It wor-rld be easy to dismiss this as an ex-
ample of devotccl chilclren unable to face the
m u n d a n e b u t u l t i m a t e l y t r a g i c c i r c u m -
stances of their mother'.s death. And that may
be all it is. But in a neighborhood where the
clich6 "tmth is stranger than fiction" takes on
pointed meaning, who knows for sure?
There has been little rigorous study of how
fatalism and other accompaniments of pov-
er.ty influence commllnication between doc-
tors and patients, but at least one investigator
of the subject found that doctors spend more
time discussing diagnoses and treatments
with well-educated people, resulting in a
"paradoxical situation whereby patients
most in need of education receive the least."8
At the same time, blacks reporl more often
than whites that doctors do not adequately
explain the seriousness of their illnesses or
how medications work.e Robert, for one, is
often confused by doctors, but he rarely if
ever asks them for more information.
Several days before he was admitted to
University of Illinois Hospital because of the
. .,rr1'
t ,:ij
' ' i
r ' : , . 1
^'*"::*****
i,;*1;
tii i
ii:;
118 Section 2 * The Selfin Social Context
blood in his urine, Robert had visited a urolo-
sist at the university's outpatient clinic' He
f,ad nel er seen the doctor before, but Barbel
the transplant nurse, made him an appoint-
ment beciuse of the unusual bleeding. At that
appointment, the doctor told him he would
haie to be hospitalized. He also told Robert
that before he could be admitted to the hos-
pital he wor-rld need blood tests and an ultra-
iound study of his kidneYs.
"When am I going to have to have sur-
gery?" Robert asked, certain of that eventual-
ity though the doctor had not mentioned it.
"That'.s only if the ultrasound shows us
something like a cyst, like cancer on the kid-
nevs," the doctor said flatly.""Don't
tell rrle that, please," Robert
pleaded. The doctor smiled sympathetically
a n d w a l k e d o u t o l ' t h e e x a m i n i n g r o o n r w i
t h -
out explaining ftrrther.
Through the open door, Robert cotrld see
but not hear the doctor confer:ring with a
nurse who was holding a srnall plastic cup of
blood that seemed to be Robert's.
"Don't be whispering," l're said to himself.
"Tell me, too."
B u t w h e n t h e d o c t o r r e t u r n e d m o n l e n t s
later, Rober-t did not ask lrinr what he had
been tzrlking about. FIe lay bzrck on the exanr-
i n i n g t a b l e a n d o l T e r e d u p h i s a r m f o r h i s
blood pressure to be taken. If Robert won-
dered wl-rat the chances lvere of his having
c a n c e r , h e s a i d n o t h i n g .
Robert says he is not angry that no one ef-
fectively explainecl to him that his kidneys
were failing. Then again, Robert does not ad-
mit that much of anything disturbs him. "I
look at dialysis like a setback. Why should
you get dorvn? It jusl makes you sicker."
It's understandable, perhaps admirable,
that Robeft does not want to dwell on his ill-
ness. But Roberl is so matter-of-fact and pub-
licly emotionless about how he got sick-and
even the most devoted doctors and nurses are
so used to situations like Roberts-that it is
easy to be lulled into taking it all for granted.
Whose fault is it that Robert did not have
health insurance, and that at least thirty-five
million Americans are without it todav?10
What about doctors' inability to communi-
cate to patients in a way that makes them
understand their illnesses-whose fault is
that? Who is responsible for the many poor
minorities who are so socially and economi-
cally isolated that they cannot take advantage
of the medical system in the same rvay tirat
many whites can?
No one is forced to take responsibilit-t' for
these inequities. Medical ethicist Larry Chur-
chill describes well the forces that allor.v the
United States to remain the only industrial-
ized country other than South Af ica that
does not provide at least basic health care to
all of its citizens, "Access to health care rs
mostly contingent on having a way to pay for
it, either out of one's own resources or rvith
some form of insurance," he writes. "The es-
sential point is that lthis] allocation by price
is a rationing scheme-one which we have
easily accepted in health care as an extension
of a basic economic philosophy, ancl one
which largely absolves any particular person
lrom responsibility for the results. Since no
one actually decided to exclude the poor (as
it is their lack of money that excludes them,
not our actions) no one is responsible and no
o n e i s t o b l a m e . " l l
The morning the dialysis driver arrived
early, Robert fell asleep rvithin minutes after
his blood began cycling thror-rgh the dialysis
machine at Neon-redica. Belorc settlir.rs in for
a nap, he covered himself rvith a blue bed-
spread he'd brought from home to ',vald off
the chill he gets during dialysis. The elderlr
Hispanic *J-un who iat n"*t to him had the
opposite problem: she brought a small fan lo
cool her is she slept. Cigarette smoke c.urled
over the backs of several of the recltners
spread across the room. Some patients
watched a TV that huns firom the ceiling;otn'
i ' - r , , , 1 ; r l v s i s c h a i n , w h i c h i n 1 9 8 9 i n c l
u d e d
, llili'rir-';i Chicago-area dialvsis
units'
'
''"Dir,lrri, is one of few areas. of medl:"].t'll:
ari,l'-r"i"a ny for-profit
providers' and,it has
il""r, ",
the center o1' a nationwide debate
1i",,, ,ft" costs and quality. of ploprietary
l , . , i i . i n " . M e d i c a r e . p a y - s d i a l y s i s u n i t s
a
i l - , , r [ e e l o r - e a c h d i a l y s i s s e s s i o n -
X . , , n r " a i . u c u t - r c r t l v g e t s $ 1 3 1 . p e r t r - e
a t -
r.nil'-1,u, exerciscs little control over how
, 1 , ^ , n r , r n c v i s s p e n t . O f f i c i a l s a t t h e H e
a l t h
i , ; ; ; F i " " " . i n g A d m i n i s t r a t i o n , w h i c h z r
d -
ministers Meclicare, chargc that, to preselve
h i g h p l o i i t m l r r g i n s ' n l z r n y c e n t e r s c o m
p r o -
, n i r " ' p o t i " ' . t t s ' c e l e b v r e d u c i n g s t a { T a
n c l
shortening tl'ezlt lrell I ti mes.
I 3 Sr-tch cclst -ctt t-
ting ctrangcs havc becn nrzlcle at Neclrnediczt,
D r . L a n g I r - e c l y a d n i t s , b t r l h c s a i c l t l i c
y d r r
n o t t h r e a t e t t p a t i e n t s ' l l c z r l t h . N e i t h c r ,
t r e s a i c l ,
d o N c o r n e c l i c z r ' s p l r y s i c i a l t - o  v n e l ' s c i
l r l l c - x -
ccssir,c ttroltit.s.
D r : L : r n g f o t r n c l e c l N e < i r l e c 1 i c a w i t h a
r r o t h e r
doctor rvhen Mcclicare began t() pny for clialy-
s i s i n I 9 7 2 z u r c l t o c l a y o r t ' t t . s I 4 p e r - c c
n t l + t ' l t h c
S 6 . 7 n r i l l i o n c l r a i n . l s P r - r b l i c c k l c t r n t e
n t s c l < r
not shorv trow rnnclr Dr. Lerng nreikcs ars the
c o l p o r a t i r . r r - r ' . s c h i e l c x c c t r t i v c , b r - r t
h i s . j o b a s z t
mcdical clircctor ol' Rober-t'.s trnit, rvlrich Dr.
L a n g e s t i n - i z r t e c l c l c c t r p i e s h i m f i l r t h r
e e o r
f o u r - h o u r s a w e e k , p a y s r , v c l l : $ 6 8 , 4 8 0 i
n 1 9 8 9 ,
a c c o r d i n g t o M e d i c a r - c c ( ) s t r e p o r - t s . l 6
C o m -
pletelv npart f lonr u'hnt hc mzrkes for rr-rnning
Neorncclica, lre czrr-ns a nronthly fee as the
nephrrilogist lbr Robert ancl Forty-five to fifty
o t h e r c l i e r l v s i s p a t i e n t s . l T F o r t h a t w o r k
, M e d i -
c a l ' e p a y s c l o c t o r s a n a v e r a g c o l ' $ 1 7 3 p e
r p a -
tient per rnor-rth, r,vhich wrtr-rld ntean Dn Lang
e a r n s r o r - r g h l y z r n o t h e r $ 1 0 0 , 0 0 0 e a c h y
e a r
irom Medicare.l8 Finally, a medical practice
h e n t a i n t a i n s o u t s i d e o f t h e d i a l y s i s u n i t
f u r -
t h e r e n h a r r c e d h i s i n c o m e . D r : L a n g w i l l
n o t
sav hou' much he clrrrentlv makes a yeal, but
accot-cling to thc Internal Revenue Service,
h i . s t a x a l : i l c i n c o m e i n 1 9 8 5 w a s $ 3 6 2 , 9
6 4 . 1 e
(That figurre comes flom a suit Dr. Lang filed
agiiinst the IRS to block the agency'.s attempt
to recor,'er g 160,000 for alleged improper de-
dltctions he took on a ski resorl condomin-
t u m i n U t a h . )
Dr. Lar-rg's manner with the dialysis pa-
tients at Neomedica's downtown Llnit was
brisk and etficient if not cursory, but for
The Rigors of Kidney Dialysisfor Robert Banes ll9
R o b e r t , a t l e a s t , h e i s " t h e m a n . " T h o u g h
R o b e r t a n d t h e o t h e r p a t i e n t s r e g u l a r l y
g m m b l e a b o u t e v e r J a s p e c t o [ d i a l y s i s , l i
t t l e
o f t h e i r a n g e r s e e m s d i r e c t e d a t D r . L a n g
. T h e
t e c h n i c i a n s a n c l n u r s e s t a k e t h e b m n t o f
i t ,
e v e n t h o u g h i t i s D r . L a n g w h o h a r s u l t i n t
; r t e
r e s p o n s i b i l i t y f b r t h e r v a y t h e u n i t i s r L r
n . . . .
Notes
l . C h i c a g o l - r a n s i t A u t h o r i t y , o n - t i m e p e
r f o r m -
a n c e o f C T A S p c c i a l S e r u i c e s t r a n s p o r t a t
l o n
c o m p a n i e s I 9 8 9 - I 9 9 1 , o b t a i n e c l t l t r o u g h
a
F r e e d o m o l l n f o r m a t i o n A c t l e q u e s t , D e c
e r n -
b e r ' 1 9 9 l
2 . R e n a l N e t r w r r k o [ [ l l i n o i s , " C h i c a g o
D i a l y s i s
P o p r r l : r t i o n : R a c e r v i t h i I - r A g e , " s p e c i a
l c [ : t t : t t r - t r r
o l r t : r i r r e d t l r r o r - r g l ' r a F r e e c l o m o f I n f
o r m z t t t o n
A c t r c q t r e r s t , J t r l v 1 9 8 9 .
3 . C o m r r i t t c c l o r t h c S t u c l v o f t h e M e c l i
c a r e -
E S R D P r o g r a n ' r , I n s t i t u t e o l M e c l i c i n e ,
p r - c -
p r r b l i c a t i o n c o p v , K i r l r r e . r , F a i l u r e a n d
t l t e
F e d c r a l ( l < ' ; t , c n t r n t ' r r t ( W a s h i n g t o n , D
. C . , N a -
t i < r n z r l A c a c l e n r v P r e s s , l 9 9 l ) , p . 1 2 2 .
4 . N : r t i o n a l C c n t e r f t l ' H e a l t h S t a t i s t i c s
, " A c l -
v a n c c d R c p o r t o 1 ' F i n a l M o r t a l i t y S t a t i s t
i c s ,
1 9 8 9 , " i n M t ; t t t h l y V i t a l S t a t i s t i c s 4 0 , n
o . 8 ,
s t r p p l . 2 f l v a t t s v i l l c M c l . : P u b l i c H e a l t l
' r S e r -
v i c e , 1 9 9 2 ) . T l i e r 1 9 8 9 a g e - a d j u s t e c l s t r
o k c r a t e
f o r r v h i t e s r v : r s 2 5 . 9 p e r 1 0 0 , 0 0 0 p o p u l a
t i o n ,
f o r b l a c k s , 4 9 . 0 p e r 1 0 0 , 0 0 0 .
5 . E l i i a h S z u n d e r s , " E p i d e m i o l o g i c F a c t
o r s i n
t h e M a n a g e m e n t o f H y p e r t e n s i o n , " . / o l . r
n n l o l
t h e N a t i o n a l l V l e d i c a l A s s o c i a t i o n 8 1 , s
u p p l .
( A p r i l 1 9 8 9 ) : 9 . T h e e x c e s s d e a t h r a t e i s
t h e
number of deaths minorities '"vould not have
suffered had they clied at the same rzrte as
w h i t e s .
6 . R e n a l N e t r v o r k o f I l l i n o i s , " C h i c a g o D
i a l y s i s
P o p t r l a t i o n : R a c e w i t h i n A g e w i t h i n Z i p
C o d e ,
Diagnosis Hypertension," special data r-un ob-
tained through Freedom of Inlbrrnation Act
r e q u e s t , J u l y 1 9 8 9 .
7 . C o m m i t t e e f o r t h e S t u d y o f t h e M e d i c a
r e
ESRD Program, Kidney Failttre and the Federal
C o v e m n r e n t , p . 1 2 6 .
D.R. Ler,y, "White Doctors and Black Patients:
Influence of Race on the Doctor-Patient Rela-
tionship," Pediatrics 7 5, no. 4 (April 1985) 639-
4 3 .
R o b e r t J . B l e n d o n e t a l . , " A c c e s s t o M e d i
c a l
Care for Black and White Ameicans," Jottmal
o f t h e A m e i c a n M e d i c a l A s s o c i a t i o n 2 6 1 ,
n o . 2
(13 January 1989): 27 8-81.
rii,ri
' ' i , j .
_ { .
:;
o
Required Resources
Required Text
1. Environmental Science: Earth as a Living Planet
a. Chapter 23: Materials Management
Article
1. U.S. Environmental Protection Agency. (2013). Municipal
solid waste. Retrieved from
http://www.epa.gov/epawaste/nonhaz/municipal/index.htm
FURTHER READINGS AND RESOURCES
Allenby, B.R. Industrial Ecology: Policy Framework and
Implementation (Upper Saddle River, NJ: Prentice Hall, 1999).
A primer on industrial ecology.
Ashley, S. It’s not easy being green. Scientific American, April
2002, pp. 32–34. A look at the economics of developing biode-
gradable products and a little of the chemistry involved.
Brookins, D.G. Mineral and Energy Resources (Columbus,
Ohio: Charles E. Merrill, 1990). A good summary of mineral
resources.
Kesler, S.F. Mineral Resources, Economics and the
Environment (Upper Saddle River, NJ: Prentice Hall, 1994). A
good book about mineral resources.
Kreith, F. ed., Handbook of Solid Waste Management (New
York, NY: McGraw-Hill, 1994). Thorough coverage of
municipal waste management, including waste characteristics,
federal and state legislation, source reduction, recycling, and
landfilling.
Watts, R.J. Hazardous Wastes (New York, NY: John Wiley &
Sons, 1998). A to Z of hazardous wastes.
Botkin, Daniel B. Environmental Science: Earth as a Living
Planet, 9th Edition. Wiley, 2013-12-23. VitalBook file.
CHAPTER 23
Materials Management
LEARNING
OBJECTIVES
The waste-management concept of “dilute and dis- perse” (for
example, dumping waste into a river) is a holdover from our
frontier days, when we mistak- enly believed that land and
water were limitless re- sources. We next attempted to
“concentrate and contain” waste in disposal sites—which also
proved to pollute land, air, and water. We are now focusing on
managing materials to reduce environmental deg- radation
associated with resource use and eventually eliminate waste
entirely. Finally, we are getting it right! After reading this
chapter, you should be able to:
• Discuss why the standard of living in modern so- ciety is
related in part to the availability of natural resources
• Summarize the importance of resources to society
• Discuss the social impacts of mineral exploitation and how
wastes generated from the use of mineral resources affect the
environment
• Discuss how sustainability may be linked to the way we use
nonrenewable minerals
• Evaluate the emerging concept of materials man- agement and
how to achieve it
• Synthesize the advantages and disadvantages of each of the
major methods that constitute integrat- ed waste management
• Summarize the various methods of managing haz- ardous
chemical waste
• Discuss the problems related to ocean dumping and why they
will likely persist for some time
(Botkin 576)
Treasures of The Cell Phone
The number of cell phones in use in the United States rose from
about 5 million in 1990 to about 350 million in 2012. More than
6 billion cell phones are in use world- wide. Some countries
(for example, the United States and Russia) have more cell
phones in use than people living in the country. India has more
cell phones than flush toilets. We wonder if the explosive use of
cell phones and mes- saging is a signal of a core value to
communicate socially.
Today, we are connected across the planet by our cell phones—
and this has enormous social and political im- plications. Text
messaging, video, and cell phones have connected us as never
before. For example, cell phone use was integral to the recent
“Arab Spring.” People were constantly using them to
communicate their desires for change and to organize political
protests.
Cell phones are commonly replaced every two years as new
features and services become available—witness the iPhone’s
popularity. Each cell phone is small, but the mil- lions of
phones retired each year in the United States col- lectively
contain a treasure chest of valuable metals worth over $300
million, not counting the cost of recycling (Table 23.1).
Worldwide, their value probably exceeds a billion dollars, but
although the money potentially avail- able through recycling is
attractive, less than 1% of dis- carded cell phones are recycled.
Most end up stored in our closets or disposed of at municipal
solid-waste facilities.
The life cycle of a cell phone is shown in Figure 23.1 and is
typical of most electronic waste (e-waste).1 The primary reason
more e- waste is not recycled is that we lack a simple, effective,
small-scale, and inexpensive way to do it. We also need to bet-
ter educate people about the environmental value of recy- cling
and to offer more attrac- tive financial incentives to do it. Some
states (California, for example) have laws that re- quire
building recycling costs into the prices of products. (Botkin
577)
Our failure to manage cell phones and other e-waste reminds us
that in the past 50 years we have proved un- able to move from
a throwaway, waste-oriented society to a society that sustains
natural resources through improved materials management.
However, in some cases we are moving in that direction by
producing less waste and re- cycling more discarded products.
With this in mind, in this chapter we introduce concepts of
waste management applied to urban waste, hazardous chemical
waste, and waste in the marine environment.
23.1 The Importance of Resources to Society
Modern society depends on the availability of both re- newable
resources (air, surface water, some groundwater, plants,
animals, and some energy sources) and nonrenew- able
resources (soil, some groundwater, oil, coal, and most
minerals).2–4 What partially differentiates renewable from
nonrenewable resources is their availability in a human time
framework. Air and water, along with biological resources such
as fish and crops, are regularly replenished as long as the
processes that renew them continue to operate at an adequate
rate. Nonrenewable resources, such as oil and minerals, even
those that are being replenished by Earth processes today, are
not being replenished in a time frame useful to people. Thus,
strategies to use resources sustainably are linked to specific
resources. We can sustain water resources by careful water
management (see Chapter 18), but sustaining min- erals or oil
requires strategies linked more to conservation, recycling,
reuse, and substitution than to management of next year’s
supply delivered by Earth processes.
Many products made from both renewable and non- renewable
resources are found and consumed in a typical American home
(see Figure 23.2 for nonrenewable miner- als used in a home
office). Consider this morning’s break- fast (food is a renewable
resource). You probably drank from a glass made primarily of
sand; ate from dishes made of clay; flavored your food with salt
mined from Earth; ate fruit grown with the aid of fertilizers,
such as potassium
carbonate (potash) and phosphorus; and used utensils made of
stainless steel, which comes from processing iron ore and other
minerals. While eating your tasty renewable resources, you may
have viewed the news on a television or computer screen,
listened to music on your iPod, or made appointments using
your cell phone. All these electronic items are made from
metals and petroleum.
Resources are vital to people, and the standard of living
increases with their availability in useful forms. Indeed, the
availability of resources is one measure of a society’s wealth.
Those who have been most successful in locating and extracting
or importing and using resources have grown and prospered.
Without resources to grow food, construct buildings and roads,
and manufacture everything from computers to televisions to
automobiles, modern technological civilization as we know it
would not be possible. For example, to maintain our standard of
living in the United States, each person requires about 10 tons
of nonfuel minerals per year.5 We use other resources, such as
food and water, in much greater amounts.
23.2 Materials Management: What It Is
Materials management has the visionary environmental goal of
sustainably obtaining and using renewable and nonrenewable
resources. This goal can be pursued in the following ways: 6
• Eliminate subsidies for extracting virgin materials such as
minerals, oil, and timber.
• Establish “green building” incentives that encourage the use
of recycled content materials and products in new construction.
• Assess financial penalties for production that uses poor
materials management practices.
• Provide financial incentives for industrial practices and
products that benefit the environment by enhancing
sustainability (for example, by reducing waste produc- tion and
using recycled materials).
• Provide more incentives for people, industry, and agri- culture
to develop materials management programs that eliminate or
reduce waste by using it as raw material for other products.
Materials management in the United States today is beginning
to influence where industries are located. For example, because
approximately 50% of the steel pro- duced in the nation now
comes from scrap, new steel mills are no longer located near
resources such as coal and iron ore. New steel mills are now
found in a variety of places, from California to North Carolina
and Nebraska; their resource is the local supply of scrap steel.
Because they are starting with scrap metal, the new industrial
facilities use far less energy and cause much less pollution7
than older steel mills that must start with virgin iron ore.
Similarly, the recycling of paper is changing where new paper
mills are constructed. In the past, mills were built near forested
areas where the timber for paper pro- duction was being logged.
Today, they are being built near cities that have large supplies
of recycled paper. New Jer- sey, for example, has 13 paper mills
using recycled paper and 8 steel “mini mills” producing steel
from scrap metal. Remarkably, New Jersey has little forested
land and no iron mines; resources for the paper and steel mills
come from materials already in use, exemplifying the power of
materials management.7
We have focused on renewable resources in previous parts of
this book (Chapter 11, agriculture; Chapter 12, forests; Chapter
13, wildlife; Chapter 18, water; and Chapter 21, air). We
discussed nonrenewable resources with respect to fossil fuels in
Chapter 15. The remainder of this chapter will discuss other
nonrenewable mineral resources and how to sustain them as
long as possible by intelligent waste management.
23.3 Mineral Resources
Minerals can be considered a very valuable, nonrenewable
heritage from the geologic past. Although new deposits are still
forming from Earth processes, these processes are producing
new deposits too slowly to be of use to us today or anytime
soon. Also, because mineral deposits are generally in small,
hidden areas, they must be discovered, and unfortunately most
of the easily found deposits have already been discovered and
exploited. Thus, if modern civilization were to vanish, our
descendants would have a harder time finding rich mineral
deposits than we did. It is interesting to speculate that they
might mine landfills for metals thrown away by our civilization.
Unlike bio- logical resources, minerals cannot be easily
managed to produce a sustained yield; the supply is finite.
Recycling and conservation will help, but, eventually, the
supply will be exhausted.
How Mineral Deposits Are Formed
Metals in mineral form are generally extracted from natu- rally
occurring, unusually high concentrations of Earth materials.
When metals are concentrated in such large amounts by
geologic processes, ore deposits are formed. The discovery of
natural ore deposits allowed early peoples to exploit copper, tin,
gold, silver, and other metals while slowly developing skills in
working with metals.
The origin and distribution of mineral resources is intimately
related to the history of the biosphere and to the entire geologic
cycle (see Chapter 7). Nearly all aspects and processes of the
geologic cycle are involved to some ex- tent in producing local
concentrations of useful materials. Earth’s outer layer, or crust,
is silica-rich, made up mostly of rock-forming minerals
containing silica, oxygen, and a few other elements. The
elements are not evenly distrib- uted in the crust: Nine elements
account for about 99% of the crust by weight (oxygen, 45.2%;
silicon, 27.2%; aluminum, 8.0%; iron, 5.8%; calcium, 5.1%;
magnesium, 2.8%; sodium, 2.3%; potassium, 1.7%; and
titanium, 0.9%). In general, the remaining elements are found in
trace concentrations.
The ocean, covering nearly 71% of Earth, is anoth- er reservoir
for many chemicals other than water. Most elements in the
ocean have been weathered from crustal rocks on the land and
transported to the oceans by rivers. Others are transported to the
ocean by wind or glaciers. Ocean water contains about 3.5%
dissolved solids, mostly chlorine (55.1% of the dissolved solids
by weight). Each cubic kilometer of ocean water contains about
2.0 metric tons of zinc, 2.0 metric tons of copper, 0.8 metric ton
of tin, 0.3 metric ton of silver, and 0.01 metric ton of gold.
These concentrations are low compared with those in the crust,
where corresponding values (in metric tons/km3) are zinc,
170,000; copper, 86,000; tin, 5,700; silver, 160; and gold, 5.
After rich crustal ore deposits are depleted, we will be more
likely to extract metals from lower grade deposits or even from
common rock than from ocean wa- ter, unless mineral extraction
technology becomes more efficient.
Why do the minerals we mine occur in deposits with
anomalously high local concentrations? Planetary scien- tists
now believe that all the planets in our solar system were formed
by the gravitational attraction of the forming sun, which
brought together the matter dispersed around it. As the mass of
the proto-Earth increased, the mate- rial condensed and was
heated by the process. The heat was sufficient to produce a
molten liquid core, consisting primarily of iron and other heavy
metals, which sank to- ward the center of the planet. When
molten rock material known as magma cools, heavier minerals
that crystallize (solidify) early may slowly sink toward the
bottom of the magma, whereas lighter minerals that crystallize
later are left at the top. Deposits of an ore of chromium, called
chromite, are thought to be formed in this way. When magma
containing small amounts of carbon is deeply bur- ied and
subjected to very high pressure during slow cool- ing
(crystallization), diamonds (which are pure carbon) may be
produced (Figure 23.3).8,9
Earth’s crust formed from generally lighter elements and is a
mixture of many different kinds. The elements in the crust are
not uniformly distributed because geologic processes (such as
volcanic activity, plate tectonics, and sedimentary processes),
as well as some biological pro- cesses, selectively dissolve,
transport, and deposit elements and minerals.
Sedimentary processes related to the transport of sedi- ments by
wind, water, and glaciers often concentrate ma- terials in
amounts sufficient for extraction. As sediments are transported,
