SlideShare a Scribd company logo
1 of 10
Download to read offline
ISSN 2393-8471
International Journal of Recent Research in Civil and Mechanical Engineering (IJRRCME)
Vol. 2, Issue 1, pp: (268-277), Month: April 2015 – September 2015, Available at: www.paperpublications.org
Page | 268
Paper Publications
Airfoil Terminology, Its Theory and Variations
As Well As Relations with Its Operational Lift
Force and Drag Force in Ambient Conditions
1
Dr V.N. Bartaria, 2
Shivani Sharma
1
H.O.D Mechanical engineering LNCT Bhopal, India
2
B.E. Mechanical engineering Pursuing M.tech
Abstract: It is a fact of common experience that a body in motion through a fluid experiences a resultant force
which, in most cases is mainly a resistance to the motion. A class of body exists, However for which the component
of the resultant force normal to the direction to the motion is many time greater than the component resisting the
motion, and the possibility of the flight of an airplane depends on the use of the body of this class for wing
structure. Airfoil is such an aerodynamic shape that when it moves through air, the air is split and passes above
and below the wing. The wing’s upper surface is shaped so the air rushing over the top speeds up and stretches out.
This decreases the air pressure above the wing. The air flowing below the wing moves in a comparatively
straighter line, so its speed and air pressure remains the same. Since high air pressure always moves toward low
air pressure, the air below the wing pushes upward toward the air above the wing. The wing is in the middle, and
the whole wing is “lifted.” The faster an airplane moves, the more lift there is. And when the force of lift is greater
than the force of gravity, the airplane is able to fly.
Keywords: Airfoil, lift force, Drag Force.
1. INTRODUCTION
An airfoil-shaped body moved through a fluid produces an aerodynamic force. The component of this force perpendicular
to the direction of motion is called lift. The component parallel to the direction of motion is called drag. Subsonic flight
airfoils have a characteristic shape with a rounded leading edge, followed by a sharp trailing edge, often with a symmetric
curvature of upper and lower surfaces. Foils of similar function designed with water as the working fluid are called
hydrofoils.
The lift on an airfoil is primarily the result of its angle of attack and shape. When oriented at a suitable angle, the airfoil
deflects the oncoming air, resulting in a force on the airfoil in the direction opposite to the deflection.
This force is known as aerodynamic force and can be resolved into two components: lift and drag. Most foil shapes
require a positive angle of attack to generate lift, but cambered airfoils can generate lift at zero angle of attack.
This “turning” of the air in the vicinity of the airfoil creates curved streamlines which results in lower pressure on one side
and higher pressure on the other. This pressure difference is accompanied by a velocity difference, via Bernoulli’s
principle, so the resulting flow field about the airfoil has a higher average velocity on the upper surface than on the lower
surface. The lift force can be related directly to the average top/bottom velocity difference without computing the pressure
by using the concept of circulation and the Kutta-Joukowski theorem.
ISSN 2393-8471
International Journal of Recent Research in Civil and Mechanical Engineering (IJRRCME)
Vol. 2, Issue 1, pp: (268-277), Month: April 2015 – September 2015, Available at: www.paperpublications.org
Page | 269
Paper Publications
Figure: 1 Examples of airfoils in nature and within various vehicles. Though not strictly an airfoil, the dolphin flipper obeys
the same principles in a different fluid medium
Figure: 2 Streamlines around a NACA 0012 airfoil at moderate angle of attack
ISSN 2393-8471
International Journal of Recent Research in Civil and Mechanical Engineering (IJRRCME)
Vol. 2, Issue 1, pp: (268-277), Month: April 2015 – September 2015, Available at: www.paperpublications.org
Page | 270
Paper Publications
Figure: 3 Lift and Drag curves for a typical airfoil
2. THEORY OF AIRFOIL
Thin airfoil theory is a simple theory of airfoils that relates angle of attack to lift for incompressible, in viscid flows. It
was devised by German-American mathematician Max Munk and further refined by British aerodynamicist Hermann
Glauert and others in the 1920s. The theory idealizes the flow around an airfoil as two dimensional flows around a thin
airfoil. It can be imagined as addressing an airfoil of zero thickness and infinite wingspan.
Thin airfoil theory was particularly notable in its day because it provided a sound theoretical basis for the following
important properties of airfoils in two-dimensional Flow:
(1) On a symmetric airfoil, the center of pressure and Aerodynamic center lies exactly one quarter of the chord behind the
leading edge
(2) On a cambered airfoil, the aerodynamic center lies exactly One quarter of the chord behind the leading edge
(3) The slope of the lift coefficient versus angle of attack Line is 2π units per radian As a consequence of (3), the section
lift coefficient of a Symmetric airfoil of infinite wingspan is:
ISSN 2393-8471
International Journal of Recent Research in Civil and Mechanical Engineering (IJRRCME)
Vol. 2, Issue 1, pp: (268-277), Month: April 2015 – September 2015, Available at: www.paperpublications.org
Page | 271
Paper Publications
= 2πα
Where is the section lift coefficient α is the angle of attack in radians, measured Relative to the chord line.
(The above expression is also applicable to a cambered Airfoil where α is the angle of attack measured relative to The
zero-lift line instead of the chord line.)
Also as a consequence of (3), the section lift coefficient Of a cambered airfoil of infinite wingspan is:
Thin airfoil theory does not account for the stall of the Airfoil, which usually occurs at an angle of attack between 10°
and 15° for typical airfoils.
4 Derivation of thin airfoil theory: The airfoil is modeled as a thin lifting mean-line (camber line). The mean-line, y(x), is
considered to produce a distribution of vorticity (s) along the line, s. By the
Kutta condition, the vorticity is zero at the trailing edge. Since the airfoil is thin, x (chord position) can be used instead of
s, and all angles can be approximated as small. From the Biot–Savart law, this vorticity produces a flow
field w(x) where
Where x is the location where induced velocity is produced, x′ is the location of the vortex element producing the velocity
and c is the chord length of the airfoil.
Since there is no flow normal to the curved surface of the airfoil, w(x) balances that from the component of main flow V ,
which is locally normal to the plate – the main flow is locally inclined to the plate by an angle α-dy/dx. That is:
3. 4 DERIVATION OF THIN AIRFOIL THEORY
Figure: 4. 4 Derivation of thin airfoil theory
ISSN 2393-8471
International Journal of Recent Research in Civil and Mechanical Engineering (IJRRCME)
Vol. 2, Issue 1, pp: (268-277), Month: April 2015 – September 2015, Available at: www.paperpublications.org
Page | 272
Paper Publications
From top to bottom:
• Laminar flow airfoil for a RC park flyer
• Laminar flow airfoil for a RC pylon racer
• Laminar flow airfoil for a manned propeller aircraft
• Laminar flow at a jet airliner airfoil
• Stable airfoil used for flying wings
• Aft loaded airfoil allowing for a large main spar and late stall
• Transonic supercritical airfoil
• Supersonic leading edge airfoil
Colors:
Black = laminar flow,
Red = turbulent flow,
Grey = subsonic stream,
Blue = supersonic flow volume
This integral equation can by solved for (x) , after replacing x by
as a Fourier series in with a modified lead
term
That is
(These terms are known as the Glauert integral). The coefficients are given by
By the Kutta–Joukowski theorem, the total lift force F is Proportional to
ISSN 2393-8471
International Journal of Recent Research in Civil and Mechanical Engineering (IJRRCME)
Vol. 2, Issue 1, pp: (268-277), Month: April 2015 – September 2015, Available at: www.paperpublications.org
Page | 273
Paper Publications
and its moment M about the leading edge to
The calculated Lift coefficient depends only on the first two terms of the Fourier series, as
The moment M about the leading edge depends only on A0;A1 and A2 , as
The moment about the 1/4 chord point will thus be,
From this it follows that the center of pressure is aft of the 'quarter-chord' point 0.25 c, by
The aerodynamic center, AC, is at the quarter-chord point. The AC is where the pitching moment M' does
not vary with angle of attack, i.e.,
Coefficient of Drag and Coefficient of Lift:
The drag equation,
Fd = rn Cd
so co efficient of drag is given by the, Cd= 2Fd / rn^2A
is essentially a statement that the drag force on any object is proportional to the density of the fluid and proportional to the
square of the relative speed between the object and the fluid. In fluid dynamics the cd is a dimensionless quantity that is
used to quantify the drag or resistance of an object in a fluid environment such as air or water. It is used in the drag
equation where a lower drag coefficient indicates the object will have less aerodynamic or drag. The drag coefficients
always associated with a particular surface area. The drag coefficient of any object comprises the effects of the two basic
contributors to fluid dynamics drag: skin friction and from drag. The drag coefficient of a lifting airfoil or hydrofoil also
