SlideShare a Scribd company logo
1 of 82
An Overview of Cyber Attack and Computer Network
Operations Simulation
Sylvain P. Leblanc,
Andrew Partington
Computer Security Laboratory
Royal Military College of Canada
[email protected]
Ian Chapman,
Mélanie Bernier
Centre for Operational Research and Analysis
Defence Research and Development Canada
[email protected]
[email protected]
Keywords: Overview, Survey Paper, Cyber Attacks, Cyber
Warfare, Computer Network Operations
Abstract
This paper represents a snapshot of the current state of
the art in the simulation and modeling of cyber attacks and
defensive responses to those. It discusses a number of
simulations of cyber warfare, including live, virtual, and
constructive simulations. The simulations discussed in this
paper were found in the open literature and were conducted
in the private sector, academia, and government. Each
simulation is briefly described, including goals,
methodology, and a brief discussion of its accomplishments.
These modeling and simulation efforts are of particular
interest to the military modeling and simulation community,
as it is likely that military forces will continue to rely ever
more heavily on computer and communication networks.
1. INTRODUCTION
The concepts and technical challenges behind the
simulation of military conflicts in the traditional operational
domains – land, maritime, and air – have been well
understood for several decades, and thus numerous
applications have been developed to support computer
wargaming. These wargames are typically used to support
training and experimentation, and are seen as a safe and
cost-effective way to assess the effects of new technologies
and equipment before deploying them to the real battlefield.
Recent events, such as the 2007 cyber attack on
Estonia, have shown the rising importance of computer
network operations (CNO)
1
in an increasingly inter-
networked world. Both civilian and military domains have
become increasingly reliant on computer networks for
communication, information management, utilities
management, financial systems, air traffic control, and many
other critical applications. In fact, the authors argue
elsewhere at this conference that CNO education is vital for
both technical and non-technical commanders, and propose
using simulation to further these educational goals [1].
1
Per US Doctrine, CNO is comprised of Computer Network
Defense (CND), Computer Network Attack (CNA) and
Computer Network Exploitation (CNE). Many sources use
cyber warfare; we use both terms.
Cyber attacks have the potential to be extremely disruptive
to a wired society. To understand some of the ramifications
of these events, including their potential impact on the use
of networks, the research community has begun the
development of a number of applications to simulate cyber
warfare.
The paper is separated in two main sections. The first
part will discuss prominent private sector and academic
research, while the second will discuss public sector
research in the field of modeling and simulation for cyber
warfare.
This paper is intended to present the results of our
survey of current unclassified research literature, openly
published on the topic of simulation for cyber warfare. It is
not meant to be all encompassing. The authors have not
found other works that attempt to summarize key efforts in
this area of study.
The authors believe that simulation will make ever
greater contributions to the field of cyber warfare and CNO.
This paper and the Military Modeling Symposium that flow
from it should be viewed as an attempt to engage the
research community on this important emerging topic.
2. PROMINENT PRIVATE SECTOR AND
ACADEMIC RESEARCH
The idea of simulating cyber attacks has been
investigated by several researchers and students at
universities as well as in private organizations. The
simulations discussed in this section have been selected for
discussion because they represent some of the most
significant work in cyber attack modeling.
2.1. Cyber Attack Modeling using ARENA
ARENA is a constructive simulation developed by
researchers at the Rochester Institute of Technology (RIT),
partially sponsored by the U.S Air Force Research
Laboratory (AFRL) in Rome, NY. The ARENA simulation
software was used to simulate cyber attacks against a
computer network from an external source such as the
internet [2-3].
The simulation models step-by-step attacks on a
computer network. The attacks can be automatically created
within the constructs of the tool, or they can be predefined
in XML files that can be loaded by the simulation tool. Each
92
attack has a specific associated attack type and a target
computer on the network under attack. The simulation
supports a variety of attack types such as Denial of Service
(DoS) attacks and the installation of a backdoor on a target
computer. Each attack will typically go through numerous
steps to attempt access to a target computer. Therefore, each
attack will typically involve an attacker infiltrating several
intermediary computers and servers on a network in order to
compromise the target computer. Along with its defined
type and target, each attack includes characteristics of the
attacker by giving a normalized value for efficiency, stealth
and skill. Efficiency refers to the speed and swiftness with
which the attacker can move from one intermediary host to
another in a multi-tiered network. Stealth refers to the
attacker's ability to avoid unnecessary intermediate steps
which may alert network defenders to his presence. Finally,
the attacker's skill parameter is used to determine
stochastically the success of each intermediary steps
required to prosecute the attack against the target computer.
The ARENA simulation also allows the user to
construct a computer network and execute a series of cyber
attacks on target hosts within that network. The simulated
network can be multi-tiered, with several layers separated
by routers and other network hardware. Host characteristics
can be specified such as the IP address, the operating
system, and the type of Intrusion Detection System (IDS)
sensor used on the hosts (servers or client computers). Once
the network is created, attacks can be simulated manually
(by choosing the attack type, the target and the time when
the attack is launched) or automatically (by using pre-
defined XML attack files). Statistics on the attacks can be
collected by applying the attack details and attacker
characteristics (the attacker's skill, stealth and efficiency
parameters) against the target network architecture.
This ARENA simulation tool is primarily used to
analyze IDS sensors. IDS sensors are deployed at specific
locations within the target network to examine network
traffic and generate alerts based on programmed rules. Not
all alerts are legitimate; some are the result of attacks, while
others are the result of non-malicious activity. The
simulation outputs an attack log, detailing the target and the
time of occurrence of each attack. The simulation also lists
which attacks triggered alerts, and for each IDS, notes the
details between the true and false positives.
Overall, this is a very well developed simulation tool
capable of simulating many forms of attack on a specific,
user-defined network. The focus on analysis of IDS sensors
makes the output of the simulation somewhat limited, but
useful nonetheless. At the end of a simulation run, the user
is presented with a list of attacks that occurred on the
simulated network and a list of the alerts reported by the
IDS sensors. This output can help analyze the target
network topology; however it offers limited benefits in
training and experimentation.
2.2. RINSE
The Real-Time Immersive Network Simulation
Environment (RINSE) is a live simulation developed by
researchers at the University of Illinois at Urbana-
Champaign in 2006 [4]. RINSE was designed with the aim
of developing a simulation capable of supporting large-scale
wide-area networks (WAN) consisting of hundreds of local-
area networks (LAN), each administered by users. In
RINSE simulations, attacks are carried out against the WAN
and users attempt to diagnose and counter the attacks to
keep their LAN's network services running.
Physically, the simulator consists of an enclosed
network with several users acting as LAN managers on
different computers joining the same simulation exercise.
The users are tasked with the defence of their LAN against
computer attacks carried out by the simulation tool. A game
manager coordinates the simulation and plays the role of the
attacker.
Through the command prompt, the user can input
commands that fall into five different categories: attack,
defence (such as the installation of packet filters), diagnostic
networking tools (such as ping), device control (shutting
down or rebooting devices such as hosts and routers), and
simulator data.
The focus of the simulation is on external attack vectors
such as Distributed DoS (DDoS), worms and other attacks
involving high-intensity traffic flows. Simulator commands
are used to control the output of the simulation in order to
highlight the trace flow from a selected host.
RINSE also contains other useful features such as save
points and the ability to vary the pace of the simulation. In
addition, RINSE allows the game manager to adjust the
resources of simulated computers, such as memory and
CPU speed, which is important when modeling DDoS
attacks.
In summary, RINSE is a very powerful and well
designed live simulation tool capable of simulating attacks
on complex networks involving a large number of network
defenders. It is limited by the small number of cyber attacks
that it can simulate. Also, the use of a command-line
interface, instead of a full graphic user interface (GUI),
makes its use cumbersome. While the tool helps with the
training and education of network defenders, it does not
contribute to the general understanding of the implications
of CNO by senior leaders.
2.3. Simulating Cyber Attacks, Defenses and
Consequences by Cohen
Simulating Cyber Attacks, Defences and Consequences
is a paper written by Fred Cohen of Sandia National
Laboratories in the year 1999 [5]. Despite its publication
more than 10 years ago, the paper's discussion of
developments in cyber attack simulation are still largely
93
relevant and have helped contribute to the work on Secusim
(Section 2.4). Cohen’s simulation is constructive, runs on a
single computer and models various attacks on a simulated
network.
Cohen simulates various attack scenarios using the
attacker’s and defender’s skills as the primary simulation
parameter. Cohen went to great lengths to classify attackers
and gives them various attributes and skill levels. Each
attack was given a classification such as vandalism,
professional-theft, military or insider action. Combining
these parameters and attributes yields 34 different classes of
attackers. Each class has a different skill level, different
predetermined attack goals and indication of their ability to
hack stealthily.
This extensive classification scheme makes the
simulation easier to understand and the results easily
analyzed for different types of computer attackers.
Unfortunately Cohen does not detail how he carried out the
classifications. Even if he made very good generalizations
about certain types of attackers, the differences between
individuals are not captured by the simulation. Nevertheless
the idea is intuitive and represents an interesting concept in
cyber attack simulations.
Interestingly, Cohen’s simulation is based on a set of 37
types of threats, 94 types of attacks, and approximately 140
types of protective methods. A database tracks the attacks
and their associated protective methods. This was seen as
very innovative as there is a variety of possible cyber
attacks and only certain defences are possible against certain
attacks. We see no evidence of validation of this extensive
classification scheme.
The output of interest in the simulation is the simulated
duration of the attack and its outcome (whether the attacker
or the defender “wins”). The attacker will win if he achieves
his goals and the defender will win if he successfully
prevents the attacker from achieving his goals. Depending
on the attacker’s goals and the respective skill level of the
attacker and defender, the simulated time of the attack can
range from minutes to years. This is comparable to real life
where attackers may try to accomplish their goals quickly or
wait months or even years for the opportunity to attack.
Cohen extends the usefulness of his simulation by
attempting to value the cost to the attacker and defender in
terms of time spent and the expense of equipment used,
focusing on the cost of a skilled defender versus an
unskilled defender. He posits that hiring a very skilled
computer administrator may be more expensive than the
loss incurred from a cyber attack. Cohen’s work in the
modeling of cost is very simplistic; nevertheless considering
the financial costs in a cyber simulation model is an idea
that may have considerable appeal.
Cohen’s simulation was ground breaking in scope,
attempting to cover many forms of cyber attack and
defence. However, Cohen admits a struggle with validating
his model as he was unable to compare his simulation with
large amounts of data from real world cyber attacks.
However, he maintains that his simulation was validated by
various experts who agreed that his model was accurate.
Nevertheless, since it has been over 10 years since Cohen
designed his simulation, and as he was unable to do much in
the way of validation, one cannot place much faith in the