running water and wind help segregate them by size, shape, and
density. This sorting is useful topeople. The best sand or sand
and gravel deposits for con- struction, for example, are those in
which the finer ma- terials have been removed by water or wind.
Sand dunes, beach deposits, and deposits in stream channels are
good examples. The sand and gravel industry amounts to several
billion dollars annually and, in terms of the total volume of
materials mined, is one of the largest nonfuel mineral industries
in the United States.5
Rivers and streams that empty into oceans and lakes carry
tremendous quantities of dissolved material from the weathering
of rocks. Over geologic time, a shallow marine basin may be
isolated by tectonic activity that uplifts its boundaries; or
climate variations, such as the ice ages, may produce large
inland lakes with no outlets. As these basins and lakes
eventually dry up, the dissolved materials drop out of solution
and form a wide variety of compounds, minerals, and rocks that
have important commercial value.9
Biological processes form some mineral deposits, such as
phosphates and iron ore deposits. The major iron ore deposits
exist in sedimentary rocks that were formed more than 2 billion
years ago.10 Although the processes are not fully understood, it
appears that major deposits of iron stopped forming when the
atmospheric concentration of oxygen reached its present
level.11
Organisms, too, form many kinds of minerals, such as the
calcium minerals in shells and bones. Some of these minerals
cannot be formed inorganically in the biosphere. Thirty-one
biologically produced minerals have been identified.12
Weathering, the chemical and mechanical decomposi- tion of
rock, concentrates some minerals in the soil, such as native gold
and oxides of aluminum and iron. (The more soluble elements,
such as silica, calcium, and sodium, are selectively removed by
soil and biological processes.) If sufficiently concentrated,
residual aluminum oxide forms an ore of aluminum known as
bauxite. Important nickel and cobalt deposits are also found in
soils developed from iron and magnesium-rich igneous rocks.
23.4 Figuring Out how Much Is Left
Estimating how much is left of our valuable and nonrenewable
mineral resources will help us estimate how long they are likely
to last at our present rate of use and motivate us to do
everything we can to sustain them as long as possible for future
generations. We can begin by looking at the classification of
minerals as resources and reserves.
Mineral Resources and Reserves
Mineral resources are broadly defined as known concentrations
of elements, chemical compounds, minerals, or rocks. Mineral
reserves are concentrations that at the time of evaluation can be
legally and economically extracted as a commodity that can be
sold at a profit (Figure 23.4).
The main point here is that resources are not reserves. An
analogy from a student’s personal finances may help clarify this
point. A student’s reserves are liquid assets, such as money in
the bank, whereas the student’s resources include the total
income the student can expect to earn dur- ing his or her
lifetime. This distinction is often critical to the student in
school because resources that may become available in the
future cannot be used to pay this month’s bills.13 For planning
purposes, it is important to continually reassess all components
of a total resource, considering new technology, the probability
of geologic discovery, and shifts in economic and political
conditions.
Availability and Use of Our Mineral Resources
Earth’s mineral resources can be divided into broad cat- egories
according to their use: elements for metal production and
technology, building materials, minerals for the chemical
industry, and minerals for agriculture. Metallic minerals can be
further classified by their abundance. Abundant metals include
iron, aluminum, chromium, manganese, titanium, and
magnesium. Scarce metals include copper, lead, zinc, tin, gold,
silver, platinum, ura- nium, mercury, and molybdenum.
Some minerals, such as salt (sodium chloride), are necessary for
life. Primitive peoples traveled long distances to obtain salt
when it was not locally available. Other minerals are desired or
considered necessary to maintain a particular level of
technology.
When we think about minerals, we usually think of metals; but
with the exception of iron, the predominant minerals are not
metallic. Consider the annual world con- sumption of a few
selected elements. Sodium and iron are used at a rate of
approximately 100–1,000 million metric tons per year; and
nitrogen, sulfur, potassium, and cal- cium at a rate of
approximately 10–100 million metric tons per year, primarily as
soil conditioners or fertilizers. Elements such as zinc, copper,
aluminum, and lead have annual world consumption rates of
about 3–10 million metric tons, and gold and silver are
consumed at annual rates of 10,000 metric tons or less. Of the
metallic miner- als, iron makes up 95% of all the metals
consumed; and nickel, chromium, cobalt, and manganese are
used mainly in alloys of iron (as in stainless steel).
The basic issue associated with mineral resources is not actual
exhaustion or extinction but the cost of main- taining an
adequate stock by mining and recycling. At some point, the
costs of mining exceed the worth of mate- rial. When the
availability of a particular mineral becomes limited, there are
four possible solutions:
• Find more sources.
• Recycle and reuse what has already been obtained.
• Reduce consumption.
• Find a substitute.
Which choice or combination of choices is made depends on
social, economic, and environmental factors.
U.S. Supply of Mineral Resources
Domestic supplies of many mineral resources in the Unit- ed
States are insufficient for current use and must be sup-
plemented by imports from other nations. For example, the
United States imports many of the minerals needed for its
complex military and industrial system, called strategic
minerals (such as bauxite, manganese, graphite, cobalt,
strontium, and asbestos). Of particular concern is the possibility
that the supply of a much-desired or much- needed mineral will
be interrupted by political, economic, or military instability in
the supplying nation.
That the United States—along with many other countries—
depends on a steady supply of imports to meet its domestic
demand does not necessarily mean that suf- ficient kinds and
amounts can’t be mined domestically. Rather, it suggests
economic, political, or environmental reasons that make it
easier, more practical, or more desir- able to import the
material. This has resulted in politi- cal alliances that otherwise
would be unlikely. Industrial countries often need minerals from
countries whose poli- cies they don’t necessarily agree with; as
a result, they make political concessions on human rights and
other is- sues that they would not otherwise make.3
Moreover, the fact remains that mineral resources are limited,
and this raises important questions. How long will a particular
resource last? How much short-term or long- term
environmental deterioration are we willing to accept to ensure
that resources are developed in a particular area? How can we
make the best use of available resources?
23.5 Impacts of Mineral Development
The impact of mineral exploitation depends on ore qual- ity,
mining procedures, local hydrologic conditions, cli- mate, rock
types, size of operation, topography, and many more
interrelated factors. In addition, our use of mineral resources
has a significant social impact.
Environmental Impacts
Exploration for mineral deposits generally has a minimal impact
on the environment if care is taken in sensitive areas, such as
arid lands, marshes, and areas underlain by permafrost. Mineral
mining and processing, however, generally have a considerable
impact on land, water, air, and living things. Furthermore, as it
becomes necessary to use ores of lower and lower grades, the
environmental effects tend to worsen. One example is the
asbestos fibers in the drinking water of Duluth, Minnesota, from
the disposal of waste from mining low-grade iron ore.
A major practical issue is whether open pit or under- ground
mines should be developed in an area. As you saw in our earlier
discussion of coal mining in Chapter 15, there are important
differences between the two kinds of mining.2 The trend in
recent years has been away from sub- surface mining and
toward large, open pit mines, such as the Bingham Canyon
copper mine in Utah (Figure 23.5). The Bingham Canyon mine
is one of the world’s largesthuman-made excavations, covering
nearly 8 km2 (3 mi2) to a maximum depth of nearly 800 m
(2,600 ft).
Surface mines and quarries today cover less than 0.5% of the
total area of the United States, but even though their impacts
are local, numerous local occurrences will eventu- ally
constitute a larger problem. Environmental degrada- tion tends
to extend beyond the immediate vicinity of a mine. Large
mining operations remove material in some areas and dump
waste in others, changing topography. At the very least, severe
aesthetic degradation is the result. In addition, dust may affect
the air quality, even though care is taken to reduce it by
sprinkling water on roads and on other sites that generate dust.
A potential problem with mineral resource develop- ment is the
possible release of harmful trace elements into the environment.
Water resources are particularly vulnerable even if drainage is
controlled and sediment pollution is reduced (see Chapter 15 for
more about this issue, including a discussion of acid mine
drainage). The white streaks in Figure 23.6 are mineral deposits
appar- ently leached from tailings from a zinc mine in Colorado.
Similar-looking deposits may cover rocks in rivers for many
kilometers downstream from some mining areas.
Mining-related physical changes in the land, soil, wa- ter, and
air indirectly affect the biological environment. Plants and
animals killed by mining activity or by contact with toxic soil
or water are some of the direct impacts. Indirect impacts include
changes in nutrient cycling, total biomass, species diversity,
and ecosystem stability. Periodic or accidental discharge of
low-grade pollutants through failure of barriers, ponds, or water
diversions, or through the breaching of barriers during floods,
earthquakes, or volcanic eruptions, also may damage local
ecological sys- tems to some extent.
Social Impacts
The social impacts of large-scale mining result from the rapid
influx of workers into areas unprepared for growth. This
population influx places stress on local services, such as water
supplies, sewage and solid-waste disposal systems, as well as on
schools, housing, and nearby recreation and wilderness areas.
Land use shifts from open range, for- est, and agriculture to
urban patterns. Construction and urbanization affect local
streams through sediment pollution, reduced water quality, and
increased runoff. Air quality suffers as a result of more
vehicles, construction dust, and power generation.
Perversely, closing down mines also has negative so- cial
impacts. Nearby towns that have come to depend on the income
of employed miners can come to resemble the well-known
“ghost towns” of the old American West. The price of coal and
other minerals also directly affects the livelihood of many small
towns. This is especially evident in the Appalachian Mountain
region of the United States, where coal mines have closed partly
because of lower prices for coal and partly because of rising
mining costs. One of the reasons mining costs are rising is the
increased level of environmental regulation of the mining indus-
try. Of course, regulations have also helped make mining safer
and have facilitated land reclamation. Some miners, however,
believe the regulations are not flexible enough, and there is
some truth to their arguments. For example, some mined areas
might be reclaimed for use as farmland now that the original
hills have been leveled. Regulations, however, may require that
the land be restored to its origi- nal hilly state, even though
hills make inferior farmland.
Minimizing the Environmental Impact of Mineral Development
Minimizing the environmental impacts of mineral development
requires consideration of the entire cycle of min- eral resources
shown in Figure 23.7. This diagram reveals that waste is
produced by many components of the cycle.
In fact, the major environmental impacts of mineral use are
related to waste products. Waste produces pollution that may be
toxic to people, may harm natural ecosystems and the biosphere,
and may be aesthetically displeasing. Waste may attack and
degrade air, water, soil, and living things. Waste also depletes
nonrenewable mineral resources and, when simply disposed of,
provides no offsetting benefits for human society.
Environmental regulations at the federal, state, and local levels
address pollution of air and water by all aspects of the mineral
cycle, and may also address reclamation of land used for mining
minerals. Today, in the United States, approximately 50% of the
land used by the mining industry has been reclaimed.
Minimizing the environmental effects of mining takes several
interrelated paths:3
• Reclaiming areas disturbed by mining (see A Closer Look
23.1).
• Stabilizing soils that contain metals to minimize their release
into the environment. Often this requires plac- ing contaminated
soils in a waste facility.
• Controlling air emissions of metals and other materials from
mining areas.
• Treating contaminated water before it can leave a mining site
or treating contaminated water that has left a mining site.
• Treating waste onsite and offsite. Minimizing onsite and
offsite problems by controlling sediment, water, and air
pollution through good engineering and conservation practices
is an important goal. Of particular interest is the development
of biotechnological processes such as biooxidation, bioleaching,
and biosorption, the bonding of waste to microbes, as well as
genetic engineering of microbes. These practices have enormous
potential for both extracting metals and minimizing
environmental degradation. At several sites, for example,
constructed wetlands use acid-tolerant plants to remove metals
from mine wastewaters and neutralize acids by biological ac-
tivity.14 The Homestake Gold Mine in South Dakota uses
biooxidation to convert contaminated water from the mining
operation into substances that are environ- mentally safe; the
process uses bacteria that have a natu- ral ability to oxidize
cyanide to harmless nitrates.15
• Practicing the three R’s of waste management. That is, Reduce
the amount of waste produced, Reuse waste as much as possible,
and maximize Recycling opportuni- ties. Wastes from some
parts of the mineral cycle, for example, may themselves be
considered ores because they contain materials that might be
recycled to provide energy or other products.16–18
We will look at the three R’s in greater detail in Section 23.7,
Integrated Waste Management.
23.6 Materials Management and Our Waste
History of Waste Disposal
During the first century of the Industrial Revolution, the volume
of waste produced in the United States was rela- tively small
and could be managed using the concept of “dilute and
disperse.” Factories were located near rivers because the water
provided a number of benefits, includ- ing easy transport of
materials by boat, enough water for processing and cooling, and
easy disposal of waste into the river. With few factories and a
sparse population, dilute and disperse was sufficient to remove
the waste from the immediate environment.19
As industrial and urban areas expanded, the concept of dilute
and disperse became inadequate, and a new concept,
“concentrate and contain,” came into use. It has become ap-
parent, however, that containment was, and is, not always
achieved. Containers, whether simple trenches excavated in the
ground or metal drums and tanks, may leak or break and allow
waste to escape. Health hazards resulting from past waste-
disposal practices have led to the present situa- tion, in which
many people have little confidence in gov- ernment or industry
to preserve and protect public health.20
In the United States and many other parts of the world, people
are facing a serious solid-waste disposal problem. Basically, we
are producing a great deal of waste and don’t have enough
acceptable space for disposing of it. It has been estimated that
within the next few years approximately half the cities in the
United States may run out of landfill space. Philadelphia, for
example, is es- sentially out of landfill space now and is
bargaining with other states on a monthly or yearly basis to
dispose of its trash. The Los Angeles area has landfill space for
only about ten more years.
To say we are actually running out of space for landfills isn’t
altogether accurate—land used for landfills is minute compared
to the land area of the United States. Rather, existing sites are
being filled, and it is difficult to site new landfills. After all, no
one wants to live near a waste-dis- posal site, be it a sanitary
landfill for municipal waste, an incinerator that burns urban
waste, or a hazardous waste- disposal operation for chemical
materials. This attitude is widely known as NIMBY (“not in my
backyard”).
The environmentally correct concept with respect to waste
management is to consider wastes as resources out of place.
Although we may not soon be able to reuse and recycle all
waste, it seems apparent that the increas- ing cost of raw
materials, energy, transportation, and land will make it
financially feasible to reuse and recycle more resources and
products. Moving toward this objective is moving toward an
environmental view that there is no such thing as waste. Under
this concept, waste would not exist because it would not be
produced—or, if produced, it would be a resource to be used
again. This is referred to as the “zero waste” movement.
Zero waste is the essence of what is known as indus- trial
ecology, the study of relationships among industrial systems
and their links to natural systems. Under the prin- ciples of
industrial ecology, our industrial society would function much
as a natural ecosystem functions. Waste from one part of the
system would be a resource for an- other part.21
Until recently, zero waste production was considered
unreasonable in the waste-management arena. However, it is
catching on. The city of Canberra, Australia, may be the first
community to propose a zero waste plan. Thou- sands of
kilometers away, in the Netherlands, a national waste reduction
goal of 70 to 90% has been set. How this goal is to be met is not
entirely clear, but a large part of the planning involves taxing
waste in all its various forms, from smokestack emissions to
solids delivered to landfills. Already, in the Netherlands,
pollution taxes have nearly eliminated discharges of heavy
metals into waterways. At the household level, the government
is considering programs—known as “pay as you throw”—that
would charge people by the volume of waste they produce. Tax-
ing waste, including household waste, motivates people to
produce less of it.22
Of particular importance to waste management is the growing
awareness that many of our waste-management programs
involve moving waste from one site to another, and not really
managing it. For example, waste from ur- ban areas may be
placed in landfills; but eventually these landfills may cause new
problems by producing methane gas or noxious liquids that leak
from the site and contami- nate the surrounding areas. Managed
properly, however, methane produced from landfills is a
resource that can be burned as a fuel (an example of industrial
ecology).
In sum, previous notions of waste disposal are no longer
acceptable, and we are rethinking how we deal with materi- als,
with the objective of eliminating the concept of waste entirely.
In this way, we can reduce the consumption of min- erals and
other virgin materials, which depletes our environ- ment, and
live within our environment more sustainably.21
23.7 Integrated Waste Management
The dominant concept today in managing waste is known as
integrated waste management (IWM), which is best defined as a
set of management alternatives that includes reuse, source
reduction, recycling, composting, landfill, and incineration.
Reduce, Reuse, Recycle
The ultimate objective of the three R’s of IWM is to re- duce
the amount of urban (municipal solid waste) and other waste
that must be disposed of in landfills, incin- erators, and other
waste-management facilities. Study of the waste stream (the
waste produced) in areas that use IWM technology suggests that
the amount (by weight) of urban refuse disposed of in landfills
or incinerated can be reduced by at least 50% and perhaps as
much as 70%. A 50% reduction by weight could be achieved by
(1) source reduction, such as packaging better designed to
reduce waste (10%reduction); (2) large-scale composting pro-
grams (10% reduction); and (3) recycling programs (30%
reduction).20
As this list indicates, recycling is a major player in reducing the
urban waste stream. Metals such as iron, aluminum, copper, and
lead have been recycled for many years and are still being
recycled today. The metal from al- most all of the millions of
automobiles discarded annually in the United States is
recycled.16,17 The total value of re- cycled metals is about $50
billion. Iron and steel account for approximately 90% by weight
and 40% by total value of recycled metals. Iron and steel are
recycled in such large volumes for two reasons. First, the
market for iron and steel is huge, and as a result there is a large
scrap collec- tion and scrap processing industry. Second, an
enormous economic and environmental burden would result
from failure to recycle because over 50 million tons of scrap
iron and steel would have to be disposed of annually.17,18
Today in the United States we recycle over 30% of our total
municipal solid waste, up more than 10% from 25 years ago.
This amounts to 99% of automobile bat- teries, 63% of steel
cans, 71% office type papers, 63% of aluminum cans, 35% of
tires, 28% of glass contain- ers, and about 30% of various
plastic containers (Table 23.2).23 This is encouraging news.
Can recycling actu- ally reduce the waste stream by 50%?
Recent work sug- gests that the 50% goal is reasonable. In fact,
it has been reached in some parts of the United States, and the
po- tential upper limit for recycling is considerably higher. It is
estimated that as much as 80 to 90% of the U.S. waste stream
might be recovered through what is known as in- tensive
recycling.24 A pilot study involving 100 families inEast
Hampton, New York, achieved a level of 84%. More realistic
for many communities is partial recycling, which targets
specific materials such as glass, aluminum cans, plastic, organic
material, and newsprint. Partial recycling can provide a
significant reduction, and in many places it is approaching or
even exceeding 50%.25,26
Recycling is simplified with single-stream recycling, in which
paper, plastic, glass, and metals are not sepa- rated before
collection; the waste is commingled in one container and
separated later at recycling centers. This is more convenient for
homeowners, reduces the cost of col- lection, and increases the
rate of recycling. Thus, single- stream recycling is growing
rapidly.
Public Support for Recycling
There is enthusiastic public support for recycling in the United
States today. Many people understand that managing our waste
has many advantages to society as a whole and the environment
in particular. People like the notion of recycling because they
correctly assume they are helping to conserve resources, such as
forests, that make up much of the nonurban environment of the
planet.
An encouraging sign of public support for the environ- ment is
the increased willingness of industry and business to support
recycling on a variety of scales. For example, fast-food
restaurants are using less packaging and provid- ing onsite bins
for recycling paper and plastic. Groceries and supermarkets are
encouraging the recycling of plastic and paper bags by
providing bins for their collection, and some offer inexpensive
reusable canvas shopping bags in- stead of disposables.
Companies are redesigning products so that they can be more
easily disassembled after use and the various parts recycled. As
this idea catches on, small appliances such as electric frying
pans and toasters may be recycled rather than ending up in
landfills. The automo- bile industry is also responding by
designing automobiles with coded parts so that they can be more
easily disassem- bled (by professional recyclers) and recycled,
rather than left to become rusting eyesores in junkyards.
On the consumer front, people are more likely to purchase
products that can be recycled or that come in containers that are
more easily recycled or composted. Many consumers have
purchased small home appliances that crush bottles and
aluminum cans, reducing their volume and facilitating
recycling. The entire arena is rapidly changing, and innovations
and opportunities will undoubtedly continue.
Large cities from New York to Los Angeles have initi- ated
recycling programs, but many people are concerned that
recycling is not yet “cost-effective.” As with many other
environmental solutions, implementing the IWM concept
successfully can be a complex undertaking. In some
communities where recycling has been successful, it has
resulted in glutted markets for recycled products, which has
sometimes required temporarily stockpiling or suspending the
recycling of some items. It is apparent that if recycling is to be
successful, markets and processing facilities will also have to
be developed to ensure that recy- cling is a sound financial
venture as well as an important part of IWM.
To be sure, there are success stories, such as a large urban paper
mill on New York’s Staten Island that recycles more than 1,000
tons of paper per day. It is claimed that this paper mill saves
more than 10,000 trees a day and uses only about 10% of the
electricity required to make paper from virgin wood processing.
On the West Coast, San Francisco has an innovative and
ambitious recycling program that diverts nearly 50% of the
urban waste from landfills to recycling programs. City officials
are even talk- ing about the concept of zero waste, hoping to
achieve to- tal recycling of waste by 2020. In part, this goal is
being achieved by instigating a “pay-as-you-throw” approach;
businesses and individuals are charged for disposal of gar- bage
but not for materials that are recycled. Materials from the waste
of the San Francisco urban area are shipped as far away as
China and the Philippines to be recycled into usable products;
