SlideShare a Scribd company logo
File Format Benchmark -
Avro, JSON, ORC, & Parquet
Owen O’Malley
owen@hortonworks.com
@owen_omalley
June 2016
2 © Hortonworks Inc. 2011 – 2016. All Rights Reserved
Who Am I?
Worked on Hadoop since Jan 2006
MapReduce, Security, Hive, and ORC
Worked on different file formats
–Sequence File, RCFile, ORC File, T-File, and Avro
requirements
3 © Hortonworks Inc. 2011 – 2016. All Rights Reserved
Goal
Seeking to discover unknowns
–How do the different formats perform?
–What could they do better?
–Best part of open source is looking inside!
Use real & diverse data sets
–Over-reliance on similar datasets leads to weakness
Open & reviewed benchmarks
4 © Hortonworks Inc. 2011 – 2016. All Rights Reserved
The File Formats
5 © Hortonworks Inc. 2011 – 2016. All Rights Reserved
Avro
Cross-language file format for Hadoop
Schema evolution was primary goal
Schema segregated from data
–Unlike Protobuf and Thrift
Row major format
6 © Hortonworks Inc. 2011 – 2016. All Rights Reserved
JSON
Serialization format for HTTP & Javascript
Text-format with MANY parsers
Schema completely integrated with data
Row major format
Compression applied on top
7 © Hortonworks Inc. 2011 – 2016. All Rights Reserved
ORC
Originally part of Hive to replace RCFile
–Now top-level project
Schema segregated into footer
Column major format with stripes
Rich type model, stored top-down
Integrated compression, indexes, & stats
8 © Hortonworks Inc. 2011 – 2016. All Rights Reserved
Parquet
Design based on Google’s Dremel paper
Schema segregated into footer
Column major format with stripes
Simpler type-model with logical types
All data pushed to leaves of the tree
Integrated compression and indexes
9 © Hortonworks Inc. 2011 – 2016. All Rights Reserved
Data Sets
10 © Hortonworks Inc. 2011 – 2016. All Rights Reserved
NYC Taxi Data
Every taxi cab ride in NYC from 2009
–Publically available
–http://tinyurl.com/nyc-taxi-analysis
18 columns with no null values
–Doubles, integers, decimals, & strings
2 months of data – 22.7 million rows
11 © Hortonworks Inc. 2011 – 2016. All Rights Reserved
12 © Hortonworks Inc. 2011 – 2016. All Rights Reserved
Github Logs
All actions on Github public repositories
–Publically available
–https://www.githubarchive.org/
704 columns with a lot of structure & nulls
–Pretty much the kitchen sink
 1/2 month of data – 10.5 million rows
13 © Hortonworks Inc. 2011 – 2016. All Rights Reserved
Finding the Github Schema
The data is all in JSON.
No schema for the data is published.
We wrote a JSON schema discoverer.
–Scans the document and figures out the type
Available at https://github.com/hortonworks/hive-json
Schema is huge (12k)
14 © Hortonworks Inc. 2011 – 2016. All Rights Reserved
Sales
Generated data
–Real schema from a production Hive deployment
–Random data based on the data statistics
55 columns with lots of nulls
–A little structure
–Timestamps, strings, longs, booleans, list, & struct
25 million rows
15 © Hortonworks Inc. 2011 – 2016. All Rights Reserved
Storage costs
16 © Hortonworks Inc. 2011 – 2016. All Rights Reserved
Compression
Data size matters!
–Hadoop stores all your data, but requires hardware
–Is one factor in read speed
ORC and Parquet use RLE & Dictionaries
All the formats have general compression
–ZLIB (GZip) – tight compression, slower
–Snappy – some compression, faster
17 © Hortonworks Inc. 2011 – 2016. All Rights Reserved
18 © Hortonworks Inc. 2011 – 2016. All Rights Reserved
Taxi Size Analysis
Don’t use JSON
Use either Snappy or Zlib compression
Avro’s small compression window hurts
Parquet Zlib is smaller than ORC
–Group the column sizes by type
19 © Hortonworks Inc. 2011 – 2016. All Rights Reserved
20 © Hortonworks Inc. 2011 – 2016. All Rights Reserved
21 © Hortonworks Inc. 2011 – 2016. All Rights Reserved
Taxi Size Analysis
ORC did better than expected
–String columns have small cardinality
–Lots of timestamp columns
–No doubles 
Need to revalidate results with original
–Improve random data generator
–Add non-smooth distributions
22 © Hortonworks Inc. 2011 – 2016. All Rights Reserved
23 © Hortonworks Inc. 2011 – 2016. All Rights Reserved
Github Size Analysis
Surprising win for JSON and Avro
–Worst when uncompressed
–Best with zlib
Many partially shared strings
–ORC and Parquet don’t compress across columns
Need to investigate shared dictionaries.
24 © Hortonworks Inc. 2011 – 2016. All Rights Reserved
Use Cases
25 © Hortonworks Inc. 2011 – 2016. All Rights Reserved
Full Table Scans
Read all columns & rows
All formats except JSON are splitable
–Different workers do different parts of file
26 © Hortonworks Inc. 2011 – 2016. All Rights Reserved
27 © Hortonworks Inc. 2011 – 2016. All Rights Reserved
Taxi Read Performance Analysis
JSON is very slow to read
–Large storage size for this data set
–Needs to do a LOT of string parsing
Tradeoff between space & time
–Less compression is sometimes faster
28 © Hortonworks Inc. 2011 – 2016. All Rights Reserved
29 © Hortonworks Inc. 2011 – 2016. All Rights Reserved
Sales Read Performance Analysis
Read performance is dominated by format
–Compression matters less for this data set
–Straight ordering: ORC, Avro, Parquet, & JSON
Garbage collection is important
–ORC 0.3 to 1.4% of time
–Avro < 0.1% of time
–Parquet 4 to 8% of time
30 © Hortonworks Inc. 2011 – 2016. All Rights Reserved
31 © Hortonworks Inc. 2011 – 2016. All Rights Reserved
Github Read Performance Analysis
Garbage collection is critical
–ORC 2.1 to 3.4% of time
–Avro 0.1% of time
–Parquet 11.4 to 12.8% of time
A lot of columns needs more space
–Suspect that we need bigger stripes
–Rows/stripe - ORC: 18.6k, Parquet: 88.1k
32 © Hortonworks Inc. 2011 – 2016. All Rights Reserved
Column Projection
Often just need a few columns
–Only ORC & Parquet are columnar
–Only read, decompress, & deserialize some columns
Dataset format compression us/row projection Percent time
github orc zlib 21.319 0.185 0.87%
github parquet zlib 72.494 0.585 0.81%
sales orc zlib 1.866 0.056 3.00%
sales parquet zlib 12.893 0.329 2.55%
taxi orc zlib 2.766 0.063 2.28%
taxi parquet zlib 3.496 0.718 20.54%
33 © Hortonworks Inc. 2011 – 2016. All Rights Reserved
Projection & Predicate Pushdown
Sometimes have a filter predicate on table
–Select a superset of rows that match
–Selective filters have a huge impact
Improves data layout options
–Better than partition pruning with sorting
ORC has added optional bloom filters
34 © Hortonworks Inc. 2011 – 2016. All Rights Reserved
Metadata Access
ORC & Parquet store metadata
–Stored in file footer
–File schema
–Number of records
–Min, max, count of each column
Provides O(1) Access
35 © Hortonworks Inc. 2011 – 2016. All Rights Reserved
Conclusions
36 © Hortonworks Inc. 2011 – 2016. All Rights Reserved
Recomendations
Disclaimer – Everything changes!
–Both these benchmarks and the formats will change.
For complex tables with common strings
–Avro with Snappy is a good fit (w/o projection)
For other tables
–ORC with Zlib is a good fit
Experiment with the benchmarks
37 © Hortonworks Inc. 2011 – 2016. All Rights Reserved
Fun Stuff
Built open benchmark suite for files
Built pieces of a tool to convert files
–Avro, CSV, JSON, ORC, & Parquet
Built a random parameterized generator
–Easy to model arbitrary tables
–Can write to Avro, ORC, or Parquet
38 © Hortonworks Inc. 2011 – 2016. All Rights Reserved
Thank you!
Twitter: @owen_omalley
Email: owen@hortonworks.com

