SlideShare a Scribd company logo
1 of 45
Download to read offline
Polynomial Division
Polynomial Division
            P x   A x   Q x   R x 
where;
Polynomial Division
                    P x   A x   Q x   R x 
where;
         A(x) is the divisor
Polynomial Division
                    P x   A x   Q x   R x 
where;
         A(x) is the divisor              Q(x) is the quotient
Polynomial Division
                    P x   A x   Q x   R x 
where;
         A(x) is the divisor              Q(x) is the quotient
         R(x) is the remainder
Polynomial Division
                    P x   A x   Q x   R x 
where;
         A(x) is the divisor              Q(x) is the quotient
         R(x) is the remainder
Note:
        degree R(x) < degree A(x)
Polynomial Division
                    P x   A x   Q x   R x 
where;
         A(x) is the divisor              Q(x) is the quotient
         R(x) is the remainder
Note:
        degree R(x) < degree A(x)
        Q(x) and R(x) are unique
Polynomial Division
                       P x   A x   Q x   R x 
   where;
            A(x) is the divisor              Q(x) is the quotient
            R(x) is the remainder
   Note:
           degree R(x) < degree A(x)
           Q(x) and R(x) are unique
                                             1998 Extension 1 HSC Q2a)
Find the quotient, Q(x), and the remainder, R(x), when the polynomial
P x   x 4  x 2  1 is divided by x 2  1
Polynomial Division
                           P x   A x   Q x   R x 
   where;
             A(x) is the divisor                 Q(x) is the quotient
            R(x) is the remainder
    Note:
            degree R(x) < degree A(x)
            Q(x) and R(x) are unique
                                             1998 Extension 1 HSC Q2a)
Find the quotient, Q(x), and the remainder, R(x), when the polynomial
P x   x 4  x 2  1 is divided by x 2  1