includes the effects of lift induced drag. The drag coefficient of a complete structure such as an aircraft also includes the
effects of interference drag. The overall drag coefficient defined in the usual manner is The reference area depends on
what type of drag coefficient is being measured. For automobiles and many other objects, the reference area is the
ISSN 2393-8471
International Journal of Recent Research in Civil and Mechanical Engineering (IJRRCME)
Vol. 2, Issue 1, pp: (268-277), Month: April 2015 – September 2015, Available at: www.paperpublications.org
Page | 274
Paper Publications
projected frontal area of the vehicle. This may not necessarily be the cross sectional area of the vehicle, depending on
where the cross section is taken and for an airfoil the surface area is a plane form area. The lift equation,
L = rn A CL
so coefficient of lift is given by the,
CL = 2L/rn S =L/qs
A fluid flowing past the surface of a body exerts a force on it. Lift is the component of this force that is perpendicular to
the oncoming flow direction. It contrasts with the drag force, which is the component of the surface force parallel to the
flow direction. If the fluid is air, the force is called an aerodynamic force.
Relationship between angle of attack, coefficient of drag and coefficient of lift:
Figure 5: Relationship of Different Coefficients
The lift coefficient of a fixed-wing aircraft varies with angle of attack. Increasing angle of attack is associated with
increasing lift coefficient up to the maximum lift coefficient, after which lift coefficient decreases. As the angle of attack
of a fixed-wing aircraft increases, separation of the airflow from the upper surface of the wing becomes more pronounced,
leading to a reduction in the rate of increase of the lift coefficient. The figure shows a typical curve for a cambered
straight wing. A symmetrical wing has zero lift at 0 degrees angle of attack. The lift curve is also influenced by wing
platform. A swept wing has a lower, flatter curve with a higher critical angle. Identically the value of drag coefficient is
zero at the zero AOA and it increase slowly till the stall condition and at the time of stall as well as after stall it increase
readily as shown in figure 3. Particular airspeed, the airspeed at which the aircraft stalls varies with the weight of the
aircraft, the load factor, the center of gravity of the aircraft and other factors. However the aircraft always stalls at the
same critical angle of attack. The critical or stalling angle of attack is typically around 15° for many airfoils.
The process of airfoil design proceeds from a knowledge of the boundary layer properties and the relation between
geometry and pressure distribution. The goal of an airfoil design varies. Some airfoils are designed to produce low drag
(and may not be required to generate lift at all.) Some sections may need to produce low drag while producing a given
amount of lift. In some cases, the drag doesn't really matter - it is maximum lift that is important. The section may be
required to achieve this performance with a constraint on thickness, or pitching moment, or off-design performance, or
other unusual constraints. Some of these are discussed further in the section on previous section of historical examples.
One approach to airfoil design is to use an airfoil that was already designed by someone who knew what he or she was
doing. This "design by authority" works well when the goals of a particular design problem happen to coincide with the
goals of the original airfoil design. This is rarely the case, although sometimes existing airfoils are good enough. In these
cases, airfoils may be chosen from catalogs such as Abbott and von Doenhoff's Theory of Wing Sections, Althaus' and
Wortmann's Stuttgarter Profilkatalog, Althaus' Low Reynolds Number Airfoil catalog, or Selig's "Airfoils at Low
Speeds". The advantage to this approach is that there is test data available. No surprises, such as a unexpected early stall,
are likely. On the other hand, available tools are now sufficiently refined that one can be reasonably sure that the predicted
ISSN 2393-8471
International Journal of Recent Research in Civil and Mechanical Engineering (IJRRCME)
Vol. 2, Issue 1, pp: (268-277), Month: April 2015 – September 2015, Available at: www.paperpublications.org
Page | 275
Paper Publications
performance can be achieved. The use of "designer airfoils" specifically tailored to the needs of a given project is now
very common. This section of the notes deals with the process of custom airfoil design. Methods for airfoil design can be
classified into two categories: direct and inverse design.
Contours of Static pressure over NACA 0012 Airfoil:
The static pressure of the air is simply the weight per unit area of the air above the level under consideration. For instance,
the weight of the column of air with a cross-sectional area of 1 ft-square and extending upward from sea level through the
atmosphere is 2116 lb. The sea level static level is therefore 2116 psf. Static pressure is decrease as altitude is increased
because there is less air weight above. At 18,000 ft altitude the static pressure is about half that at sea level. The
amalgamation of static pressure and dynamic pressure is known as total pressure. For and angle of attack is zero degree
we obtain that the contours of static pressure over an aerofoil is symmetrical for above and lower sections and the
stagnation point is exactly at the nose of an aerofoil. Hence there is no pressure different Created between two faces of
aerofoil at zero degree of an angle of attack.
Figure 6: Contours of static pressure over NACA 0012 airfoil at 0 degree of AOA
Figure 7: Contours of static pressure over NACA 0012 airfoil at 6 degree of AOA
ISSN 2393-8471
International Journal of Recent Research in Civil and Mechanical Engineering (IJRRCME)
Vol. 2, Issue 1, pp: (268-277), Month: April 2015 – September 2015, Available at: www.paperpublications.org
Page | 276
Paper Publications
For an angle of attack of 6 degrees, we see that the flow has a stagnation point just under the leading edge and hence
producing lift as there is a low pressure region on the upper surface of the foil as shown in Figure 6. We can also observe
that Bernoulli’s principle is holding true; the velocity is high (denoted by the red contours) at the low pressure region and
vice‐versa. There is a region of high pressure at the leading edge (stagnation point) and region of low pressure on the
upper surface of airfoil.
Contours of Velocity magnitude over NACA0012 airfoil:
As shown in figure 7 and 8 at the 0 degree of AOA the velocity contours are same as symmetrical and at 6 degree of AOA
the stagnation point is slightly shift towards the trailing edge via bottom surface hence it will create low velocity region at
lower side of the airfoil and higher velocity acceleration region at the upper side of the airfoil and according to principle
of Bernoulli's upper surface will gain low pressure and lower surface will gain higher pressure. Hence value of coefficient
of lift will increase and coefficient of drag will also increase but the increasing in drag is low compare to increasing in lift
force. In a symmetrical airfoil at no incidence, the distribution of velocity and thus the pressures along both surfaces
would have been exactly the same, canceling each other to a resulting total lift force of zero
Figure 8: Contours of velocity magnitude over NACA 0012 airfoil at 0 degree of AOA
4. RESULTANT VALUES AND GRAPHS
Figure 9: Graph of coefficient of drag at zero degree AOA
ISSN 2393-8471
International Journal of Recent Research in Civil and Mechanical Engineering (IJRRCME)
Vol. 2, Issue 1, pp: (268-277), Month: April 2015 – September 2015, Available at: www.paperpublications.org
Page | 277
Paper Publications
Figure 10: Graph of coefficient of drag at zero degree AOA
5. CONCLUSION
Based on the CFD analysis of the flow over NACA 0012 air foil we can conclude that at the zero degree of AOA there is
no lift force generated and if we want to increase amount of lift force and value of lift coefficient then we have to increase
the value of AOA. By doing that obviously amount of drag force and value of drag coefficient also increased but the
amount of increment in drag force and drag coefficient is quite lower compare to lift force. Here we understand the all
about the airfoil and from have some analysis we got some suitable result.
REFERENCES
[1] V. P. Gountis and A. G. Bakirtzis, “Bidding strategies for electricity producers in a competitive electricity
marketplace,” IEEE Trans. Power System, vol. 19, no. 1, pp. 356–365, Feb. 2004.
[2] J. Clerk Maxwell, “A Treatise on Electricity and Magnetism”, 3rd ed., vol. 2. Oxford: Clarendon, 1892, pp.68–73.
[3] R. Benato and A. Paolucci, EHV AC Undergrounding Electrical Power. Performance and Planning. New York:
Springer, 2010.
[4] Angus DC, Linde-Zwirble WT, Lidicker J et al (2001) Epidemiology of severe sepsis in the United States: analysis
of incidence, outcome, and associated costs of care. Crit Care Med 29:1303–1310.
[5] Levy MM, Dellinger RP, Townsend SR, and Surviving Sepsis Campaign et al (2010) The Surviving Sepsis
Campaign: results of an international guideline-based performance improvement program targeting severe sepsis.
Crit Care Med 38:367–374.
[6] CIGRÉ Tech. Brochure # 379, “Update of service experience of HV underground and submarine cable systems,”
2009.
[7] E. E. Reber, R. L. Mitchell, and C. J. Carter, "Oxygen absorption in the Earth's atmosphere," Aerospace Corp., Los
Angeles, CA, Tech. Rep. TR-0200 (4230-46)-3, Nov. 1968.
[8] Wikipedia

