SlideShare a Scribd company logo
1 of 5
Nama :Nikmah Utami
NPM : 0031421
Kelas : 1 Elektronika A
Tugas : MATEMATIKA
Tentukanlah nilai
𝑑𝑦
𝑑π‘₯
dari fungsi berikut ini !
1. 𝑦 = √ π‘₯5 + 6π‘₯2 + 3
2. 𝑦 = √ π‘₯4 + 6π‘₯ + 1
3
3. 𝑦 = √ π‘₯2 βˆ’ 5π‘₯
5
4. 𝑦 =
1
√π‘₯4+2π‘₯
5. 𝑦 =
1
√π‘₯2βˆ’6π‘₯
3
6. 𝑦 =
1
√π‘₯2βˆ’5π‘₯+2
5
7. 𝑦 = sin √ π‘₯2 + 6π‘₯
8. 𝑦 = cos √ π‘₯3 + 2
3
9. 𝑦 = sin
1
√π‘₯2+2
10. 𝑦 = cos
1
√π‘₯2+6
3
Jawaban :
1. 𝑦 = √ π‘₯5 + 6π‘₯2 + 3
Misal u = π‘₯5
+ 6π‘₯2
+ 3 , maka
𝑑𝑒
𝑑π‘₯
= 5π‘₯4
+ 12π‘₯
𝑦 = √ 𝑒 = 𝑒
1
2 , maka
𝑑𝑦
𝑑𝑒
=
1
2
π‘’βˆ’
1
2 =
1
2
(π‘₯5
+ 6π‘₯2
+ 3)βˆ’
1
2
Maka
𝑑𝑦
𝑑π‘₯
=
𝑑𝑦
𝑑𝑒
.
𝑑𝑒
𝑑π‘₯
=
1
2
(π‘₯5
+ 6π‘₯2
+ 3)βˆ’
1
2 . (5π‘₯4
+ 12π‘₯)
𝑑𝑦
𝑑π‘₯
=
1
2
(5π‘₯4
+ 12π‘₯)
(π‘₯5 + 6π‘₯2 + 3)
1
2
=
1
2
(5π‘₯4
+ 12π‘₯)
√ π‘₯5 + 6π‘₯2 + 3
2. 𝑦 = √ π‘₯4 + 6π‘₯ + 1
3
Misal u = π‘₯4
+ 6π‘₯ + 1 , maka
𝑑𝑒
𝑑π‘₯
= 4π‘₯3
+ 6
𝑦 = √ 𝑒3
= 𝑒
1
3 , maka
𝑑𝑦
𝑑𝑒
=
1
3
π‘’βˆ’
2
3 =
1
3
(π‘₯4
+ 6π‘₯ + 1)βˆ’
2
3
Maka
𝑑𝑦
𝑑π‘₯
=
𝑑𝑦
𝑑𝑒
.
𝑑𝑒
𝑑π‘₯
=
1
3
(π‘₯4
+ 6π‘₯ + 1)βˆ’
2
3 . (4π‘₯3
+ 6)
𝑑𝑦
𝑑π‘₯
=
1
3
(4π‘₯3
+ 6)
(π‘₯4 + 6π‘₯ + 1)
2
3
=
1
3
(4π‘₯3
+ 6)
√(π‘₯4 + 6π‘₯ + 1)23
3. 𝑦 = √ π‘₯2 βˆ’ 5π‘₯
5
Misal u = π‘₯2
βˆ’ 5π‘₯ , maka
𝑑𝑒
𝑑π‘₯
= 2π‘₯ βˆ’ 5
𝑦 = √ 𝑒5
= 𝑒
1
5 , maka
𝑑𝑦
𝑑𝑒
=
1
5
π‘’βˆ’
4
5 =
1
5
(π‘₯2
βˆ’ 5π‘₯)βˆ’
4
5
Maka
𝑑𝑦
𝑑π‘₯
=
𝑑𝑦
𝑑𝑒
.
