SlideShare a Scribd company logo
1 of 5
Download to read offline
RESEARCH INVENTY: International Journal of Engineering and Science
 ISSN: 2278-4721, Vol. 1, Issue 7 (November 2012), PP 01-05
 www.researchinventy.com

                Operational Calculus of Canonical Cosine Transform
                                                               1,
                                                                     S. B. Chavhan, 2, V.C. Borkar
                                                               Depart ment of Mathemat ics & Statistics,
                                                           Yeshwant Mahavidyalaya, Nanded-431602 (India)




 Abstract: This paper studies different properties of canonical cosine transform. Modulation heorem is also
 proved. We have proved some important results about the Kernel of canonical cosine transform.

 Keywords: Generalized function, Canonical transform, Canonical Cosine transforms, Modulation theorem,
 Fourier transform.

                                                                                            I.          Introduction
           The Fourier transform is certainly one of the best known of integral transforms, since its introduction
    by Fourier in early 1800's.
           A much mo re general integral transform, namely, linear canonical transform was introduced in 1970 by
    Moshinsky and Quesne [5]. In 1980, Namias [6] introduced the fractional Fourier transform using eigen value
    and eigen functions.
           Almeida [1], [2] had introduced it and proved many of its properties. Zayed [9] had discussed about
  product and convolution concerning that transform. Bhosale and Choudhary [3] had studies it as a tempered
  distribution.Nu mber of applications of fractional Fourier transform in signal processing,image processing
  filtering optics, etc are studied. Pei and ding [7] ,[8] had studied linear canonical transforms.
  The defin ition canonical cosine transform is as follo ws,

                                                                      id                                  i a
                                                                  s        s   t
                                                                                  2                                     2

             CCT f t  s  
                                                         1
                                                             e 2  b   cos  t  e 2  b  f  t  dt                                          for b  0
                                                       2 ib               b 

                                                                      i
                                                                          cds 2
                                                    d .e 2                           f (d .s)                                       for b  0
 Notation and terminology of this paper is as per Zemanian [10], [11].The paper is organized as follows . Section
 2 gives the definit ion of canonical cosine transform on the space of generalized function and states the property
 of the kernel of the canonical cosine transform. In section 3 modulat ion theorem is proved. In section 4, t ime
 reverse property, linear p roperty, parity are proved. In section 5, operation transforms in terms of parameter are
 discussed and lastly the conclusion is stated.

                                                  II.             Generalized Canonical Cosine Transform
2.1 Definiti on : The canonical cosine transform of generalized function is defined as

                                            CCT f t  s    f t  , K                           a ,b, c , d    t , s  
                                                                             id           i a
                                                                                           s 
                                                                                        2           2
                                                               1        s       t
 Where kernel K a ,b,c , d   t , s                            e 2  b  e 2  b  cos  t 
                                                             2 ib                         b 
                                                                                       ……..(1)
 Clearly Kernel K a,b,c, d   t , s   E and K a ,b,c , d   t , s   E  R n  the kernel (1) Satisfies the follo wing properties.

 2.2         Properties of Kernel :
 2.3         K  a , b , c , d   t , s   K  a , b , c , d   s, t                                     if         ad
 2.4          K  a , b , c , d   t , s   K  a , b , c , d   s, t                                    if a = d
 2.5          K a , b , c , d   t , s   K  a ,  b ,  c , d   t , s 
 2.6          K a,b,c ,d   t , s   K a ,b,c ,d   t , s 

                                                                                                                  1
Operational Calculus of Canonical Cosine Transform

2.7         Definit ion of canonical sine transforms as ,

                                                                  id                            i a
                                                       s        s   t
                                                                          2                               2

    CST f t   s   i
                                              1
                                                  e 2  b   sin  t  e 2  b  f  t  dt                      for b  0
                                            2 ib               b                                                            ……(2)
                                              i
                                                  cds 2
                    d .e 2 f (d .s)                   for b  0
    As we have obtained few properties of canonical sine transform in [4], we establish similar propert ies of
canonical cosine transform here.

                                   III.           Modulation Theorem for Canonical Cosine Transform
Theorem 3.1: If CCT f  t   s  is canonical cosine transform of f(t), f  t   E1 R1                                        then
                                                     i
                                                          du b
                                                              2



CCT cos ut  f t  s                                          CCT f  t   s  bu  eidus  CCT f  t   s  bu  eidus 
                                                  e2
                                                          2                                                                           
                                                                                                                                           …….(3)

Proof: Using definition of canonical cosine transform

                                               id 
                                              e   s2                               i a
                                                                         s  2  b t
                                                                                              2

CCT f  t   s  
                                        1
                                                                                       f  t  dt
                                               2 b 
                                                                                 
                                                                   cos  t  e
                                      2 ib                            b 

                                                                      id                            i a
                                                                s        s   t
                                                                              2                               2

CCT cos ut  f t  s  
                                                         1
                                                           e 2  b   cos  t  e 2  b  cos ut  f t  dt
                                                     2 ib                b 