organic waste is sent to agricultural areas; and metals, such as
aluminum, are sent around California and to other states where
they are recycled.
To understand some of the issues concerning recy- cling and its
cost, consider the following points:
• The average cost of disposal at a landfill is about $40/ ton in
the United States, and even at a higher price of about $80/ton
may be cheaper than recycling.
• Landfill fees in Europe range from $200 to $300/ton.
• Europe has been more successful in recycling, in part because
countries such as Germany hold manufacturers responsible for
disposing of the industrial goods they produce, as well as the
packaging.
• In the United States, packaging accounts for approxi- mately
one-third of all waste generated by manufacturing.
• The cost to cities such as New York, which must export its
waste out of state, is steadily rising and is expected to exceed
the cost of recycling within about ten years.
• Placing a 10-cent refundable deposit on all beverage
containers except milk would greatly increase the num- ber
recycled. For example, states with a deposit sys- tem have an
average recycling rate of about 70–95% of bottles and cans,
whereas states that do not have a refundable-deposit system
average less than 30%.
• When people have to pay for trash disposal at a landfill, but
are not charged for materials that are recycled— such as paper,
plastic, glass, and metals—the success of recycling is greatly
enhanced.
• Beverage companies do not particularly favor requir- ing a
refundable deposit for containers. They claim that the additional
costs to do this would be several billion dollars, but they do
agree that recovery rates would be higher, providing a steadier
supply of recycled metal, such as aluminum, as well as plastic.
• Education is a big issue with recycling. Many people still
don’t know which items are recyclable and which are not.
• Global markets for recyclable materials, such as paper and
metals, have potential for expansion, particularly for large
urban areas on the seacoast, where shipping materi- als is
economically viable. Recycling in the United States today is a
$14 billion industry; if done right, it generates new jobs and
revenue for participating communities.
There are a number of good reasons to recycle mu- nicipal solid
waste:27
• Saving money by recycling: For many years we have known
that it is less expensive to make products us- ing materials that
have been recycled. Using recycled aluminum has been
mentioned more than many other materials, probably because
about 90% more energy is expended to extract and use new
aluminum resources from the planet than to recycle and reuse
that aluminum. Products made from recycled metals and other
materi- als are generally less expensive than those manufactured
from materials mined for the first time from Earth.
• Recycling increases employment: As we recycle more, new
businesses are generated in transporting, processing, and selling
recycled materials to be used in manufactur- ing new goods. On
the one hand, for every 100,000 tons of waste that enters the
waste stream and ends up in a landfill, six new jobs are created.
On the other hand, if that same 100,000 tons of waste is
recycled, six times as many jobs may be created. The number of
jobs required at landfills is less than the number created through
recycling because, as materials are reused, more employment
results, including jobs for people who sort, transport, and sell
the material, as well as for engineers and chemists who work to
create better uses for those recycled materials. Furthermore,
these jobs are often created in urban environments where more
people live and work. Today, more than one million people are
em- ployed in the recycling industry, and over 55,000 recy-
cling and reuse facilities have been built.
• Recycling politics: Becoming energy self-sufficient has been a
longtime U.S. objective. Recent oil and gas dis- coveries are
heading us in that direction, but recycling of materials can also
play a role. Today, the United States recycles just over 30% of
municipal solid waste, and this recycling results in a savings of
about 5 billion gallons of gasoline. Thus, it is argued that
through greater use of recycling, the United States and other
countries that recycle may be more self-reliant and independent.
• Recycling and values: One of the fundamental prin- ciples of
this book centers on values and science. It is argued that
recycling is the right thing to do because it provides for better
management of the Earth’s resources. Value judgments include
the fact that it is far better to reuse and recycle than to simply
discard materials and products we have used. Extraction of raw
materials from the planet poses serious environmental concerns,
and reusing those products reduces our impact. An example
often cited is the use of recycled paper so that fewer trees need
to be harvested for paper production, thereby reducing the
impact of deforestation. Another example is the use of plastics
that, when recycled and reprocessed, can produce a number of
products we rou- tinely use (see A Closer Look 23.2). The
ethical and moral argument is that by recycling and reusing
more we can help minimize potential damages resulting from
resource exploitation.
Recycling of Human Waste
The use of human waste, or “night soil,” on croplands is an
ancient practice. In Asia, recycling of human waste has a long
history. Chinese agriculture was sustained for thousands of
years through collection of human waste, which was spread over
agricultural fields. The practice grew, and by the early 20th
century the land application of sewage was a primary disposal
method in many met- ropolitan areas in countries, including
Mexico, Austra- lia, and the United States.28 Early uses of
human waste for agriculture occasionally spread infectious
diseases through bacteria, viruses, and parasites in waste
applied to crops. Today, with the globalization of agriculture,
we still see occasional warnings and outbreaks of disease from
contaminated vegetables (see Chapter 19).
A major problem associated with recycling human waste is that,
along with human waste, thousands of chemicals and metals
flow through our modern waste stream. Even garden waste that
is composted may contain harmful chemicals, such as
pesticides.28
23.8 Municipal Solid-Waste Management
Municipal solid-waste management continues to be a problem in
the United States and other parts of the world. In many areas,
particularly in developing countries, waste- management
practices are inadequate. These practices, which include poorly
controlled open dumps and illegal roadside dumping, can spoil
scenic resources, pollute soil and water, and pose health
hazards.
Illegal dumping is as much a social as a physical problem
because many people are simply disposing of waste as
inexpensively and as quickly as possible, perhaps not see- ing
their garbage as an environmental problem. If nothing else, this
is a tremendous waste of resources, since much of what is
dumped could be recycled or reused. In areas where illegal
dumping has been reduced, the keys have been awareness,
education, and alternatives. Education programs teach people
about the environmental problems of unsafe, unsanitary
dumping of waste, and funds are provided for cleanup and for
inexpensive collection and recycling of trash at sites of origin.
Next, we look at the composition of solid waste in the United
States, and then we describe specific disposal methods: onsite
disposal, composting, incineration, open dumps, and sanitary
landfills.
Composition of Solid Waste
The average content of solid waste that is not recycled and is
likely to end up at a disposal site in the United States is shown
in Figure 23.10. It is no surprise that paper is by far the most
abundant component. However, considerable variation can be
expected, based on factors such as land use, economic base,
industrial activity, climate, and time of year.
People have many misconceptions about our waste stream.29
With all the negative publicity about fast-food packaging,
polystyrene foam, and disposable diapers, many people assume
that these make up a large percentage of the waste stream and
are responsible for the rapid filling of landfills. However,
excavations into modern landfills using archaeological tools
have cleared up some misconceptions. We now know that fast-
food packaging accounts for only about 0.25% of the average
landfill; disposable diapers, ap- proximately 0.8%; and
polystyrene products about 0.9%.29 Paper is a major constituent
in landfills, perhaps as much as 50% by volume and 40% by
weight. The largest single item is newsprint, which accounts for
as much as 18% by volume.30 Newsprint is one of the major
items targeted for recycling because big environmental
dividends can be expected. However, (and this is a value
judgment), the need to deal with the major waste products
doesn’t mean that we need not cut down on our use of
disposable diapers, poly- styrene, and other paper products. In
addition to creating a need for disposal, these products are made
from resources that might be better managed.
Onsite Disposal
A common onsite disposal method in urban areas is the garbage
disposal device installed in the wastewater pipe under the
kitchen sink to grind garbage and flush it into the sewer system.
This effectively reduces the amount of handling and quickly
removes food waste. What’s left of it is transferred to sewage
treatment plants, where solids remaining as sewage sludge still
must be disposed of.31,32
Composting
Composting is a biochemical process in which organic
materials, such as lawn clippings and kitchen scraps, de-
compose to a rich, soil-like material. The process involves rapid
partial decomposition of moist solid organic waste by aerobic
organisms. Although simple backyard com- post piles may come
to mind, large-scale composting as a waste-management option
is generally carried out in the controlled environment of
mechanical digesters. This technique is popular in Europe and
Asia, where intense farming creates a demand for compost.
However, a major drawback of composting is the necessity of
separating organic material from other waste. Therefore, it is
probably economically advantageous only where organic
material is collected separately from other waste. Another
negative is that composting plant debris previously treated with
herbicides may produce a compost toxic to some plants.
Nevertheless, composting is an important component of IWM,
and its contribution continues to grow.31,32
Incineration
Incineration burns combustible waste at temperatures high
enough (900°–1,000°C, or 1,650°–1,830°F) to consume all
combustible material, leaving only ash and noncombustibles to
dispose of in a landfill. Under ideal conditions, incineration
may reduce the volume of waste by 75–95%.32 In practice,
however, the actual decrease in volume is closer to 50% because
of maintenance problems, as well as waste supply problems.
Besides reducing a large volume of combustible waste to a
much smaller volume of ash, incineration has another
advantage: It can be used to supplement other fuels and
generate electrical power.
Incineration of urban waste is not necessarily a clean process; it
may produce air pollution and toxic ash. In the United States,
for example, incineration is apparently a significant source of
environmental dioxin, a carcinogenic toxin (see Chapter 8).33
Smokestacks from incinerators also may emit oxides of nitrogen
and sulfur, which lead to acid rain; heavy metals, such as lead,
cadmium, and mercury; and carbon dioxide, which is related to
global warming.
In modern incineration facilities, smokestacks fitted with
special devices trap pollutants, but the process of pol- lutant
abatement is expensive. The plants themselves are expensive,
and government subsidization may be needed to aid in their
establishment. Evaluation of the urban waste stream suggests
that an investment of $8 billion could build enough incinerators
in the United States to burn approximately 25% of the solid
waste that is generated. However, a similar investment in source
reduction, recycling, and composting could divert as much as
75% of the nation’s urban waste stream away from landfills.24
The economic viability of incinerators depends on revenue from
the sale of the energy produced by burning the waste. As
recycling and composting increase, they will compete with
incineration for their portion of the waste stream, and sufficient
waste (fuel) to generate a profit from incineration may not be
available. The main conclu- sion that can be drawn based on
IWM principles is that a combination of reusing, recycling, and
composting could reduce the volume of waste requiring disposal
at a landfill by at least as much as incineration.24
Open Dumps (Poorly Controlled Landfills)
In the past, solid waste was often disposed of in open dumps
(now called landfills), where refuse was piled up and left
uncovered. Thousands of open dumps have been closed in recent
years, and new open dumps are banned in the United States and
many other countries. Nevertheless, many are still being used
worldwide (Figure 23.11)
Sanitary Landfills
A sanitary landfill (also called a municipal solid-waste landfill)
is designed to concentrate and contain refuse without creating a
nuisance or hazard to public health or safety. The idea is to
confine the waste to the smallest prac- tical area, reduce it to
the smallest practical volume, and cover it with a layer of
compacted soil at the end of each day of operation, or more
frequently if necessary. Cover- ing the waste is what makes the
landfill sanitary. The com- pacted layer restricts (but does not
eliminate) continued access to the waste by insects, rodents, and
other animals, such as seagulls. It also isolates the refuse,
minimizing the amount of surface water seeping into it and the
amount of 34 gas escaping from it.
Leachate
The most significant hazard from a sanitary landfill is pollution
of groundwater or surface water. If waste buried in a landfill
comes into contact with water percolating down from the
surface or with groundwater moving later- ally through the
refuse, leachate—a noxious, mineralized liquid capable of
transporting bacterial pollutants—is produced.35 For example,
two landfills dating from the 1930s and 1940s on Long Island,
New York, have pro- duced subsurface leachate trails (plumes)
several hundred meters wide that have migrated kilometers from
the dis- posal site. The nature and strength of the leachate pro-
duced at a disposal site depend on the composition of the waste,
the amount of water that infiltrates or moves through the waste,
and the length of time that infiltrated water is in contact with
the refuse.32
Site Selection
The siting of a sanitary landfill is very important and must take
into consideration a number of factors, includ- ing topography,
location of the groundwater table, amount of precipitation, type
of soil and rock, and location of the disposal zone in the surface
water and groundwater flow system. A favorable combination of
climatic, hydrologic, and geologic conditions helps to ensure
reasonable safety in containing the waste and its leachate.36
The best sites are in arid regions, where disposal conditions are
relatively safe be- cause little leachate is produced. In a humid
environment, some leachate is always produced; therefore, an
acceptable level of leachate production must be established to
deter- mine the most favorable sites in such environments. What
is acceptable varies with local water use, regulations, and the
ability of the natural hydrologic system to disperse, di- lute, and
otherwise degrade the leachate to harmless levels.
Elements of the most desirable site in a humid cli- mate with
moderate to abundant precipitation are shown in Figure 23.12.
The waste is buried above the water table in relatively
impermeable clay and silt that water cannot easily move
through. Any leachate therefore remains in the vicinity of the
site and degrades by natural filtering ac- tion and chemical
reactions between clay and leachate.37,38
Siting waste-disposal facilities also involves important social
considerations. Often, planners choose sites where they expect
minimal local resistance or where they perceive land to have
little value. Waste-disposal facilities are frequently located in
areas where residents tend to have low socioeconomic status or
belong to a particular racial or ethnic group. The study of social
issues in siting waste facilities, chemical plants and other such
facilities is an emerging field known as environmental justice.
Monitoring Pollution in Sanitary Landfills
Once a site is chosen for a sanitary landfill and before filling
starts, monitoring the movement of groundwater should begin.
Monitoring involves periodically taking samples of water and
gas from specially designed moni- toring wells. Monitoring the
movement of leachate and gases should continue as long as
there is any possibility of pollution, and it is particularly
important after the site is completely filled and permanently
covered. Continued monitoring is necessary because a certain
amount of set- tling always occurs after a landfill is completed;
if small depressions form, surface water may collect, infiltrate,
and produce leachate. Monitoring and proper maintenance of an
abandoned landfill reduce its pollution potential.34
How Pollutants Can Enter the Environment from Sanitary
Landfills Pollutants from a solid-waste disposal site can enter
the environment through as many aseight paths (Figure
23.13):41
1. Methane, ammonia, hydrogen sulfide, and nitrogen gases can
be produced from compounds in the waste and the soil and can
enter the atmosphere.
2. Heavy metals, such as lead, chromium, and iron, can be
retained in the soil.
3. Soluble materials, such as chloride, nitrate, and sul- fate, can
readily pass through the waste and soil to the groundwater
system.
4. Overland runoff can pick up leachate and transport it into
streams and rivers.
5. Some plants (including crops) growing in the disposal area
can selectively take up heavy metals and other toxic materials.
These materials are then passed up the food chain as people and
animals eat the plants.
6. If plant residue from crops left in fields contains toxic
substances, these substances return to the soil.
7. Streams and rivers may become contaminated by waste from
groundwater seeping into the channel (3) or by surface runoff
(4).
8. Wind can transport toxic materials to other areas. Modern
sanitary landfills are engineered to include multiple barriers:
clay and plastic liners to limit the movement of leachate;
surface and subsurface drainage to collect leachate; systems to
collect methane gas from decomposing waste; and groundwater
monitoring to de- tect leaks of leachate below and adjacent to
the landfill. A thorough monitoring program considers all eight
possible paths by which pollutants enter the environment. In
prac- tice, however, monitoring seldom includes all pathways. It
is particularly important to monitor the zone above the water
table to identify potential pollution before it reaches and
contaminates groundwater, where correction would be very
expensive. Figure 23.14 shows (a) an idealized dia- gram of a
landfill that uses the multiple barrier approach and (b) a
photograph of a landfill site under construction.
Federal Legislation for Sanitary Landfills
New landfills that opened in the United States after 1993 must
comply with stricter requirements under the Resource
Conservation and Recovery Act of 1980. The legislation, as its
title states, is intended to strengthen and standardize the design,
operation, and monitoring of sani- tary landfills. Landfills that
cannot comply with regulations face closure. However, states
may choose between two options: (1) comply with federal
standards or (2) seek EPA approval of solid-waste management
plans. The federal standards include the following:
• Landfills may not be sited on floodplains, wetlands,
earthquake zones, unstable land, or near airports (birds drawn to
landfill sites are a hazard to aircraft).
• Landfills must have liners.
• Landfills must have a leachate collection system.
• Landfill operators must monitor groundwater for many
specified toxic chemicals.
• Landfill operators must meet financial assurance criteria to
ensure that monitoring continues for 30 years after the landfill
is closed.
EPA approval of a state’s landfill program allows greater
flexibility:
• Groundwater monitoring may be suspended if the landfill
operator can demonstrate that hazardous con- stituents are not
migrating from the landfill.
• Alternative types of daily cover over the waste may be used.
• Alternative groundwater protection standards are al- lowed.
• Alternative schedules for documentation of groundwa- ter
monitoring are allowed.
• Under certain circumstances, landfills in wetlands and fault
zones are allowed.
• Alternative financial assurance mechanisms are allowed.
Given the added flexibility, it appears advantageous for states
to develop EPA-approved waste-management plans.
Reducing the Waste that Ends Up in a Landfill
Most of the municipal solid waste we generate is from our
homes, and over 50% of it could be diverted from the landfill by
the 3 R’s of waste management: reduce, reuse, and recycle.
Diversion may eventually be increased to as much as 85%
through improved waste management. In other words, the life of
the landfill can be extended by keeping more waste out of the
landfill through conserva- tion and recycling, or through turning
waste, even waste that is presently buried, into a source of clean
energy. The latter involves first removing materials that can be
recy- cled, then linking noncombustion thermal or biochemical
processes with the remaining solid waste to produce elec- tricity
and alternative fuels (for example, biodiesel). The less waste in
the landfill, the less potential for pollution of ground and
surface water, along with the important fringe benefit of green
energy.
The average waste per person in the United States in- creased
from about 1 kg (2.2 lb) per day in 1960 to 2 kg (4.5 lb) per day
in 2008. This is an annual growth rate of about 1.5% per year
and is not sustainable because the doubling time for waste
production is only a few decades. The 236 million tons we
produced in 2003 would be close to 500 million tons by 2050,
and we are already having big waste-management problems
today. Table 23.3 lists some of the many ways you could reduce
the waste you generate. What other ways can you think of?
23.9 hazardous Waste
Creation of new chemical compounds has proliferated in recent
years. In the United States, approximately 1,000 new chemicals
are marketed each year, and about 70,000 chemicals are
currently on the market. Although many of these chemicals have
been beneficial to people, approxi- mately 35,000 chemicals
used in the United States are classified as definitely or
potentially hazardous to people or ecosystems if they are
released into the environment as waste—and unfortunately, a lot
of it is.
The United States currently produces about 700 million metric
tons of hazardous chemical waste per year, referred to more
commonly as hazardous waste. About 70% of it is generated
east of the Mississippi River, and about half of the total by
weight is generated by chemical products in- dustries. The
electronics industry (see A Closer Look 23.3 for a discussion of
e-waste) and petroleum and coal prod- ucts industries each
contribute about 10%.42–44 Hazard- ous waste may also enter
the environment when buildings are destroyed by events such as
fires and hurricanes, releas- ing paints, solvents, pesticides, and
other chemicals that were stored in them, or when debris from
damaged build- ings is later burned or buried. As a result,
collection of such chemicals after natural disasters is an
important goal in managing hazardous materials.
In the mid-20th century, as much as half the to- tal volume of
hazardous waste produced in the United States was
indiscriminately dumped.43 Some was illegal- ly dumped on
public or private lands, a practice called midnight dumping.
Buried drums of illegally dumped hazardous waste have been
discovered at hundreds of sites by contractors while in the
process of constructing buildings and roads. Cleanup has been
costly and has delayed projects.42
The case of Love Canal is a well-known hazardous waste horror
story. In 1976, in a residential area near Niagara Falls, New
York, trees and gardens began to die. Rubber on tennis shoes
and bicycle tires disintegrated. Puddles of toxic substances
began to ooze through the soil. A swimming pool popped from
its foundation and floated in a bath of chemicals.
The story of Love Canal started in 1892 when Wil- liam Love
excavated a canal 8 km (5 mi) long as part of the development
of an industrial park. The development didn’t need the canal
when inexpensive electricity arrived, so the uncompleted canal
remained unused for decades and became a dump for wastes.
From 1920 to 1952, some 20,000 tons of more than 80
chemicals were dumped into the canal. In 1953 the Hooker
Chemical Company— which produced the insecticide DDT as
well as an herbi- cide and chlorinated solvents, and had dumped
chemicals into the canal—was pressured to donate the land to
the city of Niagara Falls for $1.00. The city knew that chemi-
cal wastes were buried there, but no one expected any problems.
Eventually, several hundred homes and an el- ementary school
were built on and near the site, and for years everything seemed
fine. Then, in 1976–1977, heavy rains and snows triggered a
number of events, making Love Canal a household word.42
A study of the site identified many substances sus- pected of
being carcinogens, including benzene, dioxin, dichlorethylene,
and chloroform. Although officials ad- mitted that little was
12The Rigors ofKidney DialYsisfor Robert BanesLaurie K.docx
12The Rigors ofKidney DialYsisfor Robert BanesLaurie K.docx
12The Rigors ofKidney DialYsisfor Robert BanesLaurie K.docx
12The Rigors ofKidney DialYsisfor Robert BanesLaurie K.docx
12The Rigors ofKidney DialYsisfor Robert BanesLaurie K.docx
12The Rigors ofKidney DialYsisfor Robert BanesLaurie K.docx
12The Rigors ofKidney DialYsisfor Robert BanesLaurie K.docx
12The Rigors ofKidney DialYsisfor Robert BanesLaurie K.docx
12The Rigors ofKidney DialYsisfor Robert BanesLaurie K.docx
12The Rigors ofKidney DialYsisfor Robert BanesLaurie K.docx
12The Rigors ofKidney DialYsisfor Robert BanesLaurie K.docx
12The Rigors ofKidney DialYsisfor Robert BanesLaurie K.docx
12The Rigors ofKidney DialYsisfor Robert BanesLaurie K.docx
12The Rigors ofKidney DialYsisfor Robert BanesLaurie K.docx
12The Rigors ofKidney DialYsisfor Robert BanesLaurie K.docx
12The Rigors ofKidney DialYsisfor Robert BanesLaurie K.docx