More Related Content

What's hot

Data ingestion and distribution with apache NiFi
Data ingestion and distribution with apache NiFiData ingestion and distribution with apache NiFi
Data ingestion and distribution with apache NiFi
Lev Brailovskiy
 
Apache Spark's Built-in File Sources in Depth
Apache Spark's Built-in File Sources in DepthApache Spark's Built-in File Sources in Depth
Apache Spark's Built-in File Sources in Depth
Databricks
 
Efficient Data Storage for Analytics with Apache Parquet 2.0
Efficient Data Storage for Analytics with Apache Parquet 2.0Efficient Data Storage for Analytics with Apache Parquet 2.0
Efficient Data Storage for Analytics with Apache Parquet 2.0
Cloudera, Inc.
 
Apache Arrow: Open Source Standard Becomes an Enterprise Necessity
Apache Arrow: Open Source Standard Becomes an Enterprise NecessityApache Arrow: Open Source Standard Becomes an Enterprise Necessity
Apache Arrow: Open Source Standard Becomes an Enterprise Necessity
Wes McKinney
 
Internal Hive
Internal HiveInternal Hive
Internal Hive
Recruit Technologies
 
The Data Lake Engine Data Microservices in Spark using Apache Arrow Flight
The Data Lake Engine Data Microservices in Spark using Apache Arrow FlightThe Data Lake Engine Data Microservices in Spark using Apache Arrow Flight
The Data Lake Engine Data Microservices in Spark using Apache Arrow Flight
Databricks
 
When NOT to use Apache Kafka?
When NOT to use Apache Kafka?When NOT to use Apache Kafka?
When NOT to use Apache Kafka?
Kai Wähner
 
Apache Tez – Present and Future
Apache Tez – Present and FutureApache Tez – Present and Future
Apache Tez – Present and Future
DataWorks Summit
 
HBase and HDFS: Understanding FileSystem Usage in HBase
HBase and HDFS: Understanding FileSystem Usage in HBaseHBase and HDFS: Understanding FileSystem Usage in HBase
HBase and HDFS: Understanding FileSystem Usage in HBase
enissoz
 
Real-time Analytics with Trino and Apache Pinot
Real-time Analytics with Trino and Apache PinotReal-time Analytics with Trino and Apache Pinot
Real-time Analytics with Trino and Apache Pinot
Xiang Fu
 
Local Secondary Indexes in Apache Phoenix
Local Secondary Indexes in Apache PhoenixLocal Secondary Indexes in Apache Phoenix
Local Secondary Indexes in Apache Phoenix
Rajeshbabu Chintaguntla
 
Hive+Tez: A performance deep dive
Hive+Tez: A performance deep diveHive+Tez: A performance deep dive
Hive+Tez: A performance deep dive
t3rmin4t0r
 
Iceberg: A modern table format for big data (Strata NY 2018)
Iceberg: A modern table format for big data (Strata NY 2018)Iceberg: A modern table format for big data (Strata NY 2018)
Iceberg: A modern table format for big data (Strata NY 2018)
Ryan Blue
 
Apache Ranger Hive Metastore Security
Apache Ranger Hive Metastore Security Apache Ranger Hive Metastore Security
Apache Ranger Hive Metastore Security
DataWorks Summit/Hadoop Summit
 
The Parquet Format and Performance Optimization Opportunities
The Parquet Format and Performance Optimization OpportunitiesThe Parquet Format and Performance Optimization Opportunities
The Parquet Format and Performance Optimization Opportunities
Databricks
 
Re-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and SparkRe-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and Spark
Databricks
 
Iceberg: a fast table format for S3
Iceberg: a fast table format for S3Iceberg: a fast table format for S3
Iceberg: a fast table format for S3
DataWorks Summit
 
Building robust CDC pipeline with Apache Hudi and Debezium
Building robust CDC pipeline with Apache Hudi and DebeziumBuilding robust CDC pipeline with Apache Hudi and Debezium
Building robust CDC pipeline with Apache Hudi and Debezium
Tathastu.ai
 
Building a Streaming Microservice Architecture: with Apache Spark Structured ...
Building a Streaming Microservice Architecture: with Apache Spark Structured ...Building a Streaming Microservice Architecture: with Apache Spark Structured ...
Building a Streaming Microservice Architecture: with Apache Spark Structured ...
Databricks
 
Real time stock processing with apache nifi, apache flink and apache kafka
Real time stock processing with apache nifi, apache flink and apache kafkaReal time stock processing with apache nifi, apache flink and apache kafka
Real time stock processing with apache nifi, apache flink and apache kafka
Timothy Spann
 

What's hot (20)

Data ingestion and distribution with apache NiFi
Data ingestion and distribution with apache NiFiData ingestion and distribution with apache NiFi
Data ingestion and distribution with apache NiFi
 
Apache Spark's Built-in File Sources in Depth
Apache Spark's Built-in File Sources in DepthApache Spark's Built-in File Sources in Depth
Apache Spark's Built-in File Sources in Depth
 
Efficient Data Storage for Analytics with Apache Parquet 2.0
Efficient Data Storage for Analytics with Apache Parquet 2.0Efficient Data Storage for Analytics with Apache Parquet 2.0
Efficient Data Storage for Analytics with Apache Parquet 2.0
 
Apache Arrow: Open Source Standard Becomes an Enterprise Necessity
Apache Arrow: Open Source Standard Becomes an Enterprise NecessityApache Arrow: Open Source Standard Becomes an Enterprise Necessity
Apache Arrow: Open Source Standard Becomes an Enterprise Necessity
 
Internal Hive
Internal HiveInternal Hive
Internal Hive
 
The Data Lake Engine Data Microservices in Spark using Apache Arrow Flight
The Data Lake Engine Data Microservices in Spark using Apache Arrow FlightThe Data Lake Engine Data Microservices in Spark using Apache Arrow Flight
The Data Lake Engine Data Microservices in Spark using Apache Arrow Flight
 
When NOT to use Apache Kafka?
When NOT to use Apache Kafka?When NOT to use Apache Kafka?
When NOT to use Apache Kafka?
 