accuracy of his model. Nevertheless, the ideas, concepts and
methodology in his attempt to simulate cyber attacks are all
very important and applicable to any modern simulation of
cyber attacks.
2.4. SECUSIM
Secusim is constructive simulation software that was
developed at the Department of Computer Engineering at
Hangkong University in Korea in 2001 [6]. It was designed
for the purpose of "specifying attack mechanisms, verifying
defence mechanisms, and evaluating their consequences.” It
is programmed in C++ for use on a single computer and
includes a GUI allowing the user to create a virtual
computer network of his or her design.
The software has different modes: Basic, Intermediate,
Advanced, Professional and Application. Each mode has
different levels of functionality and customizability. The
research paper contrasts the modes as follows:
-
attack mechanisms by retrieving the scenario database.
of a given network by selecting arbitrary attacker model
and target host as well as setting the attack scenario.
-level
testing of a given cyber-attack into the given network
models.
and node vulnerability of given network by allowing
multiple cyber-attack simulation.
allowing users to create and simulate their own
customized network configurations.”
The different modes enable users without much CNO
expertise to operate the software in order to run the
simulation while giving those with more knowledge the
ability to design their own networks and test them against
multiple cyber attacks in a single simulation run.
Secusim is interesting primarily because of its
customizability and its user-friendly GUI. It builds on the
initial research of Fred Cohen and provides a good example
of simulation software used for cyber attack modeling and
analysis.
2.5. Research Efforts Involving OPNET
There have been a few cyber attack simulations that use
the computer software OPNET Modeler. This commercial
simulation software is designed to aid in the analysis and
94
design of communication networks, devices, protocols, and
applications. The software allows the modeling of “all
network types and technologies” [7]. This includes VoIP,
TCP, OSPFv3, MPLS, and IPv6. Among OPNET's many
features are a user interface, support for simulations
distributed across several computers and a library of device
models with source code.
OPNET’s ability to simulate computer networks makes
it an ideal basis for a cyber attack simulation [7]. In this
section, two research papers discuss the use of OPNET in
cyber attack simulations.
2.5.1. Sakhardande - SUNY
"The use of modeling and simulation to examine
network performance under Denial of Service attacks” is a
master’s thesis written by Rahul R. Sakhardande of the State
University of New York in 2008 [8]. Sakhardande modeled
a computer network in OPNET and analyzed its
performance under normal operating conditions and again
when undergoing a simulated DoS attack. The model was
fairly limited as the authors did not configure OPNET to
represent many different network topologies in order to
conduct a more thorough analysis. Furthermore,
Sakhardande was unable to properly validate his model
against real operating environments. Nevertheless, the work
shows that a model of DoS attacks on a network can be
simulated using OPNET, even if the results in this particular
instance were of limited general applicability.
2.5.2. Frequency-Based IDS
“A Frequency-Based Approach to Intrusion Detection”
is a research paper written by Mian Zhou and Sheau-Dong
Lang of the University of Central Florida in 2003 [9]. The
simulation that they created using OPNET was primarily
used to test an experimental intrusion detection algorithm.
They tested the effectiveness of the detection algorithm by
observing network intrusion data in a simulated network
using OPNET while simulating several types of DoS attacks
and probe attacks.
The two papers discussed above demonstrate that
OPNET can be used to simulate a computer network
sufficiently well for experimentation. However, OPNET
modeling efforts reported in the literature were not detailed
enough to assist in the training of network defenders or the
education of senior leaders.
2.6. NetENGINE
The Institute of Security Technology Studies at
Dartmouth College developed a cyber attack simulation tool
called NetEngine in a paper published in 2003 [10]. The tool
was designed to be a virtual simulation, involving several
users on different computers connected to the same
simulation program. NetEngine is designed to be able to
represent very large IP networks and is intended to be used
to train IT staff in combating cyber attacks.
NetEngine features a user interface where the user
views network topology maps, the simulated network’s
status, and router load plots. The software is built so that it
can be accessed through the web using an internet browser.
The simulation software itself is written in C++ and is
designed to be run on Linux machines. The simulation can
model workstations, routers, firewalls, servers, host clusters
and ISPs. Each user of the simulation is placed in charge of
a simulated domain which is a collection of hardware and
software systems on the simulated computer network.
Various cyber attacks are launched against these simulated
domains. The users are able to communicate with each other
during the simulation by using simulated email, facsimile,
telephone or instant message. These communications
processes are also vulnerable to the simulated cyber attacks.
This allows team work to play a role in the simulation.
This simulation tool does not focus on the technical
details of the attacks but instead focuses on their effects.
Therefore, the simulation implements generic attacks such
as DDoS attacks, viruses and worms but makes little attempt
to simulate attacks that rely on targeted computer exploits.
The simulated attacks are predetermined and released
according to a master driving script. This script effects state
changes in the network to simulate an attack. For example,
it can change the load level on a particular link or change
the status of routers, workstations and other devices to
simulate compromises or service degradation. Although the
master driving script contains details and release time for
each attack, these are first reviewed by an exercise
controller who can either accept or cancel the release of the
scripted attack.
NetEngine has been quite successful. It was used as the
basis of Livewire, a four day US national cyber defence
exercise conducted in October 2003. This exercise involved
over 300 participants in the US, including representatives
from the energy and finance sectors. The exercise simulated
a cyber attack against critical infrastructures which required
the participants to communicate and work together to
defend against the attacks or mitigate their impact.
NetEngine has proven to be very useful simulation software
with the ability to simulate large computer networks under
cyber attacks.
2.7. Concluding Remarks on Prominent Private Sector
and Academic Research Efforts
The private sector and academia have conducted
substantial research on cyber attack modeling. Many of the
simulations have been constructive simulations, automated
to execute without much user intervention [2,5,6,8,9]. These
provided results that enabled the discovery of general
patterns in cyber attacks but the accuracy of these results are
dependent on the models used to drive the simulation.
95
Unfortunately most of these models offer little in the way of
validation, a fact well captured by Fred Cohen who states
that it is very difficult to set parameter values and adjust
simulation mechanisms within a cyber attack simulation that
are validated against real world events. Similarly, the virtual
and live simulations discussed in this section may also
suffer these same problems because of poorly defined attack
scenarios [1,4,7,10,11]. It appears that live simulations are
more geared towards education than analysis of computer
attacks in general, and as such, non-validated attack details
still allow the simulations to be effective educational tools.
It is worth noting that the constructive simulations and
virtual simulations discussed above focused on the effects of
attacks on computer networks while mostly ignoring the
bigger effect they can have on an organization or nation. If
one wishes to understand these larger-scale effects (as was
the case in many live simulation efforts), it stands to reason
that the scope must be widened and the details of the attacks
must be abstracted.
3. PUBLIC SECTOR RESEARCH
Governments throughout the world, along with their
military forces, have become increasingly interested in the
applications of CNO as well as the necessity to defend
against domestic or foreign cyber attacks. By far, the largest
CNO research presented in the open literature comes from
the US, France, China and Israel. While recent events such
as StuxNet and GhostNet suggest that Israel [12] and China
[13] may have links to CNO, the open literature does not
offer much insight into their efforts. Our discussion of
public sector research will therefore not involve China or
Israel.
By no means is the information presented here
complete. The majority of CNO research, especially recent
work, conducted by military forces is classified and thus
inaccessible. In this section we discuss the information on
simulations of cyber attacks that has been garnered from
public sources, through such means as press releases and
public reports, on the results of simulations. Unfortunately,
this means that even though results are sometimes
published, the specific simulation methods are not discussed
in detail.
3.1. US Cyber Command and Air Force Cyber
Operations Division
The US Cyber Command (USCYBERCOM) is
subordinate to the US Strategic Command [14]. It acts as a
sub-unified command with service elements from the US
Army (Army Cyber Command), the US Air Force (24th US
Air Force), the US Navy (Fleet Cyber Command/10
th
Fleet)
and the US Marine Corps (Marine Forces Cyber
Command).
USCYBERCOM was formed in May 2010, when it
achieved initial operational capability. It achieved full
operational capability, meaning that it demonstrated the
ability to accomplish its mission, at the end of October 2010
[15]. Although a military audience would surely be able to
contribute much more on CYBERCOM, we offer the
following from information available in the open literature.
Its published mission statement reads:
"USCYBERCOM plans, coordinates, integrates,
synchronizes, and conducts activities to: direct the
operations and defense of specified Department of Defense
information networks and; prepare to, and when directed,
conduct full-spectrum military cyberspace operations in
order to enable actions in all domains, ensure US/Allied
freedom of action in cyberspace and deny the same to our
adversaries."[14]
The service components listed above were in existence
before CYBERCOM was established. CYBERCOM's status
as a sub-unified command reflects a recognition by senior
leadership that CNO affect numerous armed services, and
that effective cyber responses required coordination and
leadership. An interesting development in the evolution of
CYBERCOM is the suggestion by some authors that
because the traditional Army, Navy, Air Force and Marine
cultures have difficulty dealing with CNO, a separate branch
of service should be established for cyber operations [16].
Although one should expect much from
USCYBERCOM in the future, recent US military cyber
simulation efforts come mostly from the US Air Force.
The US Air Force modified its mission statement “to
deliver sovereign options for the defense of the US of
America and its global interests - to fly and fight in Air,
Space, and Cyberspace” in 2005. The addition of the word
“Cyberspace” has had a major impact on their subsequent
outlook toward CNO. The US Air Force has been a leading
innovator in cyber warfare [17]. Most recently, in June
2010, a new officer training course in cyber warfare has
been developed with a budget of $US 11.7 million. This
included $US 7.6m spent on upgrades of facilities, computer
infrastructure, laboratory networks and “simulators” [18].
Even though the news article announcing this
development did not specify what these simulators are, it is
known that the US Air Force has been developing and
experimenting with at least two simulation programs over
recent years: SIMTEX and CAAJED.
3.1.1. SIMTEX
The Simulator Training Exercise Network (SIMTEX) is
a simulation infrastructure used in training to automatically
simulate various computer network attacks. The simulator
mimics the three tier network architecture of the US Air
Force. It can be set up to link together multiple simulators to
form an “intra-network” [19].The simulator includes a
simulated internet with domain name resolution complete
with mimicked websites such as Google.com and
CNN.com.
96
Bulwark Defender, whose previous incarnation was
known as Black Demon, is a training exercise using the
SIMTEX infrastructure. This training exercise is carried out
once a year by military services and government agencies
[20]. Participating services and agencies train against
simulated cyber enemies that attempt to steal information
and cause damage to their computer networks. Overall,
SIMTEX is widely used and is therefore an important
virtual simulation infrastructure.
3.1.2. CAAJED ‘06
While SIMTEX simulates the mechanics of an attack
on a computer network, CAAJED focuses on the bigger
picture and the kinetic effects of cyber attacks in a war
situation [21]. CAAJED is a manual integration of CNO and