More Related Content

Similar to 12The Rigors ofKidney DialYsisfor Robert BanesLaurie K.docx

Skloot, Rebecca - The Immortal Life OfHenrietta Lacks.docx
Skloot, Rebecca - The Immortal Life OfHenrietta Lacks.docxSkloot, Rebecca - The Immortal Life OfHenrietta Lacks.docx
Skloot, Rebecca - The Immortal Life OfHenrietta Lacks.docxedgar6wallace88877
 
u.s. Constitutions Amendment14th Amendment (excerpt).docx
u.s. Constitutions Amendment14th Amendment (excerpt).docxu.s. Constitutions Amendment14th Amendment (excerpt).docx
u.s. Constitutions Amendment14th Amendment (excerpt).docxwillcoxjanay
 
Mini Research Papers - Benefits Of Using Essay W
Mini Research Papers - Benefits Of Using Essay WMini Research Papers - Benefits Of Using Essay W
Mini Research Papers - Benefits Of Using Essay WKatie Harris
 
Write A Scholarship Essay - LastchancemagS Diary
Write A Scholarship Essay - LastchancemagS DiaryWrite A Scholarship Essay - LastchancemagS Diary
Write A Scholarship Essay - LastchancemagS DiaryDiana Oliva
 
Write A Persuasive Essay Topics. Online assignment writing service.
Write A Persuasive Essay Topics. Online assignment writing service.Write A Persuasive Essay Topics. Online assignment writing service.
Write A Persuasive Essay Topics. Online assignment writing service.Alicia Brown
 
Human, all too human.
Human, all too human.Human, all too human.
Human, all too human.SamyOserapis
 

Similar to 12The Rigors ofKidney DialYsisfor Robert BanesLaurie K.docx (6)

Skloot, Rebecca - The Immortal Life OfHenrietta Lacks.docx
Skloot, Rebecca - The Immortal Life OfHenrietta Lacks.docxSkloot, Rebecca - The Immortal Life OfHenrietta Lacks.docx
Skloot, Rebecca - The Immortal Life OfHenrietta Lacks.docx
 
u.s. Constitutions Amendment14th Amendment (excerpt).docx
u.s. Constitutions Amendment14th Amendment (excerpt).docxu.s. Constitutions Amendment14th Amendment (excerpt).docx
u.s. Constitutions Amendment14th Amendment (excerpt).docx
 
Mini Research Papers - Benefits Of Using Essay W
Mini Research Papers - Benefits Of Using Essay WMini Research Papers - Benefits Of Using Essay W
Mini Research Papers - Benefits Of Using Essay W
 
Write A Scholarship Essay - LastchancemagS Diary
Write A Scholarship Essay - LastchancemagS DiaryWrite A Scholarship Essay - LastchancemagS Diary
Write A Scholarship Essay - LastchancemagS Diary
 
Write A Persuasive Essay Topics. Online assignment writing service.
Write A Persuasive Essay Topics. Online assignment writing service.Write A Persuasive Essay Topics. Online assignment writing service.
Write A Persuasive Essay Topics. Online assignment writing service.
 
Human, all too human.
Human, all too human.Human, all too human.
Human, all too human.
 

More from moggdede

CASE STUDY COMMENTARY•  Individual written task in Harvard sty.docx
CASE STUDY COMMENTARY•  Individual written task in Harvard sty.docxCASE STUDY COMMENTARY•  Individual written task in Harvard sty.docx
CASE STUDY COMMENTARY•  Individual written task in Harvard sty.docxmoggdede
 
Case Study Chapter 5 100 wordsTranscultural Nursing in the.docx
Case Study Chapter 5 100 wordsTranscultural Nursing in the.docxCase Study Chapter 5 100 wordsTranscultural Nursing in the.docx
Case Study Chapter 5 100 wordsTranscultural Nursing in the.docxmoggdede
 
Case Study Chapter 10 Boss, We’ve got a problemBy Kayla Cur.docx
Case Study Chapter 10 Boss, We’ve got a problemBy Kayla Cur.docxCase Study Chapter 10 Boss, We’ve got a problemBy Kayla Cur.docx
Case Study Chapter 10 Boss, We’ve got a problemBy Kayla Cur.docxmoggdede
 
CASE STUDY Caregiver Role Strain Ms. Sandra A. Sandra, a 47-year-o.docx
CASE STUDY Caregiver Role Strain Ms. Sandra A. Sandra, a 47-year-o.docxCASE STUDY Caregiver Role Strain Ms. Sandra A. Sandra, a 47-year-o.docx
CASE STUDY Caregiver Role Strain Ms. Sandra A. Sandra, a 47-year-o.docxmoggdede
 
Case Study Answers Week 7 and 8Group OneIn your grou.docx
Case Study Answers Week 7 and 8Group OneIn your grou.docxCase Study Answers Week 7 and 8Group OneIn your grou.docx
Case Study Answers Week 7 and 8Group OneIn your grou.docxmoggdede
 
Case Study and Transition Plan TemplateCase StudyD.docx
Case Study and Transition Plan TemplateCase StudyD.docxCase Study and Transition Plan TemplateCase StudyD.docx
Case Study and Transition Plan TemplateCase StudyD.docxmoggdede
 
Case Study AnalysisRead Compassion for Samantha Case Study.docx
Case Study AnalysisRead Compassion for Samantha Case Study.docxCase Study AnalysisRead Compassion for Samantha Case Study.docx
Case Study AnalysisRead Compassion for Samantha Case Study.docxmoggdede
 
Case Study AnalysisAn understanding of cells and cell behavi.docx
Case Study AnalysisAn understanding of cells and cell behavi.docxCase Study AnalysisAn understanding of cells and cell behavi.docx
Case Study AnalysisAn understanding of cells and cell behavi.docxmoggdede
 
Case Study Analysis and FindingsThe final assignment for this co.docx
Case Study Analysis and FindingsThe final assignment for this co.docxCase Study Analysis and FindingsThe final assignment for this co.docx
Case Study Analysis and FindingsThe final assignment for this co.docxmoggdede
 
Case Study Analysis A TutorialWhat is it Case studies are a .docx
Case Study Analysis  A TutorialWhat is it  Case studies are a .docxCase Study Analysis  A TutorialWhat is it  Case studies are a .docx
Case Study Analysis A TutorialWhat is it Case studies are a .docxmoggdede
 
Case Study AlcoholCertain occasional behaviors can cause more tro.docx
Case Study AlcoholCertain occasional behaviors can cause more tro.docxCase Study AlcoholCertain occasional behaviors can cause more tro.docx
Case Study AlcoholCertain occasional behaviors can cause more tro.docxmoggdede
 
Case study A group of nurse educators are having a discussion about.docx
Case study A group of nurse educators are having a discussion about.docxCase study A group of nurse educators are having a discussion about.docx
Case study A group of nurse educators are having a discussion about.docxmoggdede
 
Case study ;1Callista Roy and Betty Neumans theories view the.docx
Case study ;1Callista Roy and Betty Neumans theories view the.docxCase study ;1Callista Roy and Betty Neumans theories view the.docx
Case study ;1Callista Roy and Betty Neumans theories view the.docxmoggdede
 
Case Study 9Running head BP & THE GULF OF MEXICO OIL SPILLC.docx
Case Study 9Running head BP & THE GULF OF MEXICO OIL SPILLC.docxCase Study 9Running head BP & THE GULF OF MEXICO OIL SPILLC.docx
Case Study 9Running head BP & THE GULF OF MEXICO OIL SPILLC.docxmoggdede
 
Case Study 9-1 IT Governance at University of the Southeast. Answer .docx
Case Study 9-1 IT Governance at University of the Southeast. Answer .docxCase Study 9-1 IT Governance at University of the Southeast. Answer .docx
Case Study 9-1 IT Governance at University of the Southeast. Answer .docxmoggdede
 
Case Study 7-2 Sony Pictures The Criminals Won. Answer question 2 W.docx
Case Study 7-2 Sony Pictures The Criminals Won. Answer question 2 W.docxCase Study 7-2 Sony Pictures The Criminals Won. Answer question 2 W.docx
Case Study 7-2 Sony Pictures The Criminals Won. Answer question 2 W.docxmoggdede
 
Case Study 8.1 Team DenialEmory University Holocaust studies pr.docx
Case Study 8.1 Team DenialEmory University Holocaust studies pr.docxCase Study 8.1 Team DenialEmory University Holocaust studies pr.docx
Case Study 8.1 Team DenialEmory University Holocaust studies pr.docxmoggdede
 
Case Study 7 Solving Team Challenges at DocSystems Billing, Inc.docx
Case Study 7 Solving Team Challenges at DocSystems Billing, Inc.docxCase Study 7 Solving Team Challenges at DocSystems Billing, Inc.docx
Case Study 7 Solving Team Challenges at DocSystems Billing, Inc.docxmoggdede
 
Case Study 5.2 Hiding the Real Story at Midwestern Community Acti.docx
Case Study 5.2 Hiding the Real Story at Midwestern Community Acti.docxCase Study 5.2 Hiding the Real Story at Midwestern Community Acti.docx
Case Study 5.2 Hiding the Real Story at Midwestern Community Acti.docxmoggdede
 
Case Study 5.1Write a 3 to 4 (not including title or reference.docx
Case Study 5.1Write a 3 to 4 (not including title or reference.docxCase Study 5.1Write a 3 to 4 (not including title or reference.docx
Case Study 5.1Write a 3 to 4 (not including title or reference.docxmoggdede
 

More from moggdede (20)

CASE STUDY COMMENTARY•  Individual written task in Harvard sty.docx
CASE STUDY COMMENTARY•  Individual written task in Harvard sty.docxCASE STUDY COMMENTARY•  Individual written task in Harvard sty.docx
CASE STUDY COMMENTARY•  Individual written task in Harvard sty.docx
 
Case Study Chapter 5 100 wordsTranscultural Nursing in the.docx
Case Study Chapter 5 100 wordsTranscultural Nursing in the.docxCase Study Chapter 5 100 wordsTranscultural Nursing in the.docx
Case Study Chapter 5 100 wordsTranscultural Nursing in the.docx
 
Case Study Chapter 10 Boss, We’ve got a problemBy Kayla Cur.docx
Case Study Chapter 10 Boss, We’ve got a problemBy Kayla Cur.docxCase Study Chapter 10 Boss, We’ve got a problemBy Kayla Cur.docx
Case Study Chapter 10 Boss, We’ve got a problemBy Kayla Cur.docx
 
CASE STUDY Caregiver Role Strain Ms. Sandra A. Sandra, a 47-year-o.docx
CASE STUDY Caregiver Role Strain Ms. Sandra A. Sandra, a 47-year-o.docxCASE STUDY Caregiver Role Strain Ms. Sandra A. Sandra, a 47-year-o.docx
CASE STUDY Caregiver Role Strain Ms. Sandra A. Sandra, a 47-year-o.docx
 
Case Study Answers Week 7 and 8Group OneIn your grou.docx
Case Study Answers Week 7 and 8Group OneIn your grou.docxCase Study Answers Week 7 and 8Group OneIn your grou.docx
Case Study Answers Week 7 and 8Group OneIn your grou.docx
 
Case Study and Transition Plan TemplateCase StudyD.docx
Case Study and Transition Plan TemplateCase StudyD.docxCase Study and Transition Plan TemplateCase StudyD.docx
Case Study and Transition Plan TemplateCase StudyD.docx
 
Case Study AnalysisRead Compassion for Samantha Case Study.docx
Case Study AnalysisRead Compassion for Samantha Case Study.docxCase Study AnalysisRead Compassion for Samantha Case Study.docx
Case Study AnalysisRead Compassion for Samantha Case Study.docx
 
Case Study AnalysisAn understanding of cells and cell behavi.docx
Case Study AnalysisAn understanding of cells and cell behavi.docxCase Study AnalysisAn understanding of cells and cell behavi.docx
Case Study AnalysisAn understanding of cells and cell behavi.docx
 
Case Study Analysis and FindingsThe final assignment for this co.docx
Case Study Analysis and FindingsThe final assignment for this co.docxCase Study Analysis and FindingsThe final assignment for this co.docx
Case Study Analysis and FindingsThe final assignment for this co.docx
 
Case Study Analysis A TutorialWhat is it Case studies are a .docx
Case Study Analysis  A TutorialWhat is it  Case studies are a .docxCase Study Analysis  A TutorialWhat is it  Case studies are a .docx
Case Study Analysis A TutorialWhat is it Case studies are a .docx
 
Case Study AlcoholCertain occasional behaviors can cause more tro.docx
Case Study AlcoholCertain occasional behaviors can cause more tro.docxCase Study AlcoholCertain occasional behaviors can cause more tro.docx
Case Study AlcoholCertain occasional behaviors can cause more tro.docx
 
Case study A group of nurse educators are having a discussion about.docx
Case study A group of nurse educators are having a discussion about.docxCase study A group of nurse educators are having a discussion about.docx
Case study A group of nurse educators are having a discussion about.docx
 
Case study ;1Callista Roy and Betty Neumans theories view the.docx
Case study ;1Callista Roy and Betty Neumans theories view the.docxCase study ;1Callista Roy and Betty Neumans theories view the.docx
Case study ;1Callista Roy and Betty Neumans theories view the.docx
 
Case Study 9Running head BP & THE GULF OF MEXICO OIL SPILLC.docx
Case Study 9Running head BP & THE GULF OF MEXICO OIL SPILLC.docxCase Study 9Running head BP & THE GULF OF MEXICO OIL SPILLC.docx
Case Study 9Running head BP & THE GULF OF MEXICO OIL SPILLC.docx
 
Case Study 9-1 IT Governance at University of the Southeast. Answer .docx
Case Study 9-1 IT Governance at University of the Southeast. Answer .docxCase Study 9-1 IT Governance at University of the Southeast. Answer .docx
Case Study 9-1 IT Governance at University of the Southeast. Answer .docx
 
Case Study 7-2 Sony Pictures The Criminals Won. Answer question 2 W.docx
Case Study 7-2 Sony Pictures The Criminals Won. Answer question 2 W.docxCase Study 7-2 Sony Pictures The Criminals Won. Answer question 2 W.docx
Case Study 7-2 Sony Pictures The Criminals Won. Answer question 2 W.docx
 
Case Study 8.1 Team DenialEmory University Holocaust studies pr.docx
Case Study 8.1 Team DenialEmory University Holocaust studies pr.docxCase Study 8.1 Team DenialEmory University Holocaust studies pr.docx
Case Study 8.1 Team DenialEmory University Holocaust studies pr.docx
 
Case Study 7 Solving Team Challenges at DocSystems Billing, Inc.docx
Case Study 7 Solving Team Challenges at DocSystems Billing, Inc.docxCase Study 7 Solving Team Challenges at DocSystems Billing, Inc.docx
Case Study 7 Solving Team Challenges at DocSystems Billing, Inc.docx
 
Case Study 5.2 Hiding the Real Story at Midwestern Community Acti.docx
Case Study 5.2 Hiding the Real Story at Midwestern Community Acti.docxCase Study 5.2 Hiding the Real Story at Midwestern Community Acti.docx
Case Study 5.2 Hiding the Real Story at Midwestern Community Acti.docx
 
Case Study 5.1Write a 3 to 4 (not including title or reference.docx
Case Study 5.1Write a 3 to 4 (not including title or reference.docxCase Study 5.1Write a 3 to 4 (not including title or reference.docx
Case Study 5.1Write a 3 to 4 (not including title or reference.docx
 

Recently uploaded

REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxDr. Ravikiran H M Gowda
 
How to Manage Call for Tendor in Odoo 17
How to Manage Call for Tendor in Odoo 17How to Manage Call for Tendor in Odoo 17
How to Manage Call for Tendor in Odoo 17Celine George
 
Michaelis Menten Equation and Estimation Of Vmax and Tmax.pptx
Michaelis Menten Equation and Estimation Of Vmax and Tmax.pptxMichaelis Menten Equation and Estimation Of Vmax and Tmax.pptx
Michaelis Menten Equation and Estimation Of Vmax and Tmax.pptxRugvedSathawane
 
Diuretic, Hypoglycemic and Limit test of Heavy metals and Arsenic.-1.pdf
Diuretic, Hypoglycemic and Limit test of Heavy metals and Arsenic.-1.pdfDiuretic, Hypoglycemic and Limit test of Heavy metals and Arsenic.-1.pdf
Diuretic, Hypoglycemic and Limit test of Heavy metals and Arsenic.-1.pdfKartik Tiwari
 
Details on CBSE Compartment Exam.pptx1111
Details on CBSE Compartment Exam.pptx1111Details on CBSE Compartment Exam.pptx1111
Details on CBSE Compartment Exam.pptx1111GangaMaiya1
 
Pharmaceutical Biotechnology VI semester.pdf
Pharmaceutical Biotechnology VI semester.pdfPharmaceutical Biotechnology VI semester.pdf
Pharmaceutical Biotechnology VI semester.pdfBALASUNDARESAN M
 
Rich Dad Poor Dad ( PDFDrive.com )--.pdf
Rich Dad Poor Dad ( PDFDrive.com )--.pdfRich Dad Poor Dad ( PDFDrive.com )--.pdf
Rich Dad Poor Dad ( PDFDrive.com )--.pdfJerry Chew
 
MuleSoft Integration with AWS Textract | Calling AWS Textract API |AWS - Clou...
MuleSoft Integration with AWS Textract | Calling AWS Textract API |AWS - Clou...MuleSoft Integration with AWS Textract | Calling AWS Textract API |AWS - Clou...
MuleSoft Integration with AWS Textract | Calling AWS Textract API |AWS - Clou...MysoreMuleSoftMeetup
 
AIM of Education-Teachers Training-2024.ppt
AIM of Education-Teachers Training-2024.pptAIM of Education-Teachers Training-2024.ppt
AIM of Education-Teachers Training-2024.pptNishitharanjan Rout
 
SURVEY I created for uni project research
SURVEY I created for uni project researchSURVEY I created for uni project research
SURVEY I created for uni project researchCaitlinCummins3
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - Englishneillewis46
 
SPLICE Working Group: Reusable Code Examples
SPLICE Working Group:Reusable Code ExamplesSPLICE Working Group:Reusable Code Examples
SPLICE Working Group: Reusable Code ExamplesPeter Brusilovsky
 
How to Add a Tool Tip to a Field in Odoo 17
How to Add a Tool Tip to a Field in Odoo 17How to Add a Tool Tip to a Field in Odoo 17
How to Add a Tool Tip to a Field in Odoo 17Celine George
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxEsquimalt MFRC
 
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxmarlenawright1
 
How to Send Pro Forma Invoice to Your Customers in Odoo 17
How to Send Pro Forma Invoice to Your Customers in Odoo 17How to Send Pro Forma Invoice to Your Customers in Odoo 17
How to Send Pro Forma Invoice to Your Customers in Odoo 17Celine George
 
e-Sealing at EADTU by Kamakshi Rajagopal
e-Sealing at EADTU by Kamakshi Rajagopale-Sealing at EADTU by Kamakshi Rajagopal
e-Sealing at EADTU by Kamakshi RajagopalEADTU
 
diagnosting testing bsc 2nd sem.pptx....
diagnosting testing bsc 2nd sem.pptx....diagnosting testing bsc 2nd sem.pptx....
diagnosting testing bsc 2nd sem.pptx....Ritu480198
 

Recently uploaded (20)

REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptx
 
How to Manage Call for Tendor in Odoo 17
How to Manage Call for Tendor in Odoo 17How to Manage Call for Tendor in Odoo 17
How to Manage Call for Tendor in Odoo 17
 
Michaelis Menten Equation and Estimation Of Vmax and Tmax.pptx
Michaelis Menten Equation and Estimation Of Vmax and Tmax.pptxMichaelis Menten Equation and Estimation Of Vmax and Tmax.pptx
Michaelis Menten Equation and Estimation Of Vmax and Tmax.pptx
 
Diuretic, Hypoglycemic and Limit test of Heavy metals and Arsenic.-1.pdf
Diuretic, Hypoglycemic and Limit test of Heavy metals and Arsenic.-1.pdfDiuretic, Hypoglycemic and Limit test of Heavy metals and Arsenic.-1.pdf
Diuretic, Hypoglycemic and Limit test of Heavy metals and Arsenic.-1.pdf
 
Details on CBSE Compartment Exam.pptx1111
Details on CBSE Compartment Exam.pptx1111Details on CBSE Compartment Exam.pptx1111
Details on CBSE Compartment Exam.pptx1111
 
Pharmaceutical Biotechnology VI semester.pdf
Pharmaceutical Biotechnology VI semester.pdfPharmaceutical Biotechnology VI semester.pdf
Pharmaceutical Biotechnology VI semester.pdf
 
Rich Dad Poor Dad ( PDFDrive.com )--.pdf
Rich Dad Poor Dad ( PDFDrive.com )--.pdfRich Dad Poor Dad ( PDFDrive.com )--.pdf
Rich Dad Poor Dad ( PDFDrive.com )--.pdf
 
MuleSoft Integration with AWS Textract | Calling AWS Textract API |AWS - Clou...
MuleSoft Integration with AWS Textract | Calling AWS Textract API |AWS - Clou...MuleSoft Integration with AWS Textract | Calling AWS Textract API |AWS - Clou...
MuleSoft Integration with AWS Textract | Calling AWS Textract API |AWS - Clou...
 
