SlideShare a Scribd company logo
1 of 22
The French Newton
Pierre-Simon
Laplace
Developed mathematics
in astronomy, physics, and
statistics
Began work in calculus
which led to the Laplace
Transform
Focused later on celestial
mechanics
One of the first scientists
to suggest the existence of
black holes
History of the Transform
 Euler began looking at integrals as solutions to differential equations in
the mid 1700’s:
 Lagrange took this a step further while working on probability density
functions and looked at forms of the following equation:
 Finally, in 1785, Laplace began using a transformation to solve
equations of finite differences which eventually lead to the current
transform
Definition
 The Laplace transform is a linear operator that
switched a function f(t) to F(s).
 Specifically:
where:
 Go from time argument with real input to a complex
angular frequency input which is complex.
Restrictions
 There are two governing factors that determine
whether Laplace transforms can be used:
 f(t) must be at least piecewise continuous for t ≥ 0
 |f(t)| ≤ Meγt where M and γ are constants
 Since the general form of the Laplace transform is:
it makes sense that f(t) must be at least piecewise
continuous for t ≥ 0.
 If f(t) were very nasty, the integral would not be
computable.
Continuity
Boundedness
 This criterion also follows directly from the general
definition:
 If f(t) is not bounded by Meγt then the integral will not
converge.
Laplace Transform Theory
•General Theory
•Example
•Convergence
Laplace Transforms
•Some Laplace Transforms
•Wide variety of function can be transformed
•Inverse Transform
•Often requires partial fractions or other
manipulation to find a form that is easy to
apply the inverse
Laplace Transform for ODEs
•Equation with initial conditions
•Laplace transform is linear
•Apply derivative formula
•Rearrange
•Take the inverse
Laplace Transform in PDEs
Laplace transform in two variables (always taken
with respect to time variable, t):
Inverse laplace of a 2 dimensional PDE:
Can be used for any dimension PDE:
•ODEs reduce to algebraic equations
•PDEs reduce to either an ODE (if original equation dimension 2) or
another PDE (if original equation dimension >2)
The Transform reduces dimension by “1”:
Consider the case where:
ux+ut=t with u(x,0)=0 and u(0,t)=t2 and
Taking the Laplace of the initial equation leaves Ux+ U=1/s2 (note that the
partials with respect to “x” do not disappear) with boundary condition
U(0,s)=2/s3
Solving this as an ODE of variable x, U(x,s)=c(s)e-x + 1/s2
Plugging in B.C., 2/s3=c(s) + 1/s2 so c(s)=2/s3 - 1/s2
U(x,s)=(2/s3 - 1/s2) e-x + 1/s2
Now, we can use the inverse Laplace Transform with respect to s to find
u(x,t)=t2e-x - te-x + t
Example
Solutions
Diffusion Equation
ut = kuxx in (0,l)
Initial Conditions:
u(0,t) = u(l,t) = 1, u(x,0) = 1 + sin(πx/l)
Using af(t) + bg(t)  aF(s) + bG(s)
and df/dt  sF(s) – f(0)
and noting that the partials with respect to x commute with the transforms with
respect to t, the Laplace transform U(x,s) satisfies
sU(x,s) – u(x,0) = kUxx(x,s)
With eat  1/(s-a) and a=0,
the boundary conditions become U(0,s) = U(l,s) = 1/s.
So we have an ODE in the variable x together with some boundary conditions.
The solution is then:
U(x,s) = 1/s + (1/(s+kπ2/l2))sin(πx/l)
Therefore, when we invert the transform, using the Laplace table:
u(x,t) = 1 + e-kπ2t/l2
sin(πx/l)
Wave Equation
utt = c2uxx in 0 < x < ∞
Initial Conditions:
u(0,t) = f(t), u(x,0) = ut(x,0) = 0
For x  ∞, we assume that u(x,t)  0. Because the initial conditions
vanish, the Laplace transform satisfies
s2U = c2Uxx
U(0,s) = F(s)
Solving this ODE, we get
U(x,s) = a(s)e-sx/c + b(s)esx/c
Where a(s) and b(s) are to be determined.
From the assumed property of u, we expect that U(x,s)  0 as x  ∞.
Therefore, b(s) = 0. Hence, U(x,s) = F(s) e-sx/c. Now we use
H(t-b)f(t-b)  e-bsF(s)
To get
u(x,t) = H(t – x/c)f(t – x/c).
Real-Life Applications
Semiconductor
mobility
Call completion in
wireless networks
Vehicle vibrations on
compressed rails
Behavior of magnetic
and electric fields
above the
atmosphere
Ex. Semiconductor Mobility
Motivation
 semiconductors are commonly
made with superlattices having
layers of differing compositions
 need to determine properties of
carriers in each layer
concentration of electrons and
holes
mobility of electrons and holes
 conductivity tensor can be related
to Laplace transform of electron
and hole densities
Notation
R = ratio of induced electric field to the product of
the current density and the applied magnetic field
ρ = electrical resistance
H = magnetic field
J = current density
E = applied electric field
n = concentration of electrons
u = mobility
Equation Manipulation
and
Assuming a continuous mobility
distribution and that ,
, it follows:
Applying the Laplace Transform
Johnson, William B. Transform method for
semiconductor mobility, Journal of Applied
Physics 99 (2006).
Source