𝑑𝑒
𝑑π‘₯
=
1
5
(π‘₯2
βˆ’ 5π‘₯)βˆ’
4
5 .(2π‘₯ βˆ’ 5)
𝑑𝑦
𝑑π‘₯
=
1
5
(2π‘₯ βˆ’ 5)
(π‘₯2 βˆ’ 5π‘₯)
4
5
=
1
5
(2π‘₯ βˆ’ 5)
√(π‘₯2 βˆ’ 5π‘₯)45
4. 𝑦 =
1
√π‘₯4+2π‘₯
=
1
(π‘₯4+2π‘₯)
1
2
= (π‘₯4
+ 2π‘₯)βˆ’
1
2
Misal u = π‘₯4
+ 2π‘₯ , maka
𝑑𝑒
𝑑π‘₯
= 4π‘₯3
+ 2
𝑦 = π‘’βˆ’
1
2 , maka
𝑑𝑦
𝑑𝑒
= βˆ’
1
2
π‘’βˆ’
3
2 = βˆ’
1
2
(π‘₯4
+ 2π‘₯)βˆ’
3
2
Maka
𝑑𝑦
𝑑π‘₯
=
𝑑𝑦
𝑑𝑒
.
𝑑𝑒
𝑑π‘₯
= βˆ’
1
2
(π‘₯4
+ 2π‘₯)βˆ’
3
2 .(4π‘₯3
+ 2)
𝑑𝑦
𝑑π‘₯
=
βˆ’
1
2
(4π‘₯3
+ 2)
(π‘₯4 + 2π‘₯)
3
2
=
βˆ’2π‘₯3
βˆ’ 1
√(π‘₯4 + 2π‘₯)3
5. 𝑦 =
1
√π‘₯2βˆ’6π‘₯
3 =
1
(π‘₯2βˆ’6π‘₯)
1
3
= (π‘₯2
βˆ’ 6π‘₯)βˆ’
1
3
Misal u = π‘₯2
βˆ’ 6π‘₯ , maka
𝑑𝑒
𝑑π‘₯
= 2π‘₯ βˆ’ 6
𝑦 = π‘’βˆ’
1
3 , maka
𝑑𝑦
𝑑𝑒
= βˆ’
1
3
π‘’βˆ’
4
3 = βˆ’
1
3
(π‘₯2
βˆ’ 6π‘₯)βˆ’
4
3
Maka
𝑑𝑦
𝑑π‘₯
=
𝑑𝑦
𝑑𝑒
.
𝑑𝑒
𝑑π‘₯
= βˆ’
1
3
(π‘₯2
βˆ’ 6π‘₯)βˆ’
4
3 .(2π‘₯ βˆ’ 6)
𝑑𝑦
𝑑π‘₯
=
βˆ’
1
3
. (2π‘₯ βˆ’ 6)
(π‘₯2 βˆ’ 6π‘₯)βˆ’
4
3
=
βˆ’
1
3
(2π‘₯ βˆ’ 6)
√(π‘₯2 βˆ’ 6π‘₯)43
6. 𝑦 =
1
√π‘₯2βˆ’5π‘₯+2
5 =
1
(π‘₯2βˆ’5π‘₯+2)
1
5
= (π‘₯2
βˆ’ 5π‘₯ + 2)βˆ’
1
5
Misal u = π‘₯2
βˆ’ 5π‘₯ + 2 , maka
𝑑𝑒
𝑑π‘₯
= 2π‘₯ βˆ’ 5
𝑦 = π‘’βˆ’
1
5 , maka
𝑑𝑦
𝑑𝑒
= βˆ’
1
5
π‘’βˆ’
6
5 = βˆ’
1
5
(π‘₯2
βˆ’ 5π‘₯ + 2)βˆ’
6
5
Maka
𝑑𝑦
𝑑π‘₯
=
𝑑𝑦
𝑑𝑒
.
𝑑𝑒
𝑑π‘₯
= βˆ’
1
5
(π‘₯2
βˆ’ 5π‘₯ + 2)βˆ’
6
5 .(2π‘₯ βˆ’ 5)
𝑑𝑦
𝑑π‘₯
=
βˆ’
1
5
. (2π‘₯ βˆ’ 5)
(π‘₯2 βˆ’ 5π‘₯ + 2)
6
5
=
βˆ’
1
5
(2π‘₯ βˆ’ 5)
√(π‘₯2 βˆ’ 5π‘₯ + 2)65
7. 𝑦 = sin √ π‘₯2 + 6π‘₯
Misal u = π‘₯2
+ 6π‘₯ , maka
𝑑𝑒
𝑑π‘₯
= 2π‘₯ + 6
𝑣 = √ 𝑒 = 𝑒
1
2 , maka
𝑑𝑣
𝑑𝑒
=
1
2
π‘’βˆ’
1
2 =
1
2
(π‘₯2
+ 6π‘₯ )βˆ’
1
2
𝑦 = sin 𝑣 , maka
𝑑𝑦
𝑑𝑣
= cos 𝑣 = cos √ 𝑒 = cos √ π‘₯2 + 6π‘₯
Maka
𝑑𝑦
𝑑π‘₯
=
𝑑𝑦
𝑑𝑣
.
