SlideShare a Scribd company logo
1 of 22
Laplace Transform
Melissa Meagher
Meagan Pitluck
Nathan Cutler
Matt Abernethy
Thomas Noel
Scott Drotar
The French Newton
Pierre-Simon Laplace
Developed mathematics in
astronomy, physics, and statistics
Began work in calculus which led
to the Laplace Transform
Focused later on celestial
mechanics
One of the first scientists to
suggest the existence of black
holes
History of the Transform
Euler began looking at integrals as solutions to differential equations
in the mid 1700’s:
Lagrange took this a step further while working on probability density
functions and looked at forms of the following equation:
Finally, in 1785, Laplace began using a transformation to solve
equations of finite differences which eventually lead to the current
transform
Definition
The Laplace transform is a linear operator
that switched a function f(t) to F(s).
Specifically:
where:
Go from time argument with real input to a
complex angular frequency input which is
complex.
Restrictions
There are two governing factors that
determine whether Laplace transforms can
be used:
 f(t) must be at least piecewise continuous for
t ≥ 0
 |f(t)| ≤ Meγt where M and γ are constants
Since the general form of the Laplace
transform is:
it makes sense that f(t) must be at least
piecewise continuous for t ≥ 0.
If f(t) were very nasty, the integral would
not be computable.
Continuity
Boundedness
This criterion also follows directly from the
general definition:
If f(t) is not bounded by Meγt then the
integral will not converge.
Laplace Transform Theory
•General Theory
•Example
•Convergence
Laplace Transforms
•Some Laplace Transforms
•Wide variety of function can be transformed
•Inverse Transform
•Often requires partial fractions or other
manipulation to find a form that is easy
to apply the inverse
Laplace Transform for ODEs
•Equation with initial conditions
•Laplace transform is linear
•Apply derivative formula
•Rearrange
•Take the inverse
Laplace Transform in PDEs
Laplace transform in two variables (always taken
with respect to time variable, t):
Inverse laplace of a 2 dimensional PDE:
Can be used for any dimension PDE:
•ODEs reduce to algebraic equations
•PDEs reduce to either an ODE (if original equation dimension 2) or
another PDE (if original equation dimension >2)
The Transform reduces dimension by “1”:
Consider the case where:
ux+ut=t with u(x,0)=0 and u(0,t)=t2 and
Taking the Laplace of the initial equation leaves Ux+ U=1/s2 (note that the
partials with respect to “x” do not disappear) with boundary condition
U(0,s)=2/s3
Solving this as an ODE of variable x, U(x,s)=c(s)e-x + 1/s2
Plugging in B.C., 2/s3=c(s) + 1/s2 so c(s)=2/s3 - 1/s2
U(x,s)=(2/s3 - 1/s2) e-x + 1/s2
Now, we can use the inverse Laplace Transform with respect to s to find
u(x,t)=t2e-x - te-x + t
Example Solutions
Diffusion Equation
ut = kuxx in (0,l)
Initial Conditions:
u(0,t) = u(l,t) = 1, u(x,0) = 1 + sin(πx/l)
Using af(t) + bg(t)  aF(s) + bG(s)
and df/dt  sF(s) – f(0)
and noting that the partials with respect to x commute with the transforms with
respect to t, the Laplace transform U(x,s) satisfies
sU(x,s) – u(x,0) = kUxx(x,s)
With eat  1/(s-a) and a=0,
the boundary conditions become U(0,s) = U(l,s) = 1/s.
So we have an ODE in the variable x together with some boundary conditions.
The solution is then:
U(x,s) = 1/s + (1/(s+kπ2/l2))sin(πx/l)
Therefore, when we invert the transform, using the Laplace table:
u(x,t) = 1 + e-kπ2t/l2
sin(πx/l)
Wave Equation
utt = c2uxx in 0 < x < ∞
Initial Conditions:
u(0,t) = f(t), u(x,0) = ut(x,0) = 0
For x  ∞, we assume that u(x,t)  0. Because the initial conditions
vanish, the Laplace transform satisfies
s2U = c2Uxx
U(0,s) = F(s)
Solving this ODE, we get
U(x,s) = a(s)e-sx/c + b(s)esx/c
Where a(s) and b(s) are to be determined.
From the assumed property of u, we expect that U(x,s)  0 as x  ∞.
Therefore, b(s) = 0. Hence, U(x,s) = F(s) e-sx/c. Now we use
H(t-b)f(t-b)  e-bsF(s)
To get
u(x,t) = H(t – x/c)f(t – x/c).
Real-Life Applications
Semiconductor
mobility
Call completion in
wireless networks
Vehicle vibrations on
compressed rails
Behavior of magnetic
and electric fields
above the
atmosphere
Ex. Semiconductor Mobility
Motivation
 semiconductors are commonly
made with superlattices having
layers of differing compositions
 need to determine properties of
carriers in each layer
concentration of electrons and
holes
mobility of electrons and holes
 conductivity tensor can be related
to Laplace transform of electron
and hole densities
Notation
R = ratio of induced electric field to the product of
the current density and the applied magnetic field
ρ = electrical resistance
H = magnetic field
J = current density
E = applied electric field
n = concentration of electrons
u = mobility
Equation Manipulation
and
Assuming a continuous mobility
distribution and that ,
, it follows:
Applying the Laplace Transform
Johnson, William B. Transform method for
semiconductor mobility, Journal of Applied
Physics 99 (2006).
Source