VAMOS CUIDAR DO NOSSO PLANETA! .
VAMOS CUIDAR DO NOSSO PLANETA!                    .VAMOS CUIDAR DO NOSSO PLANETA!                    .
VAMOS CUIDAR DO NOSSO PLANETA! .
 
AIM of Education-Teachers Training-2024.ppt
AIM of Education-Teachers Training-2024.pptAIM of Education-Teachers Training-2024.ppt
AIM of Education-Teachers Training-2024.ppt
 
SURVEY I created for uni project research
SURVEY I created for uni project researchSURVEY I created for uni project research
SURVEY I created for uni project research
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
SPLICE Working Group: Reusable Code Examples
SPLICE Working Group:Reusable Code ExamplesSPLICE Working Group:Reusable Code Examples
SPLICE Working Group: Reusable Code Examples
 
How to Add a Tool Tip to a Field in Odoo 17
How to Add a Tool Tip to a Field in Odoo 17How to Add a Tool Tip to a Field in Odoo 17
How to Add a Tool Tip to a Field in Odoo 17
 
OS-operating systems- ch05 (CPU Scheduling) ...
OS-operating systems- ch05 (CPU Scheduling) ...OS-operating systems- ch05 (CPU Scheduling) ...
OS-operating systems- ch05 (CPU Scheduling) ...
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
 
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
 
How to Send Pro Forma Invoice to Your Customers in Odoo 17
How to Send Pro Forma Invoice to Your Customers in Odoo 17How to Send Pro Forma Invoice to Your Customers in Odoo 17
How to Send Pro Forma Invoice to Your Customers in Odoo 17
 
e-Sealing at EADTU by Kamakshi Rajagopal
e-Sealing at EADTU by Kamakshi Rajagopale-Sealing at EADTU by Kamakshi Rajagopal
e-Sealing at EADTU by Kamakshi Rajagopal
 
diagnosting testing bsc 2nd sem.pptx....
diagnosting testing bsc 2nd sem.pptx....diagnosting testing bsc 2nd sem.pptx....
diagnosting testing bsc 2nd sem.pptx....
 