cyber attacks with the US Air Force war simulator Modern
Air Power (MAP). CAAJED consists of all the features of
MAP such as the ability to play the war game as a human
versus human, human versus computer opponent, or
computer versus computer contest.
In CAAJED, the cyber attacks are not automatically
controlled by computers but are manually implemented by
operators. When the cyber attacks affect network services
the operators are instructed to disable or degrade the
associated assets. Assets (including air bases, SAM sites,
radar sites, and individual aircraft) have capabilities (such as
anti-aircraft artillery, radar coverage, ability to launch
aircraft) which can be enabled, disabled or reduced in
effectiveness through cyber attack. The users of the
simulator were not aware that the operators sitting at
consoles helped simulate the cyber attacks, but they were
able to observe effects that were consistent with the
simulated cyber attacks. Overall, while this simulation was
implemented as a proof of concept, it showed a lot of
potential as a method of more seamlessly integrating
simulated cyber attacks in a wargame. The CAAJED
simulation was used in a Cyber Defence Exercise in 2007.
This took the form of a competition between two teams
where each team only controlled the cyber warfare elements
while a constructive simulator controlled the remaining
MAP elements. The participating undergraduate teams were
scored to make the exercise more interesting to the
participants, but these scores were not analytical in nature;
they were not considered valid analytical data..
Overall, the US Air Force’s recent focus on cyber
warfare has led them to produce useful simulations. There is
a big difference between SIMTEX’s simulation of CNOs at
the network level and the bigger picture view that is
provided by the CAAJED simulation. Regardless, both
types of simulations are valuable, achieving very different
training and simulation goals.
3.2. USMA IWAR and RMC CSL
The Information Warfare Analysis and Research
(IWAR) laboratory at the US Military Academy (USMA –
West Point, NY) is a network attack and defence simulator
used to train cadets and faculty in information warfare [22].
It is capable of simulating defences such as cryptography,
encryption and access control methods. IWAR is also able
to simulate attacks such as Trojan horses, vulnerability
scanners, viruses, worms, DoS, DDoS, and password
hacking.
IWAR is more akin to a large isolated network than
simulation software. It requires extensive effort to maintain
and the set-up for each use is very complex. While in use,
IWAR requires very close monitoring and its configuration
must be adjusted to ensure that it can support the aims of the
exercise for which it is being used.
The RMC Computer Security Laboratory (RMC CSL)
uses a similar isolated network for CNO education and
training, allowing us to gain perspective into the efforts
required to run such a network. The RMC CSL isolated
network uses virtualization software to enable multiple
guests to run on a series of physical hosts. These virtual
hosts can be configured to represent the hosts on a network,
which can then be attacked and defended. The RMC CSL
infrastructure requires a full time technician to maintain
approximately seven physical hosts hosting approximately
15 – 20 guests being defended by approximately 10 – 15
participants. In addition, the RMC CSL isolated network
typically employs an attack team of some five to eight
members, and exercise coordination cell of approximately
three to five controllers. Running such an isolated network
is not cheap.
Notwithstanding the lack of automated simulation
software and resource costs involved in their use, the IWAR
and RMC CSL isolated network are very successful and
they are continuously being evolved and improved upon.
The IWAR and RMC CSL isolated networks have been
used for the NSA sponsored annual Cyber Defence Exercise
(CDX). The USMA has used IWAR since the inception of
the CDX in 2000 and the RMC CSL has used its isolated
network since 2009. The CDX is an annual competition for
the US Military, Naval, Air Force, Merchant Marine, and
Coast Guard Academies as well as the Air Force Institute of
Technology, the Naval Postgraduate School and the Royal
Military College of Canada. Each institution is tasked with
the design and implementation of a network in support of a
notional NATO operation. Each institution monitors its
network through their network operation centre, and must
respond to attacks being carried out by an NSA attack team.
3.3. Cyber Storm I, II and III
Cyber Storm I,II and Cyber Storm II were live
simulations conducted in February 2006, March 2008 and
September 2010 respectively [23-24]. The three simulation
exercises were developed by the US Department of
Homeland Security National Cyber Security Division.
Cyber Storm involved over 100 participants from industry,
97
military and government, mostly from the US, but also
including participants from the UK, Canada, Australia and
New Zealand. Cyber Storm II was essentially a repetition of
Cyber Storm I with more participants and different
scenarios acted out. For its part, Cyber Storm III added yet
more international, state and private sector participation.
Cyber Strom III was also the first opportunity to exercise
the National Cyber Incident Response Plan and helped test
the National Cyber Security and Communications
Integration Centre. As Cyber Storm I, II and III were very
similar, they will be discussed at the same time.
The exercise had the aim of examining the
“preparedness, response, coordination, and recovery
mechanisms to a simulated cyber event within international,
Federal, and State Governments in conjunction with the
private sector” [23]. As a result, the simulation was mostly
about education, bringing attention to the problem of
international cyber security, and assessing how well
different organizations from across the world can work
together in the face of cyber attacks.
The simulation itself saw organizations receiving cyber
attack injects related to several scenarios over the course of
four days and requiring them to work with other
organizations to develop strategies and responses to the
attacks. The simulation was not designed to test the
technical security of computer networks but instead to test
the policy response of organizations and their ability to
coordinate with other organizations. The various scenarios
involved cyber attacks on infrastructure within the Energy,
Information Technology, Transportation and
Telecommunication sectors.
Even though Cyber Storm did not focus on the actual
methodologies of cyber attacks and their prevention, it still
had great value as it simulated the effects of cyber attacks
and brought many organizations together to think about
potential cyber threats and how they would respond to them.
Highlighting the potential threat from cyber attacks, along
with practicing cooperation across industries and the public
sector, is invaluable as it better prepares the world for
potential future attacks.
3.4. DARPA National Cyber Range
The US Government’s Defence Advanced Research
Projects Agency (DARPA) announced in 2008 the creation
of a National Cyber Range (NCR). The project is intended
to become a resource available to US military forces and
government agencies for testing cyber programs. The
project is still in progress with the latest news being the
selection of two primary contractors to build and evaluate
prototype ranges.
The NCR aims to simulate cyber attacks on computer
networks and help develop strategies to defend against
them. If implemented as planned, it will be able to test host
security systems, local and wide area networks, and security
tools by integrating or simulating them within an overall
integrated system. The infrastructure of the NCR will allow
the testing of new technologies and systems, such as new
network protocols and other communications protocols,
before their actual implementation.
Unfortunately, the project is unlikely to move past the
prototyping phase. This bleak outlook is due to the fact that
military and intelligence organizations, dissatisfied with the
project's slow progress, want to build their own cyber
ranges. For example, the US Navy wants to expand a small
range at their Network Warfare Command and the US Air
Force are planning a range dubbed “Cyber Safari” [25].
Even if DARPA's NCR does not move past prototype
phase, its work there will be beneficial, especially if the
insights gained can be integrated within the Navy and Air
Force’s respective cyber ranges. The obvious concern
shown at DARPA’s slow progress indicates that there is a
strong desire for a large scale simulation infrastructure to
test cyber defences.
3.5. France's Piranet
Piranet is one of the confidential defence plans of the
French government [26-27]. Unlike other French plans that
are geared specifically toward military crises such as a
chemical attack (Piratox) or a nuclear attack (Piratome),
Piranet is designed as the response to a major cyber attack
on France's telecommunications and information systems
infrastructure which impacts the military, public and private
sectors. From 23-24 June 2010, the French government ran
a live simulation exercise (Piranet 2010) to test the Piranet
response.
The exact details of the exercise, along with its results
are classified. However, the purpose of the exercise was to
train government teams and to validate the emergency
measures taken in order to decide if Piranet defences are
still valid. The results of the exercise may be used to adjust
the emergency response detailed in Piranet. It can be
assumed that the exercises would have been conducted in a
manner similar Cyber Storm, as the focus would have been
on the officials’ responses to attack scenarios instead of
focusing on the technical side with network defence
systems.
3.6. India's Divine Matrix
In March 2009 the Indian Army ran a war game called
Divine Matrix [28]. The game simulated a notional nuclear
attack by China on India in 2017. Beyond the more
traditional war mechanics that were applied in the
simulation; it is noteworthy that Divine Matrix simulated a
massive cyber attack on India prior to the launch of any
physical attacks. The cyber attacks had a kinetic result on
the simulation, for example: the attacks disabled
communication systems, damaged banking systems and
98
disabled power grids. The simulated attacks highlighted the
need for cyber defence to senior Indian military leadership.
3.7. Concluding Remarks on Public Sector Research
Governments throughout the world are becoming
increasingly concerned with CNO. This concern is
demonstrated by an increase in training for defence against
particular attack scenarios and the preparation of
contingency plans. Some of the most interesting work
conducted in the public sector has been done by the US Air
Force who has been using virtual and constructive
simulations to train for cyber attacks. The US Air Force has
been experimenting with network defence simulations in
SIMTEX, as well as focusing on the more global effect of
cyber warfare by integrating cyber attack scenarios within
existing war game simulators such as Modern Air Power.
Furthermore, work in developing an experimental
infrastructure to simulate cyber attack defences is on-going,
as demonstrated in the efforts to develop the National Cyber
Range as well as other military divisions’ work to build
their own cyber ranges. Finally, the reader should note that
simulation and training for CNO is a resource intensive
activity.
4. CONCLUSION
There has been considerable interest in the private and
public sectors (including military forces) in the development
of simulations of cyber attacks and CNO. Significant
progress has already been made. Regrettably there appears
to be very little coordination and cooperation across private
sector organizations and governments in the development of
effective cyber attack simulations. Some simulations share
common traits and achieve similar results, which suggests
that redundant work and research is being conducted.
Many of the simulations have had very different goals
from each other. Costantini [3] and Cohen’s work [5] were
aimed at analyzing patterns and learning about cyber
attacks, whereas CAPP [11] was aimed at highlighting the
importance of cyber defence. Other simulations were
entirely intended as training systems such as CAAJED [21],
IWAR [22] and NetEngine [10]. Nevertheless, out of all the
simulations discussed, very few attempted to integrate the
technical details of cyber attacks with the global effect of
CNO. Such integration, should it be developed, would result
in an increased understanding and awareness of the threat
cyber attacks pose to the world.
REFERENCES
[1] Chapman, I., Leblanc, S.P., Partington, A., "Taxonomy of
Cyber
Attacks and Simulation of their Effects" Proceedings of the
2010
Military Modeling and Simulation Symposium (MMS'11),
(2011).
[2] Kuhl, M. E., Kistner, J., Costantini, K., & Sudit, M. (2007).
Cyber
attack modeling and simulation for network security
analysis. Proceedings of the 2007 winter simulation conference
(pp.
1180-1188). http://www.informs-sim.org/wsc07papers/139.pdf.
[3] Costantini, K. C. (2007). Development of a cyber attack
simulator for
network modeling and cyber security analysis. Unpublished
manuscript, Department of Industrial and Systems Engineering,
Rochester Institute of Technology, Rochester, New York.
Retrieved
from
https://ritdml.rit.edu/bitstream/handle/1850/5440/KCostantiniTh
esis1
0-2007.pdf?sequence=1
[4] Liljenstam, M., & Liu, J. (2006). Rinse: the real-time