More Related Content

What's hot

Analysis of wings using Airfoil NACA 4412 at different angle of attack
Analysis of wings using Airfoil NACA 4412 at different angle of attackAnalysis of wings using Airfoil NACA 4412 at different angle of attack
Analysis of wings using Airfoil NACA 4412 at different angle of attackIJMER
 
Naca 2415 finding lift coefficient using cfd, theoretical and javafoil
Naca 2415  finding lift coefficient using cfd, theoretical and javafoilNaca 2415  finding lift coefficient using cfd, theoretical and javafoil
Naca 2415 finding lift coefficient using cfd, theoretical and javafoileSAT Journals
 
A comparative flow analysis of naca 6409 and naca 4412 aerofoil
A comparative flow analysis of naca 6409 and naca 4412 aerofoilA comparative flow analysis of naca 6409 and naca 4412 aerofoil
A comparative flow analysis of naca 6409 and naca 4412 aerofoileSAT Publishing House
 
NACA 4412 Lab Report Final
NACA 4412 Lab Report FinalNACA 4412 Lab Report Final
NACA 4412 Lab Report FinalGregory Day
 
EFFECTS OF SUNLIGHT INTENSITY ON TURBO JET ENGINE OF AIRCRAFT
EFFECTS OF SUNLIGHT INTENSITY ON TURBO JET ENGINE OF AIRCRAFT EFFECTS OF SUNLIGHT INTENSITY ON TURBO JET ENGINE OF AIRCRAFT
EFFECTS OF SUNLIGHT INTENSITY ON TURBO JET ENGINE OF AIRCRAFT IAEME Publication
 