𝑑𝑣
𝑑𝑒
.
𝑑𝑒
𝑑π‘₯
= cos √ π‘₯2 + 6π‘₯ .
1
2
(π‘₯2
+ 6π‘₯ )βˆ’
1
2 .(2π‘₯ + 6)
𝑑𝑦
𝑑π‘₯
=
1
2
. (2π‘₯ + 6) .cos √ π‘₯2 + 6π‘₯
(π‘₯2 + 6π‘₯ )
1
2
=
( π‘₯ + 3) .cos √ π‘₯2 + 6π‘₯
√ π‘₯2 + 6π‘₯
8. 𝑦 = cos √ π‘₯3 + 2
3
Misal u = π‘₯3
+ 2 , maka
𝑑𝑒
𝑑π‘₯
= 3π‘₯2
𝑣 = √ 𝑒3
= 𝑒
1
3 , maka
𝑑𝑣
𝑑𝑒
=
1
3
π‘’βˆ’
2
3 =
1
3
(π‘₯3
+ 2)βˆ’
2
3
𝑦 = cos 𝑣 , maka
𝑑𝑦
𝑑𝑣
= βˆ’sin 𝑣 = βˆ’sin √ 𝑒3
= βˆ’sin √ π‘₯3 + 2
3
Maka
𝑑𝑦
𝑑π‘₯
=
𝑑𝑦
𝑑𝑣
.
𝑑𝑣
𝑑𝑒
.
𝑑𝑒
𝑑π‘₯
= βˆ’sin √ π‘₯3 + 2
3
.
1
3
(π‘₯3
+ 2)βˆ’
2
3 .3π‘₯2
𝑑𝑦
𝑑π‘₯
=
1
3
. 3π‘₯2
. βˆ’sin √ π‘₯3 + 2
3
(π‘₯3 + 2)
2
3
=
π‘₯2
. βˆ’sin √ π‘₯3 + 2
3
√(π‘₯3 + 2)23
9. 𝑦 = sin
1
√π‘₯2+2
= sin
1
(π‘₯2+2)
1
2
= sin(π‘₯2
+ 2)βˆ’
1
2
Misal u = π‘₯2
+ 2 , maka
𝑑𝑒
𝑑π‘₯
= 2π‘₯
𝑣 = π‘’βˆ’
1
2 , maka
𝑑𝑣
𝑑𝑒
= βˆ’
1
2
π‘’βˆ’
3
2 = βˆ’
1
2
(π‘₯2
+ 2)βˆ’
3
2
𝑦 = sin 𝑣 , maka
𝑑𝑦
𝑑𝑣
= cos 𝑣 = cos π‘’βˆ’
1
2 = cos(π‘₯2
+ 2)βˆ’
1
2
Maka
𝑑𝑦
𝑑π‘₯
=
𝑑𝑦
𝑑𝑣
.
𝑑𝑣
𝑑𝑒
.
𝑑𝑒
𝑑π‘₯
= cos(π‘₯2
+ 2)βˆ’
1
2 . βˆ’
1
2
(π‘₯2
+ 2)βˆ’
3
2 .2π‘₯
𝑑𝑦
𝑑π‘₯
=
βˆ’
1
2
. 2π‘₯ . cos(π‘₯2
+ 2)βˆ’
1
2
(π‘₯2 + 2)
3
2
=
βˆ’π‘₯ . cos(π‘₯2
+ 2)βˆ’
1
2
√(π‘₯2 + 2)3
10. 𝑦 = cos
1
√π‘₯2+6
3 = cos
1
(π‘₯2+6)
1
3
= cos(π‘₯2
+ 6)βˆ’
1
3
Misal u = π‘₯2
+ 6 , maka
𝑑𝑒
𝑑π‘₯
= 2π‘₯
𝑣 = π‘’βˆ’
1
3 , maka
𝑑𝑣
𝑑𝑒
= βˆ’
1
3
π‘’βˆ’
4
3 = βˆ’
1
3
(π‘₯2
+ 6)βˆ’
4
3
𝑦 = cos 𝑣 , maka
𝑑𝑦
𝑑𝑣
= βˆ’sin 𝑣 = βˆ’sin π‘’βˆ’
1
3 = βˆ’sin(π‘₯2
+ 6)βˆ’
1
3
Maka
𝑑𝑦
𝑑π‘₯
=
𝑑𝑦
𝑑𝑣
.