Apache Tez – Present and Future
Apache Tez – Present and FutureApache Tez – Present and Future
Apache Tez – Present and Future
 
HBase and HDFS: Understanding FileSystem Usage in HBase
HBase and HDFS: Understanding FileSystem Usage in HBaseHBase and HDFS: Understanding FileSystem Usage in HBase
HBase and HDFS: Understanding FileSystem Usage in HBase
 
Real-time Analytics with Trino and Apache Pinot
Real-time Analytics with Trino and Apache PinotReal-time Analytics with Trino and Apache Pinot
Real-time Analytics with Trino and Apache Pinot
 
Local Secondary Indexes in Apache Phoenix
Local Secondary Indexes in Apache PhoenixLocal Secondary Indexes in Apache Phoenix
Local Secondary Indexes in Apache Phoenix
 
Hive+Tez: A performance deep dive
Hive+Tez: A performance deep diveHive+Tez: A performance deep dive
Hive+Tez: A performance deep dive
 
Iceberg: A modern table format for big data (Strata NY 2018)
Iceberg: A modern table format for big data (Strata NY 2018)Iceberg: A modern table format for big data (Strata NY 2018)
Iceberg: A modern table format for big data (Strata NY 2018)
 
Apache Ranger Hive Metastore Security
Apache Ranger Hive Metastore Security Apache Ranger Hive Metastore Security
Apache Ranger Hive Metastore Security
 
The Parquet Format and Performance Optimization Opportunities
The Parquet Format and Performance Optimization OpportunitiesThe Parquet Format and Performance Optimization Opportunities
The Parquet Format and Performance Optimization Opportunities
 
Re-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and SparkRe-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and Spark
 
Iceberg: a fast table format for S3
Iceberg: a fast table format for S3Iceberg: a fast table format for S3
Iceberg: a fast table format for S3
 
Building robust CDC pipeline with Apache Hudi and Debezium
Building robust CDC pipeline with Apache Hudi and DebeziumBuilding robust CDC pipeline with Apache Hudi and Debezium
Building robust CDC pipeline with Apache Hudi and Debezium
 
Building a Streaming Microservice Architecture: with Apache Spark Structured ...
Building a Streaming Microservice Architecture: with Apache Spark Structured ...Building a Streaming Microservice Architecture: with Apache Spark Structured ...
Building a Streaming Microservice Architecture: with Apache Spark Structured ...
 
Real time stock processing with apache nifi, apache flink and apache kafka
Real time stock processing with apache nifi, apache flink and apache kafkaReal time stock processing with apache nifi, apache flink and apache kafka
Real time stock processing with apache nifi, apache flink and apache kafka
 

Viewers also liked

Avro introduction
Avro introductionAvro introduction
Avro introduction
Nanda8904648951
 
Introduction to streaming and messaging flume,kafka,SQS,kinesis
Introduction to streaming and messaging  flume,kafka,SQS,kinesis Introduction to streaming and messaging  flume,kafka,SQS,kinesis
Introduction to streaming and messaging flume,kafka,SQS,kinesis
Omid Vahdaty
 
Parquet and AVRO
Parquet and AVROParquet and AVRO
Parquet and AVRO
airisData
 
Data Aggregation At Scale Using Apache Flume
Data Aggregation At Scale Using Apache FlumeData Aggregation At Scale Using Apache Flume
Data Aggregation At Scale Using Apache Flume
Arvind Prabhakar
 
Moving to a data-centric architecture: Toronto Data Unconference 2015
Moving to a data-centric architecture: Toronto Data Unconference 2015Moving to a data-centric architecture: Toronto Data Unconference 2015
Moving to a data-centric architecture: Toronto Data Unconference 2015
Adam Muise
 
ApacheCon-Flume-Kafka-2016
ApacheCon-Flume-Kafka-2016ApacheCon-Flume-Kafka-2016
ApacheCon-Flume-Kafka-2016
Jayesh Thakrar
 
大型电商的数据服务的要点和难点
大型电商的数据服务的要点和难点 大型电商的数据服务的要点和难点
大型电商的数据服务的要点和难点
Chao Zhu
 
Implementing and running a secure datalake from the trenches
Implementing and running a secure datalake from the trenches Implementing and running a secure datalake from the trenches
Implementing and running a secure datalake from the trenches
DataWorks Summit
 
Parquet overview
Parquet overviewParquet overview
Parquet overview
Julien Le Dem
 
Paytm labs soyouwanttodatascience
Paytm labs soyouwanttodatasciencePaytm labs soyouwanttodatascience
Paytm labs soyouwanttodatascience
Adam Muise
 
Choosing an HDFS data storage format- Avro vs. Parquet and more - StampedeCon...
Choosing an HDFS data storage format- Avro vs. Parquet and more - StampedeCon...Choosing an HDFS data storage format- Avro vs. Parquet and more - StampedeCon...
Choosing an HDFS data storage format- Avro vs. Parquet and more - StampedeCon...
StampedeCon
 
Flume vs. kafka
Flume vs. kafkaFlume vs. kafka
Flume vs. kafka
Omid Vahdaty
 

Viewers also liked (12)

Avro introduction
Avro introductionAvro introduction
Avro introduction
 
Introduction to streaming and messaging flume,kafka,SQS,kinesis
Introduction to streaming and messaging  flume,kafka,SQS,kinesis Introduction to streaming and messaging  flume,kafka,SQS,kinesis
Introduction to streaming and messaging flume,kafka,SQS,kinesis
 
Parquet and AVRO
Parquet and AVROParquet and AVRO
Parquet and AVRO
 
Data Aggregation At Scale Using Apache Flume
Data Aggregation At Scale Using Apache FlumeData Aggregation At Scale Using Apache Flume
Data Aggregation At Scale Using Apache Flume
 
Moving to a data-centric architecture: Toronto Data Unconference 2015
Moving to a data-centric architecture: Toronto Data Unconference 2015Moving to a data-centric architecture: Toronto Data Unconference 2015
Moving to a data-centric architecture: Toronto Data Unconference 2015
 
ApacheCon-Flume-Kafka-2016
ApacheCon-Flume-Kafka-2016ApacheCon-Flume-Kafka-2016
ApacheCon-Flume-Kafka-2016
 
大型电商的数据服务的要点和难点
大型电商的数据服务的要点和难点 大型电商的数据服务的要点和难点
大型电商的数据服务的要点和难点
 
Implementing and running a secure datalake from the trenches
Implementing and running a secure datalake from the trenches Implementing and running a secure datalake from the trenches
Implementing and running a secure datalake from the trenches
 
Parquet overview
Parquet overviewParquet overview
Parquet overview
 
Paytm labs soyouwanttodatascience
Paytm labs soyouwanttodatasciencePaytm labs soyouwanttodatascience
Paytm labs soyouwanttodatascience
 
Choosing an HDFS data storage format- Avro vs. Parquet and more - StampedeCon...
Choosing an HDFS data storage format- Avro vs. Parquet and more - StampedeCon...Choosing an HDFS data storage format- Avro vs. Parquet and more - StampedeCon...
Choosing an HDFS data storage format- Avro vs. Parquet and more - StampedeCon...
 
Flume vs. kafka
Flume vs. kafkaFlume vs. kafka
Flume vs. kafka
 

Similar to File Format Benchmark - Avro, JSON, ORC & Parquet

Fast Spark Access To Your Complex Data - Avro, JSON, ORC, and Parquet
Fast Spark Access To Your Complex Data - Avro, JSON, ORC, and ParquetFast Spark Access To Your Complex Data - Avro, JSON, ORC, and Parquet
Fast Spark Access To Your Complex Data - Avro, JSON, ORC, and Parquet
Owen O'Malley
 
Big Data Storage - Comparing Speed and Features for Avro, JSON, ORC, and Parquet
Big Data Storage - Comparing Speed and Features for Avro, JSON, ORC, and ParquetBig Data Storage - Comparing Speed and Features for Avro, JSON, ORC, and Parquet
Big Data Storage - Comparing Speed and Features for Avro, JSON, ORC, and Parquet
DataWorks Summit
 
File Format Benchmark - Avro, JSON, ORC and Parquet
File Format Benchmark - Avro, JSON, ORC and ParquetFile Format Benchmark - Avro, JSON, ORC and Parquet
File Format Benchmark - Avro, JSON, ORC and Parquet
DataWorks Summit/Hadoop Summit
 