More Related Content

Similar to presentation_laplace_transform_1553598871_41306.pptx

Clarke fourier theory(62s)
Clarke   fourier theory(62s)Clarke   fourier theory(62s)
Clarke fourier theory(62s)apsitachi
 
Using Laplace Transforms to Solve Differential Equations
Using Laplace Transforms to Solve Differential EquationsUsing Laplace Transforms to Solve Differential Equations
Using Laplace Transforms to Solve Differential EquationsGeorge Stevens
 
APPLICATION OF HIGHER ORDER DIFFERENTIAL EQUATIONS
APPLICATION OF HIGHER ORDER DIFFERENTIAL EQUATIONSAPPLICATION OF HIGHER ORDER DIFFERENTIAL EQUATIONS
APPLICATION OF HIGHER ORDER DIFFERENTIAL EQUATIONSAYESHA JAVED
 
forrier serries.pptx
forrier serries.pptxforrier serries.pptx
forrier serries.pptxOSMANGONI35
 
On Double Elzaki Transform and Double Laplace Transform
On Double Elzaki Transform and Double Laplace TransformOn Double Elzaki Transform and Double Laplace Transform
On Double Elzaki Transform and Double Laplace Transformiosrjce
 
fouriertransform.pdf
fouriertransform.pdffouriertransform.pdf
fouriertransform.pdfssuser4dafea
 
Laplace transform
Laplace transform Laplace transform
Laplace transform Shivam225
 
Workshop presentations l_bworkshop_reis
Workshop presentations l_bworkshop_reisWorkshop presentations l_bworkshop_reis
Workshop presentations l_bworkshop_reisTim Reis
 
Advanced Engineering Mathematics Chapter 6 Laplace Transforms
Advanced Engineering Mathematics Chapter 6 Laplace TransformsAdvanced Engineering Mathematics Chapter 6 Laplace Transforms
Advanced Engineering Mathematics Chapter 6 Laplace TransformsSarah Brown
 
Fourier Series for Continuous Time & Discrete Time Signals
Fourier Series for Continuous Time & Discrete Time SignalsFourier Series for Continuous Time & Discrete Time Signals
Fourier Series for Continuous Time & Discrete Time SignalsJayanshu Gundaniya
 
International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES)International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES)irjes
 
quan2009.pdf
quan2009.pdfquan2009.pdf
quan2009.pdfTriPham86
 
Meeting w3 chapter 2 part 1
Meeting w3   chapter 2 part 1Meeting w3   chapter 2 part 1
Meeting w3 chapter 2 part 1mkazree
 
Meeting w3 chapter 2 part 1
Meeting w3   chapter 2 part 1Meeting w3   chapter 2 part 1
Meeting w3 chapter 2 part 1Hattori Sidek
 

Similar to presentation_laplace_transform_1553598871_41306.pptx (20)