𝑑𝑣
𝑑𝑒
.
𝑑𝑒
𝑑π‘₯
= βˆ’sin(π‘₯2
+ 6)βˆ’
1
3 . βˆ’
1
3
(π‘₯2
+ 6)βˆ’
4
3 .2π‘₯
𝑑𝑦
𝑑π‘₯
=
βˆ’
1
3
. 2π‘₯ . βˆ’sin(π‘₯2
+ 6)βˆ’
1
3
(π‘₯2 + 6)
4
3
=
1
3
. 2π‘₯ . sin(π‘₯2
+ 6)βˆ’
1
3
√(π‘₯2 + 6)43

More Related Content

What's hot

Tugas matematika 2 (semester 2) - Tia
Tugas matematika 2 (semester 2) - TiaTugas matematika 2 (semester 2) - Tia
Tugas matematika 2 (semester 2) - Tia
tia206
Β 

What's hot (17)

2nd MathTask
2nd MathTask2nd MathTask
2nd MathTask
Β 
Tugas 2
Tugas 2Tugas 2
Tugas 2
Β 
1st Math Task
1st Math Task1st Math Task
1st Math Task
Β 
Problemas del libro de granville
Problemas del libro de granvilleProblemas del libro de granville
Problemas del libro de granville
Β 
Tugas 2 mtk 2
Tugas 2 mtk 2Tugas 2 mtk 2
Tugas 2 mtk 2
Β 
Tugas 2 MTK2
Tugas 2 MTK2Tugas 2 MTK2
Tugas 2 MTK2
Β 
Tugas 2
Tugas 2Tugas 2
Tugas 2
Β 
Tugas 2 Matematika 2
Tugas 2 Matematika 2Tugas 2 Matematika 2
Tugas 2 Matematika 2
Β 
Integrales indefinidas
Integrales indefinidasIntegrales indefinidas
Integrales indefinidas
Β 
Tugas Matematika "Kelompok 7"
Tugas Matematika "Kelompok 7"Tugas Matematika "Kelompok 7"
Tugas Matematika "Kelompok 7"
Β 
Tugas Matematika Kelompok 7
Tugas Matematika Kelompok 7 Tugas Matematika Kelompok 7
Tugas Matematika Kelompok 7
Β 
Tugas Matematika Kelompok 7
Tugas Matematika Kelompok 7Tugas Matematika Kelompok 7
Tugas Matematika Kelompok 7
Β 
Tugas 2 mtk
Tugas 2 mtkTugas 2 mtk
Tugas 2 mtk
Β 
Tugas Matematika Kelompok 7
Tugas Matematika Kelompok 7Tugas Matematika Kelompok 7
Tugas Matematika Kelompok 7
Β 
Tugas Matematika Kelompok 7
Tugas Matematika Kelompok 7 Tugas Matematika Kelompok 7
Tugas Matematika Kelompok 7
Β 
Tugas matematika 2 (semester 2) - Tia