12The Rigors ofKidney DialYsisfor Robert BanesLaurie K.docx

  • 1. 12 The Rigors of Kidney DialYsis for Robert Banes Laurie Kaye Abraham Robert Banes' sloty reveals the daily rou,tine o'f' a patient vtho ntust luve dialysis or di.e. R<tbert's story tells ntore, however, thctn a saga ol'sickne-ss. Tltis chapter links the personal ex- perience of illness to Larger trends in incidence ol disease and diflbrerttials by race and class in receiving care. Like anyone else with a chronic tlhrcss, Rr,tbert experiences the vicissitudes of kidney dialysis within tlrc parcLntelers of a lilb. End Stage Renal Disease (ESRD) yvith sub- seqLtenl dia,5i5 is iiot the crisis in Robert's life. Rather, it is one nrore crisis in a life riddenwith crises born out of poverty, lhnited education, and lacl< ofopportunity. For people like Robert and his wife, Jackie, disability and death are routine events. Pooled resources and shared housing ruith relatives help some but poverty and ill health prove to be relentless. As yott read this selection, look for places wlrcre both Robert and Tbmmy could have 1 lbeett ltel1ted, wlrcre a further slide downhill could have been prevented. Note the contrast tn econorttic circutnstances between Robert and D r. lning. Assess the structure and quality ol treatment available to Robert.
  • 2. D rober-t ivas thinking about frying some ba- con for breakfast when the driver who takes him to the kidney dialysis center sounded his horn foom the street. This was unusual be- cause it was iust a little after 5:30 A.M., and Robert is scheduled for a six o'clock pickup, Mondays, Wednesdays, and Fridays. Robert has knor,r,n drivers to be late, sometimes by The Rigors of Kidney Dialysis for Robert Banes l13 hours; he has known drivers not to show. They are rarely early. Still sleepy, he dropped down on the couch to pull on his leather high-tops. A lamp glowed orange in one corner of the living room; cltherwise, it was early-morning gray. Latrice slept next to him. Her long, brown legs stretched the length of the couch that does double-duty as her bed. She lay on top of a mst-colored throw that Jackie uses to cover the couchs thinning, stained uphol- stery. Jackie was zrlready up, washing in the bathroom. Her grandmother lay still in her bed: she had not vet called for her breakfast or a morning drink cllt waten T h e l i v i n g r o o m i s s u b s t a n t i a l l y l o n g e r than it is wide ancl is divided into two rnain sections. The back area, where Robert sat and Latrice slept, holds Jackie s furniture, the couch zrnd a matching love seat she brought when she, Robert, and Latrice moved in with
  • 3. h e r g r a n d m o t h e r i n 1 9 8 6 . A d a r k w o o d h u t c h , br-rilt into the back wall, is filled with pictures of the family. Some of the photos are old and tattered, their frarnes tarnished, but none of that seems to matter mtrch. The pictures look as it they have been there for a long time and will remain for-a long time to come. A light- colored wood bookshelf next to the hutch is overflowing with knickknacks: ceramic figu- rines Jackie gave to her grandmother mixed with animals made from shells (souvenirs oF a craft project at a nursing home where Mrs. Jackson worked), mixed with a dozen basket- ball trophies that Robert won in high school and junior college. Toward the front, outside Mrs. Jackson's bedroom doo4 sits a more formal-looking couch, upholstered in faded gold, that the olJ woman has owned since Jackie was a girl. De- Marest is an active little boy and has torn and poked through its plastic slipcover until it no longer provides much protection, but Jackie resists removing it. Her grandmother in- sisted on the plastic covel, and Jackie does not want her to think the family is defying her now that she cannot do anything about it. A low-slung credenza, about thirty years old, with a working radio and a broken turntable inside, is across the room from Mrs. Jack- son's couch. Three color TVs are stacked to- gether near it, although only one works. I
  • 4. t- 114 Section 2 * The Selfin Social Context Robert finished tying his shoes' Eyes half shut, he pushed uiial a vinyl recliner the B".r"r", put in front of the door at night.for extra security and descended the stairs that lead down io a small front porch' "Heh, Banes, I knew I'd get you today," called the driven who has transported Robert before' Each weekday, private companies that con- tract with the Chicago Transit Authority take Robert and twenty-five hundred other dis- abled Cook County residents to medical ap- pointments and wherever else they need to go. In the summer of 1989, there were five iransportation companies working for the CTA (subsequently one of them was kicked out of the program for frar.rd, as another had been earlier in the year). Rober-t used SCR Transportation, which had the worst on-time record in the program. SCR arrived on time for about half of its I'ides; the rest of the time, drivers were anywhere liom ten minutes to m o r c t l r a n a r r h o u r l a t e . l N o n e t h e l e s s , t h e r i d e w a s a b l e s s i n g b e - cause the dialysis clinic is a good hour away on tl-rc bus ot- train. Robert rvould have to leave for the clinic in the dzrrk, an unsettling proposition in a neighborhoocl irnprisoned b y n i g h t f a l l . T h e B a n e s e s r a r e l y g o o t r t a t
  • 5. night, and even zrt dusk, when Latrice wants to r-Lln down to her cousin'.s aptrrtment less than ur block away, Jackie watches her come and go from the tront porch. Roberl also ap- preciates the ride home al'ter dialysis because sometimes he f-eels weak and shaky, not at all i n t h e m o o d t o b e j o s t l e d o n t h e b t t s . As soon as Robert got into the cal, he pulled a pack of cigarettes out of his jacket and lit one. "My wife doesn't know I sntoke," he said. Robert tries to curry Jackiei favor with small gestures such as pretending not to smoke and buying her-a box of candy when she gets mad. What Jackie wants most, though, is for him to stay away from cocaine, and that he has a harder time doing. He sometimes goes weeks, even a month or two, without using cocaine but then binges and spends every cent he can find on drugs. That leaves Jackie strainins to meet her household budget, and it canndt be good for Robert's health. Robert refuses to discuss drugs with anyone but Jackie and then only if she pushes the issue. The twenty-minute ride to Neomedica Di- alvsis Center, located in the most exclusive arla of Chicago, had the feel of a boys' night out. The two men bantered about NBA stars they had met, gangsters the driver had chatrf- feured, and the high cost of dating. "Give me some cash and I can go out, buy some drinks for the ladies," the driver boasted.
  • 6. "So you can make things happen," Roben said with a vicarious thrill. Robert wears a dialysis uniform of sorts: a navy and white nylon sweatsuit and a rcd Bulls cap. His arms are still sculpted lrom his basketball-playing days, but the muscles look as if they have been sanded down. All thats left are a few bulges covered by a thin layer of skin. He has lost twenty pounds in the srx months since he began dialysis, a big enough droo that the clinic nutritionist said she plzrns t o p u t h i m o n a s u p p l e m e n t a l d i e t . O n t h e warmest davs. Roberl sets cold, and whc'n he sees a *o-in walk clown the stt'ec't in shorts zrnd a sleeveless shirt, he often says, "I rvish I h a d h e r b l o o d . " L i k e m o s t d i a l v s i s p a t i c n t s , R o b c r t i s c h r o n i c a l l y a n e r n i c . Neomedica'.s clerk calls patients back for dialysis two or three at a tin-re, so Roltert found a chzrir in thc rvaiting room ancl turned to tl.re Serrr-7.i/7?e-s sports pzrges. Othcr patients k i l l e d t i m e r v i t h t a l k o f t l r e B u l l s a n d h i g h b l o o d p r e s s u r e p i l l s , t h e C u b s a n d t h e r e s t r i c - tive diets patients are supposed to follow Robert was one of the last patients left when he was sumrnoned at 7:30. That is his regr-rlar dizrlysis tin're, but Roberl gets to the clinic a little after six becatrse he has found that the earlier the pickup, the n-rore likely the trans- portation company is to be on time. When patients are late getting to Neomedica, thev
  • 7. may wait hours to be dialyzed. Upon hearing his name, Robert pitched his paper and walked to his reclinel, past a sco.e of patients tethered to blinking, beep- ing machines. Two thin plastic tubis, red' d#ed by, steady ,t."u-r'of blood, sna.ked trom each of the patients' forearms. On.their inner arms, diaiysis patients have knots called fistulzrs, rvh-ere cloctors connect a.veln and an artery to enable them to receive dtatl- sis. The arteiial tube feeds blood into the dta- Iyzeq where a six-inch filter composed of doz' ens of tiny strawlike tubes draws out 'astes qi ! nger expel. The cleansed) r h e k i d n e Y s c a n n o I o l It t^.,d is then pumped Sack into patients'bod-i iJl,''*l; n ;' t'd ialys i s.-R:b"X ii$^ :le other kidnev failure cattsed by hypertension, a dis- ease that usually can be controlled by medi- cation. In other words, a significant portion of the kidney failure among blacks is largely preventable with r:egular care. For those who or. p,ror, thc reasons they do not receive care range l'ron-t inadeqtratc or nonexistent insur- ance, to :r misltndet'stzrncling of the serious- n e s s o f t h e c o n d i t i o n , t o a n i n a b i l i t y t o c o p e u , i t h a n y t h i r - r g o t h e r t h a n i m m e d i a t e t h r e a t s t o t h e i r w e l l - b c i n g . A s a d m i x o f a l l t h r e e
  • 8. causecl Jackie'.s lather, Tommy Markham, to suffer another of the conseouences of uncon- trolled high blood presslrre, a stroke, when he was only fbrtv-eight. Tommy givcs only sketchy details about his youth, br-rt he apparcntly had a conten- tior-rs relzrtionship with his parents, Mrs. Jackson ancl her first husband. He stayed be- h i n d i n M i s s i s s i p p i w h e n t h e c o u p l e ' m o v e d north, to Garry, Indiana, though his young daughter, Jackie, went with them. Jackie's teenage mother had given her daughter to Mrs. Jackson to raise. After Tommy got into trotrble for car theft, he moved to Chicago, where Mrs. Jackson had gone after she split from her htrsband. Tommy's mn-ins with the law did not stop, howevei. The way Tommy tells it, he got led up with a man who wrongly acclrsed hirn o[ "going with his woman" and "beat the shit otrt of him." He was convicted of armed lobbery and spent seven years in Illinoiss Stateville Correctional Center dur- ing his trventies. (Tommy huffily denies the robberv': "I didn't rob the dude. I just beat him up. . . . He r.r'as laying there in the gangway, and peoples from the lounge ran out. They took the money off him.") The Rigors of Kidney Dialysis for Robert Banes ll5 When Tommy was released in 1971, Mrs. Jackson continued to raise Jackie. He lived with his mother and ten-year-old Jackie for a few days, but Mrs. Jackson threw him out be-
  • 9. cause of his "attitude," Jackie said, and he re- turned to the West Side's streets. He worked off and on as a bartendet', butcher. and exter- minatol all the while guzzling beer, whiskey, and cognac. Six feet, two inches tall, with muscle built in the prison gym and still evi- dent today, Tommy was menacing to Jackie and, evidently, to a lot of other people. "Everry- body would be scared of Tommy, Tommy, Tommy," Jackie chanted. So intimidated by her violent father was Jackie that she hzrs fonder memories of him when he was impris- oned than when he came ollt. She ancl her grandmother took the Greyhound bus to visit him in Joliet once a year. "I remember my father giving me bottlecl pop and peanlrts," she said. "It used to be a nicc ritual fior me, The prison hacl beautifurl f-lower gardens arrd aftenvard we'd go shopping in Jolict." Tommys stroke did not come out of the blue. He knew he had high blood pressLu'c, but he stopped taking antihypertensive rnedi- cation becausc of its side el'fects-impotence, for one. IIis alcoholism and smoking also arl- most certainly contributed to the stroke. Br"rt high blood pressure does not cause any dis- comfort for most people, which is why doc- tors call it the "silent killer," and so Tommy, who generally cloes not look past the r-rext day, paid no attention. "Nature will takes its course," he likes to say. And it did. The left side of his body is now paralyzed, and he spends most of his time in a wheelchai4 though he can walk very slowly with the as- sistance of a brace and cane. As Tommy tells
  • 10. the Currency Exchange clerk with whom he flirts when he picks up his welfare check, "I can't rarn no more yards; the All-American Tom Cat done slowed down." The casualties that high blood pressure in- flicts on blacks are enormous: thev suffer strokes at twice the rate of whites,a und the.e are sixty thousand excess deaths a year among blacks from hyperlension-related dis- eases.5 In Chicago, where the population of blacks and whites is roughly equal, there are more blacks with kidney failure caused by l'^'' ;;;;"tld di'e within a few weeks'P" ")-,,i""" of the patients on Robert's morn- ,."'."n]t u, Neomedica are black, five are His- ir^?i.],*t are white, and one is Asian' The i^.i"r'"ti^ of the group nearly matches that oT'chi.ugot dialysis population, though the i""r.. his fewer whites than the city as a ,-fr.i".' Nation-wide, the incidence of kidney ioll,rr" among- blacks is four times that a m o n g w h i t e s ' r Much of that racial difference results fi-om 116 Section 2 i The Self in Social Context - r'r^^- l"ic enkleS began to swell at La-
  • 11. H:'?# fr;:::f ian whi'es wi'h kidnev fy# it!'#fH$':$'tt1-tt#i$ *i{;1rfi#flti:}iqt;pl;;"i}"1 "1 f"i$J;#' iln Hrd{ H$#$i :ffi ;"{,f;," tgffii11ffi *lfif**ilffinil {iii g1.gg*}gfi'ffi{i5*fifr*':*,r****u,l'*ffi ffi #,u,g*:ffi ffi ffi$$ffi*ro-* **** *'"*,"', * l{ip$;gfffi ilfi *",u1g*g**@ ff rfi:.^:*li'#:i,;: *.s;*$$ffiff$ ff{*tg,t^;ln.":g,5*$t***l*#*}|*$U*$ fffu*tl+:E:'l+,i1:"]{+r'trgl ffiff**ffi Hlr*'ffiffi tr4 *:?"iti?i.ili:1i""*{:**l'1,f "*''J#Till#It';;;iheUniversi'lv i I I I I i . 1isi li: fi lr ]tj[ i{s*€ & {
  • 12. ,-r.o.i Robert through his first kidney il]i"nr""i i" 1e82. rn January 1989, his bodv ::i.,'"",t the transplanted organ' and Barber l,','""p'" p "' i" e h i m 9- qe1 :1t t""3:]:A'-Y].1l l : ]l:,i i,tr iirt fol' a second time' "when patients r l].],... irtt Cook County with chronic renal ' ij'i,".' ""a say' 'Nobocly ever to,ld me this , i.,ri.r rt^ppen,' the,v're partlv right'. Thelr've i.i.ltr ,ota but not in a way that sticks," says t: iu t ... "Robert was t'efet-r'ed back for treat- I l.'rt, btrt being.young and feeling well, he .: Ji,l not have a lot of motivation to follow thlrlr-rgh'" Then, too, people who can barely afford f 6 o d a n d s h c l t e r n l a Y n o t t h i r - r k t h e y h a v e nruch to gzrin From sper-rding scarce dollars fur cl<lctors' visits. "For s()meone who is poor, h e a l t h c : r r c i s n o t t h e h i g h c s t p r i o r i t y , " D r . Corru,zrv said, an obscrvation offeled repeat- edlv by doctcir-s ancl nttLses who work with p ( x ) r p i l t l e n t s . It'.s al.so possible thart l'riends and family 'ere nol purshing Robert to go to the doctor, Dr: Conway continrlccl. "People in Chic:rgois poorer ncighborhoocls arre used to zr lot of sick
  • 13. people arouncl. Wherr someone says 'Some- t h i n g l s w r o n g w i t h r n v k i d n e y s , ' t h e a u t o r n a t - ic lesponse is not 'Wcll, what dcictor arc you g o i n g t o / ' W h c n y o t r l i v e o n t l - r e N o r t h S h o r e I t h e a f f l r r c n t s u b u r b s n o r t h o f C h i c a g o ] , t h a t ' s thi: first thing pcr>ple ask yor-r." Dt'. Conr,vay also speculated that since Robcrt'.s clisezrse is zr chronic one, doctors may have told him that "there was nothing t h c v c o r r l c l t l o , " a p h r a s e t h a t c a n m e a n o n e t l t i n g t o p a t i e n t s a n d e r n o t h e r t o d o c t o r s . " I t souncis blzrck-ancl-r,r,hite, but it'.s not. We can't cure AIDS, but we don't say 'You're on your o l n . D o n ' t c c l n t e b a c k . ' W e c a n d o t h i n s s t o p r i r l o n g l i t e . " Doctors mav face er particular challenge gettirrg that message across to people as fa- talistic as Robefi ancl Jackie. Asked at least a half-clozen times to discuss her feelinss about h e r f a m i l y s u n r e l e n t i n g i l l n e s s - E i d s h e think they were Lrnusual or especially cursed? _-Jackie got exasperated. "Look," she finally said, obviously hoping to close the subject, "I just sav it happens." The f:rntastic and horrid deaths that mark their daily lives feed such fatalism. Perhaps onlv the most stout-hearted-or delusional-
  • 14. The Rigors of Kidney Dialysis for Robert Banes ll7 could retain a sense of control over their des- tiny. One day, a thirtyish-looking man spotted Jackie in a car and ran up to the side window, puckering his lips in an exaggerated kiss. "I w,ent to school rvith him," Jackie said, lar"rgh- ing at his foolishness. Then, without skrpping a beat: "Thev fbund his brother dead right up uncler the house, this tall building right up on the corner'. I heard rllmors when I was rl g r a m m a l s c h o o l . T h e k i d s w a s p l a y i n g a n d they kept saying the,v smellecl something toul, like dead rats, and it was his brothers body down in the server." Then there is the death of Robeft s beloved mother-. Thc official version of her story is that she went out clrinkins with friends after work on a Friclay, returnecl home, zrncl passed out in the garagc with the car running. The unofficizrl vcrsion is considerably more vivicl. "She rvas rnurrclcrcd," Jackie said once. Then s h e c o r r e c t e c l h c r s e l f . " C a r b o n m o n o x i d c , that'.s ',vhat'.s cln the cleath certificzrte. Btrt I R o b e r t a n d h i s f a m i l y ] s a y t h e r e w a s scratches zrncl blorid. And I've heard that she wers disrobecl halfrvav. And I remember Robert gctting hcl bra and there wzrs blood stains or.r it, so rve feel like, the family felt, therc was foul play somewhere." It wor-rld be easy to dismiss this as an ex-
  • 15. ample of devotccl chilclren unable to face the m u n d a n e b u t u l t i m a t e l y t r a g i c c i r c u m - stances of their mother'.s death. And that may be all it is. But in a neighborhood where the clich6 "tmth is stranger than fiction" takes on pointed meaning, who knows for sure? There has been little rigorous study of how fatalism and other accompaniments of pov- er.ty influence commllnication between doc- tors and patients, but at least one investigator of the subject found that doctors spend more time discussing diagnoses and treatments with well-educated people, resulting in a "paradoxical situation whereby patients most in need of education receive the least."8 At the same time, blacks reporl more often than whites that doctors do not adequately explain the seriousness of their illnesses or how medications work.e Robert, for one, is often confused by doctors, but he rarely if ever asks them for more information. Several days before he was admitted to University of Illinois Hospital because of the . .,rr1' t ,:ij ' ' i r ' : , . 1 ^'*"::*****
  • 16. i,;*1; tii i ii:; 118 Section 2 * The Selfin Social Context blood in his urine, Robert had visited a urolo- sist at the university's outpatient clinic' He f,ad nel er seen the doctor before, but Barbel the transplant nurse, made him an appoint- ment beciuse of the unusual bleeding. At that appointment, the doctor told him he would haie to be hospitalized. He also told Robert that before he could be admitted to the hos- pital he wor-rld need blood tests and an ultra- iound study of his kidneYs. "When am I going to have to have sur- gery?" Robert asked, certain of that eventual- ity though the doctor had not mentioned it. "That'.s only if the ultrasound shows us something like a cyst, like cancer on the kid- nevs," the doctor said flatly.""Don't tell rrle that, please," Robert pleaded. The doctor smiled sympathetically a n d w a l k e d o u t o l ' t h e e x a m i n i n g r o o n r w i t h - out explaining ftrrther. Through the open door, Robert cotrld see but not hear the doctor confer:ring with a nurse who was holding a srnall plastic cup of blood that seemed to be Robert's.
  • 17. "Don't be whispering," l're said to himself. "Tell me, too." B u t w h e n t h e d o c t o r r e t u r n e d m o n l e n t s later, Rober-t did not ask lrinr what he had been tzrlking about. FIe lay bzrck on the exanr- i n i n g t a b l e a n d o l T e r e d u p h i s a r m f o r h i s blood pressure to be taken. If Robert won- dered wl-rat the chances lvere of his having c a n c e r , h e s a i d n o t h i n g . Robert says he is not angry that no one ef- fectively explainecl to him that his kidneys were failing. Then again, Robert does not ad- mit that much of anything disturbs him. "I look at dialysis like a setback. Why should you get dorvn? It jusl makes you sicker." It's understandable, perhaps admirable, that Robeft does not want to dwell on his ill- ness. But Roberl is so matter-of-fact and pub- licly emotionless about how he got sick-and even the most devoted doctors and nurses are so used to situations like Roberts-that it is easy to be lulled into taking it all for granted. Whose fault is it that Robert did not have health insurance, and that at least thirty-five million Americans are without it todav?10 What about doctors' inability to communi- cate to patients in a way that makes them understand their illnesses-whose fault is that? Who is responsible for the many poor minorities who are so socially and economi- cally isolated that they cannot take advantage of the medical system in the same rvay tirat
  • 18. many whites can? No one is forced to take responsibilit-t' for these inequities. Medical ethicist Larry Chur- chill describes well the forces that allor.v the United States to remain the only industrial- ized country other than South Af ica that does not provide at least basic health care to all of its citizens, "Access to health care rs mostly contingent on having a way to pay for it, either out of one's own resources or rvith some form of insurance," he writes. "The es- sential point is that lthis] allocation by price is a rationing scheme-one which we have easily accepted in health care as an extension of a basic economic philosophy, ancl one which largely absolves any particular person lrom responsibility for the results. Since no one actually decided to exclude the poor (as it is their lack of money that excludes them, not our actions) no one is responsible and no o n e i s t o b l a m e . " l l The morning the dialysis driver arrived early, Robert fell asleep rvithin minutes after his blood began cycling thror-rgh the dialysis machine at Neon-redica. Belorc settlir.rs in for a nap, he covered himself rvith a blue bed- spread he'd brought from home to ',vald off the chill he gets during dialysis. The elderlr Hispanic *J-un who iat n"*t to him had the opposite problem: she brought a small fan lo cool her is she slept. Cigarette smoke c.urled over the backs of several of the recltners spread across the room. Some patients watched a TV that huns firom the ceiling;otn'
  • 19. i ' - r , , , 1 ; r l v s i s c h a i n , w h i c h i n 1 9 8 9 i n c l u d e d , llili'rir-';i Chicago-area dialvsis units' ' ''"Dir,lrri, is one of few areas. of medl:"].t'll: ari,l'-r"i"a ny for-profit providers' and,it has il""r, ", the center o1' a nationwide debate 1i",,, ,ft" costs and quality. of ploprietary l , . , i i . i n " . M e d i c a r e . p a y - s d i a l y s i s u n i t s a i l - , , r [ e e l o r - e a c h d i a l y s i s s e s s i o n - X . , , n r " a i . u c u t - r c r t l v g e t s $ 1 3 1 . p e r t r - e a t - r.nil'-1,u, exerciscs little control over how , 1 , ^ , n r , r n c v i s s p e n t . O f f i c i a l s a t t h e H e a l t h i , ; ; ; F i " " " . i n g A d m i n i s t r a t i o n , w h i c h z r d - ministers Meclicare, chargc that, to preselve h i g h p l o i i t m l r r g i n s ' n l z r n y c e n t e r s c o m p r o - , n i r " ' p o t i " ' . t t s ' c e l e b v r e d u c i n g s t a { T a n c l shortening tl'ezlt lrell I ti mes. I 3 Sr-tch cclst -ctt t-
  • 20. ting ctrangcs havc becn nrzlcle at Neclrnediczt, D r . L a n g I r - e c l y a d n i t s , b t r l h c s a i c l t l i c y d r r n o t t h r e a t e t t p a t i e n t s ' l l c z r l t h . N e i t h c r , t r e s a i c l , d o N c o r n e c l i c z r ' s p l r y s i c i a l t - o v n e l ' s c i l r l l c - x - ccssir,c ttroltit.s. D r : L : r n g f o t r n c l e c l N e < i r l e c 1 i c a w i t h a r r o t h e r doctor rvhen Mcclicare began t() pny for clialy- s i s i n I 9 7 2 z u r c l t o c l a y o r t ' t t . s I 4 p e r - c c n t l + t ' l t h c S 6 . 7 n r i l l i o n c l r a i n . l s P r - r b l i c c k l c t r n t e n t s c l < r not shorv trow rnnclr Dr. Lerng nreikcs ars the c o l p o r a t i r . r r - r ' . s c h i e l c x c c t r t i v c , b r - r t h i s . j o b a s z t mcdical clircctor ol' Rober-t'.s trnit, rvlrich Dr. L a n g e s t i n - i z r t e c l c l c c t r p i e s h i m f i l r t h r e e o r f o u r - h o u r s a w e e k , p a y s r , v c l l : $ 6 8 , 4 8 0 i n 1 9 8 9 , a c c o r d i n g t o M e d i c a r - c c ( ) s t r e p o r - t s . l 6 C o m - pletelv npart f lonr u'hnt hc mzrkes for rr-rnning Neorncclica, lre czrr-ns a nronthly fee as the nephrrilogist lbr Robert ancl Forty-five to fifty o t h e r c l i e r l v s i s p a t i e n t s . l T F o r t h a t w o r k , M e d i - c a l ' e p a y s c l o c t o r s a n a v e r a g c o l ' $ 1 7 3 p e r p a - tient per rnor-rth, r,vhich wrtr-rld ntean Dn Lang e a r n s r o r - r g h l y z r n o t h e r $ 1 0 0 , 0 0 0 e a c h y e a r
  • 21. irom Medicare.l8 Finally, a medical practice h e n t a i n t a i n s o u t s i d e o f t h e d i a l y s i s u n i t f u r - t h e r e n h a r r c e d h i s i n c o m e . D r : L a n g w i l l n o t sav hou' much he clrrrentlv makes a yeal, but accot-cling to thc Internal Revenue Service, h i . s t a x a l : i l c i n c o m e i n 1 9 8 5 w a s $ 3 6 2 , 9 6 4 . 1 e (That figurre comes flom a suit Dr. Lang filed agiiinst the IRS to block the agency'.s attempt to recor,'er g 160,000 for alleged improper de- dltctions he took on a ski resorl condomin- t u m i n U t a h . ) Dr. Lar-rg's manner with the dialysis pa- tients at Neomedica's downtown Llnit was brisk and etficient if not cursory, but for The Rigors of Kidney Dialysisfor Robert Banes ll9 R o b e r t , a t l e a s t , h e i s " t h e m a n . " T h o u g h R o b e r t a n d t h e o t h e r p a t i e n t s r e g u l a r l y g m m b l e a b o u t e v e r J a s p e c t o [ d i a l y s i s , l i t t l e o f t h e i r a n g e r s e e m s d i r e c t e d a t D r . L a n g . T h e t e c h n i c i a n s a n c l n u r s e s t a k e t h e b m n t o f i t , e v e n t h o u g h i t i s D r . L a n g w h o h a r s u l t i n t ; r t e r e s p o n s i b i l i t y f b r t h e r v a y t h e u n i t i s r L r n . . . . Notes
  • 22. l . C h i c a g o l - r a n s i t A u t h o r i t y , o n - t i m e p e r f o r m - a n c e o f C T A S p c c i a l S e r u i c e s t r a n s p o r t a t l o n c o m p a n i e s I 9 8 9 - I 9 9 1 , o b t a i n e c l t l t r o u g h a F r e e d o m o l l n f o r m a t i o n A c t l e q u e s t , D e c e r n - b e r ' 1 9 9 l 2 . R e n a l N e t r w r r k o [ [ l l i n o i s , " C h i c a g o D i a l y s i s P o p r r l : r t i o n : R a c e r v i t h i I - r A g e , " s p e c i a l c [ : t t : t t r - t r r o l r t : r i r r e d t l r r o r - r g l ' r a F r e e c l o m o f I n f o r m z t t t o n A c t r c q t r e r s t , J t r l v 1 9 8 9 . 3 . C o m r r i t t c c l o r t h c S t u c l v o f t h e M e c l i c a r e - E S R D P r o g r a n ' r , I n s t i t u t e o l M e c l i c i n e , p r - c - p r r b l i c a t i o n c o p v , K i r l r r e . r , F a i l u r e a n d t l t e F e d c r a l ( l < ' ; t , c n t r n t ' r r t ( W a s h i n g t o n , D . C . , N a - t i < r n z r l A c a c l e n r v P r e s s , l 9 9 l ) , p . 1 2 2 . 4 . N : r t i o n a l C c n t e r f t l ' H e a l t h S t a t i s t i c s , " A c l - v a n c c d R c p o r t o 1 ' F i n a l M o r t a l i t y S t a t i s t i c s , 1 9 8 9 , " i n M t ; t t t h l y V i t a l S t a t i s t i c s 4 0 , n o . 8 , s t r p p l . 2 f l v a t t s v i l l c M c l . : P u b l i c H e a l t l ' r S e r -
  • 23. v i c e , 1 9 9 2 ) . T l i e r 1 9 8 9 a g e - a d j u s t e c l s t r o k c r a t e f o r r v h i t e s r v : r s 2 5 . 9 p e r 1 0 0 , 0 0 0 p o p u l a t i o n , f o r b l a c k s , 4 9 . 0 p e r 1 0 0 , 0 0 0 . 5 . E l i i a h S z u n d e r s , " E p i d e m i o l o g i c F a c t o r s i n t h e M a n a g e m e n t o f H y p e r t e n s i o n , " . / o l . r n n l o l t h e N a t i o n a l l V l e d i c a l A s s o c i a t i o n 8 1 , s u p p l . ( A p r i l 1 9 8 9 ) : 9 . T h e e x c e s s d e a t h r a t e i s t h e number of deaths minorities '"vould not have suffered had they clied at the same rzrte as w h i t e s . 6 . R e n a l N e t r v o r k o f I l l i n o i s , " C h i c a g o D i a l y s i s P o p t r l a t i o n : R a c e w i t h i n A g e w i t h i n Z i p C o d e , Diagnosis Hypertension," special data r-un ob- tained through Freedom of Inlbrrnation Act r e q u e s t , J u l y 1 9 8 9 . 7 . C o m m i t t e e f o r t h e S t u d y o f t h e M e d i c a r e ESRD Program, Kidney Failttre and the Federal C o v e m n r e n t , p . 1 2 6 . D.R. Ler,y, "White Doctors and Black Patients: Influence of Race on the Doctor-Patient Rela- tionship," Pediatrics 7 5, no. 4 (April 1985) 639- 4 3 . R o b e r t J . B l e n d o n e t a l . , " A c c e s s t o M e d i c a l
  • 24. Care for Black and White Ameicans," Jottmal o f t h e A m e i c a n M e d i c a l A s s o c i a t i o n 2 6 1 , n o . 2 (13 January 1989): 27 8-81. rii,ri ' ' i , j . _ { . :; o Required Resources Required Text 1. Environmental Science: Earth as a Living Planet a. Chapter 23: Materials Management Article 1. U.S. Environmental Protection Agency. (2013). Municipal solid waste. Retrieved from http://www.epa.gov/epawaste/nonhaz/municipal/index.htm FURTHER READINGS AND RESOURCES Allenby, B.R. Industrial Ecology: Policy Framework and Implementation (Upper Saddle River, NJ: Prentice Hall, 1999). A primer on industrial ecology. Ashley, S. It’s not easy being green. Scientific American, April 2002, pp. 32–34. A look at the economics of developing biode- gradable products and a little of the chemistry involved. Brookins, D.G. Mineral and Energy Resources (Columbus, Ohio: Charles E. Merrill, 1990). A good summary of mineral resources. Kesler, S.F. Mineral Resources, Economics and the
  • 25. Environment (Upper Saddle River, NJ: Prentice Hall, 1994). A good book about mineral resources. Kreith, F. ed., Handbook of Solid Waste Management (New York, NY: McGraw-Hill, 1994). Thorough coverage of municipal waste management, including waste characteristics, federal and state legislation, source reduction, recycling, and landfilling. Watts, R.J. Hazardous Wastes (New York, NY: John Wiley & Sons, 1998). A to Z of hazardous wastes. Botkin, Daniel B. Environmental Science: Earth as a Living Planet, 9th Edition. Wiley, 2013-12-23. VitalBook file. CHAPTER 23 Materials Management LEARNING OBJECTIVES The waste-management concept of “dilute and dis- perse” (for example, dumping waste into a river) is a holdover from our frontier days, when we mistak- enly believed that land and water were limitless re- sources. We next attempted to “concentrate and contain” waste in disposal sites—which also proved to pollute land, air, and water. We are now focusing on managing materials to reduce environmental deg- radation associated with resource use and eventually eliminate waste entirely. Finally, we are getting it right! After reading this chapter, you should be able to: • Discuss why the standard of living in modern so- ciety is related in part to the availability of natural resources • Summarize the importance of resources to society • Discuss the social impacts of mineral exploitation and how wastes generated from the use of mineral resources affect the environment • Discuss how sustainability may be linked to the way we use nonrenewable minerals • Evaluate the emerging concept of materials man- agement and