Flow past and airfoil
Flow past and airfoilFlow past and airfoil
Flow past and airfoilPriyankaKg4
 
Estimation of Damping Derivative of a Delta Wing with Half Sine Wave Curved L...
Estimation of Damping Derivative of a Delta Wing with Half Sine Wave Curved L...Estimation of Damping Derivative of a Delta Wing with Half Sine Wave Curved L...
Estimation of Damping Derivative of a Delta Wing with Half Sine Wave Curved L...IOSR Journals
 
IRJET-Subsonic Flow Study and Analysis on Rotating Cylinder Airfoil
IRJET-Subsonic Flow Study and Analysis on Rotating Cylinder AirfoilIRJET-Subsonic Flow Study and Analysis on Rotating Cylinder Airfoil
IRJET-Subsonic Flow Study and Analysis on Rotating Cylinder AirfoilIRJET Journal
 
15 aerodynamic hazards high speed flight (1)
15 aerodynamic hazards high speed flight (1)15 aerodynamic hazards high speed flight (1)
15 aerodynamic hazards high speed flight (1)stansellcp
 
Course textbook sample
Course textbook sampleCourse textbook sample
Course textbook sampleAliya Burkit
 
Flow over an airfoil
Flow over an airfoilFlow over an airfoil
Flow over an airfoilAhmed Kamal
 
Po f lo5 p1
Po f lo5 p1Po f lo5 p1
Po f lo5 p1sin2s
 
Numerical Investigation of the Perfomance of Convergent Divergent Nozzle
Numerical Investigation of the Perfomance of Convergent Divergent NozzleNumerical Investigation of the Perfomance of Convergent Divergent Nozzle
Numerical Investigation of the Perfomance of Convergent Divergent NozzleIJMER
 

What's hot (20)

Analysis of wings using Airfoil NACA 4412 at different angle of attack
Analysis of wings using Airfoil NACA 4412 at different angle of attackAnalysis of wings using Airfoil NACA 4412 at different angle of attack
Analysis of wings using Airfoil NACA 4412 at different angle of attack
 
Naca 2415 finding lift coefficient using cfd, theoretical and javafoil
Naca 2415  finding lift coefficient using cfd, theoretical and javafoilNaca 2415  finding lift coefficient using cfd, theoretical and javafoil
Naca 2415 finding lift coefficient using cfd, theoretical and javafoil
 
aircraft drag reduction
aircraft drag reductionaircraft drag reduction
aircraft drag reduction
 
A comparative flow analysis of naca 6409 and naca 4412 aerofoil
A comparative flow analysis of naca 6409 and naca 4412 aerofoilA comparative flow analysis of naca 6409 and naca 4412 aerofoil
A comparative flow analysis of naca 6409 and naca 4412 aerofoil
 
NACA 4412 Lab Report Final
NACA 4412 Lab Report FinalNACA 4412 Lab Report Final
NACA 4412 Lab Report Final
 
EFFECTS OF SUNLIGHT INTENSITY ON TURBO JET ENGINE OF AIRCRAFT
EFFECTS OF SUNLIGHT INTENSITY ON TURBO JET ENGINE OF AIRCRAFT EFFECTS OF SUNLIGHT INTENSITY ON TURBO JET ENGINE OF AIRCRAFT
EFFECTS OF SUNLIGHT INTENSITY ON TURBO JET ENGINE OF AIRCRAFT
 
Flow past and airfoil
Flow past and airfoilFlow past and airfoil
Flow past and airfoil
 
Principles of flight
Principles of flightPrinciples of flight
Principles of flight
 
Estimation of Damping Derivative of a Delta Wing with Half Sine Wave Curved L...
Estimation of Damping Derivative of a Delta Wing with Half Sine Wave Curved L...Estimation of Damping Derivative of a Delta Wing with Half Sine Wave Curved L...
Estimation of Damping Derivative of a Delta Wing with Half Sine Wave Curved L...
 
Supersonic Aircrafts
Supersonic AircraftsSupersonic Aircrafts
Supersonic Aircrafts
 
IRJET-Subsonic Flow Study and Analysis on Rotating Cylinder Airfoil
IRJET-Subsonic Flow Study and Analysis on Rotating Cylinder AirfoilIRJET-Subsonic Flow Study and Analysis on Rotating Cylinder Airfoil
IRJET-Subsonic Flow Study and Analysis on Rotating Cylinder Airfoil
 
Flow analysis
Flow analysisFlow analysis
Flow analysis
 
Cfd modeling of a flat plate
Cfd modeling of a flat plateCfd modeling of a flat plate
Cfd modeling of a flat plate
 
15 aerodynamic hazards high speed flight (1)
15 aerodynamic hazards high speed flight (1)15 aerodynamic hazards high speed flight (1)
15 aerodynamic hazards high speed flight (1)
 
Course textbook sample
Course textbook sampleCourse textbook sample
Course textbook sample
 
Flow over an airfoil
Flow over an airfoilFlow over an airfoil
Flow over an airfoil
 
Po f lo5 p1
Po f lo5 p1Po f lo5 p1
Po f lo5 p1
 
Numerical Investigation of the Perfomance of Convergent Divergent Nozzle
Numerical Investigation of the Perfomance of Convergent Divergent NozzleNumerical Investigation of the Perfomance of Convergent Divergent Nozzle
Numerical Investigation of the Perfomance of Convergent Divergent Nozzle
 
Aircraft wing
Aircraft wingAircraft wing
Aircraft wing
 
The naca airfoil series
The naca airfoil seriesThe naca airfoil series
The naca airfoil series
 

Similar to Airfoil terminology and lift force

AERODYNAMICS FORCES AND MOMENTS.ppt
AERODYNAMICS FORCES AND MOMENTS.pptAERODYNAMICS FORCES AND MOMENTS.ppt
AERODYNAMICS FORCES AND MOMENTS.ppttauraimamire
 
IRJET- CFD Approach of Joukowski Airfoil (T=12%), Comparison of its Aerodynam...
IRJET- CFD Approach of Joukowski Airfoil (T=12%), Comparison of its Aerodynam...IRJET- CFD Approach of Joukowski Airfoil (T=12%), Comparison of its Aerodynam...
IRJET- CFD Approach of Joukowski Airfoil (T=12%), Comparison of its Aerodynam...IRJET Journal
 