                        id  2                                                   i a
                                  1        s 
                                                                      2
          1               s                                    t
                   e2 b            2cos  t  cos  ut  e          f  t  dt
                                                               2 b 

      2 ib                       2       b 

                        id  2                                                                   i a
          1               s     1        s           s      2  b t
                                                                              2

                   e   2 b 
                                       cos   u   cos   u   e
                                                                        
                                                                                f  t  dt
      2 ib                       2       b           b    

    1 1
                id 2
                   s         s  ub   2  b t 2
                                                i a
                                                                    1
                                                                             id 2
                                                                                s 
                                                                                                         i a 2
                                                                                            s  ub  2  b t      
            e 2  b   cos             t e
                                                  
                                                        f  t  dt        e 2  b   cos          t e   f t 
    2  2 ib
                            b                                   2 ib                b                     
                                                                                                                    

 1  1                                                                                              
                  id                                                            i a 2
                      s  ub   i  dus    du b         s  ub  2  b t
                                  2              i   2

            d 2 b              e         e 2           cos           t e
                                                                                     
                                                                                          f  t  dt 
 2   2 ib                                                      b                                
                                                        
                                                                                                     
  1       id 
               s  ub  iuds   du b  
                          2           i     2
                                                                        i a 2
                                                          s  ub  2  b t               
        e2 b            e e 2                cos             t e
                                                                           
                                                                                f  t  dt  
 
   2 ib                                               b                              
                                                                                           
      i
           du b
              2


                    CCT f  t   s  bu  eidus  CCT f  t   s  bu  eidus 
    e2
                                                                                    
          2

Theorem 3.2: If CCT f  t   s  is canonical cosine transform of f  t  , f  t  E1 R1                                       
                                                          i 2  du2b
                                                              i

Then CCT sin ut f  t   s                             e          CST f t   s  ub  eidsu  CST f t   s  ub  e idsu 
                                                                                                                                       
                                                          2                                                                               ……(4)

Proof : By using defin ition canonical cosine transform



                                                                                                              2
Operational Calculus of Canonical Cosine Transform

                                                       id                           i a
                                                     s        S   t
                                                               2                              2

CCT f  t   s  
                                           1
                                                e 2  b   cos  t  e 2  b  f  t  dt
                                          2 ib                b 

                                                                   id                               i a
                                                              s        s   t
                                                                           2                                  2

CCT sin ut f t  s  
                                                       1
                                                         e 2  b   cos  t  .e 2  b  .sin ut f  t  dt
                                                   2 ib               b 
                                                                                 id  2
                         id 2                                                    t
         1                 s       1         s           2 b 
                    e   2 b 
                                          2cos  t  sin ut  e      f  t  dt
        2 ib                        2        b          

                                                                                                          i a 2
                         id  2                                                                             t
         1                 s       1  s                    s         2 b 
                    e   2 b 
                                          sin  t  ut   sin  t  ut   e      f  t  dt
        2 ib                        2    b                 b       

             id 2
                                          i a 2
                                             t                       id 2                      id 2          
  1 1          s         s  ub  2  b                   1         s        s  ub  2  b t
           e 2 b 
                       sin          te         f  t  dt        e 2  b   sin          t e   f  t  dt 
  2  2 ib                b                               2 ib                b                          
                                                                                                                  

                
                    i
                     du 2 b   
        ie
                                   CST f  t   s  bu  eidsu  CST f  t   s  ub  eidus 
                    2
                                                                                                   
                    2

Theorem 3.3: If CCT f  t   s  is canonical cosine transform o f f  t  , f  t   E1 R1                          
Then

CCT e f t   s 
          iut




 e2
 2
               e    
 i i  du 2b  idsu 
                                                                           idus                                                    
                     CCT f  t   s  ub   CST f  t   s  ub    e CCT f  t   s  ub   CST f  t   s  ub  
                                                                                                                                        ….. (5)


                                                                           IV.        Some useful Properties:
In this section we discuss some useful results.
4.1 Ti me Reverse Property: If CCT f  t  is canonical cosine transforms of f  t  , f  t   E1 R1 then                               
                    CCT f  t  s   CCT f t  s                                                                ……….. (6)

Proof : Using definit ion of canonical cosine transforms of f  t 

                                                       id                            id 
                                                     s        s   t
                                                               2                                  2

CCT f  t   s  
                                           1
                                                e 2  b   cos  t  e 2  b  f  t  dt
                                          2 ib               b 

                                                           id                            id 
                                                       s        s   t
                                                                   2                                  2

CCT f  t  s  
                                               1
                                                  e 2  b   cos  t  e 2  b  f  t  dt
                                            2 ib               b 

Put t  x                              t  x

Hence dt  dx, also t   to , x  ,  


                                                                      s     x 
                                                       id  2                 id 
                                                          s 
                                                                                       2

 CCT f  t   s  
                                                   1
                                                     e 2  b   cos   x  e 2  b    f  x  dx 
                                               2 ib                b 