immersive
network simulation environment for network security exercises
(extended version). SIMULATION, 82(1), 43-59.
[5] Cohen, F. (1999). Simulating cyber attacks, defences, and
consequences. Computers & Security (pp. 479-518). Elsevier
Science
Ltd.
[6] Park, J. S., Lee, J., K, H. K., Jeong, J., Yeom, D., & Chi S.
(2001).
Secusim: a tool for the cyber-attack simulation. Information and
Communications Security (pp. 471-475). Heidelberg: Springer
Berlin
[7] Network simulation. (2010). Retrieved from
http://www.opnet.com/solutions/network_rd/modeler.html
[8] Sakhardande, R. R. (2008). The use of modeling and
simulation to
examine network performance under denial of service attacks.
Unpublished manuscript, Department of Telecommunications,
SUNY
Institute of Technology, Utica, NY.
[9] Zhou, M., & Lang, S. (2003). A Frequency-based approach
to
intrusion detection. Systemics, Cybernetics and Informatics,
2(3), 52-
56.
[10] Brown, B., Cutts, A., McGrath, D., Nicol, D. M., Smith, T.
P., &
Tofel, B. (2003). Simulation of cyber attacks with applications
in
homeland defense training. In E. M. Carapezza (Ed.), Sensors,
and
command, control, communications, and intelligence (c3i)
technologies for homeland defense and law enforcement ii (pp.
63-
71).
[11] FS-ISAC. (2010, June). 2010 capp exercise executive
summary.
Retrieved from http://www.fsisac.com/files/public/db/p243.pdf
[12] Semantec, "W32.StuxNet dossier", Available from:
http://www.symantec.com/content/en/us/enterprise/media/securi
ty_re
sponse/whitepapers/w32_stuxnet_dossier.pdf
[13] Northrup-Gruman, “Capability of the People’s Republic of
China to
Conduct Cyber Warfare and Computer Network Exploitation”.
Available from: Northrup-Gruman, “Capability of the People’s
Republic of China to Conduct Cyber Warfare and Computer
Network
Exploitation”. Available from:
http://www.uscc.gov/researchpapers/2009/NorthropGrumman_P
RC_
Cyber_Paper_FINAL_Approved%20Report_16Oct2009.pdf
[14] US Cyber Command Fact Sheet (2011, February).
Retrieved from
http://www.stratcom.mil/factsheets/Cyber_Command/
[15] Cyber Command Achieves Full Operational Capability, US
DOD
News Release No. 1012-10, (3 November 2010), Retrieved from
http://www.defense.gov/releases/release.aspx?releaseid=14030
[16] G. Conti and B. Surdu; "Army, Navy, Air Force, Cyber: Is
it Time for
a Cyberwarfare Branch of the Military;" Information Assurance
99
http://www.informs-sim.org/wsc07papers/139.pdf
https://ritdml.rit.edu/bitstream/handle/1850/5440/KCostantiniTh
esis10-2007.pdf?sequence=1
https://ritdml.rit.edu/bitstream/handle/1850/5440/KCostantiniTh
esis10-2007.pdf?sequence=1
http://www.opnet.com/solutions/network_rd/modeler.html
http://www.fsisac.com/files/public/db/p243.pdf
http://www.symantec.com/content/en/us/enterprise/media/securi
ty_response/whitepapers/w32_stuxnet_dossier.pdf
http://www.symantec.com/content/en/us/enterprise/media/securi
ty_response/whitepapers/w32_stuxnet_dossier.pdf
http://www.uscc.gov/researchpapers/2009/NorthropGrumman_P
RC_Cyber_Paper_FINAL_Approved%20Report_16Oct2009.pdf
http://www.uscc.gov/researchpapers/2009/NorthropGrumman_P
RC_Cyber_Paper_FINAL_Approved%20Report_16Oct2009.pdf
http://www.rumint.org/gregconti/publications/2009_IAN_12-
1_conti-surdu.pdf
http://www.rumint.org/gregconti/publications/2009_IAN_12-
1_conti-surdu.pdf
Newsletter, Vol. 12, No. 1, Spring 2009, pp. 14–18. Retrieved
from:
http://www.rumint.org/gregconti/publications/2009_IAN_12-
1_conti-
surdu.pdf
[17] Gettle, M. (2005, December 14). Air force releases new
mission
statement. Retrieved from
http://www.af.mil/news/story.asp?storyID=123013440
[18] Griggs, S. (2010, June 16). New officer course boosts
cyberspace
transformation. Retrieved from
http://www.keesler.af.mil/news/story.asp?id=123209671
[19] McBride, A. (2007, June). Air force cyber warfare training.
The
Defense Standardization Program Journal, 9-13.
[20] Hernandez, J. (2010, March 2). The Human element
complicates
cybersecurity. Retrieved from
http://www.defensesystems.com/Articles/2010/03/11/Industry-
Perspective-1-human-side-of-cybersecurity.aspx?Page=2
[21] Mudge, R. S., & Lingley, S. (2008). Cyber and air joint
effects
demonstration (caajed). Unpublished manuscript, Air Force
Research
Laboratory, Information Directorate, Rome Research Site,
Rome,
NY. Retrieved from http://www.dtic.mil/cgi-
bin/GetTRDoc?AD=ADA481288&Location=U2&doc=GetTRDo
c.pd
f
[22] Lathrop, S. D., Conti, G. J., & Ragsdale, D. J. (2002).
Information
warfare in the trenches. Unpublished manuscript, US Military
Academy, West Point, NY. Retrieved from
http://www.rumint.org/gregconti/publications/iwar.doc
[23] Department of Homeland Security, National Cyber Security
Division.
(2006). Cyber storm exercise report. Retrieved from
http://www.dhs.gov/xlibrary/assets/prep_cyberstormreport_sep0
6.pdf
[24] Department of Homeland Security, National Cyber Security
Division.
(2010). Cyber storm exercise report. Retrieved from
http://www.dhs.gov/files/training/gc_1204738275985.shtm
[25] Fulghum, D. A. (2010, June 21). Battle for cyber-range:
military
dumps darpa. Retrieved from
http://www.aviationweek.com/aw/generic/story_channel.jsp?cha
nnel
=defense&id=news/asd/2010/06/21/03.xml&headline=Battle%20
For
%20Cyber-Range:%20Military%20Dumps%20Darpa%3E
[26] Naudon, M. (2010, June 25). Exercice piranet 2010.
Retrieved from
http://www.ssi.gouv.fr/IMG/pdf/2010-06-
25_Communique_de_presse_Piranet_2010.pdf
[27] Morel, I. (2006, October). Les exercices de crise ssi.
Sécurité
Informatique, 57, Retrieved from
http://www.dgdr.cnrs.fr/fsd/securite-systemes/revues-
pdf/num57.pdf
[28] Singh, R. (2009, March 26). Divine matrix: indian army
fears china
attack by 2017. Retrieved from http://www.infowar-
monitor.net/2010/02/divine-matrix-indian-army-fears-china-
attack-
by-2017/
Biographies
Sylvain (Sly) Leblanc is an Assistant Professor at the
Royal Military College of Canada (RMCC). He obtained
his Master’s of Engineering in Software Engineering from
RMCC in 2000, where he is also a doctoral candidate. Sly
was a Canadian Army Signals Officer for over 20 years,
where he developed his interest in computer network
operations. His research interests are in computer security
and computer network operations.
Ian Chapman is a defence scientist with the Defence
Research and Development Canada Centre for Operational
Research and Analysis in Ottawa, Canada. Mr. Chapman’s
work has included analytical support to a number of
modeling and simulation activities at the Canadian Army
Experimentation Centre and is now working with the
Canadian Cyber Task Force to determine the effects of
cyber attacks on military mission effectiveness.
Andrew Partington is in his final year of undergraduate
studies, studying for his Bachelor of Engineering with
Honors in Mechatronics Engineering at the University of
Canterbury in New Zealand. He was a recent participant in a
university exchange program, studying at Queen’s
University in Canada for a year in 2010. During the
exchange he worked full time in the summer and part time
during the school year at the Royal Military College of
Canada researching computer network operations and
simulations.
Melanie Bernier is a Defense Scientist with the Defence
Research and Development Canada’s Center for Operational
Research and Analysis in Ottawa, Canada. She has
experience in modeling and simulation of land forces
requirements, concept development and experimentation,
joint C4ISR, and computer networks. Most recently, she has
been leading studies in force development for the cyber
environment.
100
http://www.af.mil/news/story.asp?storyID=123013440
http://www.keesler.af.mil/news/story.asp?id=123209671
http://www.defensesystems.com/Articles/2010/03/11/Industry-
Perspective-1-human-side-of-cybersecurity.aspx?Page=2
http://www.defensesystems.com/Articles/2010/03/11/Industry-
Perspective-1-human-side-of-cybersecurity.aspx?Page=2
http://www.dtic.mil/cgi-
bin/GetTRDoc?AD=ADA481288&Location=U2&doc=GetTRDo
c.pdf
http://www.dtic.mil/cgi-
bin/GetTRDoc?AD=ADA481288&Location=U2&doc=GetTRDo
c.pdf
http://www.dtic.mil/cgi-
bin/GetTRDoc?AD=ADA481288&Location=U2&doc=GetTRDo
c.pdf
http://www.rumint.org/gregconti/publications/iwar.doc
http://www.dhs.gov/xlibrary/assets/prep_cyberstormreport_sep0
6.pdf
http://www.aviationweek.com/aw/generic/story_channel.jsp?cha
nnel=defense&id=news/asd/2010/06/21/03.xml&headline=Battle
%20For%20Cyber-
Range:%20Military%20Dumps%20Darpa%3E
http://www.aviationweek.com/aw/generic/story_channel.jsp?cha
nnel=defense&id=news/asd/2010/06/21/03.xml&headline=Battle
%20For%20Cyber-
Range:%20Military%20Dumps%20Darpa%3E
http://www.aviationweek.com/aw/generic/story_channel.jsp?cha
nnel=defense&id=news/asd/2010/06/21/03.xml&headline=Battle
%20For%20Cyber-
Range:%20Military%20Dumps%20Darpa%3E
http://www.ssi.gouv.fr/IMG/pdf/2010-06-
25_Communique_de_presse_Piranet_2010.pdf
http://www.ssi.gouv.fr/IMG/pdf/2010-06-
25_Communique_de_presse_Piranet_2010.pdf
http://www.dgdr.cnrs.fr/fsd/securite-systemes/revues-
pdf/num57.pdf
http://www.infowar-monitor.net/2010/02/divine-matrix-indian-
army-fears-china-attack-by-2017/
http://www.infowar-monitor.net/2010/02/divine-matrix-indian-
army-fears-china-attack-by-2017/
http://www.infowar-monitor.net/2010/02/divine-matrix-indian-
army-fears-china-attack-by-2017/
Chapter 11
Education: What Are We Learning?
© SAGE Publications, Inc. 2017
© SAGE Publications, Inc. 2017
*
Schooling: Learning skills like reading, writing, and math, in a
building, through systematic instruction by a trained
professionalIn most affluent countries and urban areas, formal
schooling is necessary for survival and success.Literacy is
necessary for democratic governments, where informed
citizenry elect officials and vote on public policies.Formal
schooling is a modern concept, which became necessary once
jobs required literacy and math skills.
Overview of the World’s Education
© SAGE Publications, Inc. 2017
© SAGE Publications, Inc. 2017
*
UNESCO: The United Nations Educational, Scientific, and
Cultural Organization“global center for discussion and
implementation of educational ideas and organization models”
The UNESCO standard:6 years of primary school 3 years each
of intermediate and secondary schoolEmphasis on
comprehensive rather than specialized training
Overview of the World’s Education
© SAGE Publications, Inc. 2017
What is considered essential knowledge to be taught in schools
is based on a country’s level of development, cultural values,
and political ideology, and on international
guidelines.Education around the world is strongly influenced by
models developed in Global North countries.
Overview of the World’s Education
© SAGE Publications, Inc. 2017
Overview of the World’s Education
© SAGE Publications, Inc. 2017
Symbolic Interaction PerspectiveFocuses on meaningful
interaction in schools and classrooms, and how students actively
construct realityFor example, popularity contestsBecause young
people spend much time in school or school-related activities,
the status of students affects their self-concepts and selves.
Education: Micro-Level Theories
© SAGE Publications, Inc. 2017
© SAGE Publications, Inc. 2017
Rational Choice TheoryFocuses on cost/benefit analysis in
individual decisions about educationIf benefits of an action
outweigh costs, individuals are likely to take the action; if costs
outweigh benefits, they will seek other courses of action.For
example:Students deciding whether to drop out of school
Teachers deciding whether to stay in the profession
Education: Micro-Level Theories
© SAGE Publications, Inc. 2017
© SAGE Publications, Inc. 2017
Students and the Peer Culture of Schools Student peer culture:
A stable set of activities, routines, artifacts, values, and
concerns that children produce and share in interaction with
peersPeer cultures create identities and labels.Students’ class,
race, gender, and sexuality affect their school experiences.The
environment outside the school affects students’ experiences
within it.
Statuses and Roles in Education Systems
© SAGE Publications, Inc. 2017
© SAGE Publications, Inc. 2017
Teachers: The Front LineThe front line in implementing school
goalsServe as gatekeepers, controlling the flow of students,
activities, resources, and privilegesRole strain: need to judge
students’ performance while also encouraging themFair status
and rewards?Threats to professional autonomy and self-
regulation
Statuses and Roles in Education Systems
© SAGE Publications, Inc. 2017
© SAGE Publications, Inc. 2017
Administrators:
Managers of the school systemThe top of the hierarchy in local
schoolsMediate between individual schools and larger
educational systemsResponsible for:Budgeting, reporting,
regulatory complianceStaff hiring, firing, training, and
negotiations Parent and public relations; acting as a buffer in
conflicts between parents and teachersOverseeing discipline
Statuses and Roles in Education Systems
© SAGE Publications, Inc. 2017
© SAGE Publications, Inc. 2017
The Informal SystemInformal system of schooling: Unspoken,
unwritten, and implicit norms of behaviorCreated and enforced
by teachers and/or by student peer cultureIncludes the hidden
curriculum, educational climate, value climate, and classroom
power dynamics and coping strategiesThe hidden curriculum:
The implicit “rules of the game” students must learn and
respond to in school to be socially accepted and to succeed in
the education system
What Really Happens Inside Schools?
© SAGE Publications, Inc. 2017
© SAGE Publications, Inc. 2017
The Informal System, cont.The educational climate of schools:
The general social environment of schools and classrooms, for
example, stimulating or stiflingInfluenced by factors such as