Fast Access to Your Data - Avro, JSON, ORC, and Parquet
Fast Access to Your Data - Avro, JSON, ORC, and ParquetFast Access to Your Data - Avro, JSON, ORC, and Parquet
Fast Access to Your Data - Avro, JSON, ORC, and Parquet
Owen O'Malley
 
ORC File - Optimizing Your Big Data
ORC File - Optimizing Your Big DataORC File - Optimizing Your Big Data
ORC File - Optimizing Your Big Data
DataWorks Summit
 
ORC improvement in Apache Spark 2.3
ORC improvement in Apache Spark 2.3ORC improvement in Apache Spark 2.3
ORC improvement in Apache Spark 2.3
Dongjoon Hyun
 
Druid Scaling Realtime Analytics
Druid Scaling Realtime AnalyticsDruid Scaling Realtime Analytics
Druid Scaling Realtime Analytics
Aaron Brooks
 
Hive acid and_2.x new_features
Hive acid and_2.x new_featuresHive acid and_2.x new_features
Hive acid and_2.x new_features
Alberto Romero
 
Hive edw-dataworks summit-eu-april-2017
Hive edw-dataworks summit-eu-april-2017Hive edw-dataworks summit-eu-april-2017
Hive edw-dataworks summit-eu-april-2017
alanfgates
 
An Apache Hive Based Data Warehouse
An Apache Hive Based Data WarehouseAn Apache Hive Based Data Warehouse
An Apache Hive Based Data Warehouse
DataWorks Summit
 
Hadoop & cloud storage object store integration in production (final)
Hadoop & cloud storage  object store integration in production (final)Hadoop & cloud storage  object store integration in production (final)
Hadoop & cloud storage object store integration in production (final)
Chris Nauroth
 
Hadoop & Cloud Storage: Object Store Integration in Production
Hadoop & Cloud Storage: Object Store Integration in ProductionHadoop & Cloud Storage: Object Store Integration in Production
Hadoop & Cloud Storage: Object Store Integration in Production
DataWorks Summit/Hadoop Summit
 
ORC improvement in Apache Spark 2.3
ORC improvement in Apache Spark 2.3ORC improvement in Apache Spark 2.3
ORC improvement in Apache Spark 2.3
DataWorks Summit
 
An Overview on Optimization in Apache Hive: Past, Present Future
An Overview on Optimization in Apache Hive: Past, Present FutureAn Overview on Optimization in Apache Hive: Past, Present Future
An Overview on Optimization in Apache Hive: Past, Present Future
DataWorks Summit/Hadoop Summit
 
Performance Update: When Apache ORC Met Apache Spark
Performance Update: When Apache ORC Met Apache SparkPerformance Update: When Apache ORC Met Apache Spark
Performance Update: When Apache ORC Met Apache Spark
DataWorks Summit
 
LLAP: Sub-Second Analytical Queries in Hive
LLAP: Sub-Second Analytical Queries in HiveLLAP: Sub-Second Analytical Queries in Hive
LLAP: Sub-Second Analytical Queries in Hive
DataWorks Summit/Hadoop Summit
 
What's new in apache hive
What's new in apache hive What's new in apache hive
What's new in apache hive
DataWorks Summit
 
Hadoop & Cloud Storage: Object Store Integration in Production
Hadoop & Cloud Storage: Object Store Integration in ProductionHadoop & Cloud Storage: Object Store Integration in Production
Hadoop & Cloud Storage: Object Store Integration in Production
DataWorks Summit/Hadoop Summit
 
LLAP: Sub-Second Analytical Queries in Hive
LLAP: Sub-Second Analytical Queries in HiveLLAP: Sub-Second Analytical Queries in Hive
LLAP: Sub-Second Analytical Queries in Hive
DataWorks Summit/Hadoop Summit
 
You Can't Search Without Data
You Can't Search Without DataYou Can't Search Without Data
You Can't Search Without Data
Bryan Bende
 

Similar to File Format Benchmark - Avro, JSON, ORC & Parquet (20)

Fast Spark Access To Your Complex Data - Avro, JSON, ORC, and Parquet
Fast Spark Access To Your Complex Data - Avro, JSON, ORC, and ParquetFast Spark Access To Your Complex Data - Avro, JSON, ORC, and Parquet
Fast Spark Access To Your Complex Data - Avro, JSON, ORC, and Parquet
 
Big Data Storage - Comparing Speed and Features for Avro, JSON, ORC, and Parquet
Big Data Storage - Comparing Speed and Features for Avro, JSON, ORC, and ParquetBig Data Storage - Comparing Speed and Features for Avro, JSON, ORC, and Parquet
Big Data Storage - Comparing Speed and Features for Avro, JSON, ORC, and Parquet
 
File Format Benchmark - Avro, JSON, ORC and Parquet
File Format Benchmark - Avro, JSON, ORC and ParquetFile Format Benchmark - Avro, JSON, ORC and Parquet
File Format Benchmark - Avro, JSON, ORC and Parquet
 
Fast Access to Your Data - Avro, JSON, ORC, and Parquet
Fast Access to Your Data - Avro, JSON, ORC, and ParquetFast Access to Your Data - Avro, JSON, ORC, and Parquet
Fast Access to Your Data - Avro, JSON, ORC, and Parquet
 
ORC File - Optimizing Your Big Data
ORC File - Optimizing Your Big DataORC File - Optimizing Your Big Data
ORC File - Optimizing Your Big Data
 
ORC improvement in Apache Spark 2.3
ORC improvement in Apache Spark 2.3ORC improvement in Apache Spark 2.3
ORC improvement in Apache Spark 2.3
 
Druid Scaling Realtime Analytics
Druid Scaling Realtime AnalyticsDruid Scaling Realtime Analytics
Druid Scaling Realtime Analytics
 
Hive acid and_2.x new_features
Hive acid and_2.x new_featuresHive acid and_2.x new_features
Hive acid and_2.x new_features
 
Hive edw-dataworks summit-eu-april-2017
Hive edw-dataworks summit-eu-april-2017Hive edw-dataworks summit-eu-april-2017
Hive edw-dataworks summit-eu-april-2017
 
An Apache Hive Based Data Warehouse
An Apache Hive Based Data WarehouseAn Apache Hive Based Data Warehouse
An Apache Hive Based Data Warehouse
 
Hadoop & cloud storage object store integration in production (final)
Hadoop & cloud storage  object store integration in production (final)Hadoop & cloud storage  object store integration in production (final)
Hadoop & cloud storage object store integration in production (final)
 
Hadoop & Cloud Storage: Object Store Integration in Production
Hadoop & Cloud Storage: Object Store Integration in ProductionHadoop & Cloud Storage: Object Store Integration in Production
Hadoop & Cloud Storage: Object Store Integration in Production
 
ORC improvement in Apache Spark 2.3
ORC improvement in Apache Spark 2.3ORC improvement in Apache Spark 2.3
ORC improvement in Apache Spark 2.3
 
An Overview on Optimization in Apache Hive: Past, Present Future
An Overview on Optimization in Apache Hive: Past, Present FutureAn Overview on Optimization in Apache Hive: Past, Present Future
An Overview on Optimization in Apache Hive: Past, Present Future
 
Performance Update: When Apache ORC Met Apache Spark
Performance Update: When Apache ORC Met Apache SparkPerformance Update: When Apache ORC Met Apache Spark
Performance Update: When Apache ORC Met Apache Spark
 
LLAP: Sub-Second Analytical Queries in Hive
LLAP: Sub-Second Analytical Queries in HiveLLAP: Sub-Second Analytical Queries in Hive
LLAP: Sub-Second Analytical Queries in Hive
 