Tugas matematika 2 (semester 2) - TiaTugas matematika 2 (semester 2) - Tia
Tugas matematika 2 (semester 2) - Tia
Β 
Tugas matematika 2 (semester 2)
Tugas matematika 2 (semester 2)Tugas matematika 2 (semester 2)
Tugas matematika 2 (semester 2)
Β 

Viewers also liked (7)

Sd5mat matematika5
Sd5mat matematika5Sd5mat matematika5
Sd5mat matematika5
Β 
Bab 5 limit 2 dan kekontinuan
Bab 5 limit 2 dan kekontinuanBab 5 limit 2 dan kekontinuan
Bab 5 limit 2 dan kekontinuan
Β 
Teorema sisa
Teorema sisaTeorema sisa
Teorema sisa
Β 
Mat_2sd_homeschooling
Mat_2sd_homeschoolingMat_2sd_homeschooling
Mat_2sd_homeschooling
Β 
29385408 65-modul-matematika-kumpulan-soal-akhir-kelas-x-xi-xii
29385408 65-modul-matematika-kumpulan-soal-akhir-kelas-x-xi-xii29385408 65-modul-matematika-kumpulan-soal-akhir-kelas-x-xi-xii
29385408 65-modul-matematika-kumpulan-soal-akhir-kelas-x-xi-xii
Β 
Pembahasan Soal UN 2012 Bentuk Pangkat, Akar dan Logaritma
Pembahasan Soal UN 2012   Bentuk Pangkat, Akar dan LogaritmaPembahasan Soal UN 2012   Bentuk Pangkat, Akar dan Logaritma
Pembahasan Soal UN 2012 Bentuk Pangkat, Akar dan Logaritma
Β 
SMK-MAK kelas10 smk matematika seni hendy gumilar
SMK-MAK kelas10 smk matematika seni hendy gumilarSMK-MAK kelas10 smk matematika seni hendy gumilar
SMK-MAK kelas10 smk matematika seni hendy gumilar
Β 

More from nikmahpolman (9)

Tugas matematika 3
Tugas matematika 3Tugas matematika 3
Tugas matematika 3
Β 
Tugas Bab 4
Tugas Bab 4Tugas Bab 4
Tugas Bab 4
Β 
Tugas 3 matematika 3
Tugas 3 matematika 3Tugas 3 matematika 3
Tugas 3 matematika 3
Β 
Tugas 1 matematika 3
Tugas 1 matematika 3Tugas 1 matematika 3
Tugas 1 matematika 3
Β 
Tugas 3 (Matematika 2) : Integral