Aerodynamics of Wind Turbines - PART3.ppt
Aerodynamics of Wind Turbines - PART3.pptAerodynamics of Wind Turbines - PART3.ppt
Aerodynamics of Wind Turbines - PART3.pptHassenMOuakkad
 
CFD Analysis of Delta Winged Aircraft – A Review
CFD Analysis of Delta Winged Aircraft – A ReviewCFD Analysis of Delta Winged Aircraft – A Review
CFD Analysis of Delta Winged Aircraft – A ReviewIRJET Journal
 
Aerodynamic,rotor design and rotor performance of horizontal axis wind turbin...
Aerodynamic,rotor design and rotor performance of horizontal axis wind turbin...Aerodynamic,rotor design and rotor performance of horizontal axis wind turbin...
Aerodynamic,rotor design and rotor performance of horizontal axis wind turbin...Sarmad Adnan
 
ENG687 Aerodynamics.docx
ENG687 Aerodynamics.docxENG687 Aerodynamics.docx
ENG687 Aerodynamics.docx4934bk
 
HydroFoil Simulation Using ANSYS Fluent
HydroFoil Simulation Using ANSYS FluentHydroFoil Simulation Using ANSYS Fluent
HydroFoil Simulation Using ANSYS FluentAhmed Gamal
 
Hydrofoil Ship simulation Using Ansys Fluent
Hydrofoil Ship simulation Using Ansys FluentHydrofoil Ship simulation Using Ansys Fluent
Hydrofoil Ship simulation Using Ansys FluentAhmed Gamal
 
Analysis Of Owl-Like Airfoil Aerodynamics At Low Reynolds Number Flow
Analysis Of Owl-Like Airfoil Aerodynamics At Low Reynolds Number FlowAnalysis Of Owl-Like Airfoil Aerodynamics At Low Reynolds Number Flow
Analysis Of Owl-Like Airfoil Aerodynamics At Low Reynolds Number FlowKelly Lipiec
 
Ornithopter flying wing mecahnism
Ornithopter flying wing mecahnismOrnithopter flying wing mecahnism
Ornithopter flying wing mecahnismVijay Patil
 
Numerical investigation of fluid flow and aerodynamic performance on a 2D NAC...
Numerical investigation of fluid flow and aerodynamic performance on a 2D NAC...Numerical investigation of fluid flow and aerodynamic performance on a 2D NAC...
Numerical investigation of fluid flow and aerodynamic performance on a 2D NAC...editorijrei
 
The International Journal of Engineering and Science (IJES)
The International Journal of Engineering and Science (IJES)The International Journal of Engineering and Science (IJES)
The International Journal of Engineering and Science (IJES)theijes
 
Optimisation of the design of uav wing j.alexander
Optimisation of the design of uav wing   j.alexanderOptimisation of the design of uav wing   j.alexander
Optimisation of the design of uav wing j.alexandersathyabama
 
Optimisation of the design of uav wing j.alexander, Prakash, BSM Augustine
Optimisation of the design of uav wing   j.alexander, Prakash, BSM AugustineOptimisation of the design of uav wing   j.alexander, Prakash, BSM Augustine
Optimisation of the design of uav wing j.alexander, Prakash, BSM Augustinesathyabama
 

Similar to Airfoil terminology and lift force (20)

ppt 1
ppt 1ppt 1
ppt 1
 
AERODYNAMICS FORCES AND MOMENTS.ppt
AERODYNAMICS FORCES AND MOMENTS.pptAERODYNAMICS FORCES AND MOMENTS.ppt
AERODYNAMICS FORCES AND MOMENTS.ppt
 
IRJET- CFD Approach of Joukowski Airfoil (T=12%), Comparison of its Aerodynam...
IRJET- CFD Approach of Joukowski Airfoil (T=12%), Comparison of its Aerodynam...IRJET- CFD Approach of Joukowski Airfoil (T=12%), Comparison of its Aerodynam...
IRJET- CFD Approach of Joukowski Airfoil (T=12%), Comparison of its Aerodynam...
 
Aerodynamics of Wind Turbines - PART3.ppt
Aerodynamics of Wind Turbines - PART3.pptAerodynamics of Wind Turbines - PART3.ppt
Aerodynamics of Wind Turbines - PART3.ppt
 
CFD Analysis of Delta Winged Aircraft – A Review
CFD Analysis of Delta Winged Aircraft – A ReviewCFD Analysis of Delta Winged Aircraft – A Review
CFD Analysis of Delta Winged Aircraft – A Review
 
Aerodynamic,rotor design and rotor performance of horizontal axis wind turbin...
Aerodynamic,rotor design and rotor performance of horizontal axis wind turbin...Aerodynamic,rotor design and rotor performance of horizontal axis wind turbin...
Aerodynamic,rotor design and rotor performance of horizontal axis wind turbin...
 
Theory of flight midterm
Theory of flight midtermTheory of flight midterm
Theory of flight midterm
 
AERO321_Lec7_Spring2021.pptx
AERO321_Lec7_Spring2021.pptxAERO321_Lec7_Spring2021.pptx
AERO321_Lec7_Spring2021.pptx
 
ENG687 Aerodynamics.docx
ENG687 Aerodynamics.docxENG687 Aerodynamics.docx
ENG687 Aerodynamics.docx
 
HydroFoil Simulation Using ANSYS Fluent
HydroFoil Simulation Using ANSYS FluentHydroFoil Simulation Using ANSYS Fluent
HydroFoil Simulation Using ANSYS Fluent
 
Hydrofoil Ship simulation Using Ansys Fluent
Hydrofoil Ship simulation Using Ansys FluentHydrofoil Ship simulation Using Ansys Fluent
Hydrofoil Ship simulation Using Ansys Fluent
 
Analysis Of Owl-Like Airfoil Aerodynamics At Low Reynolds Number Flow
Analysis Of Owl-Like Airfoil Aerodynamics At Low Reynolds Number FlowAnalysis Of Owl-Like Airfoil Aerodynamics At Low Reynolds Number Flow
Analysis Of Owl-Like Airfoil Aerodynamics At Low Reynolds Number Flow
 
Airplane wings fem
Airplane wings femAirplane wings fem
Airplane wings fem
 
Ornithopter flying wing mecahnism
Ornithopter flying wing mecahnismOrnithopter flying wing mecahnism
Ornithopter flying wing mecahnism
 
aircraft drag reduction methods
aircraft drag reduction methodsaircraft drag reduction methods
aircraft drag reduction methods
 
Numerical investigation of fluid flow and aerodynamic performance on a 2D NAC...
Numerical investigation of fluid flow and aerodynamic performance on a 2D NAC...Numerical investigation of fluid flow and aerodynamic performance on a 2D NAC...
Numerical investigation of fluid flow and aerodynamic performance on a 2D NAC...
 