teacher expectations, student groups, classroom layouts,
architectureMay vary by students’ gender, race, ethnicity, class
The value climate of schools: Students’ motivation, aspirations,
and achievementsShaped by students’ home environments,
parental and teacher expectations
What Really Happens Inside Schools?
© SAGE Publications, Inc. 2017
© SAGE Publications, Inc. 2017
Power dynamics and coping strategies
in the classroom:Teachers try to get students to obey, cooperate,
take responsibility; students try to win some control and
freedom from teachers.Both develop coping strategies, which
become part of the “hidden curriculum.”
What Really Happens Inside Schools?
© SAGE Publications, Inc. 2017
© SAGE Publications, Inc. 2017
Merton’s strain theory of deviance applied
to students’ coping strategies:Conformity: acceptance of school-
established goals and means; for example, doing expected
workInnovation: finding alternative means to achieve
conventional goals; for example, cheating to pass a
courseRetreatism: rejecting school goals and means; for
example, rebelling, not conforming or cooperatingRitualism:
ambivalence about goals; for example, following rules but not
excelling at schoolRejection with replacement: rejecting goals
and means and pursuing an alternative; for example, dropping
out of school to pursue other activities
What Really Happens Inside Schools?
© SAGE Publications, Inc. 2017
© SAGE Publications, Inc. 2017
Formal Education SystemsDeveloped in 16th-century Europe,
when other social institutions required new roles, skills, and
knowledge that parents could not teachOriginally, schooling
was only for the elite; later it became available to the masses
and some societies began to require it for basic literacy (usually
the third-grade level)Schools became major formal
organizations and developed extensive bureaucracies
The Meso-Level: Educational Organizations
© SAGE Publications, Inc. 2017
© SAGE Publications, Inc. 2017
The Bureaucratic School StructureWeber’s bureaucratic model
applied to schools:Division of laborAdministrative
hierarchySpecific rules and proceduresFormalized
relationsRationalityPros of bureaucratic schools: Cost-effective,
efficient, productiveCons of bureaucratic schools: Impersonal,
rigid, alienating, lack of attention to personal needs
The Meso-Level: Educational Organizations
© SAGE Publications, Inc. 2017
Education and the social institution of family:Family
background is thought to be the most important influence on
children’s school achievement.Role of parents in motivating and
preparing children for schoolSocial class and changing work
structures affect parents’ ability to encourage and direct
children
The Meso-Level: Educational Organizations
© SAGE Publications, Inc. 2017
© SAGE Publications, Inc. 2017
The Meso-Level: Educational Organizations
Education and Racial background“Cradle to Pipeline”
(Children’s Defense Fund)Gap in educational achievement for
boys is especially strong for African American, Hispanic, and
low-income malesBlack students are 3.5 times and Hispanic
students 1.5 as likely to be suspended as white students
© SAGE Publications, Inc. 2017
© SAGE Publications, Inc. 2017
Educational decision-making at the meso level:Who should
decide what children learn?Decision-making in the United
States:Local level influences: Interest groups engage in conflict
over contents of school curriculums and librariesNational level
influences:National influence limited by the U.S. Constitution,
which leaves many educational decisions to the statesAbility to
give or withhold funding to schools depending on compliance
with federal lawsThe Race to the Top for all schoolsObama’s
plan to focus on Early Childhood Education No Child Left
Behind (NCLB)
The Meso-Level: Educational Organizations
© SAGE Publications, Inc. 2017
© SAGE Publications, Inc. 2017
Educational decision-making at the meso level:
No Child Left Behind (NCLB):To create accountability,
requires schools to administer achievement tests in math and
readingSchools that fail to meet guidelines are penalizedHas
had an impact: 70% of schools have reduced instructional time
in subjects that are not tested
The Meso-Level: Educational Organizations
© SAGE Publications, Inc. 2017
© SAGE Publications, Inc. 2017
Educational decision-making at the meso level:Positive aspects
of NCLB:Expects every child to succeedHelps create
consistency between school systemsNegative aspects of
NCLB:Overemphasizes testingPenalizes schools with high
numbers of low-income and/or disabled studentsGives schools
unrealistic timetables for improvementDoes not provide
necessary funding Disadvantages small, poor, and rural school
districts
The Meso-Level: Educational Organizations
© SAGE Publications, Inc. 2017
© SAGE Publications, Inc. 2017
The Purposes of Education:
The Functionalist Perspective
Education: Macro-Level Theories
© SAGE Publications, Inc. 2017
© SAGE Publications, Inc. 2017
Stratification and Education:
Conflict PerspectiveSchools are used by powerful and affluent
groups to ensure that their self-interests are met.Schools do not
provide equal educational opportunities for all children in
society.Opportunities are manipulated to preserve privileges for
the children of “haves”; children of “have-nots” are prepared
for less rewarding positions.This results in the reproduction of
class: socioeconomic positions are transmitted across
generations.
Education: Macro-Level Theories
© SAGE Publications, Inc. 2017
© SAGE Publications, Inc. 2017
Can schools bring about equality in society?Equal opportunity:
All people have an equal chance of achieving high
socioeconomic status regardless of class, ethnicity or race, or
gender The goals of equal educational opportunity, according to
James Coleman:Provide a common curriculum for all children,
regardless of backgroundProvide for children from diverse
backgrounds to attend the same schoolsProvide equality within
a given locality
Education: Macro-Level Theories
© SAGE Publications, Inc. 2017
© SAGE Publications, Inc. 2017
Can schools bring about equality in society?The Coleman
Report:Differences in test scores between minority and white
students were due not only to in-school factors but also to
parents’ education levels and other environmental
factors.Coleman recommended integration of schools to create a
climate for achievement.Busing and magnet schools were two
policies enacted to address the problems.Jencks’s study of
inequality:Schools alone cannot create equal opportunity.
Education: Macro-Level Theories
© SAGE Publications, Inc. 2017
© SAGE Publications, Inc. 2017
The Role of Education in StratificationEducation is supposed to
be a meritocracy.Meritocracy: a formal system in which people
are allocated to positions according to their ability and
credentials.Meritocracy is consistent with
bureaucracy.However, in many cases educational meritocracy
does not exist.Conflict theorists maintain that education
perpetuates inequality.
Education: Macro-Level Theories
© SAGE Publications, Inc. 2017
© SAGE Publications, Inc. 2017
The Role of Education in Stratification
Sources of Inequality:Testing A means of placing students in
school according to their achievement and merit, and of
determining their progressCritics claim tests are biased against
lower-class, immigrant, minority, and/or female
studentsInternational tests reveal educational inequalities
between countries
Education: Macro-Level Theories
© SAGE Publications, Inc. 2017
© SAGE Publications, Inc. 2017
Sources of Inequality: Testing
© SAGE Publications, Inc. 2017
The Role of Education in Stratification
Sources of Inequality:Tracking or streaming: Placing students in
ability groups so educators can better address individual
learning needsResearch suggests that track placement is not
always a measure of a student’s abilityTracks correlate with
ethnicity, language skills, appearance, and other socioeconomic
variablesTracking can reinforce preexisting inequalitiesOther
research suggests that children learn more when working in
groups based on achievement level.
Education at the Macro-Level
© SAGE Publications, Inc. 2017
© SAGE Publications, Inc. 2017
The Role of Education in Stratification
Sources of Inequality:School FundingIn the United States,
unequal school spending results from reliance on local property
taxes as well as state and federal funds.Spending is closely
related to the race and class composition of the schools, and to
student achievement levels.Spending differences perpetuate
existing inequalities.
Education at the Macro-Level
© SAGE Publications, Inc. 2017
© SAGE Publications, Inc. 2017
Public and Private Schools
About 10% of U.S. students attend private schools, including
religious and preparatory schools.
Private schools are more academically demanding, stringent,
disciplined, and orderly.
Private schools have higher achievement rates, in part due to the
select student population they admit.
Choice and voucher plans would allow parents to choose private
schools, but potentially at the expense of public schools.
Education at the Macro-Level
© SAGE Publications, Inc. 2017
© SAGE Publications, Inc. 2017
Educational Policies in the United StatesDespite numerous
policies and reports, data on school success show a worsening
picture.There are 27 million functionally illiterate
citizens.Many 17-year-olds lack the basic skills needed to enter
business and the military.In response each new presidential
administration proposes reforms:The Bush administration
sponsored NCLB.The Obama administration is attempting to
increase funding for early-childhood education.
Educational and Social Policy Issues
© SAGE Publications, Inc. 2017
© SAGE Publications, Inc. 2017
Providing Early Childhood EducationTouted as providing the
start that many children need to be successful in school The
Head Start program offers compensatory education for
disadvantaged 3–5-year-olds to help narrow the opportunity
gap.Children attending Head Start are more likely to stay in
school, receive preventive health care, avoid remedial classes
later on, and not become juvenile delinquents.Head Start also
includes parental education.However, fewer than half of eligible
children are able to take part due to fluctuations in support.
Educational and Social Policy Issues
© SAGE Publications, Inc. 2017
© SAGE Publications, Inc. 2017
Early Childhood Education, cont.Research on early-childhood
education in multiple countries demonstrates:Children from
birth to age five make rapid gains in linguistic, cognitive,
emotional, and other abilities.In the early years, the child’s
“growth trajectory” should not be interrupted.Needs of young
children are not always adequately addressed.Child survival
programs in developing countries have produced long-term
economic benefits.
Educational and Social Policy Issues
© SAGE Publications, Inc. 2017
© SAGE Publications, Inc. 2017
Comparative research shows that:A society’s social and
economic values are reflected in its approach to learning and in
motivation of students.There is some evidence of global
convergence in school curricula.National education systems are
affected by external political, economic, and technological
trends.
Global Issues in Education
© SAGE Publications, Inc. 2017
© SAGE Publications, Inc. 2017
Education of girls around the globe:Lack of basic education for
the poor, especially girls, is a “silent killer” in developing
countries.In past surveys, more than 110 million children—60%
of them girls from ages 6 to 11—received no schooling at
all.More educated girls have lower fertility rates, lower
maternal and infant mortality, lower rates of HIV/AIDS,
increased labor force participation and earnings, and greater
ability to pass on these benefits to the next generation.
Global Issues in Education
© SAGE Publications, Inc. 2017
© SAGE Publications, Inc. 2017
The Future of Education in the Global SystemNeed to keep up
with 21st-century technological and economic needsUse of
electronic educational materials and distance learningThe
“school-to-work” transition
Global Issues in Education
© SAGE Publications, Inc. 2017
© SAGE Publications, Inc. 2017
F e B r U A r y 2 0 1 0 | v O l . 5 3 | n O . 2 | c o m m
u n i c At i o n s o f t h e A c m 29
V
viewpoints
o
F
F
i
c
i
a
L
W
h
i
t
E
h
o
U
S
E
P
h
o
t
o
b
y
L
a
W
r
E
N
c
E
J
a
c
k
S
o
N
Communications’ Inside Risks col-
umns over the past two decades have
frequently been concerned with trust-
worthiness of computer-communica-
tion systems and the applications built
upon them. This column considers what
is needed to attain new progress toward
avoiding the risks that have prevailed
in the past as a U.S. national cybersecu-
rity R&D agenda is being developed. Al-
though the author writes from the per-
spective of someone deeply involved in
research and development of trustwor-
thy systems in the U.S. Department of
Homeland Security, what is described
here is applicable much more univer-
sally. The risks of not doing what is de-
scribed here are very significant.
—Peter G. Neumann
C
Y B E r S pA C E I S T H E complex,
dynamic, globally intercon-
nected digital and infor-
mation infrastructure that
underpins every facet of so-
ciety and provides critical support for
our personal communication, econo-
my, civil infrastructure, public safety,
and national security. Just as our de-
pendence on cyberspace is deep, so
too must be our trust in cyberspace,
and we must provide technical and
policy solutions that enable four
critical aspects of trustworthy cyber-
space: security, reliability, privacy,
and usability.
The U.S. and the world at large are
currently at a significant decision
point. We must continue to defend