Tugas 3 (Matematika 2) : IntegralTugas 3 (Matematika 2) : Integral
Tugas 3 (Matematika 2) : Integral
Β 
Tugas matematika - Kelompok 3 (15-21)
Tugas matematika - Kelompok 3 (15-21)Tugas matematika - Kelompok 3 (15-21)
Tugas matematika - Kelompok 3 (15-21)
Β 
Tugas matematika 2 (semester 2) - Polman Babel
Tugas matematika 2 (semester 2)  - Polman BabelTugas matematika 2 (semester 2)  - Polman Babel
Tugas matematika 2 (semester 2) - Polman Babel
Β 
Tugas matematika 1 (semester 2) - Polman Babel
Tugas matematika 1 (semester 2)  - Polman BabelTugas matematika 1 (semester 2)  - Polman Babel
Tugas matematika 1 (semester 2) - Polman Babel
Β 
Tugas matematika 1 (semester 2)
Tugas matematika 1 (semester 2)Tugas matematika 1 (semester 2)
Tugas matematika 1 (semester 2)
Β 

Tugas matematika 2 (semester 2)

  • 1. Nama :Nikmah Utami NPM : 0031421 Kelas : 1 Elektronika A Tugas : MATEMATIKA Tentukanlah nilai 𝑑𝑦 𝑑π‘₯ dari fungsi berikut ini ! 1. 𝑦 = √ π‘₯5 + 6π‘₯2 + 3 2. 𝑦 = √ π‘₯4 + 6π‘₯ + 1 3 3. 𝑦 = √ π‘₯2 βˆ’ 5π‘₯ 5 4. 𝑦 = 1 √π‘₯4+2π‘₯ 5. 𝑦 = 1 √π‘₯2βˆ’6π‘₯ 3 6. 𝑦 = 1 √π‘₯2βˆ’5π‘₯+2 5 7. 𝑦 = sin √ π‘₯2 + 6π‘₯ 8. 𝑦 = cos √ π‘₯3 + 2 3 9. 𝑦 = sin 1 √π‘₯2+2 10. 𝑦 = cos 1 √π‘₯2+6 3 Jawaban : 1. 𝑦 = √ π‘₯5 + 6π‘₯2 + 3 Misal u = π‘₯5 + 6π‘₯2 + 3 , maka 𝑑𝑒 𝑑π‘₯ = 5π‘₯4 + 12π‘₯ 𝑦 = √ 𝑒 = 𝑒 1 2 , maka 𝑑𝑦 𝑑𝑒 = 1 2 π‘’βˆ’ 1 2 = 1 2 (π‘₯5 + 6π‘₯2 + 3)βˆ’ 1 2 Maka 𝑑𝑦 𝑑π‘₯ = 𝑑𝑦 𝑑𝑒 . 𝑑𝑒 𝑑π‘₯ = 1 2 (π‘₯5 + 6π‘₯2 + 3)βˆ’ 1 2 . (5π‘₯4 + 12π‘₯) 𝑑𝑦 𝑑π‘₯ = 1 2 (5π‘₯4 + 12π‘₯) (π‘₯5 + 6π‘₯2 + 3) 1 2 = 1 2 (5π‘₯4 + 12π‘₯) √ π‘₯5 + 6π‘₯2 + 3 2. 𝑦 = √ π‘₯4 + 6π‘₯ + 1 3 Misal u = π‘₯4 + 6π‘₯ + 1 , maka 𝑑𝑒 𝑑π‘₯ = 4π‘₯3 + 6 𝑦 = √ 𝑒3 = 𝑒 1 3 , maka 𝑑𝑦 𝑑𝑒 = 1 3 π‘’βˆ’ 2 3 = 1 3 (π‘₯4 + 6π‘₯ + 1)βˆ’ 2 3 Maka 𝑑𝑦 𝑑π‘₯ = 𝑑𝑦 𝑑𝑒 . 𝑑𝑒 𝑑π‘₯ = 1 3 (π‘₯4 + 6π‘₯ + 1)βˆ’ 2 3 . (4π‘₯3 + 6)