The International Journal of Engineering and Science (IJES)
The International Journal of Engineering and Science (IJES)The International Journal of Engineering and Science (IJES)
The International Journal of Engineering and Science (IJES)
 
Marinello_ProjectReport.pdf
Marinello_ProjectReport.pdfMarinello_ProjectReport.pdf
Marinello_ProjectReport.pdf
 
Optimisation of the design of uav wing j.alexander
Optimisation of the design of uav wing   j.alexanderOptimisation of the design of uav wing   j.alexander
Optimisation of the design of uav wing j.alexander
 
Optimisation of the design of uav wing j.alexander, Prakash, BSM Augustine
Optimisation of the design of uav wing   j.alexander, Prakash, BSM AugustineOptimisation of the design of uav wing   j.alexander, Prakash, BSM Augustine
Optimisation of the design of uav wing j.alexander, Prakash, BSM Augustine
 

Recently uploaded

Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17Celine George
 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxAvyJaneVismanos
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Celine George
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
Biting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfBiting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfadityarao40181
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
internship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerinternship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerunnathinaik
 
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,Virag Sontakke
 
Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaVirag Sontakke
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 

Recently uploaded (20)

Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17
 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptx
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
Biting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfBiting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdf
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
internship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerinternship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developer
 
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
 
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
 
Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of India
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 