                                                                                                                  3
Operational Calculus of Canonical Cosine Transform

                                                            id                           id 
                                                   s      s   x
                                                                    2                              2

CCT f  t   s   
                                              1
                                             e 2  b   cos  x  e 2  b  f  x  .dx
                                       2 ib               b 

Replacing x by t again

                                  id                                   id 
                                s        s   t
                                              2                                  2
                      1
                          e 2  b   cos  t  e 2  b  f  t  dt
                     2 ib               b 

CCT f  t   s   CCT f t   s 

4.2 Parity: If CCT f  t   s  is canonical cosine transform of f  t   E1 R1 then                                           
            CCT f  t  s  CCT f t  s                                                                                                …….. (7)

4.3 Linearity Property: If C1 , C2 are constant and f1 , f 2 are functions of t then


                               CCT C f t   C
                                                     1 1               2 2         
                                                                         f t   s   C1 CCT f1 t   s   C2 CCT f 2 t   s 
                                                                                                                                          …… (8)

                                              V.              Operation Transform in Terms of Parameters
          This section presents the operational formu lae fo r canonical cosine transform with shifted parameter
„s „ and differential of canonical cosine transform with respect to s.


Theorem 5.1 : If CCT f  t   s  is canonical cosine transform o f f  t  in terms of parameter s, then

                                          id
                                             2 s 2
                                                                                              1                  
CCT f t  s     e                 2 b 
                                                                     CCT cos  t  f  t   s   CST sin  t  f t   s 
                                                                             b                  i        b           ………… (9)

                                                                                                   id  2                    i a
                                                                                                     S           s  2  b t
                                                                                                                                      2

                                                  CCT f  t   s  
                                                                                          1
Proof: We know that‟                                                                             e2 b       cos  t  e
                                                                                                                            
                                                                                                                                  f  t  dt
                                                                                         2 ib                   b 

                                                              id 
                                                                  S   
                                                                           2
                                                                                         s             i a 2

CCT f  t   s    
                                                  1                                                           t
                                                            e2 b             cos                t  e 2  b  f  t  dt
                                              2 ib                                      b

                      1
                                  id  2
                                          
                                     s  2 s 
                                                   2
                                                                     s                 s       t
                                                                                                                         2                id 

                               e2 b                            cos  t  cos  t   sin  t  sin  t   e 2  b  f  t  dt
                     2 ib                                           b       b          b   b 

                      1
                                  id 2
                                          
                                     s  2 s 
                                                   2
                                                                     s 
                                                                                          id 2
                                                                                      t                   
                                                                                                                      s      t
                                                                                                                                       i a 2
                                                                                                                                                          
                               e2 b                            cos  t  cos  t  e 2  b  f  t  dt   sin  t  sin  t  e 2  b  f  t  dt 
                     2 ib                                       
                                                                       b       b                              b   b                            
                                                                                                                                                          

      1
                id 2
                  s
                              id
                                   
                                 2 s 
                                           2
                                                               s 
                                                                                      i a 2
                                                                                2  b t                
                                                                                                                                  i a 2
                                                                                                                  s     2  b t             
           e   2 b 
                          e   2 b 
                                                            cos  t  .cos  t  .e    
                                                                                              f  t  dt   sin  t  sin  t  e   f  t  dt 
    2 ib                                                  
                                                                 b        b                               b   b                        
                                                                                                                                                  

          id
                 
             2 s 
                       2
                                                         1                       
      e2 b                   CCT cos  t  f  t   s   CST sin  t  f  t  s 
                                        b                  i        b               

Theorem 5.2: If CCT f  t   s  is canonical cosine transform of f(t ) in terms of parameter S



                                                                                                       4
Operational Calculus of Canonical Cosine Transform

                                            ds                           t        
                  CCT f  t    s   i   CCT f  t   s   i CST   f  t   s 
               d
                              
Then           ds                          b                             b                             ……….. (10)

                                           ds                            t                      ………… (11)
                                                 CCT f  t   s   CST   f  t    s  
Or            d
                 CCT f  t    s   i 
              ds             
                                           b                             b                

Proof: Using definition of canonical cosine transform
                                        id  2              i a
                                          s       s  2  b t
                                                                     2

CCT f t  s  
                                1
                                    e   2 b 
                                               cos  t  e
                                                             
                                                                   f  t  dt
                            2 ib                 b 

                              d  1                                                 
                                           id  2               i a 2
                                              s        s   t
         CCT f  t   s   
      d
                                        e 2  b   cos  t  e 2  b  f  t  dt 
      ds                      ds  2 ib
                                                      b                        
                                                                                    

                 i a 2                                         
         1     
                 2 b   d
                    t        2  d  s2
                                i
                                              s              
             e          e
                                  b
                                           cos  t   f  t  dt 
       2 ib           
                           ds 
                                              b             
                                                                  

                     t                                   s   s  t 
                  i a 2    id  2                               i a 2
         1                     s       s   ds 
              e 2  b  e 2  b  cos  t  i    sin  t  e 2  b     f  t  dt
       2 ib            
                                        b   b         b              b 
                                                                                

