Hadoop Summit June 2016 The landscape for storing your big data is quite complex, with several competing formats and different implementations of each format. Understanding your use of the data is critical for picking the format. Depending on your use case, the different formats perform very differently. Although you can use a hammer to drive a screw, it isn’t fast or easy to do so. The use cases that we’ve examined are: * reading all of the columns * reading a few of the columns * filtering using a filter predicate * writing the data Furthermore, it is important to benchmark on real data rather than synthetic data. We used the Github logs data available freely from http://githubarchive.org We will make all of the benchmark code open source so that our experiments can be replicated.