Airfoil terminology and lift force

  • 1. ISSN 2393-8471 International Journal of Recent Research in Civil and Mechanical Engineering (IJRRCME) Vol. 2, Issue 1, pp: (268-277), Month: April 2015 – September 2015, Available at: www.paperpublications.org Page | 268 Paper Publications Airfoil Terminology, Its Theory and Variations As Well As Relations with Its Operational Lift Force and Drag Force in Ambient Conditions 1 Dr V.N. Bartaria, 2 Shivani Sharma 1 H.O.D Mechanical engineering LNCT Bhopal, India 2 B.E. Mechanical engineering Pursuing M.tech Abstract: It is a fact of common experience that a body in motion through a fluid experiences a resultant force which, in most cases is mainly a resistance to the motion. A class of body exists, However for which the component of the resultant force normal to the direction to the motion is many time greater than the component resisting the motion, and the possibility of the flight of an airplane depends on the use of the body of this class for wing structure. Airfoil is such an aerodynamic shape that when it moves through air, the air is split and passes above and below the wing. The wing’s upper surface is shaped so the air rushing over the top speeds up and stretches out. This decreases the air pressure above the wing. The air flowing below the wing moves in a comparatively straighter line, so its speed and air pressure remains the same. Since high air pressure always moves toward low air pressure, the air below the wing pushes upward toward the air above the wing. The wing is in the middle, and the whole wing is “lifted.” The faster an airplane moves, the more lift there is. And when the force of lift is greater than the force of gravity, the airplane is able to fly. Keywords: Airfoil, lift force, Drag Force. 1. INTRODUCTION An airfoil-shaped body moved through a fluid produces an aerodynamic force. The component of this force perpendicular to the direction of motion is called lift. The component parallel to the direction of motion is called drag. Subsonic flight airfoils have a characteristic shape with a rounded leading edge, followed by a sharp trailing edge, often with a symmetric curvature of upper and lower surfaces. Foils of similar function designed with water as the working fluid are called hydrofoils. The lift on an airfoil is primarily the result of its angle of attack and shape. When oriented at a suitable angle, the airfoil deflects the oncoming air, resulting in a force on the airfoil in the direction opposite to the deflection. This force is known as aerodynamic force and can be resolved into two components: lift and drag. Most foil shapes require a positive angle of attack to generate lift, but cambered airfoils can generate lift at zero angle of attack. This “turning” of the air in the vicinity of the airfoil creates curved streamlines which results in lower pressure on one side and higher pressure on the other. This pressure difference is accompanied by a velocity difference, via Bernoulli’s principle, so the resulting flow field about the airfoil has a higher average velocity on the upper surface than on the lower surface. The lift force can be related directly to the average top/bottom velocity difference without computing the pressure by using the concept of circulation and the Kutta-Joukowski theorem.
  • 2. ISSN 2393-8471 International Journal of Recent Research in Civil and Mechanical Engineering (IJRRCME) Vol. 2, Issue 1, pp: (268-277), Month: April 2015 – September 2015, Available at: www.paperpublications.org Page | 269 Paper Publications Figure: 1 Examples of airfoils in nature and within various vehicles. Though not strictly an airfoil, the dolphin flipper obeys the same principles in a different fluid medium Figure: 2 Streamlines around a NACA 0012 airfoil at moderate angle of attack
  • 3. ISSN 2393-8471 International Journal of Recent Research in Civil and Mechanical Engineering (IJRRCME) Vol. 2, Issue 1, pp: (268-277), Month: April 2015 – September 2015, Available at: www.paperpublications.org Page | 270 Paper Publications Figure: 3 Lift and Drag curves for a typical airfoil 2. THEORY OF AIRFOIL Thin airfoil theory is a simple theory of airfoils that relates angle of attack to lift for incompressible, in viscid flows. It was devised by German-American mathematician Max Munk and further refined by British aerodynamicist Hermann Glauert and others in the 1920s. The theory idealizes the flow around an airfoil as two dimensional flows around a thin airfoil. It can be imagined as addressing an airfoil of zero thickness and infinite wingspan. Thin airfoil theory was particularly notable in its day because it provided a sound theoretical basis for the following important properties of airfoils in two-dimensional Flow: (1) On a symmetric airfoil, the center of pressure and Aerodynamic center lies exactly one quarter of the chord behind the leading edge (2) On a cambered airfoil, the aerodynamic center lies exactly One quarter of the chord behind the leading edge (3) The slope of the lift coefficient versus angle of attack Line is 2π units per radian As a consequence of (3), the section lift coefficient of a Symmetric airfoil of infinite wingspan is:
  • 4. ISSN 2393-8471 International Journal of Recent Research in Civil and Mechanical Engineering (IJRRCME) Vol. 2, Issue 1, pp: (268-277), Month: April 2015 – September 2015, Available at: www.paperpublications.org Page | 271 Paper Publications = 2πα Where is the section lift coefficient α is the angle of attack in radians, measured Relative to the chord line. (The above expression is also applicable to a cambered Airfoil where α is the angle of attack measured relative to The zero-lift line instead of the chord line.) Also as a consequence of (3), the section lift coefficient Of a cambered airfoil of infinite wingspan is: Thin airfoil theory does not account for the stall of the Airfoil, which usually occurs at an angle of attack between 10° and 15° for typical airfoils. 4 Derivation of thin airfoil theory: The airfoil is modeled as a thin lifting mean-line (camber line). The mean-line, y(x), is considered to produce a distribution of vorticity (s) along the line, s. By the Kutta condition, the vorticity is zero at the trailing edge. Since the airfoil is thin, x (chord position) can be used instead of s, and all angles can be approximated as small. From the Biot–Savart law, this vorticity produces a flow field w(x) where Where x is the location where induced velocity is produced, x′ is the location of the vortex element producing the velocity and c is the chord length of the airfoil. Since there is no flow normal to the curved surface of the airfoil, w(x) balances that from the component of main flow V , which is locally normal to the plate – the main flow is locally inclined to the plate by an angle α-dy/dx. That is: 3. 4 DERIVATION OF THIN AIRFOIL THEORY Figure: 4. 4 Derivation of thin airfoil theory
  • 5. ISSN 2393-8471 International Journal of Recent Research in Civil and Mechanical Engineering (IJRRCME) Vol. 2, Issue 1, pp: (268-277), Month: April 2015 – September 2015, Available at: www.paperpublications.org Page | 272 Paper Publications From top to bottom: • Laminar flow airfoil for a RC park flyer • Laminar flow airfoil for a RC pylon racer • Laminar flow airfoil for a manned propeller aircraft • Laminar flow at a jet airliner airfoil • Stable airfoil used for flying wings • Aft loaded airfoil allowing for a large main spar and late stall • Transonic supercritical airfoil • Supersonic leading edge airfoil Colors: Black = laminar flow, Red = turbulent flow, Grey = subsonic stream, Blue = supersonic flow volume This integral equation can by solved for (x) , after replacing x by as a Fourier series in with a modified lead term That is (These terms are known as the Glauert integral). The coefficients are given by By the Kutta–Joukowski theorem, the total lift force F is Proportional to
  • 6. ISSN 2393-8471 International Journal of Recent Research in Civil and Mechanical Engineering (IJRRCME) Vol. 2, Issue 1, pp: (268-277), Month: April 2015 – September 2015, Available at: www.paperpublications.org Page | 273 Paper Publications and its moment M about the leading edge to The calculated Lift coefficient depends only on the first two terms of the Fourier series, as The moment M about the leading edge depends only on A0;A1 and A2 , as The moment about the 1/4 chord point will thus be, From this it follows that the center of pressure is aft of the 'quarter-chord' point 0.25 c, by The aerodynamic center, AC, is at the quarter-chord point. The AC is where the pitching moment M' does not vary with angle of attack, i.e., Coefficient of Drag and Coefficient of Lift: The drag equation, Fd = rn Cd so co efficient of drag is given by the, Cd= 2Fd / rn^2A is essentially a statement that the drag force on any object is proportional to the density of the fluid and proportional to the square of the relative speed between the object and the fluid. In fluid dynamics the cd is a dimensionless quantity that is used to quantify the drag or resistance of an object in a fluid environment such as air or water. It is used in the drag equation where a lower drag coefficient indicates the object will have less aerodynamic or drag. The drag coefficients always associated with a particular surface area. The drag coefficient of any object comprises the effects of the two basic contributors to fluid dynamics drag: skin friction and from drag. The drag coefficient of a lifting airfoil or hydrofoil also includes the effects of lift induced drag. The drag coefficient of a complete structure such as an aircraft also includes the effects of interference drag. The overall drag coefficient defined in the usual manner is The reference area depends on what type of drag coefficient is being measured. For automobiles and many other objects, the reference area is the