  • 26. how to achieve it • Synthesize the advantages and disadvantages of each of the major methods that constitute integrat- ed waste management • Summarize the various methods of managing haz- ardous chemical waste • Discuss the problems related to ocean dumping and why they will likely persist for some time (Botkin 576) Treasures of The Cell Phone The number of cell phones in use in the United States rose from about 5 million in 1990 to about 350 million in 2012. More than 6 billion cell phones are in use world- wide. Some countries (for example, the United States and Russia) have more cell phones in use than people living in the country. India has more cell phones than flush toilets. We wonder if the explosive use of cell phones and mes- saging is a signal of a core value to communicate socially. Today, we are connected across the planet by our cell phones— and this has enormous social and political im- plications. Text messaging, video, and cell phones have connected us as never before. For example, cell phone use was integral to the recent “Arab Spring.” People were constantly using them to communicate their desires for change and to organize political protests. Cell phones are commonly replaced every two years as new features and services become available—witness the iPhone’s popularity. Each cell phone is small, but the mil- lions of phones retired each year in the United States col- lectively contain a treasure chest of valuable metals worth over $300 million, not counting the cost of recycling (Table 23.1). Worldwide, their value probably exceeds a billion dollars, but although the money potentially avail- able through recycling is attractive, less than 1% of dis- carded cell phones are recycled. Most end up stored in our closets or disposed of at municipal solid-waste facilities. The life cycle of a cell phone is shown in Figure 23.1 and is
  • 27. typical of most electronic waste (e-waste).1 The primary reason more e- waste is not recycled is that we lack a simple, effective, small-scale, and inexpensive way to do it. We also need to bet- ter educate people about the environmental value of recy- cling and to offer more attrac- tive financial incentives to do it. Some states (California, for example) have laws that re- quire building recycling costs into the prices of products. (Botkin 577) Our failure to manage cell phones and other e-waste reminds us that in the past 50 years we have proved un- able to move from a throwaway, waste-oriented society to a society that sustains natural resources through improved materials management. However, in some cases we are moving in that direction by producing less waste and re- cycling more discarded products. With this in mind, in this chapter we introduce concepts of waste management applied to urban waste, hazardous chemical waste, and waste in the marine environment. 23.1 The Importance of Resources to Society Modern society depends on the availability of both re- newable resources (air, surface water, some groundwater, plants, animals, and some energy sources) and nonrenew- able resources (soil, some groundwater, oil, coal, and most minerals).2–4 What partially differentiates renewable from nonrenewable resources is their availability in a human time framework. Air and water, along with biological resources such as fish and crops, are regularly replenished as long as the processes that renew them continue to operate at an adequate rate. Nonrenewable resources, such as oil and minerals, even those that are being replenished by Earth processes today, are not being replenished in a time frame useful to people. Thus, strategies to use resources sustainably are linked to specific resources. We can sustain water resources by careful water management (see Chapter 18), but sustaining min- erals or oil requires strategies linked more to conservation, recycling, reuse, and substitution than to management of next year’s supply delivered by Earth processes.
  • 28. Many products made from both renewable and non- renewable resources are found and consumed in a typical American home (see Figure 23.2 for nonrenewable miner- als used in a home office). Consider this morning’s break- fast (food is a renewable resource). You probably drank from a glass made primarily of sand; ate from dishes made of clay; flavored your food with salt mined from Earth; ate fruit grown with the aid of fertilizers, such as potassium carbonate (potash) and phosphorus; and used utensils made of stainless steel, which comes from processing iron ore and other minerals. While eating your tasty renewable resources, you may have viewed the news on a television or computer screen, listened to music on your iPod, or made appointments using your cell phone. All these electronic items are made from metals and petroleum. Resources are vital to people, and the standard of living increases with their availability in useful forms. Indeed, the availability of resources is one measure of a society’s wealth. Those who have been most successful in locating and extracting or importing and using resources have grown and prospered. Without resources to grow food, construct buildings and roads, and manufacture everything from computers to televisions to automobiles, modern technological civilization as we know it would not be possible. For example, to maintain our standard of living in the United States, each person requires about 10 tons of nonfuel minerals per year.5 We use other resources, such as food and water, in much greater amounts. 23.2 Materials Management: What It Is Materials management has the visionary environmental goal of sustainably obtaining and using renewable and nonrenewable resources. This goal can be pursued in the following ways: 6 • Eliminate subsidies for extracting virgin materials such as minerals, oil, and timber. • Establish “green building” incentives that encourage the use of recycled content materials and products in new construction. • Assess financial penalties for production that uses poor
  • 29. materials management practices. • Provide financial incentives for industrial practices and products that benefit the environment by enhancing sustainability (for example, by reducing waste produc- tion and using recycled materials). • Provide more incentives for people, industry, and agri- culture to develop materials management programs that eliminate or reduce waste by using it as raw material for other products. Materials management in the United States today is beginning to influence where industries are located. For example, because approximately 50% of the steel pro- duced in the nation now comes from scrap, new steel mills are no longer located near resources such as coal and iron ore. New steel mills are now found in a variety of places, from California to North Carolina and Nebraska; their resource is the local supply of scrap steel. Because they are starting with scrap metal, the new industrial facilities use far less energy and cause much less pollution7 than older steel mills that must start with virgin iron ore. Similarly, the recycling of paper is changing where new paper mills are constructed. In the past, mills were built near forested areas where the timber for paper pro- duction was being logged. Today, they are being built near cities that have large supplies of recycled paper. New Jer- sey, for example, has 13 paper mills using recycled paper and 8 steel “mini mills” producing steel from scrap metal. Remarkably, New Jersey has little forested land and no iron mines; resources for the paper and steel mills come from materials already in use, exemplifying the power of materials management.7 We have focused on renewable resources in previous parts of this book (Chapter 11, agriculture; Chapter 12, forests; Chapter 13, wildlife; Chapter 18, water; and Chapter 21, air). We discussed nonrenewable resources with respect to fossil fuels in Chapter 15. The remainder of this chapter will discuss other nonrenewable mineral resources and how to sustain them as long as possible by intelligent waste management. 23.3 Mineral Resources
  • 30. Minerals can be considered a very valuable, nonrenewable heritage from the geologic past. Although new deposits are still forming from Earth processes, these processes are producing new deposits too slowly to be of use to us today or anytime soon. Also, because mineral deposits are generally in small, hidden areas, they must be discovered, and unfortunately most of the easily found deposits have already been discovered and exploited. Thus, if modern civilization were to vanish, our descendants would have a harder time finding rich mineral deposits than we did. It is interesting to speculate that they might mine landfills for metals thrown away by our civilization. Unlike bio- logical resources, minerals cannot be easily managed to produce a sustained yield; the supply is finite. Recycling and conservation will help, but, eventually, the supply will be exhausted. How Mineral Deposits Are Formed Metals in mineral form are generally extracted from natu- rally occurring, unusually high concentrations of Earth materials. When metals are concentrated in such large amounts by geologic processes, ore deposits are formed. The discovery of natural ore deposits allowed early peoples to exploit copper, tin, gold, silver, and other metals while slowly developing skills in working with metals. The origin and distribution of mineral resources is intimately related to the history of the biosphere and to the entire geologic cycle (see Chapter 7). Nearly all aspects and processes of the geologic cycle are involved to some ex- tent in producing local concentrations of useful materials. Earth’s outer layer, or crust, is silica-rich, made up mostly of rock-forming minerals containing silica, oxygen, and a few other elements. The elements are not evenly distrib- uted in the crust: Nine elements account for about 99% of the crust by weight (oxygen, 45.2%; silicon, 27.2%; aluminum, 8.0%; iron, 5.8%; calcium, 5.1%; magnesium, 2.8%; sodium, 2.3%; potassium, 1.7%; and titanium, 0.9%). In general, the remaining elements are found in trace concentrations.
  • 31. The ocean, covering nearly 71% of Earth, is anoth- er reservoir for many chemicals other than water. Most elements in the ocean have been weathered from crustal rocks on the land and transported to the oceans by rivers. Others are transported to the ocean by wind or glaciers. Ocean water contains about 3.5% dissolved solids, mostly chlorine (55.1% of the dissolved solids by weight). Each cubic kilometer of ocean water contains about 2.0 metric tons of zinc, 2.0 metric tons of copper, 0.8 metric ton of tin, 0.3 metric ton of silver, and 0.01 metric ton of gold. These concentrations are low compared with those in the crust, where corresponding values (in metric tons/km3) are zinc, 170,000; copper, 86,000; tin, 5,700; silver, 160; and gold, 5. After rich crustal ore deposits are depleted, we will be more likely to extract metals from lower grade deposits or even from common rock than from ocean wa- ter, unless mineral extraction technology becomes more efficient. Why do the minerals we mine occur in deposits with anomalously high local concentrations? Planetary scien- tists now believe that all the planets in our solar system were formed by the gravitational attraction of the forming sun, which brought together the matter dispersed around it. As the mass of the proto-Earth increased, the mate- rial condensed and was heated by the process. The heat was sufficient to produce a molten liquid core, consisting primarily of iron and other heavy metals, which sank to- ward the center of the planet. When molten rock material known as magma cools, heavier minerals that crystallize (solidify) early may slowly sink toward the bottom of the magma, whereas lighter minerals that crystallize later are left at the top. Deposits of an ore of chromium, called chromite, are thought to be formed in this way. When magma containing small amounts of carbon is deeply bur- ied and subjected to very high pressure during slow cool- ing (crystallization), diamonds (which are pure carbon) may be produced (Figure 23.3).8,9 Earth’s crust formed from generally lighter elements and is a mixture of many different kinds. The elements in the crust are
  • 32. not uniformly distributed because geologic processes (such as volcanic activity, plate tectonics, and sedimentary processes), as well as some biological pro- cesses, selectively dissolve, transport, and deposit elements and minerals. Sedimentary processes related to the transport of sedi- ments by wind, water, and glaciers often concentrate ma- terials in amounts sufficient for extraction. As sediments are transported, running water and wind help segregate them by size, shape, and density. This sorting is useful topeople. The best sand or sand and gravel deposits for con- struction, for example, are those in which the finer ma- terials have been removed by water or wind. Sand dunes, beach deposits, and deposits in stream channels are good examples. The sand and gravel industry amounts to several billion dollars annually and, in terms of the total volume of materials mined, is one of the largest nonfuel mineral industries in the United States.5 Rivers and streams that empty into oceans and lakes carry tremendous quantities of dissolved material from the weathering of rocks. Over geologic time, a shallow marine basin may be isolated by tectonic activity that uplifts its boundaries; or climate variations, such as the ice ages, may produce large inland lakes with no outlets. As these basins and lakes eventually dry up, the dissolved materials drop out of solution and form a wide variety of compounds, minerals, and rocks that have important commercial value.9 Biological processes form some mineral deposits, such as phosphates and iron ore deposits. The major iron ore deposits exist in sedimentary rocks that were formed more than 2 billion years ago.10 Although the processes are not fully understood, it appears that major deposits of iron stopped forming when the atmospheric concentration of oxygen reached its present level.11 Organisms, too, form many kinds of minerals, such as the calcium minerals in shells and bones. Some of these minerals cannot be formed inorganically in the biosphere. Thirty-one biologically produced minerals have been identified.12
  • 33. Weathering, the chemical and mechanical decomposi- tion of rock, concentrates some minerals in the soil, such as native gold and oxides of aluminum and iron. (The more soluble elements, such as silica, calcium, and sodium, are selectively removed by soil and biological processes.) If sufficiently concentrated, residual aluminum oxide forms an ore of aluminum known as bauxite. Important nickel and cobalt deposits are also found in soils developed from iron and magnesium-rich igneous rocks. 23.4 Figuring Out how Much Is Left Estimating how much is left of our valuable and nonrenewable mineral resources will help us estimate how long they are likely to last at our present rate of use and motivate us to do everything we can to sustain them as long as possible for future generations. We can begin by looking at the classification of minerals as resources and reserves. Mineral Resources and Reserves Mineral resources are broadly defined as known concentrations of elements, chemical compounds, minerals, or rocks. Mineral reserves are concentrations that at the time of evaluation can be legally and economically extracted as a commodity that can be sold at a profit (Figure 23.4). The main point here is that resources are not reserves. An analogy from a student’s personal finances may help clarify this point. A student’s reserves are liquid assets, such as money in the bank, whereas the student’s resources include the total income the student can expect to earn dur- ing his or her lifetime. This distinction is often critical to the student in school because resources that may become available in the future cannot be used to pay this month’s bills.13 For planning purposes, it is important to continually reassess all components of a total resource, considering new technology, the probability of geologic discovery, and shifts in economic and political conditions. Availability and Use of Our Mineral Resources Earth’s mineral resources can be divided into broad cat- egories according to their use: elements for metal production and
  • 34. technology, building materials, minerals for the chemical industry, and minerals for agriculture. Metallic minerals can be further classified by their abundance. Abundant metals include iron, aluminum, chromium, manganese, titanium, and magnesium. Scarce metals include copper, lead, zinc, tin, gold, silver, platinum, ura- nium, mercury, and molybdenum. Some minerals, such as salt (sodium chloride), are necessary for life. Primitive peoples traveled long distances to obtain salt when it was not locally available. Other minerals are desired or considered necessary to maintain a particular level of technology. When we think about minerals, we usually think of metals; but with the exception of iron, the predominant minerals are not metallic. Consider the annual world con- sumption of a few selected elements. Sodium and iron are used at a rate of approximately 100–1,000 million metric tons per year; and nitrogen, sulfur, potassium, and cal- cium at a rate of approximately 10–100 million metric tons per year, primarily as soil conditioners or fertilizers. Elements such as zinc, copper, aluminum, and lead have annual world consumption rates of about 3–10 million metric tons, and gold and silver are consumed at annual rates of 10,000 metric tons or less. Of the metallic miner- als, iron makes up 95% of all the metals consumed; and nickel, chromium, cobalt, and manganese are used mainly in alloys of iron (as in stainless steel). The basic issue associated with mineral resources is not actual exhaustion or extinction but the cost of main- taining an adequate stock by mining and recycling. At some point, the costs of mining exceed the worth of mate- rial. When the availability of a particular mineral becomes limited, there are four possible solutions: • Find more sources. • Recycle and reuse what has already been obtained. • Reduce consumption. • Find a substitute. Which choice or combination of choices is made depends on
  • 35. social, economic, and environmental factors. U.S. Supply of Mineral Resources Domestic supplies of many mineral resources in the Unit- ed States are insufficient for current use and must be sup- plemented by imports from other nations. For example, the United States imports many of the minerals needed for its complex military and industrial system, called strategic minerals (such as bauxite, manganese, graphite, cobalt, strontium, and asbestos). Of particular concern is the possibility that the supply of a much-desired or much- needed mineral will be interrupted by political, economic, or military instability in the supplying nation. That the United States—along with many other countries— depends on a steady supply of imports to meet its domestic demand does not necessarily mean that suf- ficient kinds and amounts can’t be mined domestically. Rather, it suggests economic, political, or environmental reasons that make it easier, more practical, or more desir- able to import the material. This has resulted in politi- cal alliances that otherwise would be unlikely. Industrial countries often need minerals from countries whose poli- cies they don’t necessarily agree with; as a result, they make political concessions on human rights and other is- sues that they would not otherwise make.3 Moreover, the fact remains that mineral resources are limited, and this raises important questions. How long will a particular resource last? How much short-term or long- term environmental deterioration are we willing to accept to ensure that resources are developed in a particular area? How can we make the best use of available resources? 23.5 Impacts of Mineral Development The impact of mineral exploitation depends on ore qual- ity, mining procedures, local hydrologic conditions, cli- mate, rock types, size of operation, topography, and many more interrelated factors. In addition, our use of mineral resources has a significant social impact. Environmental Impacts
  • 36. Exploration for mineral deposits generally has a minimal impact on the environment if care is taken in sensitive areas, such as arid lands, marshes, and areas underlain by permafrost. Mineral mining and processing, however, generally have a considerable impact on land, water, air, and living things. Furthermore, as it becomes necessary to use ores of lower and lower grades, the environmental effects tend to worsen. One example is the asbestos fibers in the drinking water of Duluth, Minnesota, from the disposal of waste from mining low-grade iron ore. A major practical issue is whether open pit or under- ground mines should be developed in an area. As you saw in our earlier discussion of coal mining in Chapter 15, there are important differences between the two kinds of mining.2 The trend in recent years has been away from sub- surface mining and toward large, open pit mines, such as the Bingham Canyon copper mine in Utah (Figure 23.5). The Bingham Canyon mine is one of the world’s largesthuman-made excavations, covering nearly 8 km2 (3 mi2) to a maximum depth of nearly 800 m (2,600 ft). Surface mines and quarries today cover less than 0.5% of the total area of the United States, but even though their impacts are local, numerous local occurrences will eventu- ally constitute a larger problem. Environmental degrada- tion tends to extend beyond the immediate vicinity of a mine. Large mining operations remove material in some areas and dump waste in others, changing topography. At the very least, severe aesthetic degradation is the result. In addition, dust may affect the air quality, even though care is taken to reduce it by sprinkling water on roads and on other sites that generate dust. A potential problem with mineral resource develop- ment is the possible release of harmful trace elements into the environment. Water resources are particularly vulnerable even if drainage is controlled and sediment pollution is reduced (see Chapter 15 for more about this issue, including a discussion of acid mine drainage). The white streaks in Figure 23.6 are mineral deposits appar- ently leached from tailings from a zinc mine in Colorado.
  • 37. Similar-looking deposits may cover rocks in rivers for many kilometers downstream from some mining areas. Mining-related physical changes in the land, soil, wa- ter, and air indirectly affect the biological environment. Plants and animals killed by mining activity or by contact with toxic soil or water are some of the direct impacts. Indirect impacts include changes in nutrient cycling, total biomass, species diversity, and ecosystem stability. Periodic or accidental discharge of low-grade pollutants through failure of barriers, ponds, or water diversions, or through the breaching of barriers during floods, earthquakes, or volcanic eruptions, also may damage local ecological sys- tems to some extent. Social Impacts The social impacts of large-scale mining result from the rapid influx of workers into areas unprepared for growth. This population influx places stress on local services, such as water supplies, sewage and solid-waste disposal systems, as well as on schools, housing, and nearby recreation and wilderness areas. Land use shifts from open range, for- est, and agriculture to urban patterns. Construction and urbanization affect local streams through sediment pollution, reduced water quality, and increased runoff. Air quality suffers as a result of more vehicles, construction dust, and power generation. Perversely, closing down mines also has negative so- cial impacts. Nearby towns that have come to depend on the income of employed miners can come to resemble the well-known “ghost towns” of the old American West. The price of coal and other minerals also directly affects the livelihood of many small towns. This is especially evident in the Appalachian Mountain region of the United States, where coal mines have closed partly because of lower prices for coal and partly because of rising mining costs. One of the reasons mining costs are rising is the increased level of environmental regulation of the mining indus- try. Of course, regulations have also helped make mining safer and have facilitated land reclamation. Some miners, however, believe the regulations are not flexible enough, and there is
  • 38. some truth to their arguments. For example, some mined areas might be reclaimed for use as farmland now that the original hills have been leveled. Regulations, however, may require that the land be restored to its origi- nal hilly state, even though hills make inferior farmland. Minimizing the Environmental Impact of Mineral Development Minimizing the environmental impacts of mineral development requires consideration of the entire cycle of min- eral resources shown in Figure 23.7. This diagram reveals that waste is produced by many components of the cycle. In fact, the major environmental impacts of mineral use are related to waste products. Waste produces pollution that may be toxic to people, may harm natural ecosystems and the biosphere, and may be aesthetically displeasing. Waste may attack and degrade air, water, soil, and living things. Waste also depletes nonrenewable mineral resources and, when simply disposed of, provides no offsetting benefits for human society. Environmental regulations at the federal, state, and local levels address pollution of air and water by all aspects of the mineral cycle, and may also address reclamation of land used for mining minerals. Today, in the United States, approximately 50% of the land used by the mining industry has been reclaimed. Minimizing the environmental effects of mining takes several interrelated paths:3 • Reclaiming areas disturbed by mining (see A Closer Look 23.1). • Stabilizing soils that contain metals to minimize their release into the environment. Often this requires plac- ing contaminated soils in a waste facility. • Controlling air emissions of metals and other materials from mining areas. • Treating contaminated water before it can leave a mining site or treating contaminated water that has left a mining site. • Treating waste onsite and offsite. Minimizing onsite and offsite problems by controlling sediment, water, and air pollution through good engineering and conservation practices
  • 39. is an important goal. Of particular interest is the development of biotechnological processes such as biooxidation, bioleaching, and biosorption, the bonding of waste to microbes, as well as genetic engineering of microbes. These practices have enormous potential for both extracting metals and minimizing environmental degradation. At several sites, for example, constructed wetlands use acid-tolerant plants to remove metals from mine wastewaters and neutralize acids by biological ac- tivity.14 The Homestake Gold Mine in South Dakota uses biooxidation to convert contaminated water from the mining operation into substances that are environ- mentally safe; the process uses bacteria that have a natu- ral ability to oxidize cyanide to harmless nitrates.15 • Practicing the three R’s of waste management. That is, Reduce the amount of waste produced, Reuse waste as much as possible, and maximize Recycling opportuni- ties. Wastes from some parts of the mineral cycle, for example, may themselves be considered ores because they contain materials that might be recycled to provide energy or other products.16–18 We will look at the three R’s in greater detail in Section 23.7, Integrated Waste Management. 23.6 Materials Management and Our Waste History of Waste Disposal During the first century of the Industrial Revolution, the volume of waste produced in the United States was rela- tively small and could be managed using the concept of “dilute and disperse.” Factories were located near rivers because the water provided a number of benefits, includ- ing easy transport of materials by boat, enough water for processing and cooling, and easy disposal of waste into the river. With few factories and a sparse population, dilute and disperse was sufficient to remove the waste from the immediate environment.19 As industrial and urban areas expanded, the concept of dilute and disperse became inadequate, and a new concept, “concentrate and contain,” came into use. It has become ap- parent, however, that containment was, and is, not always
  • 40. achieved. Containers, whether simple trenches excavated in the ground or metal drums and tanks, may leak or break and allow waste to escape. Health hazards resulting from past waste- disposal practices have led to the present situa- tion, in which many people have little confidence in gov- ernment or industry to preserve and protect public health.20 In the United States and many other parts of the world, people are facing a serious solid-waste disposal problem. Basically, we are producing a great deal of waste and don’t have enough acceptable space for disposing of it. It has been estimated that within the next few years approximately half the cities in the United States may run out of landfill space. Philadelphia, for example, is es- sentially out of landfill space now and is bargaining with other states on a monthly or yearly basis to dispose of its trash. The Los Angeles area has landfill space for only about ten more years. To say we are actually running out of space for landfills isn’t altogether accurate—land used for landfills is minute compared to the land area of the United States. Rather, existing sites are being filled, and it is difficult to site new landfills. After all, no one wants to live near a waste-dis- posal site, be it a sanitary landfill for municipal waste, an incinerator that burns urban waste, or a hazardous waste- disposal operation for chemical materials. This attitude is widely known as NIMBY (“not in my backyard”). The environmentally correct concept with respect to waste management is to consider wastes as resources out of place. Although we may not soon be able to reuse and recycle all waste, it seems apparent that the increas- ing cost of raw materials, energy, transportation, and land will make it financially feasible to reuse and recycle more resources and products. Moving toward this objective is moving toward an environmental view that there is no such thing as waste. Under this concept, waste would not exist because it would not be produced—or, if produced, it would be a resource to be used again. This is referred to as the “zero waste” movement.
  • 41. Zero waste is the essence of what is known as indus- trial ecology, the study of relationships among industrial systems and their links to natural systems. Under the prin- ciples of industrial ecology, our industrial society would function much as a natural ecosystem functions. Waste from one part of the system would be a resource for an- other part.21 Until recently, zero waste production was considered unreasonable in the waste-management arena. However, it is catching on. The city of Canberra, Australia, may be the first community to propose a zero waste plan. Thou- sands of kilometers away, in the Netherlands, a national waste reduction goal of 70 to 90% has been set. How this goal is to be met is not entirely clear, but a large part of the planning involves taxing waste in all its various forms, from smokestack emissions to solids delivered to landfills. Already, in the Netherlands, pollution taxes have nearly eliminated discharges of heavy metals into waterways. At the household level, the government is considering programs—known as “pay as you throw”—that would charge people by the volume of waste they produce. Tax- ing waste, including household waste, motivates people to produce less of it.22 Of particular importance to waste management is the growing awareness that many of our waste-management programs involve moving waste from one site to another, and not really managing it. For example, waste from ur- ban areas may be placed in landfills; but eventually these landfills may cause new problems by producing methane gas or noxious liquids that leak from the site and contami- nate the surrounding areas. Managed properly, however, methane produced from landfills is a resource that can be burned as a fuel (an example of industrial ecology). In sum, previous notions of waste disposal are no longer acceptable, and we are rethinking how we deal with materi- als, with the objective of eliminating the concept of waste entirely. In this way, we can reduce the consumption of min- erals and other virgin materials, which depletes our environ- ment, and