                        id                      id                           id                i a
    ds  1         s        s   t                                s        s   t  t 
                        2                     2                              2                     2
                                                            i 1
 i          e 2  b   cos  t  e 2  b  f  t  dt          e 2  b   sin  t  e 2  b  .  f t  dt
    b  2 ib               b                          i 2 ib               b              b

                  ds                        1    t         
               i     .CCT f  t   s   CST   f  t    s 
                  b                         i    b         

                    t         
                                              CCT f  t   s 
                                           ds
               CST   f  t    s  
                    b                  b

                                                               1                  
         CCT f  t   s   i  b  .CCT f  t   s   i CST  b  f  t   s 
      d                             ds                                  t
                                                                    
      ds                                                                      

                                          t 
    CCT f  t   s   CST f  t  .  b   s    d  CCT f  t   s 
 d                                                        ds
                                                          
 ds                                                     

                                                            VI.            Conclusion:
              The canonical cosine transform, which is the generalization of number of transforms is itself
       generalized to the spaces of generalized functions as per Zemanian. This transform is used to solve ordinary
       or partial differential equations. This transform is an important tool in signal processing and many other
       branches of engineering. In this paper we have discussed some of its properties.

                                                                         References:
[1]      Almeida L.B., “An introduction to the angular Fourier transform”, IEEE, 257-260 (1993).
[2]      Almeida L.B., “The fractional Fourier transform and time frequency representation IEEE trans on signal processing”,Vol. 42, No.11
         (1994).
[3]      Bhosale B.N. and Choudhary M.S.,“Fractional fourier transform of distributions of compact support”, Bull. Cal. Math. Soc., Vol. 94,
         No.5, 349-358 (2002).
[4]      Chavhan S.B., Borkar V.C.,“ Canonical sine transform and their unitary representation”, International Journal of Contemporary
         Mathematical Sciences. (Accepted ).
[5]      Moshinky M. Quesne ., “Linear canonical transform and their unitary representation”, J. Math, Phy., Vol.12, (No.), 1772-1783
         (1971).
[6]      Namias V., “The fractional order Fourier transform and its applications in quantum mechanics”, I. Inst. Maths. appli., 25, 241-265
         (1980).
[7]      Peis, Ding J., “Eigen function of linear canonical transform”, IEEE, trans. sign. proc. Vol.50, No.1 (2002).
[8]      Peis, Ding J., “Fractional cosine, sine and Hartley transform, trans. on signal processing”, Vol.50, No.7, Pub. P.1661-1680 (2002).
[9]      Zayed A., “A convolution and product theorem for the fractional Fourier transform”, IEEE sign. proc. letters Vol.5, No.4, 101-103
         (1998).
[10]     Zemanian A.H., “ Distribution theory and transform analysis”, McGraw Hill, New York, (1965).
[11]     Zemanian A.H., “Generalized Integral Transform”, Inter Science Publisher's New York, (1968).

                                                                             5

More Related Content

Viewers also liked

Webinar+presentation info mb+ppt-120422
Webinar+presentation info mb+ppt-120422Webinar+presentation info mb+ppt-120422
Webinar+presentation info mb+ppt-120422
Ron Haugland
 
Integrando lavoura – pecuária – silvicultura e agroflorestas
Integrando lavoura – pecuária – silvicultura e agroflorestasIntegrando lavoura – pecuária – silvicultura e agroflorestas
Integrando lavoura – pecuária – silvicultura e agroflorestas
Agricultura Sao Paulo
 
Can't Get You Out Of My Head
Can't Get You Out Of My HeadCan't Get You Out Of My Head
Can't Get You Out Of My Head
mikehepple
 
Curriculum decription
Curriculum decriptionCurriculum decription
Curriculum decription
Kristy Curran
 
Global Corruption Barometer 2013
Global Corruption Barometer 2013 Global Corruption Barometer 2013
Global Corruption Barometer 2013
Dr Lendy Spires
 
Receitas Lights Diets Peixe Ao Forno
Receitas Lights Diets Peixe Ao FornoReceitas Lights Diets Peixe Ao Forno
Receitas Lights Diets Peixe Ao Forno
frutadiferente
 

Viewers also liked (17)

1010 f11 9-19
1010 f11 9-191010 f11 9-19
1010 f11 9-19
 
1010f11 11-18
1010f11 11-181010f11 11-18
1010f11 11-18
 
Webinar+presentation info mb+ppt-120422
Webinar+presentation info mb+ppt-120422Webinar+presentation info mb+ppt-120422
Webinar+presentation info mb+ppt-120422
 
13 th nov yashomani
13 th nov yashomani13 th nov yashomani
13 th nov yashomani
 
WHS Junior Class Meeting
WHS Junior Class MeetingWHS Junior Class Meeting
WHS Junior Class Meeting
 