TLT
TLTTLT
TLT
 
Fourier series
Fourier seriesFourier series
Fourier series
 
Fourier series
Fourier seriesFourier series
Fourier series
 
Clarke fourier theory(62s)
Clarke   fourier theory(62s)Clarke   fourier theory(62s)
Clarke fourier theory(62s)
 
The wave equation
The wave equationThe wave equation
The wave equation
 
Using Laplace Transforms to Solve Differential Equations
Using Laplace Transforms to Solve Differential EquationsUsing Laplace Transforms to Solve Differential Equations
Using Laplace Transforms to Solve Differential Equations
 
APPLICATION OF HIGHER ORDER DIFFERENTIAL EQUATIONS
APPLICATION OF HIGHER ORDER DIFFERENTIAL EQUATIONSAPPLICATION OF HIGHER ORDER DIFFERENTIAL EQUATIONS
APPLICATION OF HIGHER ORDER DIFFERENTIAL EQUATIONS
 
forrier serries.pptx
forrier serries.pptxforrier serries.pptx
forrier serries.pptx
 
On Double Elzaki Transform and Double Laplace Transform
On Double Elzaki Transform and Double Laplace TransformOn Double Elzaki Transform and Double Laplace Transform
On Double Elzaki Transform and Double Laplace Transform
 
fouriertransform.pdf
fouriertransform.pdffouriertransform.pdf
fouriertransform.pdf
 
Multiple scales
Multiple scalesMultiple scales
Multiple scales
 
Laplace transform
Laplace transform Laplace transform
Laplace transform
 
Workshop presentations l_bworkshop_reis
Workshop presentations l_bworkshop_reisWorkshop presentations l_bworkshop_reis
Workshop presentations l_bworkshop_reis
 
Advanced Engineering Mathematics Chapter 6 Laplace Transforms
Advanced Engineering Mathematics Chapter 6 Laplace TransformsAdvanced Engineering Mathematics Chapter 6 Laplace Transforms
Advanced Engineering Mathematics Chapter 6 Laplace Transforms
 
Fourier Series for Continuous Time & Discrete Time Signals
Fourier Series for Continuous Time & Discrete Time SignalsFourier Series for Continuous Time & Discrete Time Signals
Fourier Series for Continuous Time & Discrete Time Signals
 
International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES)International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES)
 
quan2009.pdf
quan2009.pdfquan2009.pdf
quan2009.pdf
 
Meeting w3 chapter 2 part 1
Meeting w3   chapter 2 part 1Meeting w3   chapter 2 part 1
Meeting w3 chapter 2 part 1
 
Meeting w3 chapter 2 part 1
Meeting w3   chapter 2 part 1Meeting w3   chapter 2 part 1
Meeting w3 chapter 2 part 1
 
02_AJMS_297_21.pdf
02_AJMS_297_21.pdf02_AJMS_297_21.pdf
02_AJMS_297_21.pdf
 

Recently uploaded

SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝soniya singh
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxupamatechverse
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidNikhilNagaraju
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxpranjaldaimarysona
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learningmisbanausheenparvam
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxwendy cai
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxAsutosh Ranjan
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxupamatechverse
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 

Recently uploaded (20)

SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfid
 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learning
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptx
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptx
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 