our existing systems and networks. At
the same time, we must attempt to be
ahead of our adversaries, and ensure
future generations of technology will
position us to better protect critical
infrastructures and respond to at-
tacks from adversaries. Government-
funded research and development
must play an increasing role toward
achieving this goal of national and
economic security.
Background
On January 8, 2008, National Security
Presidential Directive 54/Homeland Se-
curity Presidential Directive 23 formal-
ized the Comprehensive National Cyber-
security Initiative (CNCI) and a series of
continuous efforts designed to establish
a frontline defense (reducing current
vulnerabilities and preventing intru-
sions), which will protect against the
full spectrum of threats by using intel-
ligence and strengthening supply chain
security, and shaping the future environ-
ment by enhancing our research, devel-
Inside risks
The need for a national
Cybersecurity research and
Development Agenda
Government-funded initiatives, in cooperation with private-
sector partners in
key technology areas, are fundamental to cybersecurity
technical transformation.
DOI:10.1145/1646353.1646365 Douglas Maughan
President Barack obama greets White house cyber security chief
howard A. schmidt, who
was appointed in December 2009.
ARt in
DeVeLoPment
30 c o m m u n i c At i o n s o f t h e A c m | F e B r U A
r y 2 0 1 0 | v O l . 5 3 | n O . 2
viewpoints
opment, and education, as well as invest-
ing in “leap-ahead” technologies.
No single federal agency “owns”
the issue of cybersecurity. In fact, the
federal government does not uniquely
own cybersecurity. It is a national and
global challenge with far-reaching
consequences that requires a coopera-
tive, comprehensive effort across the
public and private sectors. However,
as it has done historically, the U.S. gov-
ernment R&D community, working in
close cooperation with private-sector
partners in key technology areas, can
jump-start the necessary fundamental
technical transformation.
Partnerships
The federal government must reener-
gize two key partnerships to success-
fully secure the future cyberspace: the
partnership with the educational sys-
tem and the partnership with the private
sector. The Taulbee Survey2 has shown
that our current educational system is
not producing the cyberspace workers
of the future and the current public-
private partnerships are inadequate for
taking R&D results and deploying them
across the global infrastructure.
Education. A serious, long-term
problem with ramifications for na-
tional security and economic growth is
looming: there are not enough U.S. cit-
izens with computer science (CS) and
science, technology, engineering, and
mathematics (STEM) degrees being
produced. The decline in CS enroll-
ments and degrees is most acute. The
decline in undergraduate CS degrees
portends the decline in master’s and
doctoral degrees as well. Enrollments
in major university CS departments
have fallen sharply in the last few years,
while the demand for computer scien-
tists and software engineers is high
and growing. The Taulbee Survey2
confirmed that CS (including comput-
er engineering) enrollments are down
50% from only five years ago, a pre-
cipitous drop by any measure. Since
CS degrees are a subset of the overall
requirement for STEM degrees and
show the most significant downturn,
CS degree production can be consid-
ered a bellwether to the overall condi-
tion and trend of STEM education. The
problems with other STEM degrees are
equally disconcerting and require im-
mediate and effective action. At the
same time, STEM jobs are growing,
and CS jobs are growing faster than
the national average.
At a time when the U.S. experiences
cyberattacks daily and as global com-
petition continues to increase, the U.S.
cannot afford continued ineffective ed-
ucational measures and programs. Re-
vitalizing educational systems can take
years before results are seen. As part of
an overall national cybersecurity R&D
agenda, the U.S. must incite an extraor-
dinary shift in the number of students
in STEM education quickly to avoid a
serious shortage of computer scien-
tists, engineers, and technologists in
the decades to come.
Public-Private Partnerships. Infor-
mation and communications net-
works are largely owned and operated
by the private sector, both nationally
and internationally. Thus, addressing
cybersecurity issues requires public-
private partnerships as well as inter-
national cooperation. The public and
private sector interests are dependent
on each other and share a responsibil-
ity for ensuring a secure, reliable infra-
structure. As the federal government
moves forward to enhance its partner-
ships with the private sector, research
and development must be included in
the discussion. More and more private-
sector R&D is falling by the wayside
and, therefore, it is even more impor-
tant that government-funded R&D can
make its way to the private sector, given
it designs, builds, owns, and operates
most of the critical infrastructures.
technical Agenda
Over the past decade there have been
a significant number of R&D agendas
published by various academic and in-
dustry groups, and government depart-
ments and agencies (these documents
can be found online at http://www.cyber.
st.dhs.gov/documents.html). A 2006
federal R&D plan identified at least
eight areas of interest with over 50
project topics that were either being
funded or should be funded by federal
R&D entities. Many of these topic areas
have been on the various lists for over a
decade. Why? Because the U.S. has un-
derinvested in these R&D areas, both
within the government and private
R&D communities.
The Comprehensive National Cy-
ber Initiative (CNCI) and the Presi-
dent’s Cyberspace Policy Review3
challenged the federal networks and
IT research community to figure out
how to “change the game” to address
these technical issues. Over the past
year, through the National Cyber Leap
Year (NCLY) Summit and a wide range
of other activities, the U.S. government
research community sought to elicit
the best ideas from the research and
technology community. The vision of
the CNCI research community over the
next 10 years is to “transform the cyber-
infrastructure to be resistant to attack
so that critical national interests are
protected from catastrophic damage
and our society can confidently adopt
new technological advances.”
The leap-ahead strategy aligns with
the consensus of the U.S. networking
and cybersecurity research communi-
ties: That the only long-term solution to
the vulnerabilities of today’s network-
ing and information technologies is to
ensure that future generations of these
technologies are designed with security
built in from the ground up. Federal
agencies with mission-critical needs
for increased cybersecurity, which in-
cludes information assurance as well as
network and system security, can play a
direct role in determining research pri-
orities and assessing emerging technol-
ogy prototypes.
The Department of Homeland Secu-
rity Science and Technology Director-
ate has published its own roadmap in
an effort to provide more R&D direction
for the community. The Cybersecurity
Research Roadmap1 addresses a broad
R&D agenda that is required to enable
production of the technologies that will
protect future information systems and
the current public-
private partnerships
are inadequate for
taking R&D results
and deploying them
across the global
infrastructure.
viewpoints
F e B r U A r y 2 0 1 0 | v O l . 5 3 | n O . 2 | c o m m
u n i c At i o n s o f t h e A c m 31
networks. The document provides de-
tailed research and development agen-
das relating to 11 hard problem areas
in cybersecurity, for use by agencies of
the U.S. government. The research top-
ics in this roadmap, however, are rel-
evant not just to the governments, but
also to the private sector and anyone
else funding or performing R&D.
While progress in any of the areas
identified in the reports noted previous-
ly would be valuable, I believe the “top
10” list consists of the following (with
short rationale included):
Software Assurance: poorly writ-1.
ten software is at the root of all of our
security problems;
Metrics: we cannot measure our 2.
systems, thus we cannot manage them;
Usable Security: information se-3.
curity technologies have not been de-
ployed because they are not easily usable;
Identity Management: the ability 4.
to know who you are communicating
with will help eliminate many of today’s
online problems, including attribution;
Malware: today’s problems contin-5.
ue because of a lack of dealing with ma-
licious software and its perpetrators;
Insider Threat: one of the biggest 6.
threats to all sectors that has not been
adequately addressed;
Hardware Security: today’s com-7.
puting systems can be improved with
new thinking about the next generation
of hardware built from the start with se-
curity in mind;
Data Provenance: data has the 8.
most value, yet we have no mechanisms
to know what has happened to data
from its inception;
Trustworthy Systems: current sys-9.
tems are unable to provide assurances
of correct operation to include resil-
iency; and
Cyber Economics: we do not un-10.
derstand the economics behind cyber-
security for either the good guy or the
bad guy.
Life cycle of innovation
R&D programs, including cybersecu-
rity R&D, consistently have difficulty
in taking the research through a path
of development, testing, evaluation,
and transition into operational envi-
ronments. Past experience shows that
transition plans developed and applied
early in the life cycle of the research
program, with probable transition
paths for the research product, are ef-
fective in achieving successful transfer
from research to application and use.
It is equally important, however, to ac-
knowledge that these plans are subject
to change and must be reviewed often.
It is also important to note that differ-
ent technologies are better suited for
different technology transition paths
and in some instances the choice of the
transition path will mean success or
failure for the ultimate product. There
are guiding principles for transitioning
research products. These principles in-
volve lessons learned about the effects
of time/schedule, budgets, customer
or end-user participation, demonstra-
tions, testing and evaluation, product
partnerships, and other factors.
A July 2007 U.S. Department of De-
fense Report to Congress on Technol-
ogy Transition noted there is evidence
that a chasm exists between the DoD
S&T communities and acquisition of
a system prototype demonstration in
an operational environment. DOD is
not the only government agency that
struggles with technology transition.
That chasm, commonly referred to as
the “valley of death,” can be bridged
only through cooperative efforts and
investments by both research and ac-
quisition communities.
There are at least five canonical tran-
sition paths for research funded by the
federal government. These transition
paths are affected by the nature of the
technology, the intended end user, par-
ticipants in the research program, and
other external circumstances. Success
in research product transition is often
accomplished by the dedication of the
program manager through opportu-
nistic channels of demonstration, part-
nering, and sometimes good fortune.
However, no single approach is more
effective than a proactive technology
champion who is allowed the freedom
to seek potential utilization of the re-
search product. The five canonical tran-
sition paths are:
Department/Agency direct to ˲
Acquisition
Department/Agency to ˲
Government Lab
Department/Agency to Industry ˲
Department/Agency to ˲
Academia to Industry
Department/ ˲ Agency to
Open Source Community
In order to achieve the full results of
R&D, technology transfer needs to be
a key consideration for all R&D invest-
ments. This requires the federal gov-
ernment to move past working models
where most R&D programs support only
limited operational evaluations and ex-
periments. In these old working mod-
els, most R&D program managers con-
sider their job done with final reports,
and most research performers consider
their job done with publications. In or-
der to move forward, government-fund-
ed R&D activities must focus on the real
goal: technology transfer, which follows
transition. Current R&D principal inves-
tigators (PIs) and program managers
(PMs) aren’t rewarded for technology
transfer. Academic PIs are rewarded for
publications, not technology transfer.
The government R&D community must
reward government program managers
and PIs for transition progress.
conclusion
As noted in the White House Cyber-
space Policy Review,3 an updated na-
tional strategy for securing cyberspace
is needed. Research and development
must be a full partner in that discus-
sion. It is only through innovation cre-
ation that the U.S. can regain its posi-
tion as a leader in cyberspace.
References
1. a roadmap for cybersecurity research, Department
of homeland Security Science and technology
Directorate, November 2009; http://www.cyber.st.dhs.
gov/documents.html
2. taulbee Survey 2006–2007, computing research News
20, 3. Computer Research Association, May 2008.
3. White house cyberspace Policy review; http://www.
whitehouse.gov/assets/documents/cyberspace_
Policy_review_final.pdf
Douglas Maughan ([email protected]) is a
program manager for cybersecurity r&D at the U.S.
Department of homeland Security in Washington, D.c.
copyright held by author.
in order to achieve
the full results of
R&D, technology
transfer needs to be a
key consideration for
all R&D investments.