My LinkedIn Project
My LinkedIn ProjectMy LinkedIn Project
My LinkedIn Project
 
Alter bridge
Alter bridgeAlter bridge
Alter bridge
 
MWA Programs
MWA ProgramsMWA Programs
MWA Programs
 
The window
The windowThe window
The window
 
Integrando lavoura – pecuária – silvicultura e agroflorestas
Integrando lavoura – pecuária – silvicultura e agroflorestasIntegrando lavoura – pecuária – silvicultura e agroflorestas
Integrando lavoura – pecuária – silvicultura e agroflorestas
 
Ermelino 167
Ermelino 167Ermelino 167
Ermelino 167
 
Can't Get You Out Of My Head
Can't Get You Out Of My HeadCan't Get You Out Of My Head
Can't Get You Out Of My Head
 
Netvibes
NetvibesNetvibes
Netvibes
 
Curriculum decription
Curriculum decriptionCurriculum decription
Curriculum decription
 
Global Corruption Barometer 2013
Global Corruption Barometer 2013 Global Corruption Barometer 2013
Global Corruption Barometer 2013
 
Canino defense nov 13 (f)
Canino defense nov 13 (f)Canino defense nov 13 (f)
Canino defense nov 13 (f)
 
Receitas Lights Diets Peixe Ao Forno
Receitas Lights Diets Peixe Ao FornoReceitas Lights Diets Peixe Ao Forno
Receitas Lights Diets Peixe Ao Forno
 

Similar to Research Inventy : International Journal of Engineering and Science is published by the group of young academic and industrial researchers with 12 Issues per year.

IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD Editor
 
The shortest distance between skew lines
The shortest distance between skew linesThe shortest distance between skew lines
The shortest distance between skew lines
Tarun Gehlot
 
CIVE2700 solution manual
CIVE2700 solution manualCIVE2700 solution manual
CIVE2700 solution manual
gurkang
 
Aj32652658
Aj32652658Aj32652658
Aj32652658
IJMER
 
EQUIVALENCE PRINCIPLE OR NEW PRINCIPLE OF INERTIA?/¿PRINCIPIO DE EQUIVALENCIA...
EQUIVALENCE PRINCIPLE OR NEW PRINCIPLE OF INERTIA?/¿PRINCIPIO DE EQUIVALENCIA...EQUIVALENCE PRINCIPLE OR NEW PRINCIPLE OF INERTIA?/¿PRINCIPIO DE EQUIVALENCIA...
EQUIVALENCE PRINCIPLE OR NEW PRINCIPLE OF INERTIA?/¿PRINCIPIO DE EQUIVALENCIA...
Xavier Terri
 
MIMO Stability Margins
MIMO Stability MarginsMIMO Stability Margins
MIMO Stability Margins
apexyz
 
Interparticle Interactions and Dynamics in Solutions of Copper (II), Cobalt (...
Interparticle Interactions and Dynamics in Solutions of Copper (II), Cobalt (...Interparticle Interactions and Dynamics in Solutions of Copper (II), Cobalt (...
Interparticle Interactions and Dynamics in Solutions of Copper (II), Cobalt (...
Dmitry Novikov
 
GATE - Physics - 2006
GATE - Physics - 2006GATE - Physics - 2006
GATE - Physics - 2006
SNS
 

Similar to Research Inventy : International Journal of Engineering and Science is published by the group of young academic and industrial researchers with 12 Issues per year. (20)

Ef24836841
Ef24836841Ef24836841
Ef24836841
 
Dynamics of Satellite With a Tether System
Dynamics of Satellite With a Tether SystemDynamics of Satellite With a Tether System
Dynamics of Satellite With a Tether System
 
11.30 k8 j lekner
11.30 k8 j lekner11.30 k8 j lekner
11.30 k8 j lekner
 
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
 
ECNG 6503 #1
ECNG 6503 #1 ECNG 6503 #1
ECNG 6503 #1
 
The shortest distance between skew lines
The shortest distance between skew linesThe shortest distance between skew lines
The shortest distance between skew lines
 
CIVE2700 solution manual
CIVE2700 solution manualCIVE2700 solution manual
CIVE2700 solution manual
 
11.changed....0002www.iiste.org call for paper...... to be changed.
11.changed....0002www.iiste.org call for paper...... to be changed.11.changed....0002www.iiste.org call for paper...... to be changed.
11.changed....0002www.iiste.org call for paper...... to be changed.
 
Aj32652658
Aj32652658Aj32652658
Aj32652658
 
EQUIVALENCE PRINCIPLE OR NEW PRINCIPLE OF INERTIA?/¿PRINCIPIO DE EQUIVALENCIA...
EQUIVALENCE PRINCIPLE OR NEW PRINCIPLE OF INERTIA?/¿PRINCIPIO DE EQUIVALENCIA...EQUIVALENCE PRINCIPLE OR NEW PRINCIPLE OF INERTIA?/¿PRINCIPIO DE EQUIVALENCIA...
EQUIVALENCE PRINCIPLE OR NEW PRINCIPLE OF INERTIA?/¿PRINCIPIO DE EQUIVALENCIA...
 