x 2  1 x 4  0 x3  x 2  0 x  1
Polynomial Division
                       P x   A x   Q x   R x 
   where;
            A(x) is the divisor              Q(x) is the quotient
            R(x) is the remainder
   Note:
           degree R(x) < degree A(x)
           Q(x) and R(x) are unique
                                             1998 Extension 1 HSC Q2a)
Find the quotient, Q(x), and the remainder, R(x), when the polynomial
P x   x 4  x 2  1 is divided by x 2  1
        x2
x 2  1 x 4  0 x3  x 2  0 x  1
Polynomial Division
                       P x   A x   Q x   R x 
   where;
            A(x) is the divisor              Q(x) is the quotient
            R(x) is the remainder
   Note:
           degree R(x) < degree A(x)
           Q(x) and R(x) are unique
                                             1998 Extension 1 HSC Q2a)
Find the quotient, Q(x), and the remainder, R(x), when the polynomial
P x   x 4  x 2  1 is divided by x 2  1
        x2
x 2  1 x 4  0 x3  x 2  0 x  1
        x 4  0 x3  x 2
Polynomial Division
                       P x   A x   Q x   R x 
   where;
            A(x) is the divisor              Q(x) is the quotient
            R(x) is the remainder
   Note:
           degree R(x) < degree A(x)
           Q(x) and R(x) are unique
                                             1998 Extension 1 HSC Q2a)
Find the quotient, Q(x), and the remainder, R(x), when the polynomial
P x   x 4  x 2  1 is divided by x 2  1
        x2
x 2  1 x 4  0 x3  x 2  0 x  1
        x 4  0 x3  x 2
                   2x 2
Polynomial Division
                       P x   A x   Q x   R x 
   where;
            A(x) is the divisor              Q(x) is the quotient
            R(x) is the remainder
   Note:
           degree R(x) < degree A(x)
           Q(x) and R(x) are unique
                                             1998 Extension 1 HSC Q2a)
Find the quotient, Q(x), and the remainder, R(x), when the polynomial
P x   x 4  x 2  1 is divided by x 2  1
        x2
x 2  1 x 4  0 x3  x 2  0 x  1
        x 4  0 x3  x 2
                   2x 2  0 x  1
Polynomial Division
                       P x   A x   Q x   R x 
   where;
            A(x) is the divisor              Q(x) is the quotient
            R(x) is the remainder
   Note:
           degree R(x) < degree A(x)
           Q(x) and R(x) are unique
                                             1998 Extension 1 HSC Q2a)
Find the quotient, Q(x), and the remainder, R(x), when the polynomial
P x   x 4  x 2  1 is divided by x 2  1
        x2          2
x 2  1 x 4  0 x3  x 2  0 x  1
        x 4  0 x3  x 2
                   2x 2  0 x  1
Polynomial Division
                       P x   A x   Q x   R x 
   where;
            A(x) is the divisor              Q(x) is the quotient
            R(x) is the remainder
   Note:
           degree R(x) < degree A(x)
           Q(x) and R(x) are unique
                                             1998 Extension 1 HSC Q2a)
Find the quotient, Q(x), and the remainder, R(x), when the polynomial
P x   x 4  x 2  1 is divided by x 2  1
        x2          2
x 2  1 x 4  0 x3  x 2  0 x  1
        x 4  0 x3  x 2
                   2x 2  0 x  1
                   2x2  0x  2
Polynomial Division
                       P x   A x   Q x   R x 
   where;
            A(x) is the divisor              Q(x) is the quotient
            R(x) is the remainder
   Note:
           degree R(x) < degree A(x)
           Q(x) and R(x) are unique
                                             1998 Extension 1 HSC Q2a)
Find the quotient, Q(x), and the remainder, R(x), when the polynomial
P x   x 4  x 2  1 is divided by x 2  1
        x2          2
x 2  1 x 4  0 x3  x 2  0 x  1
        x 4  0 x3  x 2
                   2x 2  0 x  1
                   2x2  0x  2
Polynomial Division
                       P x   A x   Q x   R x 
   where;
            A(x) is the divisor              Q(x) is the quotient
            R(x) is the remainder
   Note:
           degree R(x) < degree A(x)
           Q(x) and R(x) are unique
                                                 1998 Extension 1 HSC Q2a)
Find the quotient, Q(x), and the remainder, R(x), when the polynomial
P x   x 4  x 2  1 is divided by x 2  1
        x2          2
x 2  1 x 4  0 x3  x 2  0 x  1
        x 4  0 x3  x 2
                   2x 2  0 x  1
                   2x2  0x  2
                                           Q x   x 2  2 and R x   3
(i) Divide the polynomial                            1988 Extension 1 HSC Q4b)
    f  x   2 x 4  10 x 3  12 x 2  2 x  3 by g  x   x 2  3 x  1
(i) Divide the polynomial                            1988 Extension 1 HSC Q4b)
    f  x   2 x 4  10 x 3  12 x 2  2 x  3 by g  x   x 2  3 x  1