What's new in apache hive
What's new in apache hive What's new in apache hive
What's new in apache hive
 
Hadoop & Cloud Storage: Object Store Integration in Production
Hadoop & Cloud Storage: Object Store Integration in ProductionHadoop & Cloud Storage: Object Store Integration in Production
Hadoop & Cloud Storage: Object Store Integration in Production
 
LLAP: Sub-Second Analytical Queries in Hive
LLAP: Sub-Second Analytical Queries in HiveLLAP: Sub-Second Analytical Queries in Hive
LLAP: Sub-Second Analytical Queries in Hive
 
You Can't Search Without Data
You Can't Search Without DataYou Can't Search Without Data
You Can't Search Without Data
 

More from DataWorks Summit/Hadoop Summit

Running Apache Spark & Apache Zeppelin in Production
Running Apache Spark & Apache Zeppelin in ProductionRunning Apache Spark & Apache Zeppelin in Production
Running Apache Spark & Apache Zeppelin in Production
DataWorks Summit/Hadoop Summit
 
State of Security: Apache Spark & Apache Zeppelin
State of Security: Apache Spark & Apache ZeppelinState of Security: Apache Spark & Apache Zeppelin
State of Security: Apache Spark & Apache Zeppelin
DataWorks Summit/Hadoop Summit
 
Unleashing the Power of Apache Atlas with Apache Ranger
Unleashing the Power of Apache Atlas with Apache RangerUnleashing the Power of Apache Atlas with Apache Ranger
Unleashing the Power of Apache Atlas with Apache Ranger
DataWorks Summit/Hadoop Summit
 
Enabling Digital Diagnostics with a Data Science Platform
Enabling Digital Diagnostics with a Data Science PlatformEnabling Digital Diagnostics with a Data Science Platform
Enabling Digital Diagnostics with a Data Science Platform
DataWorks Summit/Hadoop Summit
 
Revolutionize Text Mining with Spark and Zeppelin
Revolutionize Text Mining with Spark and ZeppelinRevolutionize Text Mining with Spark and Zeppelin
Revolutionize Text Mining with Spark and Zeppelin
DataWorks Summit/Hadoop Summit
 
Double Your Hadoop Performance with Hortonworks SmartSense
Double Your Hadoop Performance with Hortonworks SmartSenseDouble Your Hadoop Performance with Hortonworks SmartSense
Double Your Hadoop Performance with Hortonworks SmartSense
DataWorks Summit/Hadoop Summit
 
Hadoop Crash Course
Hadoop Crash CourseHadoop Crash Course
Hadoop Crash Course
DataWorks Summit/Hadoop Summit
 
Data Science Crash Course
Data Science Crash CourseData Science Crash Course
Data Science Crash Course
DataWorks Summit/Hadoop Summit
 
Apache Spark Crash Course
Apache Spark Crash CourseApache Spark Crash Course
Apache Spark Crash Course
DataWorks Summit/Hadoop Summit
 
Dataflow with Apache NiFi
Dataflow with Apache NiFiDataflow with Apache NiFi
Dataflow with Apache NiFi
DataWorks Summit/Hadoop Summit
 
Schema Registry - Set you Data Free
Schema Registry - Set you Data FreeSchema Registry - Set you Data Free
Schema Registry - Set you Data Free
DataWorks Summit/Hadoop Summit
 
Building a Large-Scale, Adaptive Recommendation Engine with Apache Flink and ...
Building a Large-Scale, Adaptive Recommendation Engine with Apache Flink and ...Building a Large-Scale, Adaptive Recommendation Engine with Apache Flink and ...
Building a Large-Scale, Adaptive Recommendation Engine with Apache Flink and ...
DataWorks Summit/Hadoop Summit
 
Real-Time Anomaly Detection using LSTM Auto-Encoders with Deep Learning4J on ...
Real-Time Anomaly Detection using LSTM Auto-Encoders with Deep Learning4J on ...Real-Time Anomaly Detection using LSTM Auto-Encoders with Deep Learning4J on ...
Real-Time Anomaly Detection using LSTM Auto-Encoders with Deep Learning4J on ...
DataWorks Summit/Hadoop Summit
 
Mool - Automated Log Analysis using Data Science and ML
Mool - Automated Log Analysis using Data Science and MLMool - Automated Log Analysis using Data Science and ML
Mool - Automated Log Analysis using Data Science and ML
DataWorks Summit/Hadoop Summit
 
How Hadoop Makes the Natixis Pack More Efficient
How Hadoop Makes the Natixis Pack More Efficient How Hadoop Makes the Natixis Pack More Efficient
How Hadoop Makes the Natixis Pack More Efficient
DataWorks Summit/Hadoop Summit
 
HBase in Practice
HBase in Practice HBase in Practice
HBase in Practice
DataWorks Summit/Hadoop Summit
 
The Challenge of Driving Business Value from the Analytics of Things (AOT)
The Challenge of Driving Business Value from the Analytics of Things (AOT)The Challenge of Driving Business Value from the Analytics of Things (AOT)
The Challenge of Driving Business Value from the Analytics of Things (AOT)
DataWorks Summit/Hadoop Summit
 
Breaking the 1 Million OPS/SEC Barrier in HOPS Hadoop
Breaking the 1 Million OPS/SEC Barrier in HOPS HadoopBreaking the 1 Million OPS/SEC Barrier in HOPS Hadoop
Breaking the 1 Million OPS/SEC Barrier in HOPS Hadoop
DataWorks Summit/Hadoop Summit
 
From Regulatory Process Verification to Predictive Maintenance and Beyond wit...
From Regulatory Process Verification to Predictive Maintenance and Beyond wit...From Regulatory Process Verification to Predictive Maintenance and Beyond wit...
From Regulatory Process Verification to Predictive Maintenance and Beyond wit...
DataWorks Summit/Hadoop Summit
 
Backup and Disaster Recovery in Hadoop
Backup and Disaster Recovery in Hadoop Backup and Disaster Recovery in Hadoop
Backup and Disaster Recovery in Hadoop
DataWorks Summit/Hadoop Summit
 

More from DataWorks Summit/Hadoop Summit (20)

Running Apache Spark & Apache Zeppelin in Production
Running Apache Spark & Apache Zeppelin in ProductionRunning Apache Spark & Apache Zeppelin in Production
Running Apache Spark & Apache Zeppelin in Production
 
State of Security: Apache Spark & Apache Zeppelin
State of Security: Apache Spark & Apache ZeppelinState of Security: Apache Spark & Apache Zeppelin
State of Security: Apache Spark & Apache Zeppelin
 
Unleashing the Power of Apache Atlas with Apache Ranger
Unleashing the Power of Apache Atlas with Apache RangerUnleashing the Power of Apache Atlas with Apache Ranger
Unleashing the Power of Apache Atlas with Apache Ranger
 
Enabling Digital Diagnostics with a Data Science Platform
Enabling Digital Diagnostics with a Data Science PlatformEnabling Digital Diagnostics with a Data Science Platform
Enabling Digital Diagnostics with a Data Science Platform
 
Revolutionize Text Mining with Spark and Zeppelin
Revolutionize Text Mining with Spark and ZeppelinRevolutionize Text Mining with Spark and Zeppelin
Revolutionize Text Mining with Spark and Zeppelin
 
Double Your Hadoop Performance with Hortonworks SmartSense
Double Your Hadoop Performance with Hortonworks SmartSenseDouble Your Hadoop Performance with Hortonworks SmartSense
Double Your Hadoop Performance with Hortonworks SmartSense
 
Hadoop Crash Course
Hadoop Crash CourseHadoop Crash Course
Hadoop Crash Course
 
Data Science Crash Course
Data Science Crash CourseData Science Crash Course
Data Science Crash Course
 
Apache Spark Crash Course
Apache Spark Crash CourseApache Spark Crash Course
Apache Spark Crash Course
 
Dataflow with Apache NiFi
Dataflow with Apache NiFiDataflow with Apache NiFi
Dataflow with Apache NiFi
 
Schema Registry - Set you Data Free
Schema Registry - Set you Data FreeSchema Registry - Set you Data Free
Schema Registry - Set you Data Free
 
Building a Large-Scale, Adaptive Recommendation Engine with Apache Flink and ...
Building a Large-Scale, Adaptive Recommendation Engine with Apache Flink and ...Building a Large-Scale, Adaptive Recommendation Engine with Apache Flink and ...
Building a Large-Scale, Adaptive Recommendation Engine with Apache Flink and ...
 