MIMO Stability Margins
MIMO Stability MarginsMIMO Stability Margins
MIMO Stability Margins
 
Da32633636
Da32633636Da32633636
Da32633636
 
Da32633636
Da32633636Da32633636
Da32633636
 
Attitude Dynamics of Re-entry Vehicle
Attitude Dynamics of Re-entry VehicleAttitude Dynamics of Re-entry Vehicle
Attitude Dynamics of Re-entry Vehicle
 
Interparticle Interactions and Dynamics in Solutions of Copper (II), Cobalt (...
Interparticle Interactions and Dynamics in Solutions of Copper (II), Cobalt (...Interparticle Interactions and Dynamics in Solutions of Copper (II), Cobalt (...
Interparticle Interactions and Dynamics in Solutions of Copper (II), Cobalt (...
 
#26 Key
#26 Key#26 Key
#26 Key
 
Ab31169180
Ab31169180Ab31169180
Ab31169180
 
GATE - Physics - 2006
GATE - Physics - 2006GATE - Physics - 2006
GATE - Physics - 2006
 
N. Bilic - Supersymmetric Dark Energy
N. Bilic - Supersymmetric Dark EnergyN. Bilic - Supersymmetric Dark Energy
N. Bilic - Supersymmetric Dark Energy
 
IJCER (www.ijceronline.com) International Journal of computational Engineeri...
 IJCER (www.ijceronline.com) International Journal of computational Engineeri... IJCER (www.ijceronline.com) International Journal of computational Engineeri...
IJCER (www.ijceronline.com) International Journal of computational Engineeri...
 

Research Inventy : International Journal of Engineering and Science is published by the group of young academic and industrial researchers with 12 Issues per year.