  x 2  3 x  1 2 x 4  10 x 3  12 x 2  2 x  3
(i) Divide the polynomial                            1988 Extension 1 HSC Q4b)
    f  x   2 x 4  10 x 3  12 x 2  2 x  3 by g  x   x 2  3 x  1
                2x 2
  x 2  3 x  1 2 x 4  10 x 3  12 x 2  2 x  3
(i) Divide the polynomial                            1988 Extension 1 HSC Q4b)
    f  x   2 x 4  10 x 3  12 x 2  2 x  3 by g  x   x 2  3 x  1
                2x 2
  x 2  3 x  1 2 x 4  10 x 3  12 x 2  2 x  3
                2 x 4  6 x3  2 x 2
(i) Divide the polynomial                            1988 Extension 1 HSC Q4b)
    f  x   2 x 4  10 x 3  12 x 2  2 x  3 by g  x   x 2  3 x  1
                2x 2
  x 2  3 x  1 2 x 4  10 x 3  12 x 2  2 x  3
                2 x 4  6 x3  2 x 2
                       4 x 3  10 x 2
(i) Divide the polynomial                            1988 Extension 1 HSC Q4b)
    f  x   2 x 4  10 x 3  12 x 2  2 x  3 by g  x   x 2  3 x  1
                2x 2
  x 2  3 x  1 2 x 4  10 x 3  12 x 2  2 x  3
                2 x 4  6 x3  2 x 2
                       4 x 3  10 x 2  2 x  3
(i) Divide the polynomial                            1988 Extension 1 HSC Q4b)
    f  x   2 x 4  10 x 3  12 x 2  2 x  3 by g  x   x 2  3 x  1
                2x 2  4 x
  x 2  3 x  1 2 x 4  10 x 3  12 x 2  2 x  3
                2 x 4  6 x3  2 x 2
                       4 x 3  10 x 2  2 x  3
(i) Divide the polynomial                            1988 Extension 1 HSC Q4b)
    f  x   2 x 4  10 x 3  12 x 2  2 x  3 by g  x   x 2  3 x  1
                2x 2  4 x
  x 2  3 x  1 2 x 4  10 x 3  12 x 2  2 x  3
                2 x 4  6 x3  2 x 2
                       4 x 3  10 x 2  2 x  3
                       4 x 3  12 x 2  4 x
(i) Divide the polynomial                            1988 Extension 1 HSC Q4b)
    f  x   2 x 4  10 x 3  12 x 2  2 x  3 by g  x   x 2  3 x  1
                2x 2  4 x
  x 2  3 x  1 2 x 4  10 x 3  12 x 2  2 x  3
                2 x 4  6 x3  2 x 2
                       4 x 3  10 x 2  2 x  3
                       4 x 3  12 x 2  4 x
                                2x2  6x
(i) Divide the polynomial                            1988 Extension 1 HSC Q4b)
    f  x   2 x 4  10 x 3  12 x 2  2 x  3 by g  x   x 2  3 x  1
                2x 2  4 x
  x 2  3 x  1 2 x 4  10 x 3  12 x 2  2 x  3
                2 x 4  6 x3  2 x 2
                       4 x 3  10 x 2  2 x  3
                       4 x 3  12 x 2  4 x
                                2x2  6x  3
(i) Divide the polynomial                            1988 Extension 1 HSC Q4b)
    f  x   2 x 4  10 x 3  12 x 2  2 x  3 by g  x   x 2  3 x  1
                2x 2  4 x  2
  x 2  3 x  1 2 x 4  10 x 3  12 x 2  2 x  3
                2 x 4  6 x3  2 x 2
                       4 x 3  10 x 2  2 x  3
                       4 x 3  12 x 2  4 x
                                2x2  6x  3
(i) Divide the polynomial                            1988 Extension 1 HSC Q4b)
    f  x   2 x 4  10 x 3  12 x 2  2 x  3 by g  x   x 2  3 x  1
                2x 2  4 x  2
  x 2  3 x  1 2 x 4  10 x 3  12 x 2  2 x  3
                2 x 4  6 x3  2 x 2
                       4 x 3  10 x 2  2 x  3
                       4 x 3  12 x 2  4 x
                                2x2  6x  3
                                2x2  6x  2
(i) Divide the polynomial                            1988 Extension 1 HSC Q4b)
    f  x   2 x 4  10 x 3  12 x 2  2 x  3 by g  x   x 2  3 x  1
                2x 2  4 x  2
  x 2  3 x  1 2 x 4  10 x 3  12 x 2  2 x  3
                2 x 4  6 x3  2 x 2
                       4 x 3  10 x 2  2 x  3
                       4 x 3  12 x 2  4 x
                                2x2  6x  3
                                2x2  6x  2
                                             1
(i) Divide the polynomial                            1988 Extension 1 HSC Q4b)
    f  x   2 x 4  10 x 3  12 x 2  2 x  3 by g  x   x 2  3 x  1
                  2x 2  4 x  2
    x 2  3 x  1 2 x 4  10 x 3  12 x 2  2 x  3
                  2 x 4  6 x3  2 x 2
                         4 x 3  10 x 2  2 x  3
                         4 x 3  12 x 2  4 x
                                  2x2  6x  3
                                  2x2  6x  2
                                               1
(ii) Hence write f(x) = g(x)q(x) + r(x) where q(x) and r(x) are
     polynomials and r(x) has degree less than 2.
(i) Divide the polynomial                            1988 Extension 1 HSC Q4b)
    f  x   2 x 4  10 x 3  12 x 2  2 x  3 by g  x   x 2  3 x  1
                  2x 2  4 x  2
    x 2  3 x  1 2 x 4  10 x 3  12 x 2  2 x  3
                  2 x 4  6 x3  2 x 2
                         4 x 3  10 x 2  2 x  3
                         4 x 3  12 x 2  4 x
                                  2x2  6x  3
                                  2x2  6x  2
                                               1
(ii) Hence write f(x) = g(x)q(x) + r(x) where q(x) and r(x) are
     polynomials and r(x) has degree less than 2.
        2 x 4  10 x 3  12 x 2  2 x  3  x 2  3 x  12 x 2  4 x  2   1
Further graphing of polynomials