More Related Content

Similar to Laplace Transform Applications in Semiconductors

APPLICATION OF HIGHER ORDER DIFFERENTIAL EQUATIONS
APPLICATION OF HIGHER ORDER DIFFERENTIAL EQUATIONSAPPLICATION OF HIGHER ORDER DIFFERENTIAL EQUATIONS
APPLICATION OF HIGHER ORDER DIFFERENTIAL EQUATIONSAYESHA JAVED
 
International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES)International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES)irjes
 
On Double Elzaki Transform and Double Laplace Transform
On Double Elzaki Transform and Double Laplace TransformOn Double Elzaki Transform and Double Laplace Transform
On Double Elzaki Transform and Double Laplace Transformiosrjce
 
Solution of Fractional Order Stokes´ First Equation
Solution of Fractional Order Stokes´ First EquationSolution of Fractional Order Stokes´ First Equation
Solution of Fractional Order Stokes´ First EquationIJRES Journal
 
forrier serries.pptx
forrier serries.pptxforrier serries.pptx
forrier serries.pptxOSMANGONI35
 
Workshop presentations l_bworkshop_reis
Workshop presentations l_bworkshop_reisWorkshop presentations l_bworkshop_reis
Workshop presentations l_bworkshop_reisTim Reis
 
Fourier Series for Continuous Time & Discrete Time Signals
Fourier Series for Continuous Time & Discrete Time SignalsFourier Series for Continuous Time & Discrete Time Signals
Fourier Series for Continuous Time & Discrete Time SignalsJayanshu Gundaniya
 
quan2009.pdf
quan2009.pdfquan2009.pdf
quan2009.pdfTriPham86
 
fouriertransform.pdf
fouriertransform.pdffouriertransform.pdf
fouriertransform.pdfssuser4dafea
 
Statistical approach to quantum field theory
Statistical approach to quantum field theoryStatistical approach to quantum field theory
Statistical approach to quantum field theorySpringer
 
Using Laplace Transforms to Solve Differential Equations
Using Laplace Transforms to Solve Differential EquationsUsing Laplace Transforms to Solve Differential Equations
Using Laplace Transforms to Solve Differential EquationsGeorge Stevens
 
TwoLevelMedium
TwoLevelMediumTwoLevelMedium
TwoLevelMediumJohn Paul
 

Similar to Laplace Transform Applications in Semiconductors (20)

The wave equation
The wave equationThe wave equation
The wave equation
 
Fourier series
Fourier seriesFourier series
Fourier series
 
Fourier series
Fourier seriesFourier series
Fourier series
 
APPLICATION OF HIGHER ORDER DIFFERENTIAL EQUATIONS
APPLICATION OF HIGHER ORDER DIFFERENTIAL EQUATIONSAPPLICATION OF HIGHER ORDER DIFFERENTIAL EQUATIONS
APPLICATION OF HIGHER ORDER DIFFERENTIAL EQUATIONS
 
International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES)International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES)
 