Real-Time Anomaly Detection using LSTM Auto-Encoders with Deep Learning4J on ...
Real-Time Anomaly Detection using LSTM Auto-Encoders with Deep Learning4J on ...Real-Time Anomaly Detection using LSTM Auto-Encoders with Deep Learning4J on ...
Real-Time Anomaly Detection using LSTM Auto-Encoders with Deep Learning4J on ...
 
Mool - Automated Log Analysis using Data Science and ML
Mool - Automated Log Analysis using Data Science and MLMool - Automated Log Analysis using Data Science and ML
Mool - Automated Log Analysis using Data Science and ML
 
How Hadoop Makes the Natixis Pack More Efficient
How Hadoop Makes the Natixis Pack More Efficient How Hadoop Makes the Natixis Pack More Efficient
How Hadoop Makes the Natixis Pack More Efficient
 
HBase in Practice
HBase in Practice HBase in Practice
HBase in Practice
 
The Challenge of Driving Business Value from the Analytics of Things (AOT)
The Challenge of Driving Business Value from the Analytics of Things (AOT)The Challenge of Driving Business Value from the Analytics of Things (AOT)
The Challenge of Driving Business Value from the Analytics of Things (AOT)
 
Breaking the 1 Million OPS/SEC Barrier in HOPS Hadoop
Breaking the 1 Million OPS/SEC Barrier in HOPS HadoopBreaking the 1 Million OPS/SEC Barrier in HOPS Hadoop
Breaking the 1 Million OPS/SEC Barrier in HOPS Hadoop
 
From Regulatory Process Verification to Predictive Maintenance and Beyond wit...
From Regulatory Process Verification to Predictive Maintenance and Beyond wit...From Regulatory Process Verification to Predictive Maintenance and Beyond wit...
From Regulatory Process Verification to Predictive Maintenance and Beyond wit...
 
Backup and Disaster Recovery in Hadoop
Backup and Disaster Recovery in Hadoop Backup and Disaster Recovery in Hadoop
Backup and Disaster Recovery in Hadoop
 

Recently uploaded

Monitoring and Managing Anomaly Detection on OpenShift.pdf
Monitoring and Managing Anomaly Detection on OpenShift.pdfMonitoring and Managing Anomaly Detection on OpenShift.pdf
Monitoring and Managing Anomaly Detection on OpenShift.pdf
Tosin Akinosho
 
Taking AI to the Next Level in Manufacturing.pdf
Taking AI to the Next Level in Manufacturing.pdfTaking AI to the Next Level in Manufacturing.pdf
Taking AI to the Next Level in Manufacturing.pdf
ssuserfac0301
 
Digital Banking in the Cloud: How Citizens Bank Unlocked Their Mainframe
Digital Banking in the Cloud: How Citizens Bank Unlocked Their MainframeDigital Banking in the Cloud: How Citizens Bank Unlocked Their Mainframe
Digital Banking in the Cloud: How Citizens Bank Unlocked Their Mainframe
Precisely
 
Public CyberSecurity Awareness Presentation 2024.pptx
Public CyberSecurity Awareness Presentation 2024.pptxPublic CyberSecurity Awareness Presentation 2024.pptx
Public CyberSecurity Awareness Presentation 2024.pptx
marufrahmanstratejm
 
HCL Notes and Domino License Cost Reduction in the World of DLAU
HCL Notes and Domino License Cost Reduction in the World of DLAUHCL Notes and Domino License Cost Reduction in the World of DLAU
HCL Notes and Domino License Cost Reduction in the World of DLAU
panagenda
 
Main news related to the CCS TSI 2023 (2023/1695)
Main news related to the CCS TSI 2023 (2023/1695)Main news related to the CCS TSI 2023 (2023/1695)
Main news related to the CCS TSI 2023 (2023/1695)
Jakub Marek
 
HCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAU
HCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAUHCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAU
HCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAU
panagenda
 
Choosing The Best AWS Service For Your Website + API.pptx
Choosing The Best AWS Service For Your Website + API.pptxChoosing The Best AWS Service For Your Website + API.pptx
Choosing The Best AWS Service For Your Website + API.pptx
Brandon Minnick, MBA
 
Digital Marketing Trends in 2024 | Guide for Staying Ahead
Digital Marketing Trends in 2024 | Guide for Staying AheadDigital Marketing Trends in 2024 | Guide for Staying Ahead
Digital Marketing Trends in 2024 | Guide for Staying Ahead
Wask
 
Introduction of Cybersecurity with OSS at Code Europe 2024
Introduction of Cybersecurity with OSS  at Code Europe 2024Introduction of Cybersecurity with OSS  at Code Europe 2024
Introduction of Cybersecurity with OSS at Code Europe 2024
Hiroshi SHIBATA
 
How to Interpret Trends in the Kalyan Rajdhani Mix Chart.pdf
How to Interpret Trends in the Kalyan Rajdhani Mix Chart.pdfHow to Interpret Trends in the Kalyan Rajdhani Mix Chart.pdf
How to Interpret Trends in the Kalyan Rajdhani Mix Chart.pdf
Chart Kalyan
 
leewayhertz.com-AI in predictive maintenance Use cases technologies benefits ...
leewayhertz.com-AI in predictive maintenance Use cases technologies benefits ...leewayhertz.com-AI in predictive maintenance Use cases technologies benefits ...
leewayhertz.com-AI in predictive maintenance Use cases technologies benefits ...
alexjohnson7307
 
Let's Integrate MuleSoft RPA, COMPOSER, APM with AWS IDP along with Slack
Let's Integrate MuleSoft RPA, COMPOSER, APM with AWS IDP along with SlackLet's Integrate MuleSoft RPA, COMPOSER, APM with AWS IDP along with Slack
Let's Integrate MuleSoft RPA, COMPOSER, APM with AWS IDP along with Slack
shyamraj55
 
JavaLand 2024: Application Development Green Masterplan
JavaLand 2024: Application Development Green MasterplanJavaLand 2024: Application Development Green Masterplan
JavaLand 2024: Application Development Green Masterplan
Miro Wengner
 
GraphRAG for Life Science to increase LLM accuracy
GraphRAG for Life Science to increase LLM accuracyGraphRAG for Life Science to increase LLM accuracy
GraphRAG for Life Science to increase LLM accuracy
Tomaz Bratanic
 
A Comprehensive Guide to DeFi Development Services in 2024
A Comprehensive Guide to DeFi Development Services in 2024A Comprehensive Guide to DeFi Development Services in 2024
A Comprehensive Guide to DeFi Development Services in 2024
Intelisync
 