                     P x             R x 
                  y         Q x  
                     A x             A x 
Further graphing of polynomials




                     P x             R x 
                  y         Q x  
                     A x             A x 


                                        solve A(x) = 0 to find
                                         vertical asymptotes
Further graphing of polynomials




                     P x             R x 
                  y         Q x  
                     A x             A x 


               y = Q(x) is the          solve A(x) = 0 to find
             horizontal/oblique          vertical asymptotes
                 asymptote
Further graphing of polynomials
                                            solve R(x) = 0 to find where
                                            (if anywhere) the curve cuts
                                                the horizontal/oblique
                                                      asymptote

                     P x             R x 
                  y         Q x  
                     A x             A x 


               y = Q(x) is the          solve A(x) = 0 to find
             horizontal/oblique          vertical asymptotes
                 asymptote
8x
Example: Sketch the graph of y  x  2     , clearly indicating any
                                    x 9
         asymptotes and any points where the graph meets the axes.
8x
Example: Sketch the graph of y  x  2     , clearly indicating any
                                    x 9
         asymptotes and any points where the graph meets the axes.
 • vertical asymptotes at x  3
x=-3             x=3
                        y




                  




                                      x

                                




                  
8x
Example: Sketch the graph of y  x  2     , clearly indicating any
                                    x 9
         asymptotes and any points where the graph meets the axes.
 • vertical asymptotes at x  3
 • oblique asymptote at y  x
x=-3             x=3
                        y

                                           y=x
                  




                                      x

                                




                  
8x
Example: Sketch the graph of y  x  2     , clearly indicating any
                                    x 9
         asymptotes and any points where the graph meets the axes.
 • vertical asymptotes at x  3
 • oblique asymptote at y  x
 • curve meets oblique asymptote at 8x = 0
                                     x=0
x=-3             x=3
                        y

                                           y=x
                  




                                      x

                                




                  
x=-3             x=3
                        y

                                           y=x
                  




                                      x

                                




                  
Exercise 4C; 1c, 2bdfh, 3bd, 4ac, 6ace,
            7b, 8, 11, 14*

More Related Content

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Recently uploaded

How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17Celine George
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfAdmir Softic
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxAreebaZafar22
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxVishalSingh1417
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentationcamerronhm
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxEsquimalt MFRC
 
Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the ClassroomPooky Knightsmith
 
Wellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptxWellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptxJisc
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfDr Vijay Vishwakarma
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfPoh-Sun Goh
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - Englishneillewis46
 
Interdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxInterdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxPooja Bhuva
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsMebane Rash
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSCeline George
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Jisc
 
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Pooja Bhuva
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfagholdier
 
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Pooja Bhuva
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxRamakrishna Reddy Bijjam
 

Recently uploaded (20)

How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
 
Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the Classroom
 
Wellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptxWellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptx
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
Interdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxInterdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptx
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 