  • 42. live within our environment more sustainably.21 23.7 Integrated Waste Management The dominant concept today in managing waste is known as integrated waste management (IWM), which is best defined as a set of management alternatives that includes reuse, source reduction, recycling, composting, landfill, and incineration. Reduce, Reuse, Recycle The ultimate objective of the three R’s of IWM is to re- duce the amount of urban (municipal solid waste) and other waste that must be disposed of in landfills, incin- erators, and other waste-management facilities. Study of the waste stream (the waste produced) in areas that use IWM technology suggests that the amount (by weight) of urban refuse disposed of in landfills or incinerated can be reduced by at least 50% and perhaps as much as 70%. A 50% reduction by weight could be achieved by (1) source reduction, such as packaging better designed to reduce waste (10%reduction); (2) large-scale composting pro- grams (10% reduction); and (3) recycling programs (30% reduction).20 As this list indicates, recycling is a major player in reducing the urban waste stream. Metals such as iron, aluminum, copper, and lead have been recycled for many years and are still being recycled today. The metal from al- most all of the millions of automobiles discarded annually in the United States is recycled.16,17 The total value of re- cycled metals is about $50 billion. Iron and steel account for approximately 90% by weight and 40% by total value of recycled metals. Iron and steel are recycled in such large volumes for two reasons. First, the market for iron and steel is huge, and as a result there is a large scrap collec- tion and scrap processing industry. Second, an enormous economic and environmental burden would result from failure to recycle because over 50 million tons of scrap iron and steel would have to be disposed of annually.17,18 Today in the United States we recycle over 30% of our total municipal solid waste, up more than 10% from 25 years ago. This amounts to 99% of automobile bat- teries, 63% of steel
  • 43. cans, 71% office type papers, 63% of aluminum cans, 35% of tires, 28% of glass contain- ers, and about 30% of various plastic containers (Table 23.2).23 This is encouraging news. Can recycling actu- ally reduce the waste stream by 50%? Recent work sug- gests that the 50% goal is reasonable. In fact, it has been reached in some parts of the United States, and the po- tential upper limit for recycling is considerably higher. It is estimated that as much as 80 to 90% of the U.S. waste stream might be recovered through what is known as in- tensive recycling.24 A pilot study involving 100 families inEast Hampton, New York, achieved a level of 84%. More realistic for many communities is partial recycling, which targets specific materials such as glass, aluminum cans, plastic, organic material, and newsprint. Partial recycling can provide a significant reduction, and in many places it is approaching or even exceeding 50%.25,26 Recycling is simplified with single-stream recycling, in which paper, plastic, glass, and metals are not sepa- rated before collection; the waste is commingled in one container and separated later at recycling centers. This is more convenient for homeowners, reduces the cost of col- lection, and increases the rate of recycling. Thus, single- stream recycling is growing rapidly. Public Support for Recycling There is enthusiastic public support for recycling in the United States today. Many people understand that managing our waste has many advantages to society as a whole and the environment in particular. People like the notion of recycling because they correctly assume they are helping to conserve resources, such as forests, that make up much of the nonurban environment of the planet. An encouraging sign of public support for the environ- ment is the increased willingness of industry and business to support recycling on a variety of scales. For example, fast-food restaurants are using less packaging and provid- ing onsite bins for recycling paper and plastic. Groceries and supermarkets are
  • 44. encouraging the recycling of plastic and paper bags by providing bins for their collection, and some offer inexpensive reusable canvas shopping bags in- stead of disposables. Companies are redesigning products so that they can be more easily disassembled after use and the various parts recycled. As this idea catches on, small appliances such as electric frying pans and toasters may be recycled rather than ending up in landfills. The automo- bile industry is also responding by designing automobiles with coded parts so that they can be more easily disassem- bled (by professional recyclers) and recycled, rather than left to become rusting eyesores in junkyards. On the consumer front, people are more likely to purchase products that can be recycled or that come in containers that are more easily recycled or composted. Many consumers have purchased small home appliances that crush bottles and aluminum cans, reducing their volume and facilitating recycling. The entire arena is rapidly changing, and innovations and opportunities will undoubtedly continue. Large cities from New York to Los Angeles have initi- ated recycling programs, but many people are concerned that recycling is not yet “cost-effective.” As with many other environmental solutions, implementing the IWM concept successfully can be a complex undertaking. In some communities where recycling has been successful, it has resulted in glutted markets for recycled products, which has sometimes required temporarily stockpiling or suspending the recycling of some items. It is apparent that if recycling is to be successful, markets and processing facilities will also have to be developed to ensure that recy- cling is a sound financial venture as well as an important part of IWM. To be sure, there are success stories, such as a large urban paper mill on New York’s Staten Island that recycles more than 1,000 tons of paper per day. It is claimed that this paper mill saves more than 10,000 trees a day and uses only about 10% of the electricity required to make paper from virgin wood processing. On the West Coast, San Francisco has an innovative and
  • 45. ambitious recycling program that diverts nearly 50% of the urban waste from landfills to recycling programs. City officials are even talk- ing about the concept of zero waste, hoping to achieve to- tal recycling of waste by 2020. In part, this goal is being achieved by instigating a “pay-as-you-throw” approach; businesses and individuals are charged for disposal of gar- bage but not for materials that are recycled. Materials from the waste of the San Francisco urban area are shipped as far away as China and the Philippines to be recycled into usable products; organic waste is sent to agricultural areas; and metals, such as aluminum, are sent around California and to other states where they are recycled. To understand some of the issues concerning recy- cling and its cost, consider the following points: • The average cost of disposal at a landfill is about $40/ ton in the United States, and even at a higher price of about $80/ton may be cheaper than recycling. • Landfill fees in Europe range from $200 to $300/ton. • Europe has been more successful in recycling, in part because countries such as Germany hold manufacturers responsible for disposing of the industrial goods they produce, as well as the packaging. • In the United States, packaging accounts for approxi- mately one-third of all waste generated by manufacturing. • The cost to cities such as New York, which must export its waste out of state, is steadily rising and is expected to exceed the cost of recycling within about ten years. • Placing a 10-cent refundable deposit on all beverage containers except milk would greatly increase the num- ber recycled. For example, states with a deposit sys- tem have an average recycling rate of about 70–95% of bottles and cans, whereas states that do not have a refundable-deposit system average less than 30%. • When people have to pay for trash disposal at a landfill, but are not charged for materials that are recycled— such as paper, plastic, glass, and metals—the success of recycling is greatly
  • 46. enhanced. • Beverage companies do not particularly favor requir- ing a refundable deposit for containers. They claim that the additional costs to do this would be several billion dollars, but they do agree that recovery rates would be higher, providing a steadier supply of recycled metal, such as aluminum, as well as plastic. • Education is a big issue with recycling. Many people still don’t know which items are recyclable and which are not. • Global markets for recyclable materials, such as paper and metals, have potential for expansion, particularly for large urban areas on the seacoast, where shipping materi- als is economically viable. Recycling in the United States today is a $14 billion industry; if done right, it generates new jobs and revenue for participating communities. There are a number of good reasons to recycle mu- nicipal solid waste:27 • Saving money by recycling: For many years we have known that it is less expensive to make products us- ing materials that have been recycled. Using recycled aluminum has been mentioned more than many other materials, probably because about 90% more energy is expended to extract and use new aluminum resources from the planet than to recycle and reuse that aluminum. Products made from recycled metals and other materi- als are generally less expensive than those manufactured from materials mined for the first time from Earth. • Recycling increases employment: As we recycle more, new businesses are generated in transporting, processing, and selling recycled materials to be used in manufactur- ing new goods. On the one hand, for every 100,000 tons of waste that enters the waste stream and ends up in a landfill, six new jobs are created. On the other hand, if that same 100,000 tons of waste is recycled, six times as many jobs may be created. The number of jobs required at landfills is less than the number created through recycling because, as materials are reused, more employment results, including jobs for people who sort, transport, and sell the material, as well as for engineers and chemists who work to
  • 47. create better uses for those recycled materials. Furthermore, these jobs are often created in urban environments where more people live and work. Today, more than one million people are em- ployed in the recycling industry, and over 55,000 recy- cling and reuse facilities have been built. • Recycling politics: Becoming energy self-sufficient has been a longtime U.S. objective. Recent oil and gas dis- coveries are heading us in that direction, but recycling of materials can also play a role. Today, the United States recycles just over 30% of municipal solid waste, and this recycling results in a savings of about 5 billion gallons of gasoline. Thus, it is argued that through greater use of recycling, the United States and other countries that recycle may be more self-reliant and independent. • Recycling and values: One of the fundamental prin- ciples of this book centers on values and science. It is argued that recycling is the right thing to do because it provides for better management of the Earth’s resources. Value judgments include the fact that it is far better to reuse and recycle than to simply discard materials and products we have used. Extraction of raw materials from the planet poses serious environmental concerns, and reusing those products reduces our impact. An example often cited is the use of recycled paper so that fewer trees need to be harvested for paper production, thereby reducing the impact of deforestation. Another example is the use of plastics that, when recycled and reprocessed, can produce a number of products we rou- tinely use (see A Closer Look 23.2). The ethical and moral argument is that by recycling and reusing more we can help minimize potential damages resulting from resource exploitation. Recycling of Human Waste The use of human waste, or “night soil,” on croplands is an ancient practice. In Asia, recycling of human waste has a long history. Chinese agriculture was sustained for thousands of years through collection of human waste, which was spread over agricultural fields. The practice grew, and by the early 20th century the land application of sewage was a primary disposal
  • 48. method in many met- ropolitan areas in countries, including Mexico, Austra- lia, and the United States.28 Early uses of human waste for agriculture occasionally spread infectious diseases through bacteria, viruses, and parasites in waste applied to crops. Today, with the globalization of agriculture, we still see occasional warnings and outbreaks of disease from contaminated vegetables (see Chapter 19). A major problem associated with recycling human waste is that, along with human waste, thousands of chemicals and metals flow through our modern waste stream. Even garden waste that is composted may contain harmful chemicals, such as pesticides.28 23.8 Municipal Solid-Waste Management Municipal solid-waste management continues to be a problem in the United States and other parts of the world. In many areas, particularly in developing countries, waste- management practices are inadequate. These practices, which include poorly controlled open dumps and illegal roadside dumping, can spoil scenic resources, pollute soil and water, and pose health hazards. Illegal dumping is as much a social as a physical problem because many people are simply disposing of waste as inexpensively and as quickly as possible, perhaps not see- ing their garbage as an environmental problem. If nothing else, this is a tremendous waste of resources, since much of what is dumped could be recycled or reused. In areas where illegal dumping has been reduced, the keys have been awareness, education, and alternatives. Education programs teach people about the environmental problems of unsafe, unsanitary dumping of waste, and funds are provided for cleanup and for inexpensive collection and recycling of trash at sites of origin. Next, we look at the composition of solid waste in the United States, and then we describe specific disposal methods: onsite disposal, composting, incineration, open dumps, and sanitary landfills. Composition of Solid Waste
  • 49. The average content of solid waste that is not recycled and is likely to end up at a disposal site in the United States is shown in Figure 23.10. It is no surprise that paper is by far the most abundant component. However, considerable variation can be expected, based on factors such as land use, economic base, industrial activity, climate, and time of year. People have many misconceptions about our waste stream.29 With all the negative publicity about fast-food packaging, polystyrene foam, and disposable diapers, many people assume that these make up a large percentage of the waste stream and are responsible for the rapid filling of landfills. However, excavations into modern landfills using archaeological tools have cleared up some misconceptions. We now know that fast- food packaging accounts for only about 0.25% of the average landfill; disposable diapers, ap- proximately 0.8%; and polystyrene products about 0.9%.29 Paper is a major constituent in landfills, perhaps as much as 50% by volume and 40% by weight. The largest single item is newsprint, which accounts for as much as 18% by volume.30 Newsprint is one of the major items targeted for recycling because big environmental dividends can be expected. However, (and this is a value judgment), the need to deal with the major waste products doesn’t mean that we need not cut down on our use of disposable diapers, poly- styrene, and other paper products. In addition to creating a need for disposal, these products are made from resources that might be better managed. Onsite Disposal A common onsite disposal method in urban areas is the garbage disposal device installed in the wastewater pipe under the kitchen sink to grind garbage and flush it into the sewer system. This effectively reduces the amount of handling and quickly removes food waste. What’s left of it is transferred to sewage treatment plants, where solids remaining as sewage sludge still must be disposed of.31,32 Composting Composting is a biochemical process in which organic
  • 50. materials, such as lawn clippings and kitchen scraps, de- compose to a rich, soil-like material. The process involves rapid partial decomposition of moist solid organic waste by aerobic organisms. Although simple backyard com- post piles may come to mind, large-scale composting as a waste-management option is generally carried out in the controlled environment of mechanical digesters. This technique is popular in Europe and Asia, where intense farming creates a demand for compost. However, a major drawback of composting is the necessity of separating organic material from other waste. Therefore, it is probably economically advantageous only where organic material is collected separately from other waste. Another negative is that composting plant debris previously treated with herbicides may produce a compost toxic to some plants. Nevertheless, composting is an important component of IWM, and its contribution continues to grow.31,32 Incineration Incineration burns combustible waste at temperatures high enough (900°–1,000°C, or 1,650°–1,830°F) to consume all combustible material, leaving only ash and noncombustibles to dispose of in a landfill. Under ideal conditions, incineration may reduce the volume of waste by 75–95%.32 In practice, however, the actual decrease in volume is closer to 50% because of maintenance problems, as well as waste supply problems. Besides reducing a large volume of combustible waste to a much smaller volume of ash, incineration has another advantage: It can be used to supplement other fuels and generate electrical power. Incineration of urban waste is not necessarily a clean process; it may produce air pollution and toxic ash. In the United States, for example, incineration is apparently a significant source of environmental dioxin, a carcinogenic toxin (see Chapter 8).33 Smokestacks from incinerators also may emit oxides of nitrogen and sulfur, which lead to acid rain; heavy metals, such as lead, cadmium, and mercury; and carbon dioxide, which is related to global warming.
  • 51. In modern incineration facilities, smokestacks fitted with special devices trap pollutants, but the process of pol- lutant abatement is expensive. The plants themselves are expensive, and government subsidization may be needed to aid in their establishment. Evaluation of the urban waste stream suggests that an investment of $8 billion could build enough incinerators in the United States to burn approximately 25% of the solid waste that is generated. However, a similar investment in source reduction, recycling, and composting could divert as much as 75% of the nation’s urban waste stream away from landfills.24 The economic viability of incinerators depends on revenue from the sale of the energy produced by burning the waste. As recycling and composting increase, they will compete with incineration for their portion of the waste stream, and sufficient waste (fuel) to generate a profit from incineration may not be available. The main conclu- sion that can be drawn based on IWM principles is that a combination of reusing, recycling, and composting could reduce the volume of waste requiring disposal at a landfill by at least as much as incineration.24 Open Dumps (Poorly Controlled Landfills) In the past, solid waste was often disposed of in open dumps (now called landfills), where refuse was piled up and left uncovered. Thousands of open dumps have been closed in recent years, and new open dumps are banned in the United States and many other countries. Nevertheless, many are still being used worldwide (Figure 23.11) Sanitary Landfills A sanitary landfill (also called a municipal solid-waste landfill) is designed to concentrate and contain refuse without creating a nuisance or hazard to public health or safety. The idea is to confine the waste to the smallest prac- tical area, reduce it to the smallest practical volume, and cover it with a layer of compacted soil at the end of each day of operation, or more frequently if necessary. Cover- ing the waste is what makes the landfill sanitary. The com- pacted layer restricts (but does not eliminate) continued access to the waste by insects, rodents, and
  • 52. other animals, such as seagulls. It also isolates the refuse, minimizing the amount of surface water seeping into it and the amount of 34 gas escaping from it. Leachate The most significant hazard from a sanitary landfill is pollution of groundwater or surface water. If waste buried in a landfill comes into contact with water percolating down from the surface or with groundwater moving later- ally through the refuse, leachate—a noxious, mineralized liquid capable of transporting bacterial pollutants—is produced.35 For example, two landfills dating from the 1930s and 1940s on Long Island, New York, have pro- duced subsurface leachate trails (plumes) several hundred meters wide that have migrated kilometers from the dis- posal site. The nature and strength of the leachate pro- duced at a disposal site depend on the composition of the waste, the amount of water that infiltrates or moves through the waste, and the length of time that infiltrated water is in contact with the refuse.32 Site Selection The siting of a sanitary landfill is very important and must take into consideration a number of factors, includ- ing topography, location of the groundwater table, amount of precipitation, type of soil and rock, and location of the disposal zone in the surface water and groundwater flow system. A favorable combination of climatic, hydrologic, and geologic conditions helps to ensure reasonable safety in containing the waste and its leachate.36 The best sites are in arid regions, where disposal conditions are relatively safe be- cause little leachate is produced. In a humid environment, some leachate is always produced; therefore, an acceptable level of leachate production must be established to deter- mine the most favorable sites in such environments. What is acceptable varies with local water use, regulations, and the ability of the natural hydrologic system to disperse, di- lute, and otherwise degrade the leachate to harmless levels. Elements of the most desirable site in a humid cli- mate with moderate to abundant precipitation are shown in Figure 23.12.
  • 53. The waste is buried above the water table in relatively impermeable clay and silt that water cannot easily move through. Any leachate therefore remains in the vicinity of the site and degrades by natural filtering ac- tion and chemical reactions between clay and leachate.37,38 Siting waste-disposal facilities also involves important social considerations. Often, planners choose sites where they expect minimal local resistance or where they perceive land to have little value. Waste-disposal facilities are frequently located in areas where residents tend to have low socioeconomic status or belong to a particular racial or ethnic group. The study of social issues in siting waste facilities, chemical plants and other such facilities is an emerging field known as environmental justice. Monitoring Pollution in Sanitary Landfills Once a site is chosen for a sanitary landfill and before filling starts, monitoring the movement of groundwater should begin. Monitoring involves periodically taking samples of water and gas from specially designed moni- toring wells. Monitoring the movement of leachate and gases should continue as long as there is any possibility of pollution, and it is particularly important after the site is completely filled and permanently covered. Continued monitoring is necessary because a certain amount of set- tling always occurs after a landfill is completed; if small depressions form, surface water may collect, infiltrate, and produce leachate. Monitoring and proper maintenance of an abandoned landfill reduce its pollution potential.34 How Pollutants Can Enter the Environment from Sanitary Landfills Pollutants from a solid-waste disposal site can enter the environment through as many aseight paths (Figure 23.13):41 1. Methane, ammonia, hydrogen sulfide, and nitrogen gases can be produced from compounds in the waste and the soil and can enter the atmosphere. 2. Heavy metals, such as lead, chromium, and iron, can be retained in the soil. 3. Soluble materials, such as chloride, nitrate, and sul- fate, can
  • 54. readily pass through the waste and soil to the groundwater system. 4. Overland runoff can pick up leachate and transport it into streams and rivers. 5. Some plants (including crops) growing in the disposal area can selectively take up heavy metals and other toxic materials. These materials are then passed up the food chain as people and animals eat the plants. 6. If plant residue from crops left in fields contains toxic substances, these substances return to the soil. 7. Streams and rivers may become contaminated by waste from groundwater seeping into the channel (3) or by surface runoff (4). 8. Wind can transport toxic materials to other areas. Modern sanitary landfills are engineered to include multiple barriers: clay and plastic liners to limit the movement of leachate; surface and subsurface drainage to collect leachate; systems to collect methane gas from decomposing waste; and groundwater monitoring to de- tect leaks of leachate below and adjacent to the landfill. A thorough monitoring program considers all eight possible paths by which pollutants enter the environment. In prac- tice, however, monitoring seldom includes all pathways. It is particularly important to monitor the zone above the water table to identify potential pollution before it reaches and contaminates groundwater, where correction would be very expensive. Figure 23.14 shows (a) an idealized dia- gram of a landfill that uses the multiple barrier approach and (b) a photograph of a landfill site under construction. Federal Legislation for Sanitary Landfills New landfills that opened in the United States after 1993 must comply with stricter requirements under the Resource Conservation and Recovery Act of 1980. The legislation, as its title states, is intended to strengthen and standardize the design, operation, and monitoring of sani- tary landfills. Landfills that cannot comply with regulations face closure. However, states may choose between two options: (1) comply with federal
  • 55. standards or (2) seek EPA approval of solid-waste management plans. The federal standards include the following: • Landfills may not be sited on floodplains, wetlands, earthquake zones, unstable land, or near airports (birds drawn to landfill sites are a hazard to aircraft). • Landfills must have liners. • Landfills must have a leachate collection system. • Landfill operators must monitor groundwater for many specified toxic chemicals. • Landfill operators must meet financial assurance criteria to ensure that monitoring continues for 30 years after the landfill is closed. EPA approval of a state’s landfill program allows greater flexibility: • Groundwater monitoring may be suspended if the landfill operator can demonstrate that hazardous con- stituents are not migrating from the landfill. • Alternative types of daily cover over the waste may be used. • Alternative groundwater protection standards are al- lowed. • Alternative schedules for documentation of groundwa- ter monitoring are allowed. • Under certain circumstances, landfills in wetlands and fault zones are allowed. • Alternative financial assurance mechanisms are allowed. Given the added flexibility, it appears advantageous for states to develop EPA-approved waste-management plans. Reducing the Waste that Ends Up in a Landfill Most of the municipal solid waste we generate is from our homes, and over 50% of it could be diverted from the landfill by the 3 R’s of waste management: reduce, reuse, and recycle. Diversion may eventually be increased to as much as 85% through improved waste management. In other words, the life of the landfill can be extended by keeping more waste out of the landfill through conserva- tion and recycling, or through turning waste, even waste that is presently buried, into a source of clean energy. The latter involves first removing materials that can be
  • 56. recy- cled, then linking noncombustion thermal or biochemical processes with the remaining solid waste to produce elec- tricity and alternative fuels (for example, biodiesel). The less waste in the landfill, the less potential for pollution of ground and surface water, along with the important fringe benefit of green energy. The average waste per person in the United States in- creased from about 1 kg (2.2 lb) per day in 1960 to 2 kg (4.5 lb) per day in 2008. This is an annual growth rate of about 1.5% per year and is not sustainable because the doubling time for waste production is only a few decades. The 236 million tons we produced in 2003 would be close to 500 million tons by 2050, and we are already having big waste-management problems today. Table 23.3 lists some of the many ways you could reduce the waste you generate. What other ways can you think of? 23.9 hazardous Waste Creation of new chemical compounds has proliferated in recent years. In the United States, approximately 1,000 new chemicals are marketed each year, and about 70,000 chemicals are currently on the market. Although many of these chemicals have been beneficial to people, approxi- mately 35,000 chemicals used in the United States are classified as definitely or potentially hazardous to people or ecosystems if they are released into the environment as waste—and unfortunately, a lot of it is. The United States currently produces about 700 million metric tons of hazardous chemical waste per year, referred to more commonly as hazardous waste. About 70% of it is generated east of the Mississippi River, and about half of the total by weight is generated by chemical products in- dustries. The electronics industry (see A Closer Look 23.3 for a discussion of e-waste) and petroleum and coal prod- ucts industries each contribute about 10%.42–44 Hazard- ous waste may also enter the environment when buildings are destroyed by events such as fires and hurricanes, releas- ing paints, solvents, pesticides, and other chemicals that were stored in them, or when debris from
  • 57. damaged build- ings is later burned or buried. As a result, collection of such chemicals after natural disasters is an important goal in managing hazardous materials. In the mid-20th century, as much as half the to- tal volume of hazardous waste produced in the United States was indiscriminately dumped.43 Some was illegal- ly dumped on public or private lands, a practice called midnight dumping. Buried drums of illegally dumped hazardous waste have been discovered at hundreds of sites by contractors while in the process of constructing buildings and roads. Cleanup has been costly and has delayed projects.42 The case of Love Canal is a well-known hazardous waste horror story. In 1976, in a residential area near Niagara Falls, New York, trees and gardens began to die. Rubber on tennis shoes and bicycle tires disintegrated. Puddles of toxic substances began to ooze through the soil. A swimming pool popped from its foundation and floated in a bath of chemicals. The story of Love Canal started in 1892 when Wil- liam Love excavated a canal 8 km (5 mi) long as part of the development of an industrial park. The development didn’t need the canal when inexpensive electricity arrived, so the uncompleted canal remained unused for decades and became a dump for wastes. From 1920 to 1952, some 20,000 tons of more than 80 chemicals were dumped into the canal. In 1953 the Hooker Chemical Company— which produced the insecticide DDT as well as an herbi- cide and chlorinated solvents, and had dumped chemicals into the canal—was pressured to donate the land to the city of Niagara Falls for $1.00. The city knew that chemi- cal wastes were buried there, but no one expected any problems. Eventually, several hundred homes and an el- ementary school were built on and near the site, and for years everything seemed fine. Then, in 1976–1977, heavy rains and snows triggered a number of events, making Love Canal a household word.42 A study of the site identified many substances sus- pected of being carcinogens, including benzene, dioxin, dichlorethylene, and chloroform. Although officials ad- mitted that little was