  • 7. ISSN 2393-8471 International Journal of Recent Research in Civil and Mechanical Engineering (IJRRCME) Vol. 2, Issue 1, pp: (268-277), Month: April 2015 – September 2015, Available at: www.paperpublications.org Page | 274 Paper Publications projected frontal area of the vehicle. This may not necessarily be the cross sectional area of the vehicle, depending on where the cross section is taken and for an airfoil the surface area is a plane form area. The lift equation, L = rn A CL so coefficient of lift is given by the, CL = 2L/rn S =L/qs A fluid flowing past the surface of a body exerts a force on it. Lift is the component of this force that is perpendicular to the oncoming flow direction. It contrasts with the drag force, which is the component of the surface force parallel to the flow direction. If the fluid is air, the force is called an aerodynamic force. Relationship between angle of attack, coefficient of drag and coefficient of lift: Figure 5: Relationship of Different Coefficients The lift coefficient of a fixed-wing aircraft varies with angle of attack. Increasing angle of attack is associated with increasing lift coefficient up to the maximum lift coefficient, after which lift coefficient decreases. As the angle of attack of a fixed-wing aircraft increases, separation of the airflow from the upper surface of the wing becomes more pronounced, leading to a reduction in the rate of increase of the lift coefficient. The figure shows a typical curve for a cambered straight wing. A symmetrical wing has zero lift at 0 degrees angle of attack. The lift curve is also influenced by wing platform. A swept wing has a lower, flatter curve with a higher critical angle. Identically the value of drag coefficient is zero at the zero AOA and it increase slowly till the stall condition and at the time of stall as well as after stall it increase readily as shown in figure 3. Particular airspeed, the airspeed at which the aircraft stalls varies with the weight of the aircraft, the load factor, the center of gravity of the aircraft and other factors. However the aircraft always stalls at the same critical angle of attack. The critical or stalling angle of attack is typically around 15° for many airfoils. The process of airfoil design proceeds from a knowledge of the boundary layer properties and the relation between geometry and pressure distribution. The goal of an airfoil design varies. Some airfoils are designed to produce low drag (and may not be required to generate lift at all.) Some sections may need to produce low drag while producing a given amount of lift. In some cases, the drag doesn't really matter - it is maximum lift that is important. The section may be required to achieve this performance with a constraint on thickness, or pitching moment, or off-design performance, or other unusual constraints. Some of these are discussed further in the section on previous section of historical examples. One approach to airfoil design is to use an airfoil that was already designed by someone who knew what he or she was doing. This "design by authority" works well when the goals of a particular design problem happen to coincide with the goals of the original airfoil design. This is rarely the case, although sometimes existing airfoils are good enough. In these cases, airfoils may be chosen from catalogs such as Abbott and von Doenhoff's Theory of Wing Sections, Althaus' and Wortmann's Stuttgarter Profilkatalog, Althaus' Low Reynolds Number Airfoil catalog, or Selig's "Airfoils at Low Speeds". The advantage to this approach is that there is test data available. No surprises, such as a unexpected early stall, are likely. On the other hand, available tools are now sufficiently refined that one can be reasonably sure that the predicted
  • 8. ISSN 2393-8471 International Journal of Recent Research in Civil and Mechanical Engineering (IJRRCME) Vol. 2, Issue 1, pp: (268-277), Month: April 2015 – September 2015, Available at: www.paperpublications.org Page | 275 Paper Publications performance can be achieved. The use of "designer airfoils" specifically tailored to the needs of a given project is now very common. This section of the notes deals with the process of custom airfoil design. Methods for airfoil design can be classified into two categories: direct and inverse design. Contours of Static pressure over NACA 0012 Airfoil: The static pressure of the air is simply the weight per unit area of the air above the level under consideration. For instance, the weight of the column of air with a cross-sectional area of 1 ft-square and extending upward from sea level through the atmosphere is 2116 lb. The sea level static level is therefore 2116 psf. Static pressure is decrease as altitude is increased because there is less air weight above. At 18,000 ft altitude the static pressure is about half that at sea level. The amalgamation of static pressure and dynamic pressure is known as total pressure. For and angle of attack is zero degree we obtain that the contours of static pressure over an aerofoil is symmetrical for above and lower sections and the stagnation point is exactly at the nose of an aerofoil. Hence there is no pressure different Created between two faces of aerofoil at zero degree of an angle of attack. Figure 6: Contours of static pressure over NACA 0012 airfoil at 0 degree of AOA Figure 7: Contours of static pressure over NACA 0012 airfoil at 6 degree of AOA
  • 9. ISSN 2393-8471 International Journal of Recent Research in Civil and Mechanical Engineering (IJRRCME) Vol. 2, Issue 1, pp: (268-277), Month: April 2015 – September 2015, Available at: www.paperpublications.org Page | 276 Paper Publications For an angle of attack of 6 degrees, we see that the flow has a stagnation point just under the leading edge and hence producing lift as there is a low pressure region on the upper surface of the foil as shown in Figure 6. We can also observe that Bernoulli’s principle is holding true; the velocity is high (denoted by the red contours) at the low pressure region and vice‐versa. There is a region of high pressure at the leading edge (stagnation point) and region of low pressure on the upper surface of airfoil. Contours of Velocity magnitude over NACA0012 airfoil: As shown in figure 7 and 8 at the 0 degree of AOA the velocity contours are same as symmetrical and at 6 degree of AOA the stagnation point is slightly shift towards the trailing edge via bottom surface hence it will create low velocity region at lower side of the airfoil and higher velocity acceleration region at the upper side of the airfoil and according to principle of Bernoulli's upper surface will gain low pressure and lower surface will gain higher pressure. Hence value of coefficient of lift will increase and coefficient of drag will also increase but the increasing in drag is low compare to increasing in lift force. In a symmetrical airfoil at no incidence, the distribution of velocity and thus the pressures along both surfaces would have been exactly the same, canceling each other to a resulting total lift force of zero Figure 8: Contours of velocity magnitude over NACA 0012 airfoil at 0 degree of AOA 4. RESULTANT VALUES AND GRAPHS Figure 9: Graph of coefficient of drag at zero degree AOA
  • 10. ISSN 2393-8471 International Journal of Recent Research in Civil and Mechanical Engineering (IJRRCME) Vol. 2, Issue 1, pp: (268-277), Month: April 2015 – September 2015, Available at: www.paperpublications.org Page | 277 Paper Publications Figure 10: Graph of coefficient of drag at zero degree AOA 5. CONCLUSION Based on the CFD analysis of the flow over NACA 0012 air foil we can conclude that at the zero degree of AOA there is no lift force generated and if we want to increase amount of lift force and value of lift coefficient then we have to increase the value of AOA. By doing that obviously amount of drag force and value of drag coefficient also increased but the amount of increment in drag force and drag coefficient is quite lower compare to lift force. Here we understand the all about the airfoil and from have some analysis we got some suitable result. REFERENCES [1] V. P. Gountis and A. G. Bakirtzis, “Bidding strategies for electricity producers in a competitive electricity marketplace,” IEEE Trans. Power System, vol. 19, no. 1, pp. 356–365, Feb. 2004. [2] J. Clerk Maxwell, “A Treatise on Electricity and Magnetism”, 3rd ed., vol. 2. Oxford: Clarendon, 1892, pp.68–73. [3] R. Benato and A. Paolucci, EHV AC Undergrounding Electrical Power. Performance and Planning. New York: Springer, 2010. [4] Angus DC, Linde-Zwirble WT, Lidicker J et al (2001) Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med 29:1303–1310. [5] Levy MM, Dellinger RP, Townsend SR, and Surviving Sepsis Campaign et al (2010) The Surviving Sepsis Campaign: results of an international guideline-based performance improvement program targeting severe sepsis. Crit Care Med 38:367–374. [6] CIGRÉ Tech. Brochure # 379, “Update of service experience of HV underground and submarine cable systems,” 2009. [7] E. E. Reber, R. L. Mitchell, and C. J. Carter, "Oxygen absorption in the Earth's atmosphere," Aerospace Corp., Los Angeles, CA, Tech. Rep. TR-0200 (4230-46)-3, Nov. 1968. [8] Wikipedia