11X1 T13 03 polynomial division

  • 2. Polynomial Division P x   A x   Q x   R x  where;
  • 3. Polynomial Division P x   A x   Q x   R x  where; A(x) is the divisor
  • 4. Polynomial Division P x   A x   Q x   R x  where; A(x) is the divisor Q(x) is the quotient
  • 5. Polynomial Division P x   A x   Q x   R x  where; A(x) is the divisor Q(x) is the quotient R(x) is the remainder
  • 6. Polynomial Division P x   A x   Q x   R x  where; A(x) is the divisor Q(x) is the quotient R(x) is the remainder Note: degree R(x) < degree A(x)
  • 7. Polynomial Division P x   A x   Q x   R x  where; A(x) is the divisor Q(x) is the quotient R(x) is the remainder Note: degree R(x) < degree A(x) Q(x) and R(x) are unique
  • 8. Polynomial Division P x   A x   Q x   R x  where; A(x) is the divisor Q(x) is the quotient R(x) is the remainder Note: degree R(x) < degree A(x) Q(x) and R(x) are unique 1998 Extension 1 HSC Q2a) Find the quotient, Q(x), and the remainder, R(x), when the polynomial P x   x 4  x 2  1 is divided by x 2  1
  • 9. Polynomial Division P x   A x   Q x   R x  where; A(x) is the divisor Q(x) is the quotient R(x) is the remainder Note: degree R(x) < degree A(x) Q(x) and R(x) are unique 1998 Extension 1 HSC Q2a) Find the quotient, Q(x), and the remainder, R(x), when the polynomial P x   x 4  x 2  1 is divided by x 2  1 x 2  1 x 4  0 x3  x 2  0 x  1
  • 10. Polynomial Division P x   A x   Q x   R x  where; A(x) is the divisor Q(x) is the quotient R(x) is the remainder Note: degree R(x) < degree A(x) Q(x) and R(x) are unique 1998 Extension 1 HSC Q2a) Find the quotient, Q(x), and the remainder, R(x), when the polynomial P x   x 4  x 2  1 is divided by x 2  1 x2 x 2  1 x 4  0 x3  x 2  0 x  1
  • 11. Polynomial Division P x   A x   Q x   R x  where; A(x) is the divisor Q(x) is the quotient R(x) is the remainder Note: degree R(x) < degree A(x) Q(x) and R(x) are unique 1998 Extension 1 HSC Q2a) Find the quotient, Q(x), and the remainder, R(x), when the polynomial P x   x 4  x 2  1 is divided by x 2  1 x2 x 2  1 x 4  0 x3  x 2  0 x  1 x 4  0 x3  x 2
  • 12. Polynomial Division P x   A x   Q x   R x  where; A(x) is the divisor Q(x) is the quotient R(x) is the remainder Note: degree R(x) < degree A(x) Q(x) and R(x) are unique 1998 Extension 1 HSC Q2a) Find the quotient, Q(x), and the remainder, R(x), when the polynomial P x   x 4  x 2  1 is divided by x 2  1 x2 x 2  1 x 4  0 x3  x 2  0 x  1 x 4  0 x3  x 2  2x 2
  • 13. Polynomial Division P x   A x   Q x   R x  where; A(x) is the divisor Q(x) is the quotient R(x) is the remainder Note: degree R(x) < degree A(x) Q(x) and R(x) are unique 1998 Extension 1 HSC Q2a) Find the quotient, Q(x), and the remainder, R(x), when the polynomial P x   x 4  x 2  1 is divided by x 2  1 x2 x 2  1 x 4  0 x3  x 2  0 x  1 x 4  0 x3  x 2  2x 2  0 x  1
  • 14. Polynomial Division P x   A x   Q x   R x  where; A(x) is the divisor Q(x) is the quotient R(x) is the remainder Note: degree R(x) < degree A(x) Q(x) and R(x) are unique 1998 Extension 1 HSC Q2a) Find the quotient, Q(x), and the remainder, R(x), when the polynomial P x   x 4  x 2  1 is divided by x 2  1 x2 2 x 2  1 x 4  0 x3  x 2  0 x  1 x 4  0 x3  x 2  2x 2  0 x  1