More Related Content

Similar to An Overview of Cyber Attack and Computer Network Operations Si.docx

DDoS Attack Detection on Internet o Things using Unsupervised Algorithms
DDoS Attack Detection on Internet o Things using Unsupervised AlgorithmsDDoS Attack Detection on Internet o Things using Unsupervised Algorithms
DDoS Attack Detection on Internet o Things using Unsupervised Algorithmsijfls
 
DDOS ATTACK DETECTION ON INTERNET OF THINGS USING UNSUPERVISED ALGORITHMS
DDOS ATTACK DETECTION ON INTERNET OF THINGS USING UNSUPERVISED ALGORITHMSDDOS ATTACK DETECTION ON INTERNET OF THINGS USING UNSUPERVISED ALGORITHMS
DDOS ATTACK DETECTION ON INTERNET OF THINGS USING UNSUPERVISED ALGORITHMSijfls
 
Study of flooding based ddos attacks and their effect using deter testbed
Study of flooding based ddos attacks and their effect using deter testbedStudy of flooding based ddos attacks and their effect using deter testbed
Study of flooding based ddos attacks and their effect using deter testbedeSAT Journals
 
Study of flooding based d do s attacks and their effect using deter testbed
Study of flooding based d do s attacks and their effect using deter testbedStudy of flooding based d do s attacks and their effect using deter testbed
Study of flooding based d do s attacks and their effect using deter testbedeSAT Publishing House
 
A New Way of Identifying DOS Attack Using Multivariate Correlation Analysis
A New Way of Identifying DOS Attack Using Multivariate Correlation AnalysisA New Way of Identifying DOS Attack Using Multivariate Correlation Analysis
A New Way of Identifying DOS Attack Using Multivariate Correlation Analysisijceronline
 
HARDWARE SECURITY IN CASE OF SCAN-BASED ATTACK ON CRYPTO-HARDWARE
HARDWARE SECURITY IN CASE OF SCAN-BASED ATTACK ON CRYPTO-HARDWAREHARDWARE SECURITY IN CASE OF SCAN-BASED ATTACK ON CRYPTO-HARDWARE
HARDWARE SECURITY IN CASE OF SCAN-BASED ATTACK ON CRYPTO-HARDWAREVLSICS Design
 
HARDWARE SECURITY IN CASE OF SCAN-BASED ATTACK ON CRYPTO-HARDWARE
HARDWARE SECURITY IN CASE OF SCAN-BASED ATTACK ON CRYPTO-HARDWAREHARDWARE SECURITY IN CASE OF SCAN-BASED ATTACK ON CRYPTO-HARDWARE
HARDWARE SECURITY IN CASE OF SCAN-BASED ATTACK ON CRYPTO-HARDWAREVLSICS Design
 
HARDWARE SECURITY IN CASE OF SCAN-BASED ATTACK ON CRYPTO-HARDWARE
HARDWARE SECURITY IN CASE OF SCAN-BASED ATTACK ON CRYPTO-HARDWAREHARDWARE SECURITY IN CASE OF SCAN-BASED ATTACK ON CRYPTO-HARDWARE
HARDWARE SECURITY IN CASE OF SCAN-BASED ATTACK ON CRYPTO-HARDWAREVLSICS Design
 
Prevention of Vulnerable Virtual Machines against DDOS.pptx
Prevention of Vulnerable Virtual Machines against DDOS.pptxPrevention of Vulnerable Virtual Machines against DDOS.pptx
Prevention of Vulnerable Virtual Machines against DDOS.pptxNoorFathima60
 
A comprehensive study of distributed Denial-of-Service attack with the detect...
A comprehensive study of distributed Denial-of-Service attack with the detect...A comprehensive study of distributed Denial-of-Service attack with the detect...
A comprehensive study of distributed Denial-of-Service attack with the detect...IJECEIAES
 
Replay of Malicious Traffic in Network Testbeds
Replay of Malicious Traffic in Network TestbedsReplay of Malicious Traffic in Network Testbeds
Replay of Malicious Traffic in Network TestbedsDETER-Project
 
D03302030036
D03302030036D03302030036
D03302030036theijes
 
2014 IEEE DOTNET PARALLEL DISTRIBUTED PROJECT A system-for-denial-of-service-...
2014 IEEE DOTNET PARALLEL DISTRIBUTED PROJECT A system-for-denial-of-service-...2014 IEEE DOTNET PARALLEL DISTRIBUTED PROJECT A system-for-denial-of-service-...
2014 IEEE DOTNET PARALLEL DISTRIBUTED PROJECT A system-for-denial-of-service-...IEEEGLOBALSOFTSTUDENTSPROJECTS
 
IEEE 2014 DOTNET PARALLEL DISTRIBUTED PROJECTS A system-for-denial-of-service...
IEEE 2014 DOTNET PARALLEL DISTRIBUTED PROJECTS A system-for-denial-of-service...IEEE 2014 DOTNET PARALLEL DISTRIBUTED PROJECTS A system-for-denial-of-service...
IEEE 2014 DOTNET PARALLEL DISTRIBUTED PROJECTS A system-for-denial-of-service...IEEEMEMTECHSTUDENTPROJECTS
 
Network Intrusion Detection and Countermeasure Selection
Network Intrusion Detection and Countermeasure SelectionNetwork Intrusion Detection and Countermeasure Selection
Network Intrusion Detection and Countermeasure SelectionPramod M Mithyantha
 

Similar to An Overview of Cyber Attack and Computer Network Operations Si.docx (20)

DDoS Attack Detection on Internet o Things using Unsupervised Algorithms
DDoS Attack Detection on Internet o Things using Unsupervised AlgorithmsDDoS Attack Detection on Internet o Things using Unsupervised Algorithms
DDoS Attack Detection on Internet o Things using Unsupervised Algorithms
 
DDOS ATTACK DETECTION ON INTERNET OF THINGS USING UNSUPERVISED ALGORITHMS
DDOS ATTACK DETECTION ON INTERNET OF THINGS USING UNSUPERVISED ALGORITHMSDDOS ATTACK DETECTION ON INTERNET OF THINGS USING UNSUPERVISED ALGORITHMS
DDOS ATTACK DETECTION ON INTERNET OF THINGS USING UNSUPERVISED ALGORITHMS
 
Study of flooding based ddos attacks and their effect using deter testbed
Study of flooding based ddos attacks and their effect using deter testbedStudy of flooding based ddos attacks and their effect using deter testbed
Study of flooding based ddos attacks and their effect using deter testbed
 