Driving Business Innovation: Latest Generative AI Advancements & Success Story
Driving Business Innovation: Latest Generative AI Advancements & Success StoryDriving Business Innovation: Latest Generative AI Advancements & Success Story
Driving Business Innovation: Latest Generative AI Advancements & Success Story
Safe Software
 
Deep Dive: AI-Powered Marketing to Get More Leads and Customers with HyperGro...
Deep Dive: AI-Powered Marketing to Get More Leads and Customers with HyperGro...Deep Dive: AI-Powered Marketing to Get More Leads and Customers with HyperGro...
Deep Dive: AI-Powered Marketing to Get More Leads and Customers with HyperGro...
saastr
 
Your One-Stop Shop for Python Success: Top 10 US Python Development Providers
Your One-Stop Shop for Python Success: Top 10 US Python Development ProvidersYour One-Stop Shop for Python Success: Top 10 US Python Development Providers
Your One-Stop Shop for Python Success: Top 10 US Python Development Providers
akankshawande
 
Salesforce Integration for Bonterra Impact Management (fka Social Solutions A...
Salesforce Integration for Bonterra Impact Management (fka Social Solutions A...Salesforce Integration for Bonterra Impact Management (fka Social Solutions A...
Salesforce Integration for Bonterra Impact Management (fka Social Solutions A...
Jeffrey Haguewood
 

Recently uploaded (20)

Monitoring and Managing Anomaly Detection on OpenShift.pdf
Monitoring and Managing Anomaly Detection on OpenShift.pdfMonitoring and Managing Anomaly Detection on OpenShift.pdf
Monitoring and Managing Anomaly Detection on OpenShift.pdf
 
Taking AI to the Next Level in Manufacturing.pdf
Taking AI to the Next Level in Manufacturing.pdfTaking AI to the Next Level in Manufacturing.pdf
Taking AI to the Next Level in Manufacturing.pdf
 
Digital Banking in the Cloud: How Citizens Bank Unlocked Their Mainframe
Digital Banking in the Cloud: How Citizens Bank Unlocked Their MainframeDigital Banking in the Cloud: How Citizens Bank Unlocked Their Mainframe
Digital Banking in the Cloud: How Citizens Bank Unlocked Their Mainframe
 
Public CyberSecurity Awareness Presentation 2024.pptx
Public CyberSecurity Awareness Presentation 2024.pptxPublic CyberSecurity Awareness Presentation 2024.pptx
Public CyberSecurity Awareness Presentation 2024.pptx
 
HCL Notes and Domino License Cost Reduction in the World of DLAU
HCL Notes and Domino License Cost Reduction in the World of DLAUHCL Notes and Domino License Cost Reduction in the World of DLAU
HCL Notes and Domino License Cost Reduction in the World of DLAU
 
Main news related to the CCS TSI 2023 (2023/1695)
Main news related to the CCS TSI 2023 (2023/1695)Main news related to the CCS TSI 2023 (2023/1695)
Main news related to the CCS TSI 2023 (2023/1695)
 
HCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAU
HCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAUHCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAU
HCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAU
 
Choosing The Best AWS Service For Your Website + API.pptx
Choosing The Best AWS Service For Your Website + API.pptxChoosing The Best AWS Service For Your Website + API.pptx
Choosing The Best AWS Service For Your Website + API.pptx
 
Digital Marketing Trends in 2024 | Guide for Staying Ahead
Digital Marketing Trends in 2024 | Guide for Staying AheadDigital Marketing Trends in 2024 | Guide for Staying Ahead
Digital Marketing Trends in 2024 | Guide for Staying Ahead
 
Introduction of Cybersecurity with OSS at Code Europe 2024
Introduction of Cybersecurity with OSS  at Code Europe 2024Introduction of Cybersecurity with OSS  at Code Europe 2024
Introduction of Cybersecurity with OSS at Code Europe 2024
 
How to Interpret Trends in the Kalyan Rajdhani Mix Chart.pdf
How to Interpret Trends in the Kalyan Rajdhani Mix Chart.pdfHow to Interpret Trends in the Kalyan Rajdhani Mix Chart.pdf
How to Interpret Trends in the Kalyan Rajdhani Mix Chart.pdf
 
leewayhertz.com-AI in predictive maintenance Use cases technologies benefits ...
leewayhertz.com-AI in predictive maintenance Use cases technologies benefits ...leewayhertz.com-AI in predictive maintenance Use cases technologies benefits ...
leewayhertz.com-AI in predictive maintenance Use cases technologies benefits ...
 
Let's Integrate MuleSoft RPA, COMPOSER, APM with AWS IDP along with Slack
Let's Integrate MuleSoft RPA, COMPOSER, APM with AWS IDP along with SlackLet's Integrate MuleSoft RPA, COMPOSER, APM with AWS IDP along with Slack
Let's Integrate MuleSoft RPA, COMPOSER, APM with AWS IDP along with Slack
 
JavaLand 2024: Application Development Green Masterplan
JavaLand 2024: Application Development Green MasterplanJavaLand 2024: Application Development Green Masterplan
JavaLand 2024: Application Development Green Masterplan
 
GraphRAG for Life Science to increase LLM accuracy
GraphRAG for Life Science to increase LLM accuracyGraphRAG for Life Science to increase LLM accuracy
GraphRAG for Life Science to increase LLM accuracy
 
A Comprehensive Guide to DeFi Development Services in 2024
A Comprehensive Guide to DeFi Development Services in 2024A Comprehensive Guide to DeFi Development Services in 2024
A Comprehensive Guide to DeFi Development Services in 2024
 
Driving Business Innovation: Latest Generative AI Advancements & Success Story
Driving Business Innovation: Latest Generative AI Advancements & Success StoryDriving Business Innovation: Latest Generative AI Advancements & Success Story
Driving Business Innovation: Latest Generative AI Advancements & Success Story
 
Deep Dive: AI-Powered Marketing to Get More Leads and Customers with HyperGro...
Deep Dive: AI-Powered Marketing to Get More Leads and Customers with HyperGro...Deep Dive: AI-Powered Marketing to Get More Leads and Customers with HyperGro...
Deep Dive: AI-Powered Marketing to Get More Leads and Customers with HyperGro...
 
Your One-Stop Shop for Python Success: Top 10 US Python Development Providers
Your One-Stop Shop for Python Success: Top 10 US Python Development ProvidersYour One-Stop Shop for Python Success: Top 10 US Python Development Providers
Your One-Stop Shop for Python Success: Top 10 US Python Development Providers
 
Salesforce Integration for Bonterra Impact Management (fka Social Solutions A...
Salesforce Integration for Bonterra Impact Management (fka Social Solutions A...Salesforce Integration for Bonterra Impact Management (fka Social Solutions A...
Salesforce Integration for Bonterra Impact Management (fka Social Solutions A...
 