  • 15. Polynomial Division P x   A x   Q x   R x  where; A(x) is the divisor Q(x) is the quotient R(x) is the remainder Note: degree R(x) < degree A(x) Q(x) and R(x) are unique 1998 Extension 1 HSC Q2a) Find the quotient, Q(x), and the remainder, R(x), when the polynomial P x   x 4  x 2  1 is divided by x 2  1 x2 2 x 2  1 x 4  0 x3  x 2  0 x  1 x 4  0 x3  x 2  2x 2  0 x  1  2x2  0x  2
  • 16. Polynomial Division P x   A x   Q x   R x  where; A(x) is the divisor Q(x) is the quotient R(x) is the remainder Note: degree R(x) < degree A(x) Q(x) and R(x) are unique 1998 Extension 1 HSC Q2a) Find the quotient, Q(x), and the remainder, R(x), when the polynomial P x   x 4  x 2  1 is divided by x 2  1 x2 2 x 2  1 x 4  0 x3  x 2  0 x  1 x 4  0 x3  x 2  2x 2  0 x  1  2x2  0x  2
  • 17. Polynomial Division P x   A x   Q x   R x  where; A(x) is the divisor Q(x) is the quotient R(x) is the remainder Note: degree R(x) < degree A(x) Q(x) and R(x) are unique 1998 Extension 1 HSC Q2a) Find the quotient, Q(x), and the remainder, R(x), when the polynomial P x   x 4  x 2  1 is divided by x 2  1 x2 2 x 2  1 x 4  0 x3  x 2  0 x  1 x 4  0 x3  x 2  2x 2  0 x  1  2x2  0x  2  Q x   x 2  2 and R x   3
  • 18. (i) Divide the polynomial 1988 Extension 1 HSC Q4b) f  x   2 x 4  10 x 3  12 x 2  2 x  3 by g  x   x 2  3 x  1
  • 19. (i) Divide the polynomial 1988 Extension 1 HSC Q4b) f  x   2 x 4  10 x 3  12 x 2  2 x  3 by g  x   x 2  3 x  1 x 2  3 x  1 2 x 4  10 x 3  12 x 2  2 x  3
  • 20. (i) Divide the polynomial 1988 Extension 1 HSC Q4b) f  x   2 x 4  10 x 3  12 x 2  2 x  3 by g  x   x 2  3 x  1 2x 2 x 2  3 x  1 2 x 4  10 x 3  12 x 2  2 x  3
  • 21. (i) Divide the polynomial 1988 Extension 1 HSC Q4b) f  x   2 x 4  10 x 3  12 x 2  2 x  3 by g  x   x 2  3 x  1 2x 2 x 2  3 x  1 2 x 4  10 x 3  12 x 2  2 x  3 2 x 4  6 x3  2 x 2
  • 22. (i) Divide the polynomial 1988 Extension 1 HSC Q4b) f  x   2 x 4  10 x 3  12 x 2  2 x  3 by g  x   x 2  3 x  1 2x 2 x 2  3 x  1 2 x 4  10 x 3  12 x 2  2 x  3 2 x 4  6 x3  2 x 2  4 x 3  10 x 2
  • 23. (i) Divide the polynomial 1988 Extension 1 HSC Q4b) f  x   2 x 4  10 x 3  12 x 2  2 x  3 by g  x   x 2  3 x  1 2x 2 x 2  3 x  1 2 x 4  10 x 3  12 x 2  2 x  3 2 x 4  6 x3  2 x 2  4 x 3  10 x 2  2 x  3
  • 24. (i) Divide the polynomial 1988 Extension 1 HSC Q4b) f  x   2 x 4  10 x 3  12 x 2  2 x  3 by g  x   x 2  3 x  1 2x 2  4 x x 2  3 x  1 2 x 4  10 x 3  12 x 2  2 x  3 2 x 4  6 x3  2 x 2  4 x 3  10 x 2  2 x  3
  • 25. (i) Divide the polynomial 1988 Extension 1 HSC Q4b) f  x   2 x 4  10 x 3  12 x 2  2 x  3 by g  x   x 2  3 x  1 2x 2  4 x x 2  3 x  1 2 x 4  10 x 3  12 x 2  2 x  3 2 x 4  6 x3  2 x 2  4 x 3  10 x 2  2 x  3  4 x 3  12 x 2  4 x
  • 26. (i) Divide the polynomial 1988 Extension 1 HSC Q4b) f  x   2 x 4  10 x 3  12 x 2  2 x  3 by g  x   x 2  3 x  1 2x 2  4 x x 2  3 x  1 2 x 4  10 x 3  12 x 2  2 x  3 2 x 4  6 x3  2 x 2  4 x 3  10 x 2  2 x  3  4 x 3  12 x 2  4 x  2x2  6x
  • 27. (i) Divide the polynomial 1988 Extension 1 HSC Q4b) f  x   2 x 4  10 x 3  12 x 2  2 x  3 by g  x   x 2  3 x  1 2x 2  4 x x 2  3 x  1 2 x 4  10 x 3  12 x 2  2 x  3 2 x 4  6 x3  2 x 2  4 x 3  10 x 2  2 x  3  4 x 3  12 x 2  4 x  2x2  6x  3