presentation_laplace_transform_1553598871_41306.pptx

  • 1.
  • 2. The French Newton Pierre-Simon Laplace Developed mathematics in astronomy, physics, and statistics Began work in calculus which led to the Laplace Transform Focused later on celestial mechanics One of the first scientists to suggest the existence of black holes
  • 3. History of the Transform  Euler began looking at integrals as solutions to differential equations in the mid 1700’s:  Lagrange took this a step further while working on probability density functions and looked at forms of the following equation:  Finally, in 1785, Laplace began using a transformation to solve equations of finite differences which eventually lead to the current transform
  • 4. Definition  The Laplace transform is a linear operator that switched a function f(t) to F(s).  Specifically: where:  Go from time argument with real input to a complex angular frequency input which is complex.
  • 5. Restrictions  There are two governing factors that determine whether Laplace transforms can be used:  f(t) must be at least piecewise continuous for t ≥ 0  |f(t)| ≤ Meγt where M and γ are constants
  • 6.  Since the general form of the Laplace transform is: it makes sense that f(t) must be at least piecewise continuous for t ≥ 0.  If f(t) were very nasty, the integral would not be computable. Continuity
  • 7. Boundedness  This criterion also follows directly from the general definition:  If f(t) is not bounded by Meγt then the integral will not converge.
  • 8. Laplace Transform Theory •General Theory •Example •Convergence
  • 9. Laplace Transforms •Some Laplace Transforms •Wide variety of function can be transformed •Inverse Transform •Often requires partial fractions or other manipulation to find a form that is easy to apply the inverse
  • 10. Laplace Transform for ODEs •Equation with initial conditions •Laplace transform is linear •Apply derivative formula •Rearrange •Take the inverse
  • 11. Laplace Transform in PDEs Laplace transform in two variables (always taken with respect to time variable, t): Inverse laplace of a 2 dimensional PDE: Can be used for any dimension PDE: •ODEs reduce to algebraic equations •PDEs reduce to either an ODE (if original equation dimension 2) or another PDE (if original equation dimension >2) The Transform reduces dimension by “1”:
  • 12. Consider the case where: ux+ut=t with u(x,0)=0 and u(0,t)=t2 and Taking the Laplace of the initial equation leaves Ux+ U=1/s2 (note that the partials with respect to “x” do not disappear) with boundary condition U(0,s)=2/s3 Solving this as an ODE of variable x, U(x,s)=c(s)e-x + 1/s2 Plugging in B.C., 2/s3=c(s) + 1/s2 so c(s)=2/s3 - 1/s2 U(x,s)=(2/s3 - 1/s2) e-x + 1/s2 Now, we can use the inverse Laplace Transform with respect to s to find u(x,t)=t2e-x - te-x + t
  • 14. Diffusion Equation ut = kuxx in (0,l) Initial Conditions: u(0,t) = u(l,t) = 1, u(x,0) = 1 + sin(πx/l) Using af(t) + bg(t)  aF(s) + bG(s) and df/dt  sF(s) – f(0) and noting that the partials with respect to x commute with the transforms with respect to t, the Laplace transform U(x,s) satisfies sU(x,s) – u(x,0) = kUxx(x,s) With eat  1/(s-a) and a=0, the boundary conditions become U(0,s) = U(l,s) = 1/s. So we have an ODE in the variable x together with some boundary conditions. The solution is then: U(x,s) = 1/s + (1/(s+kπ2/l2))sin(πx/l) Therefore, when we invert the transform, using the Laplace table: u(x,t) = 1 + e-kπ2t/l2 sin(πx/l)
  • 15. Wave Equation utt = c2uxx in 0 < x < ∞ Initial Conditions: u(0,t) = f(t), u(x,0) = ut(x,0) = 0 For x  ∞, we assume that u(x,t)  0. Because the initial conditions vanish, the Laplace transform satisfies s2U = c2Uxx U(0,s) = F(s) Solving this ODE, we get U(x,s) = a(s)e-sx/c + b(s)esx/c Where a(s) and b(s) are to be determined. From the assumed property of u, we expect that U(x,s)  0 as x  ∞. Therefore, b(s) = 0. Hence, U(x,s) = F(s) e-sx/c. Now we use H(t-b)f(t-b)  e-bsF(s) To get u(x,t) = H(t – x/c)f(t – x/c).
  • 16. Real-Life Applications Semiconductor mobility Call completion in wireless networks Vehicle vibrations on compressed rails Behavior of magnetic and electric fields above the atmosphere
  • 17. Ex. Semiconductor Mobility Motivation  semiconductors are commonly made with superlattices having layers of differing compositions  need to determine properties of carriers in each layer concentration of electrons and holes mobility of electrons and holes  conductivity tensor can be related to Laplace transform of electron and hole densities
  • 18. Notation R = ratio of induced electric field to the product of the current density and the applied magnetic field ρ = electrical resistance H = magnetic field J = current density E = applied electric field n = concentration of electrons u = mobility
  • 20. Assuming a continuous mobility distribution and that , , it follows:
  • 21. Applying the Laplace Transform
  • 22. Johnson, William B. Transform method for semiconductor mobility, Journal of Applied Physics 99 (2006). Source