  • 2. 𝑑𝑦 𝑑π‘₯ = 1 3 (4π‘₯3 + 6) (π‘₯4 + 6π‘₯ + 1) 2 3 = 1 3 (4π‘₯3 + 6) √(π‘₯4 + 6π‘₯ + 1)23 3. 𝑦 = √ π‘₯2 βˆ’ 5π‘₯ 5 Misal u = π‘₯2 βˆ’ 5π‘₯ , maka 𝑑𝑒 𝑑π‘₯ = 2π‘₯ βˆ’ 5 𝑦 = √ 𝑒5 = 𝑒 1 5 , maka 𝑑𝑦 𝑑𝑒 = 1 5 π‘’βˆ’ 4 5 = 1 5 (π‘₯2 βˆ’ 5π‘₯)βˆ’ 4 5 Maka 𝑑𝑦 𝑑π‘₯ = 𝑑𝑦 𝑑𝑒 . 𝑑𝑒 𝑑π‘₯ = 1 5 (π‘₯2 βˆ’ 5π‘₯)βˆ’ 4 5 .(2π‘₯ βˆ’ 5) 𝑑𝑦 𝑑π‘₯ = 1 5 (2π‘₯ βˆ’ 5) (π‘₯2 βˆ’ 5π‘₯) 4 5 = 1 5 (2π‘₯ βˆ’ 5) √(π‘₯2 βˆ’ 5π‘₯)45 4. 𝑦 = 1 √π‘₯4+2π‘₯ = 1 (π‘₯4+2π‘₯) 1 2 = (π‘₯4 + 2π‘₯)βˆ’ 1 2 Misal u = π‘₯4 + 2π‘₯ , maka 𝑑𝑒 𝑑π‘₯ = 4π‘₯3 + 2 𝑦 = π‘’βˆ’ 1 2 , maka 𝑑𝑦 𝑑𝑒 = βˆ’ 1 2 π‘’βˆ’ 3 2 = βˆ’ 1 2 (π‘₯4 + 2π‘₯)βˆ’ 3 2 Maka 𝑑𝑦 𝑑π‘₯ = 𝑑𝑦 𝑑𝑒 . 𝑑𝑒 𝑑π‘₯ = βˆ’ 1 2 (π‘₯4 + 2π‘₯)βˆ’ 3 2 .(4π‘₯3 + 2) 𝑑𝑦 𝑑π‘₯ = βˆ’ 1 2 (4π‘₯3 + 2) (π‘₯4 + 2π‘₯) 3 2 = βˆ’2π‘₯3 βˆ’ 1 √(π‘₯4 + 2π‘₯)3
  • 3. 5. 𝑦 = 1 √π‘₯2βˆ’6π‘₯ 3 = 1 (π‘₯2βˆ’6π‘₯) 1 3 = (π‘₯2 βˆ’ 6π‘₯)βˆ’ 1 3 Misal u = π‘₯2 βˆ’ 6π‘₯ , maka 𝑑𝑒 𝑑π‘₯ = 2π‘₯ βˆ’ 6 𝑦 = π‘’βˆ’ 1 3 , maka 𝑑𝑦 𝑑𝑒 = βˆ’ 1 3 π‘’βˆ’ 4 3 = βˆ’ 1 3 (π‘₯2 βˆ’ 6π‘₯)βˆ’ 4 3 Maka 𝑑𝑦 𝑑π‘₯ = 𝑑𝑦 𝑑𝑒 . 𝑑𝑒 𝑑π‘₯ = βˆ’ 1 3 (π‘₯2 βˆ’ 6π‘₯)βˆ’ 4 3 .(2π‘₯ βˆ’ 6) 𝑑𝑦 𝑑π‘₯ = βˆ’ 1 3 . (2π‘₯ βˆ’ 6) (π‘₯2 βˆ’ 6π‘₯)βˆ’ 4 3 = βˆ’ 1 3 (2π‘₯ βˆ’ 6) √(π‘₯2 βˆ’ 6π‘₯)43 6. 𝑦 = 1 √π‘₯2βˆ’5π‘₯+2 5 = 1 (π‘₯2βˆ’5π‘₯+2) 1 5 = (π‘₯2 βˆ’ 5π‘₯ + 2)βˆ’ 1 5 Misal u = π‘₯2 βˆ’ 5π‘₯ + 2 , maka 𝑑𝑒 𝑑π‘₯ = 2π‘₯ βˆ’ 5 𝑦 = π‘’βˆ’ 1 5 , maka 𝑑𝑦 𝑑𝑒 = βˆ’ 1 5 π‘’βˆ’ 6 5 = βˆ’ 1 5 (π‘₯2 βˆ’ 5π‘₯ + 2)βˆ’ 6 5 Maka 𝑑𝑦 𝑑π‘₯ = 𝑑𝑦 𝑑𝑒 . 𝑑𝑒 𝑑π‘₯ = βˆ’ 1 5 (π‘₯2 βˆ’ 5π‘₯ + 2)βˆ’ 6 5 .(2π‘₯ βˆ’ 5) 𝑑𝑦 𝑑π‘₯ = βˆ’ 1 5 . (2π‘₯ βˆ’ 5) (π‘₯2 βˆ’ 5π‘₯ + 2) 6 5 = βˆ’ 1 5 (2π‘₯ βˆ’ 5) √(π‘₯2 βˆ’ 5π‘₯ + 2)65 7. 𝑦 = sin √ π‘₯2 + 6π‘₯ Misal u = π‘₯2 + 6π‘₯ , maka 𝑑𝑒 𝑑π‘₯ = 2π‘₯ + 6 𝑣 = √ 𝑒 = 𝑒 1 2 , maka 𝑑𝑣 𝑑𝑒 = 1 2 π‘’βˆ’ 1 2 = 1 2 (π‘₯2 + 6π‘₯ )βˆ’ 1 2 𝑦 = sin 𝑣 , maka 𝑑𝑦 𝑑𝑣 = cos 𝑣 = cos √ 𝑒 = cos √ π‘₯2 + 6π‘₯