  • 28. (i) Divide the polynomial 1988 Extension 1 HSC Q4b) f  x   2 x 4  10 x 3  12 x 2  2 x  3 by g  x   x 2  3 x  1 2x 2  4 x  2 x 2  3 x  1 2 x 4  10 x 3  12 x 2  2 x  3 2 x 4  6 x3  2 x 2  4 x 3  10 x 2  2 x  3  4 x 3  12 x 2  4 x  2x2  6x  3
  • 29. (i) Divide the polynomial 1988 Extension 1 HSC Q4b) f  x   2 x 4  10 x 3  12 x 2  2 x  3 by g  x   x 2  3 x  1 2x 2  4 x  2 x 2  3 x  1 2 x 4  10 x 3  12 x 2  2 x  3 2 x 4  6 x3  2 x 2  4 x 3  10 x 2  2 x  3  4 x 3  12 x 2  4 x  2x2  6x  3  2x2  6x  2
  • 30. (i) Divide the polynomial 1988 Extension 1 HSC Q4b) f  x   2 x 4  10 x 3  12 x 2  2 x  3 by g  x   x 2  3 x  1 2x 2  4 x  2 x 2  3 x  1 2 x 4  10 x 3  12 x 2  2 x  3 2 x 4  6 x3  2 x 2  4 x 3  10 x 2  2 x  3  4 x 3  12 x 2  4 x  2x2  6x  3  2x2  6x  2 1
  • 31. (i) Divide the polynomial 1988 Extension 1 HSC Q4b) f  x   2 x 4  10 x 3  12 x 2  2 x  3 by g  x   x 2  3 x  1 2x 2  4 x  2 x 2  3 x  1 2 x 4  10 x 3  12 x 2  2 x  3 2 x 4  6 x3  2 x 2  4 x 3  10 x 2  2 x  3  4 x 3  12 x 2  4 x  2x2  6x  3  2x2  6x  2 1 (ii) Hence write f(x) = g(x)q(x) + r(x) where q(x) and r(x) are polynomials and r(x) has degree less than 2.
  • 32. (i) Divide the polynomial 1988 Extension 1 HSC Q4b) f  x   2 x 4  10 x 3  12 x 2  2 x  3 by g  x   x 2  3 x  1 2x 2  4 x  2 x 2  3 x  1 2 x 4  10 x 3  12 x 2  2 x  3 2 x 4  6 x3  2 x 2  4 x 3  10 x 2  2 x  3  4 x 3  12 x 2  4 x  2x2  6x  3  2x2  6x  2 1 (ii) Hence write f(x) = g(x)q(x) + r(x) where q(x) and r(x) are polynomials and r(x) has degree less than 2. 2 x 4  10 x 3  12 x 2  2 x  3  x 2  3 x  12 x 2  4 x  2   1
  • 33. Further graphing of polynomials P x  R x  y  Q x   A x  A x 
  • 34. Further graphing of polynomials P x  R x  y  Q x   A x  A x  solve A(x) = 0 to find vertical asymptotes
  • 35. Further graphing of polynomials P x  R x  y  Q x   A x  A x  y = Q(x) is the solve A(x) = 0 to find horizontal/oblique vertical asymptotes asymptote
  • 36. Further graphing of polynomials solve R(x) = 0 to find where (if anywhere) the curve cuts the horizontal/oblique asymptote P x  R x  y  Q x   A x  A x  y = Q(x) is the solve A(x) = 0 to find horizontal/oblique vertical asymptotes asymptote
  • 37. 8x Example: Sketch the graph of y  x  2 , clearly indicating any x 9 asymptotes and any points where the graph meets the axes.
  • 38. 8x Example: Sketch the graph of y  x  2 , clearly indicating any x 9 asymptotes and any points where the graph meets the axes. • vertical asymptotes at x  3
  • 39. x=-3 x=3 y  x     
  • 40. 8x Example: Sketch the graph of y  x  2 , clearly indicating any x 9 asymptotes and any points where the graph meets the axes. • vertical asymptotes at x  3 • oblique asymptote at y  x
  • 41. x=-3 x=3 y y=x  x     
  • 42. 8x Example: Sketch the graph of y  x  2 , clearly indicating any x 9 asymptotes and any points where the graph meets the axes. • vertical asymptotes at x  3 • oblique asymptote at y  x • curve meets oblique asymptote at 8x = 0 x=0
  • 43. x=-3 x=3 y y=x  x     
  • 44. x=-3 x=3 y y=x  x     
  • 45. Exercise 4C; 1c, 2bdfh, 3bd, 4ac, 6ace, 7b, 8, 11, 14*