  • 1. RESEARCH INVENTY: International Journal of Engineering and Science ISSN: 2278-4721, Vol. 1, Issue 7 (November 2012), PP 01-05 www.researchinventy.com Operational Calculus of Canonical Cosine Transform 1, S. B. Chavhan, 2, V.C. Borkar Depart ment of Mathemat ics & Statistics, Yeshwant Mahavidyalaya, Nanded-431602 (India) Abstract: This paper studies different properties of canonical cosine transform. Modulation heorem is also proved. We have proved some important results about the Kernel of canonical cosine transform. Keywords: Generalized function, Canonical transform, Canonical Cosine transforms, Modulation theorem, Fourier transform. I. Introduction The Fourier transform is certainly one of the best known of integral transforms, since its introduction by Fourier in early 1800's. A much mo re general integral transform, namely, linear canonical transform was introduced in 1970 by Moshinsky and Quesne [5]. In 1980, Namias [6] introduced the fractional Fourier transform using eigen value and eigen functions. Almeida [1], [2] had introduced it and proved many of its properties. Zayed [9] had discussed about product and convolution concerning that transform. Bhosale and Choudhary [3] had studies it as a tempered distribution.Nu mber of applications of fractional Fourier transform in signal processing,image processing filtering optics, etc are studied. Pei and ding [7] ,[8] had studied linear canonical transforms. The defin ition canonical cosine transform is as follo ws, id  i a  s   s   t 2 2 CCT f t  s   1 e 2  b   cos  t  e 2  b  f  t  dt for b  0 2 ib  b  i cds 2  d .e 2 f (d .s) for b  0 Notation and terminology of this paper is as per Zemanian [10], [11].The paper is organized as follows . Section 2 gives the definit ion of canonical cosine transform on the space of generalized function and states the property of the kernel of the canonical cosine transform. In section 3 modulat ion theorem is proved. In section 4, t ime reverse property, linear p roperty, parity are proved. In section 5, operation transforms in terms of parameter are discussed and lastly the conclusion is stated. II. Generalized Canonical Cosine Transform 2.1 Definiti on : The canonical cosine transform of generalized function is defined as CCT f t  s    f t  , K a ,b, c , d  t , s   id  i a s  2 2 1  s  t Where kernel K a ,b,c , d   t , s   e 2  b  e 2  b  cos  t  2 ib b  ……..(1) Clearly Kernel K a,b,c, d   t , s   E and K a ,b,c , d   t , s   E  R n  the kernel (1) Satisfies the follo wing properties. 2.2 Properties of Kernel : 2.3 K  a , b , c , d   t , s   K  a , b , c , d   s, t  if ad 2.4 K  a , b , c , d   t , s   K  a , b , c , d   s, t  if a = d 2.5 K a , b , c , d   t , s   K  a ,  b ,  c , d   t , s  2.6 K a,b,c ,d   t , s   K a ,b,c ,d   t , s  1
  • 2. Operational Calculus of Canonical Cosine Transform 2.7 Definit ion of canonical sine transforms as , id  i a  s   s   t 2 2 CST f t   s   i 1 e 2  b   sin  t  e 2  b  f  t  dt for b  0 2 ib  b  ……(2) i cds 2  d .e 2 f (d .s) for b  0 As we have obtained few properties of canonical sine transform in [4], we establish similar propert ies of canonical cosine transform here. III. Modulation Theorem for Canonical Cosine Transform Theorem 3.1: If CCT f  t   s  is canonical cosine transform of f(t), f  t   E1 R1   then i  du b 2 CCT cos ut  f t  s   CCT f  t   s  bu  eidus  CCT f  t   s  bu  eidus  e2 2   …….(3) Proof: Using definition of canonical cosine transform id  e   s2  i a  s  2  b t 2 CCT f  t   s   1 f  t  dt 2 b     cos  t  e 2 ib  b  id  i a  s   s   t 2 2 CCT cos ut  f t  s   1 e 2  b   cos  t  e 2  b  cos ut  f t  dt 2 ib  b  id  2 i a 1 s  2 1  s  t  e2 b   2cos  t  cos  ut  e f  t  dt 2 b  2 ib 2  b  id  2 i a 1  s 1  s  s   2  b t 2  e 2 b    cos   u   cos   u   e   f  t  dt 2 ib 2   b  b  1 1 id 2  s    s  ub   2  b t 2 i a   1 id 2  s  i a 2  s  ub  2  b t    e 2  b   cos  t e   f  t  dt  e 2  b   cos   t e   f t  2  2 ib    b  2 ib   b    1  1  id  i a 2     s  ub   i  dus    du b    s  ub  2  b t 2 i 2   d 2 b  e e 2  cos  t e   f  t  dt  2   2 ib  b       1 id     s  ub  iuds   du b   2 i 2 i a 2  s  ub  2  b t   e2 b  e e 2  cos  t e   f  t  dt     2 ib   b    i  du b 2 CCT f  t   s  bu  eidus  CCT f  t   s  bu  eidus  e2    2 Theorem 3.2: If CCT f  t   s  is canonical cosine transform of f  t  , f  t  E1 R1   i 2  du2b i Then CCT sin ut f  t   s   e CST f t   s  ub  eidsu  CST f t   s  ub  e idsu    2 ……(4) Proof : By using defin ition canonical cosine transform 2
  • 3. Operational Calculus of Canonical Cosine Transform id  i a  s   S   t 2 2 CCT f  t   s   1 e 2  b   cos  t  e 2  b  f  t  dt 2 ib  b  id  i a  s   s   t 2 2 CCT sin ut f t  s   1 e 2  b   cos  t  .e 2  b  .sin ut f  t  dt 2 ib  b  id  2 id 2  t 1  s 1  s   2 b   e 2 b    2cos  t  sin ut  e f  t  dt 2 ib 2   b   i a 2 id  2  t 1  s 1  s  s   2 b   e 2 b    sin  t  ut   sin  t  ut   e f  t  dt 2 ib 2    b  b   id 2 i a 2  t id 2 id 2  1 1  s   s  ub  2  b  1  s   s  ub  2  b t  e 2 b   sin   te f  t  dt  e 2  b   sin   t e   f  t  dt  2  2 ib   b  2 ib   b      i du 2 b  ie CST f  t   s  bu  eidsu  CST f  t   s  ub  eidus  2    2 Theorem 3.3: If CCT f  t   s  is canonical cosine transform o f f  t  , f  t   E1 R1   Then CCT e f t   s  iut  e2 2 e  i i  du 2b  idsu   idus   CCT f  t   s  ub   CST f  t   s  ub    e CCT f  t   s  ub   CST f  t   s  ub    ….. (5) IV. Some useful Properties: In this section we discuss some useful results. 4.1 Ti me Reverse Property: If CCT f  t  is canonical cosine transforms of f  t  , f  t   E1 R1 then   CCT f  t  s   CCT f t  s  ……….. (6) Proof : Using definit ion of canonical cosine transforms of f  t  id  id   s   s   t 2 2 CCT f  t   s   1 e 2  b   cos  t  e 2  b  f  t  dt 2 ib  b  id  id   s   s   t 2 2 CCT f  t  s   1 e 2  b   cos  t  e 2  b  f  t  dt 2 ib  b  Put t  x  t  x Hence dt  dx, also t   to , x  ,    s     x  id  2 id   s  2  CCT f  t   s   1 e 2  b   cos   x  e 2  b  f  x  dx  2 ib   b  3