02_AJMS_297_21.pdf
02_AJMS_297_21.pdf02_AJMS_297_21.pdf
02_AJMS_297_21.pdf
 
On Double Elzaki Transform and Double Laplace Transform
On Double Elzaki Transform and Double Laplace TransformOn Double Elzaki Transform and Double Laplace Transform
On Double Elzaki Transform and Double Laplace Transform
 
Solution of Fractional Order Stokes´ First Equation
Solution of Fractional Order Stokes´ First EquationSolution of Fractional Order Stokes´ First Equation
Solution of Fractional Order Stokes´ First Equation
 
forrier serries.pptx
forrier serries.pptxforrier serries.pptx
forrier serries.pptx
 
Workshop presentations l_bworkshop_reis
Workshop presentations l_bworkshop_reisWorkshop presentations l_bworkshop_reis
Workshop presentations l_bworkshop_reis
 
Fourier Series for Continuous Time & Discrete Time Signals
Fourier Series for Continuous Time & Discrete Time SignalsFourier Series for Continuous Time & Discrete Time Signals
Fourier Series for Continuous Time & Discrete Time Signals
 
quan2009.pdf
quan2009.pdfquan2009.pdf
quan2009.pdf
 
fouriertransform.pdf
fouriertransform.pdffouriertransform.pdf
fouriertransform.pdf
 
Two
TwoTwo
Two
 
Multiple scales
Multiple scalesMultiple scales
Multiple scales
 
Statistical approach to quantum field theory
Statistical approach to quantum field theoryStatistical approach to quantum field theory
Statistical approach to quantum field theory
 
Using Laplace Transforms to Solve Differential Equations
Using Laplace Transforms to Solve Differential EquationsUsing Laplace Transforms to Solve Differential Equations
Using Laplace Transforms to Solve Differential Equations
 
TwoLevelMedium
TwoLevelMediumTwoLevelMedium
TwoLevelMedium
 
Statistics Homework Help
Statistics Homework HelpStatistics Homework Help
Statistics Homework Help
 
Multiple Linear Regression Homework Help
Multiple Linear Regression Homework HelpMultiple Linear Regression Homework Help
Multiple Linear Regression Homework Help
 

Recently uploaded

Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...srsj9000
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...ranjana rawat
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxAsutosh Ranjan
 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learningmisbanausheenparvam
 
Analog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog ConverterAnalog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog ConverterAbhinavSharma374939
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxupamatechverse
 

Recently uploaded (20)

Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
 
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learning
 
Analog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog ConverterAnalog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog Converter
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
 
Roadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and RoutesRoadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and Routes
 