  • 4. Maka 𝑑𝑦 𝑑π‘₯ = 𝑑𝑦 𝑑𝑣 . 𝑑𝑣 𝑑𝑒 . 𝑑𝑒 𝑑π‘₯ = cos √ π‘₯2 + 6π‘₯ . 1 2 (π‘₯2 + 6π‘₯ )βˆ’ 1 2 .(2π‘₯ + 6) 𝑑𝑦 𝑑π‘₯ = 1 2 . (2π‘₯ + 6) .cos √ π‘₯2 + 6π‘₯ (π‘₯2 + 6π‘₯ ) 1 2 = ( π‘₯ + 3) .cos √ π‘₯2 + 6π‘₯ √ π‘₯2 + 6π‘₯ 8. 𝑦 = cos √ π‘₯3 + 2 3 Misal u = π‘₯3 + 2 , maka 𝑑𝑒 𝑑π‘₯ = 3π‘₯2 𝑣 = √ 𝑒3 = 𝑒 1 3 , maka 𝑑𝑣 𝑑𝑒 = 1 3 π‘’βˆ’ 2 3 = 1 3 (π‘₯3 + 2)βˆ’ 2 3 𝑦 = cos 𝑣 , maka 𝑑𝑦 𝑑𝑣 = βˆ’sin 𝑣 = βˆ’sin √ 𝑒3 = βˆ’sin √ π‘₯3 + 2 3 Maka 𝑑𝑦 𝑑π‘₯ = 𝑑𝑦 𝑑𝑣 . 𝑑𝑣 𝑑𝑒 . 𝑑𝑒 𝑑π‘₯ = βˆ’sin √ π‘₯3 + 2 3 . 1 3 (π‘₯3 + 2)βˆ’ 2 3 .3π‘₯2 𝑑𝑦 𝑑π‘₯ = 1 3 . 3π‘₯2 . βˆ’sin √ π‘₯3 + 2 3 (π‘₯3 + 2) 2 3 = π‘₯2 . βˆ’sin √ π‘₯3 + 2 3 √(π‘₯3 + 2)23 9. 𝑦 = sin 1 √π‘₯2+2 = sin 1 (π‘₯2+2) 1 2 = sin(π‘₯2 + 2)βˆ’ 1 2 Misal u = π‘₯2 + 2 , maka 𝑑𝑒 𝑑π‘₯ = 2π‘₯ 𝑣 = π‘’βˆ’ 1 2 , maka 𝑑𝑣 𝑑𝑒 = βˆ’ 1 2 π‘’βˆ’ 3 2 = βˆ’ 1 2 (π‘₯2 + 2)βˆ’ 3 2 𝑦 = sin 𝑣 , maka 𝑑𝑦 𝑑𝑣 = cos 𝑣 = cos π‘’βˆ’ 1 2 = cos(π‘₯2 + 2)βˆ’ 1 2 Maka 𝑑𝑦 𝑑π‘₯ = 𝑑𝑦 𝑑𝑣 . 𝑑𝑣 𝑑𝑒 . 𝑑𝑒 𝑑π‘₯ = cos(π‘₯2 + 2)βˆ’ 1 2 . βˆ’ 1 2 (π‘₯2 + 2)βˆ’ 3 2 .2π‘₯
  • 5. 𝑑𝑦 𝑑π‘₯ = βˆ’ 1 2 . 2π‘₯ . cos(π‘₯2 + 2)βˆ’ 1 2 (π‘₯2 + 2) 3 2 = βˆ’π‘₯ . cos(π‘₯2 + 2)βˆ’ 1 2 √(π‘₯2 + 2)3 10. 𝑦 = cos 1 √π‘₯2+6 3 = cos 1 (π‘₯2+6) 1 3 = cos(π‘₯2 + 6)βˆ’ 1 3 Misal u = π‘₯2 + 6 , maka 𝑑𝑒 𝑑π‘₯ = 2π‘₯ 𝑣 = π‘’βˆ’ 1 3 , maka 𝑑𝑣 𝑑𝑒 = βˆ’ 1 3 π‘’βˆ’ 4 3 = βˆ’ 1 3 (π‘₯2 + 6)βˆ’ 4 3 𝑦 = cos 𝑣 , maka 𝑑𝑦 𝑑𝑣 = βˆ’sin 𝑣 = βˆ’sin π‘’βˆ’ 1 3 = βˆ’sin(π‘₯2 + 6)βˆ’ 1 3 Maka 𝑑𝑦 𝑑π‘₯ = 𝑑𝑦 𝑑𝑣 . 𝑑𝑣 𝑑𝑒 . 𝑑𝑒 𝑑π‘₯ = βˆ’sin(π‘₯2 + 6)βˆ’ 1 3 . βˆ’ 1 3 (π‘₯2 + 6)βˆ’ 4 3 .2π‘₯ 𝑑𝑦 𝑑π‘₯ = βˆ’ 1 3 . 2π‘₯ . βˆ’sin(π‘₯2 + 6)βˆ’ 1 3 (π‘₯2 + 6) 4 3 = 1 3 . 2π‘₯ . sin(π‘₯2 + 6)βˆ’ 1 3 √(π‘₯2 + 6)43