File Format Benchmark - Avro, JSON, ORC & Parquet

  • 1. File Format Benchmark - Avro, JSON, ORC, & Parquet Owen O’Malley owen@hortonworks.com @owen_omalley June 2016
  • 2. 2 © Hortonworks Inc. 2011 – 2016. All Rights Reserved Who Am I? Worked on Hadoop since Jan 2006 MapReduce, Security, Hive, and ORC Worked on different file formats –Sequence File, RCFile, ORC File, T-File, and Avro requirements
  • 3. 3 © Hortonworks Inc. 2011 – 2016. All Rights Reserved Goal Seeking to discover unknowns –How do the different formats perform? –What could they do better? –Best part of open source is looking inside! Use real & diverse data sets –Over-reliance on similar datasets leads to weakness Open & reviewed benchmarks
  • 4. 4 © Hortonworks Inc. 2011 – 2016. All Rights Reserved The File Formats
  • 5. 5 © Hortonworks Inc. 2011 – 2016. All Rights Reserved Avro Cross-language file format for Hadoop Schema evolution was primary goal Schema segregated from data –Unlike Protobuf and Thrift Row major format
  • 6. 6 © Hortonworks Inc. 2011 – 2016. All Rights Reserved JSON Serialization format for HTTP & Javascript Text-format with MANY parsers Schema completely integrated with data Row major format Compression applied on top
  • 7. 7 © Hortonworks Inc. 2011 – 2016. All Rights Reserved ORC Originally part of Hive to replace RCFile –Now top-level project Schema segregated into footer Column major format with stripes Rich type model, stored top-down Integrated compression, indexes, & stats
  • 8. 8 © Hortonworks Inc. 2011 – 2016. All Rights Reserved Parquet Design based on Google’s Dremel paper Schema segregated into footer Column major format with stripes Simpler type-model with logical types All data pushed to leaves of the tree Integrated compression and indexes
  • 9. 9 © Hortonworks Inc. 2011 – 2016. All Rights Reserved Data Sets
  • 10. 10 © Hortonworks Inc. 2011 – 2016. All Rights Reserved NYC Taxi Data Every taxi cab ride in NYC from 2009 –Publically available –http://tinyurl.com/nyc-taxi-analysis 18 columns with no null values –Doubles, integers, decimals, & strings 2 months of data – 22.7 million rows
  • 11. 11 © Hortonworks Inc. 2011 – 2016. All Rights Reserved
  • 12. 12 © Hortonworks Inc. 2011 – 2016. All Rights Reserved Github Logs All actions on Github public repositories –Publically available –https://www.githubarchive.org/ 704 columns with a lot of structure & nulls –Pretty much the kitchen sink  1/2 month of data – 10.5 million rows
  • 13. 13 © Hortonworks Inc. 2011 – 2016. All Rights Reserved Finding the Github Schema The data is all in JSON. No schema for the data is published. We wrote a JSON schema discoverer. –Scans the document and figures out the type Available at https://github.com/hortonworks/hive-json Schema is huge (12k)
  • 14. 14 © Hortonworks Inc. 2011 – 2016. All Rights Reserved Sales Generated data –Real schema from a production Hive deployment –Random data based on the data statistics 55 columns with lots of nulls –A little structure –Timestamps, strings, longs, booleans, list, & struct 25 million rows
  • 15. 15 © Hortonworks Inc. 2011 – 2016. All Rights Reserved Storage costs
  • 16. 16 © Hortonworks Inc. 2011 – 2016. All Rights Reserved Compression Data size matters! –Hadoop stores all your data, but requires hardware –Is one factor in read speed ORC and Parquet use RLE & Dictionaries All the formats have general compression –ZLIB (GZip) – tight compression, slower –Snappy – some compression, faster
  • 17. 17 © Hortonworks Inc. 2011 – 2016. All Rights Reserved
  • 18. 18 © Hortonworks Inc. 2011 – 2016. All Rights Reserved Taxi Size Analysis Don’t use JSON Use either Snappy or Zlib compression Avro’s small compression window hurts Parquet Zlib is smaller than ORC –Group the column sizes by type
  • 19. 19 © Hortonworks Inc. 2011 – 2016. All Rights Reserved
  • 20. 20 © Hortonworks Inc. 2011 – 2016. All Rights Reserved
  • 21. 21 © Hortonworks Inc. 2011 – 2016. All Rights Reserved Taxi Size Analysis ORC did better than expected –String columns have small cardinality –Lots of timestamp columns –No doubles  Need to revalidate results with original –Improve random data generator –Add non-smooth distributions
  • 22. 22 © Hortonworks Inc. 2011 – 2016. All Rights Reserved
  • 23. 23 © Hortonworks Inc. 2011 – 2016. All Rights Reserved Github Size Analysis Surprising win for JSON and Avro –Worst when uncompressed –Best with zlib Many partially shared strings –ORC and Parquet don’t compress across columns Need to investigate shared dictionaries.
  • 24. 24 © Hortonworks Inc. 2011 – 2016. All Rights Reserved Use Cases
  • 25. 25 © Hortonworks Inc. 2011 – 2016. All Rights Reserved Full Table Scans Read all columns & rows All formats except JSON are splitable –Different workers do different parts of file
  • 26. 26 © Hortonworks Inc. 2011 – 2016. All Rights Reserved
  • 27. 27 © Hortonworks Inc. 2011 – 2016. All Rights Reserved Taxi Read Performance Analysis JSON is very slow to read –Large storage size for this data set –Needs to do a LOT of string parsing Tradeoff between space & time –Less compression is sometimes faster
  • 28. 28 © Hortonworks Inc. 2011 – 2016. All Rights Reserved
  • 29. 29 © Hortonworks Inc. 2011 – 2016. All Rights Reserved Sales Read Performance Analysis Read performance is dominated by format –Compression matters less for this data set –Straight ordering: ORC, Avro, Parquet, & JSON Garbage collection is important –ORC 0.3 to 1.4% of time –Avro < 0.1% of time –Parquet 4 to 8% of time
  • 30. 30 © Hortonworks Inc. 2011 – 2016. All Rights Reserved
  • 31. 31 © Hortonworks Inc. 2011 – 2016. All Rights Reserved Github Read Performance Analysis Garbage collection is critical –ORC 2.1 to 3.4% of time –Avro 0.1% of time –Parquet 11.4 to 12.8% of time A lot of columns needs more space –Suspect that we need bigger stripes –Rows/stripe - ORC: 18.6k, Parquet: 88.1k
  • 32. 32 © Hortonworks Inc. 2011 – 2016. All Rights Reserved Column Projection Often just need a few columns –Only ORC & Parquet are columnar –Only read, decompress, & deserialize some columns Dataset format compression us/row projection Percent time github orc zlib 21.319 0.185 0.87% github parquet zlib 72.494 0.585 0.81% sales orc zlib 1.866 0.056 3.00% sales parquet zlib 12.893 0.329 2.55% taxi orc zlib 2.766 0.063 2.28% taxi parquet zlib 3.496 0.718 20.54%
  • 33. 33 © Hortonworks Inc. 2011 – 2016. All Rights Reserved Projection & Predicate Pushdown Sometimes have a filter predicate on table –Select a superset of rows that match –Selective filters have a huge impact Improves data layout options –Better than partition pruning with sorting ORC has added optional bloom filters
  • 34. 34 © Hortonworks Inc. 2011 – 2016. All Rights Reserved Metadata Access ORC & Parquet store metadata –Stored in file footer –File schema –Number of records –Min, max, count of each column Provides O(1) Access
  • 35. 35 © Hortonworks Inc. 2011 – 2016. All Rights Reserved Conclusions
  • 36. 36 © Hortonworks Inc. 2011 – 2016. All Rights Reserved Recomendations Disclaimer – Everything changes! –Both these benchmarks and the formats will change. For complex tables with common strings –Avro with Snappy is a good fit (w/o projection) For other tables –ORC with Zlib is a good fit Experiment with the benchmarks
  • 37. 37 © Hortonworks Inc. 2011 – 2016. All Rights Reserved Fun Stuff Built open benchmark suite for files Built pieces of a tool to convert files –Avro, CSV, JSON, ORC, & Parquet Built a random parameterized generator –Easy to model arbitrary tables –Can write to Avro, ORC, or Parquet
  • 38. 38 © Hortonworks Inc. 2011 – 2016. All Rights Reserved Thank you! Twitter: @owen_omalley Email: owen@hortonworks.com