  • 4. Operational Calculus of Canonical Cosine Transform id  id    s   s   x 2 2 CCT f  t   s    1 e 2  b   cos  x  e 2  b  f  x  .dx 2 ib  b  Replacing x by t again id  id   s   s   t 2 2 1  e 2  b   cos  t  e 2  b  f  t  dt 2 ib  b  CCT f  t   s   CCT f t   s  4.2 Parity: If CCT f  t   s  is canonical cosine transform of f  t   E1 R1 then   CCT f  t  s  CCT f t  s  …….. (7) 4.3 Linearity Property: If C1 , C2 are constant and f1 , f 2 are functions of t then CCT C f t   C  1 1 2 2   f t   s   C1 CCT f1 t   s   C2 CCT f 2 t   s  …… (8) V. Operation Transform in Terms of Parameters This section presents the operational formu lae fo r canonical cosine transform with shifted parameter „s „ and differential of canonical cosine transform with respect to s. Theorem 5.1 : If CCT f  t   s  is canonical cosine transform o f f  t  in terms of parameter s, then id   2 s 2      1     CCT f t  s     e 2 b   CCT cos  t  f  t   s   CST sin  t  f t   s   b   i b    ………… (9) id  2 i a  S   s  2  b t 2 CCT f  t   s   1 Proof: We know that‟ e2 b   cos  t  e   f  t  dt 2 ib  b  id     S    2 s   i a 2 CCT f  t   s     1  t e2 b   cos t  e 2  b  f  t  dt 2 ib  b 1 id  2    s  2 s  2  s     s       t 2 id   e2 b   cos  t  cos  t   sin  t  sin  t   e 2  b  f  t  dt 2 ib   b  b   b   b  1 id 2    s  2 s  2   s  id 2     t   s      t i a 2   e2 b    cos  t  cos  t  e 2  b  f  t  dt   sin  t  sin  t  e 2  b  f  t  dt  2 ib    b  b   b   b    1 id 2  s id    2 s  2   s  i a 2    2  b t  i a 2  s     2  b t   e 2 b  e 2 b    cos  t  .cos  t  .e   f  t  dt   sin  t  sin  t  e   f  t  dt  2 ib    b  b   b   b    id    2 s  2      1     e2 b   CCT cos  t  f  t   s   CST sin  t  f  t  s   b   i b   Theorem 5.2: If CCT f  t   s  is canonical cosine transform of f(t ) in terms of parameter S 4
  • 5. Operational Calculus of Canonical Cosine Transform  ds   t  CCT f  t    s   i   CCT f  t   s   i CST   f  t   s  d   Then ds b   b  ……….. (10)  ds   t    ………… (11)  CCT f  t   s   CST   f  t    s   Or d CCT f  t    s   i  ds    b   b   Proof: Using definition of canonical cosine transform id  2 i a  s   s  2  b t 2 CCT f t  s   1 e 2 b   cos  t  e   f  t  dt 2 ib  b  d  1  id  2 i a 2  s   s   t CCT f  t   s    d  e 2  b   cos  t  e 2  b  f  t  dt  ds ds  2 ib   b    i a 2   1  2 b   d  t  2  d  s2 i    s    e  e b cos  t   f  t  dt  2 ib   ds     b     t   s   s  t  i a 2 id  2 i a 2 1   s  s   ds    e 2  b  e 2  b  cos  t  i    sin  t  e 2  b     f  t  dt 2 ib    b   b  b   b   id  id id i a  ds  1  s   s   t  s   s   t  t  2 2 2 2 i 1  i  e 2  b   cos  t  e 2  b  f  t  dt  e 2  b   sin  t  e 2  b  .  f t  dt  b  2 ib  b  i 2 ib  b  b  ds  1 t    i  .CCT f  t   s   CST   f  t    s   b  i b   t   CCT f  t   s  ds  CST   f  t    s    b  b 1  CCT f  t   s   i  b  .CCT f  t   s   i CST  b  f  t   s  d ds t      ds        t  CCT f  t   s   CST f  t  .  b   s    d  CCT f  t   s  d ds     ds      VI. Conclusion: The canonical cosine transform, which is the generalization of number of transforms is itself generalized to the spaces of generalized functions as per Zemanian. This transform is used to solve ordinary or partial differential equations. This transform is an important tool in signal processing and many other branches of engineering. In this paper we have discussed some of its properties. References: [1] Almeida L.B., “An introduction to the angular Fourier transform”, IEEE, 257-260 (1993). [2] Almeida L.B., “The fractional Fourier transform and time frequency representation IEEE trans on signal processing”,Vol. 42, No.11 (1994). [3] Bhosale B.N. and Choudhary M.S.,“Fractional fourier transform of distributions of compact support”, Bull. Cal. Math. Soc., Vol. 94, No.5, 349-358 (2002). [4] Chavhan S.B., Borkar V.C.,“ Canonical sine transform and their unitary representation”, International Journal of Contemporary Mathematical Sciences. (Accepted ). [5] Moshinky M. Quesne ., “Linear canonical transform and their unitary representation”, J. Math, Phy., Vol.12, (No.), 1772-1783 (1971). [6] Namias V., “The fractional order Fourier transform and its applications in quantum mechanics”, I. Inst. Maths. appli., 25, 241-265 (1980). [7] Peis, Ding J., “Eigen function of linear canonical transform”, IEEE, trans. sign. proc. Vol.50, No.1 (2002). [8] Peis, Ding J., “Fractional cosine, sine and Hartley transform, trans. on signal processing”, Vol.50, No.7, Pub. P.1661-1680 (2002). [9] Zayed A., “A convolution and product theorem for the fractional Fourier transform”, IEEE sign. proc. letters Vol.5, No.4, 101-103 (1998). [10] Zemanian A.H., “ Distribution theory and transform analysis”, McGraw Hill, New York, (1965). [11] Zemanian A.H., “Generalized Integral Transform”, Inter Science Publisher's New York, (1968). 5