Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Intro to Social Network AnalysisSession


Published on

Introduction to social network analysis session at the 2012 CETIS conference

Published in: Technology, Spiritual
  • Be the first to comment

  • Be the first to like this

Intro to Social Network AnalysisSession

  1. 1. Social Network Analysis #cetis12 23 February 2012
  2. 2. What is SNA? <ul><li>“ An adaptation for various mathematical ideas and techniques which allow us to: </li></ul><ul><li>handle, store and map relational data </li></ul><ul><li>define and measure relational (network) properties </li></ul><ul><li>identify distinctive configurations within various maps/visualisations” </li></ul>Nick Crossley, Cathy Marsh Centre,for Census and Survey Research, Uni of Manchester ( )
  3. 3. SNA Principles <ul><li>3 levels: </li></ul><ul><li>the node </li></ul><ul><li>the whole </li></ul><ul><li>sub set of nodes within the whole start to see connections - and measures of centrality etc </li></ul>
  4. 4. What is SNA cont. <ul><li>intro Prof Mike Everett, Uni of Manchester </li></ul><ul><li> </li></ul><ul><li>Video: Noshir Contractor </li></ul><ul><li> </li></ul>
  5. 5. Pretty pictures
  6. 6. Betweenness centrality
  7. 7. Creating and Understanding the pictures <ul><li>Academic way </li></ul><ul><li>Just in time, just enough? </li></ul>
  8. 8. &quot;It feels interesting but is it useful” <ul><li>More than liking pretty pictures </li></ul><ul><li>Makes explicit existing connections </li></ul><ul><li>Makes explicit gaps in communities/connections </li></ul><ul><li>Improving our understanding of our network connections </li></ul><ul><li>But . . . </li></ul>
  9. 9. Issues <ul><li>Skills/literacy issues around models and tools </li></ul><ul><li>Context and ambiguity </li></ul><ul><li>Objective and subjective assumptions </li></ul><ul><li>Conversation starters </li></ul><ul><li>Data sources, quality issues </li></ul><ul><li>Ethics </li></ul><ul><li>Is “just enough” good enough? </li></ul>
  10. 10. <ul><li>And now the interesting stuff . . . </li></ul>