Laplace Transform Applications in Semiconductors

  • 1. Laplace Transform Melissa Meagher Meagan Pitluck Nathan Cutler Matt Abernethy Thomas Noel Scott Drotar
  • 2. The French Newton Pierre-Simon Laplace Developed mathematics in astronomy, physics, and statistics Began work in calculus which led to the Laplace Transform Focused later on celestial mechanics One of the first scientists to suggest the existence of black holes
  • 3. History of the Transform Euler began looking at integrals as solutions to differential equations in the mid 1700’s: Lagrange took this a step further while working on probability density functions and looked at forms of the following equation: Finally, in 1785, Laplace began using a transformation to solve equations of finite differences which eventually lead to the current transform
  • 4. Definition The Laplace transform is a linear operator that switched a function f(t) to F(s). Specifically: where: Go from time argument with real input to a complex angular frequency input which is complex.
  • 5. Restrictions There are two governing factors that determine whether Laplace transforms can be used:  f(t) must be at least piecewise continuous for t ≥ 0  |f(t)| ≤ Meγt where M and γ are constants
  • 6. Since the general form of the Laplace transform is: it makes sense that f(t) must be at least piecewise continuous for t ≥ 0. If f(t) were very nasty, the integral would not be computable. Continuity
  • 7. Boundedness This criterion also follows directly from the general definition: If f(t) is not bounded by Meγt then the integral will not converge.
  • 8. Laplace Transform Theory •General Theory •Example •Convergence
  • 9. Laplace Transforms •Some Laplace Transforms •Wide variety of function can be transformed •Inverse Transform •Often requires partial fractions or other manipulation to find a form that is easy to apply the inverse
  • 10. Laplace Transform for ODEs •Equation with initial conditions •Laplace transform is linear •Apply derivative formula •Rearrange •Take the inverse
  • 11. Laplace Transform in PDEs Laplace transform in two variables (always taken with respect to time variable, t): Inverse laplace of a 2 dimensional PDE: Can be used for any dimension PDE: •ODEs reduce to algebraic equations •PDEs reduce to either an ODE (if original equation dimension 2) or another PDE (if original equation dimension >2) The Transform reduces dimension by “1”:
  • 12. Consider the case where: ux+ut=t with u(x,0)=0 and u(0,t)=t2 and Taking the Laplace of the initial equation leaves Ux+ U=1/s2 (note that the partials with respect to “x” do not disappear) with boundary condition U(0,s)=2/s3 Solving this as an ODE of variable x, U(x,s)=c(s)e-x + 1/s2 Plugging in B.C., 2/s3=c(s) + 1/s2 so c(s)=2/s3 - 1/s2 U(x,s)=(2/s3 - 1/s2) e-x + 1/s2 Now, we can use the inverse Laplace Transform with respect to s to find u(x,t)=t2e-x - te-x + t
  • 14. Diffusion Equation ut = kuxx in (0,l) Initial Conditions: u(0,t) = u(l,t) = 1, u(x,0) = 1 + sin(πx/l) Using af(t) + bg(t)  aF(s) + bG(s) and df/dt  sF(s) – f(0) and noting that the partials with respect to x commute with the transforms with respect to t, the Laplace transform U(x,s) satisfies sU(x,s) – u(x,0) = kUxx(x,s) With eat  1/(s-a) and a=0, the boundary conditions become U(0,s) = U(l,s) = 1/s. So we have an ODE in the variable x together with some boundary conditions. The solution is then: U(x,s) = 1/s + (1/(s+kπ2/l2))sin(πx/l) Therefore, when we invert the transform, using the Laplace table: u(x,t) = 1 + e-kπ2t/l2 sin(πx/l)
  • 15. Wave Equation utt = c2uxx in 0 < x < ∞ Initial Conditions: u(0,t) = f(t), u(x,0) = ut(x,0) = 0 For x  ∞, we assume that u(x,t)  0. Because the initial conditions vanish, the Laplace transform satisfies s2U = c2Uxx U(0,s) = F(s) Solving this ODE, we get U(x,s) = a(s)e-sx/c + b(s)esx/c Where a(s) and b(s) are to be determined. From the assumed property of u, we expect that U(x,s)  0 as x  ∞. Therefore, b(s) = 0. Hence, U(x,s) = F(s) e-sx/c. Now we use H(t-b)f(t-b)  e-bsF(s) To get u(x,t) = H(t – x/c)f(t – x/c).
  • 16. Real-Life Applications Semiconductor mobility Call completion in wireless networks Vehicle vibrations on compressed rails Behavior of magnetic and electric fields above the atmosphere
  • 17. Ex. Semiconductor Mobility Motivation  semiconductors are commonly made with superlattices having layers of differing compositions  need to determine properties of carriers in each layer concentration of electrons and holes mobility of electrons and holes  conductivity tensor can be related to Laplace transform of electron and hole densities
  • 18. Notation R = ratio of induced electric field to the product of the current density and the applied magnetic field ρ = electrical resistance H = magnetic field J = current density E = applied electric field n = concentration of electrons u = mobility
  • 20. Assuming a continuous mobility distribution and that , , it follows:
  • 21. Applying the Laplace Transform
  • 22. Johnson, William B. Transform method for semiconductor mobility, Journal of Applied Physics 99 (2006). Source

Editor's Notes

  1. A French mathematician and astronomer from the late 1700’s. His early published work started with calculus and differential equations. He spent many of his later years developing ideas about the movements of planets and stability of the solar system in addition to working on probability theory and Bayesian inference. Some of the math he worked on included: the general theory of determinants, proof that every equation of an even degree must have at least one real quadratic factor, provided a solution to the linear partial differential equation of the second order, and solved many definite integrals. He is one of only 72 people to have his name engraved on the Eiffel tower.
  2. Laplace also recognized that Joseph Fourier's method of Fourier series for solving the diffusion equation could only apply to a limited region of space as the solutions were periodic. In 1809, Laplace applied his transform to find solutions that diffused indefinitely in space