Study of flooding based d do s attacks and their effect using deter testbed
Study of flooding based d do s attacks and their effect using deter testbedStudy of flooding based d do s attacks and their effect using deter testbed
Study of flooding based d do s attacks and their effect using deter testbed
 
H1803025360
H1803025360H1803025360
H1803025360
 
A New Way of Identifying DOS Attack Using Multivariate Correlation Analysis
A New Way of Identifying DOS Attack Using Multivariate Correlation AnalysisA New Way of Identifying DOS Attack Using Multivariate Correlation Analysis
A New Way of Identifying DOS Attack Using Multivariate Correlation Analysis
 
HARDWARE SECURITY IN CASE OF SCAN-BASED ATTACK ON CRYPTO-HARDWARE
HARDWARE SECURITY IN CASE OF SCAN-BASED ATTACK ON CRYPTO-HARDWAREHARDWARE SECURITY IN CASE OF SCAN-BASED ATTACK ON CRYPTO-HARDWARE
HARDWARE SECURITY IN CASE OF SCAN-BASED ATTACK ON CRYPTO-HARDWARE
 
HARDWARE SECURITY IN CASE OF SCAN-BASED ATTACK ON CRYPTO-HARDWARE
HARDWARE SECURITY IN CASE OF SCAN-BASED ATTACK ON CRYPTO-HARDWAREHARDWARE SECURITY IN CASE OF SCAN-BASED ATTACK ON CRYPTO-HARDWARE
HARDWARE SECURITY IN CASE OF SCAN-BASED ATTACK ON CRYPTO-HARDWARE
 
HARDWARE SECURITY IN CASE OF SCAN-BASED ATTACK ON CRYPTO-HARDWARE
HARDWARE SECURITY IN CASE OF SCAN-BASED ATTACK ON CRYPTO-HARDWAREHARDWARE SECURITY IN CASE OF SCAN-BASED ATTACK ON CRYPTO-HARDWARE
HARDWARE SECURITY IN CASE OF SCAN-BASED ATTACK ON CRYPTO-HARDWARE
 
1776 1779
1776 17791776 1779
1776 1779
 
1776 1779
1776 17791776 1779
1776 1779
 
Prevention of Vulnerable Virtual Machines against DDOS.pptx
Prevention of Vulnerable Virtual Machines against DDOS.pptxPrevention of Vulnerable Virtual Machines against DDOS.pptx
Prevention of Vulnerable Virtual Machines against DDOS.pptx
 
Ijmet 10 02_045
Ijmet 10 02_045Ijmet 10 02_045
Ijmet 10 02_045
 
A comprehensive study of distributed Denial-of-Service attack with the detect...
A comprehensive study of distributed Denial-of-Service attack with the detect...A comprehensive study of distributed Denial-of-Service attack with the detect...
A comprehensive study of distributed Denial-of-Service attack with the detect...
 
Replay of Malicious Traffic in Network Testbeds
Replay of Malicious Traffic in Network TestbedsReplay of Malicious Traffic in Network Testbeds
Replay of Malicious Traffic in Network Testbeds
 
Vertualisation
VertualisationVertualisation
Vertualisation
 
D03302030036
D03302030036D03302030036
D03302030036
 
2014 IEEE DOTNET PARALLEL DISTRIBUTED PROJECT A system-for-denial-of-service-...
2014 IEEE DOTNET PARALLEL DISTRIBUTED PROJECT A system-for-denial-of-service-...2014 IEEE DOTNET PARALLEL DISTRIBUTED PROJECT A system-for-denial-of-service-...
2014 IEEE DOTNET PARALLEL DISTRIBUTED PROJECT A system-for-denial-of-service-...
 
IEEE 2014 DOTNET PARALLEL DISTRIBUTED PROJECTS A system-for-denial-of-service...
IEEE 2014 DOTNET PARALLEL DISTRIBUTED PROJECTS A system-for-denial-of-service...IEEE 2014 DOTNET PARALLEL DISTRIBUTED PROJECTS A system-for-denial-of-service...
IEEE 2014 DOTNET PARALLEL DISTRIBUTED PROJECTS A system-for-denial-of-service...
 
Network Intrusion Detection and Countermeasure Selection
Network Intrusion Detection and Countermeasure SelectionNetwork Intrusion Detection and Countermeasure Selection
Network Intrusion Detection and Countermeasure Selection
 

More from nettletondevon

Your NamePractical ConnectionYour NameNOTE To insert a .docx
Your NamePractical ConnectionYour NameNOTE To insert a .docxYour NamePractical ConnectionYour NameNOTE To insert a .docx
Your NamePractical ConnectionYour NameNOTE To insert a .docxnettletondevon
 
Your namePresenter’s name(s) DateTITILE Motivatio.docx
Your namePresenter’s name(s) DateTITILE Motivatio.docxYour namePresenter’s name(s) DateTITILE Motivatio.docx
Your namePresenter’s name(s) DateTITILE Motivatio.docxnettletondevon
 
Your nameProfessor NameCourseDatePaper Outline.docx
Your nameProfessor NameCourseDatePaper Outline.docxYour nameProfessor NameCourseDatePaper Outline.docx
Your nameProfessor NameCourseDatePaper Outline.docxnettletondevon
 
Your name _________________________________ Date of submission _.docx
Your name _________________________________ Date of submission _.docxYour name _________________________________ Date of submission _.docx
Your name _________________________________ Date of submission _.docxnettletondevon
 
Your NameECD 310 Exceptional Learning and InclusionInstruct.docx
Your NameECD 310 Exceptional Learning and InclusionInstruct.docxYour NameECD 310 Exceptional Learning and InclusionInstruct.docx
Your NameECD 310 Exceptional Learning and InclusionInstruct.docxnettletondevon
 
Your Name University of the Cumberlands ISOL634-25 P.docx
Your Name University of the Cumberlands ISOL634-25 P.docxYour Name University of the Cumberlands ISOL634-25 P.docx
Your Name University of the Cumberlands ISOL634-25 P.docxnettletondevon
 
Your Name Professor Name Subject Name 06 Apr.docx
Your Name  Professor Name  Subject Name  06 Apr.docxYour Name  Professor Name  Subject Name  06 Apr.docx
Your Name Professor Name Subject Name 06 Apr.docxnettletondevon
 
Your muscular system examassignment is to describe location (su.docx
Your muscular system examassignment is to describe location (su.docxYour muscular system examassignment is to describe location (su.docx
Your muscular system examassignment is to describe location (su.docxnettletondevon
 
Your midterm will be a virtual, individual assignment. You can choos.docx
Your midterm will be a virtual, individual assignment. You can choos.docxYour midterm will be a virtual, individual assignment. You can choos.docx
Your midterm will be a virtual, individual assignment. You can choos.docxnettletondevon
 
Your local art museum has asked you to design a gallery dedicated to.docx
Your local art museum has asked you to design a gallery dedicated to.docxYour local art museum has asked you to design a gallery dedicated to.docx
Your local art museum has asked you to design a gallery dedicated to.docxnettletondevon
 
Your letter should include Introduction – Include your name, i.docx
Your letter should include Introduction – Include your name, i.docxYour letter should include Introduction – Include your name, i.docx
Your letter should include Introduction – Include your name, i.docxnettletondevon
 
Your legal analysis should be approximately 500 wordsDetermine.docx
Your legal analysis should be approximately 500 wordsDetermine.docxYour legal analysis should be approximately 500 wordsDetermine.docx
Your legal analysis should be approximately 500 wordsDetermine.docxnettletondevon
 
Your Last Name 1Your Name Teacher Name English cl.docx
Your Last Name  1Your Name Teacher Name English cl.docxYour Last Name  1Your Name Teacher Name English cl.docx
Your Last Name 1Your Name Teacher Name English cl.docxnettletondevon
 
Your job is to delegate job tasks to each healthcare practitioner (U.docx
Your job is to delegate job tasks to each healthcare practitioner (U.docxYour job is to delegate job tasks to each healthcare practitioner (U.docx
Your job is to delegate job tasks to each healthcare practitioner (U.docxnettletondevon
 
Your job is to look at the routing tables and DRAW (on a piece of pa.docx
Your job is to look at the routing tables and DRAW (on a piece of pa.docxYour job is to look at the routing tables and DRAW (on a piece of pa.docx
Your job is to look at the routing tables and DRAW (on a piece of pa.docxnettletondevon
 
Your job is to design a user interface that displays the lotto.docx
Your job is to design a user interface that displays the lotto.docxYour job is to design a user interface that displays the lotto.docx
Your job is to design a user interface that displays the lotto.docxnettletondevon
 
Your Introduction of the StudyYour Purpose of the stud.docx
Your Introduction of the StudyYour Purpose of the stud.docxYour Introduction of the StudyYour Purpose of the stud.docx
Your Introduction of the StudyYour Purpose of the stud.docxnettletondevon
 
Your instructor will assign peer reviewers. You will review a fell.docx
Your instructor will assign peer reviewers. You will review a fell.docxYour instructor will assign peer reviewers. You will review a fell.docx
Your instructor will assign peer reviewers. You will review a fell.docxnettletondevon
 
Your initial reading is a close examination of the work youve c.docx
Your initial reading is a close examination of the work youve c.docxYour initial reading is a close examination of the work youve c.docx
Your initial reading is a close examination of the work youve c.docxnettletondevon
 
Your initial posting must be no less than 200 words each and is due .docx
Your initial posting must be no less than 200 words each and is due .docxYour initial posting must be no less than 200 words each and is due .docx
Your initial posting must be no less than 200 words each and is due .docxnettletondevon
 

More from nettletondevon (20)

Your NamePractical ConnectionYour NameNOTE To insert a .docx
Your NamePractical ConnectionYour NameNOTE To insert a .docxYour NamePractical ConnectionYour NameNOTE To insert a .docx
Your NamePractical ConnectionYour NameNOTE To insert a .docx
 
Your namePresenter’s name(s) DateTITILE Motivatio.docx
Your namePresenter’s name(s) DateTITILE Motivatio.docxYour namePresenter’s name(s) DateTITILE Motivatio.docx
Your namePresenter’s name(s) DateTITILE Motivatio.docx
 
Your nameProfessor NameCourseDatePaper Outline.docx
Your nameProfessor NameCourseDatePaper Outline.docxYour nameProfessor NameCourseDatePaper Outline.docx
Your nameProfessor NameCourseDatePaper Outline.docx
 
Your name _________________________________ Date of submission _.docx
Your name _________________________________ Date of submission _.docxYour name _________________________________ Date of submission _.docx
Your name _________________________________ Date of submission _.docx
 
Your NameECD 310 Exceptional Learning and InclusionInstruct.docx
Your NameECD 310 Exceptional Learning and InclusionInstruct.docxYour NameECD 310 Exceptional Learning and InclusionInstruct.docx
Your NameECD 310 Exceptional Learning and InclusionInstruct.docx
 
Your Name University of the Cumberlands ISOL634-25 P.docx
Your Name University of the Cumberlands ISOL634-25 P.docxYour Name University of the Cumberlands ISOL634-25 P.docx
Your Name University of the Cumberlands ISOL634-25 P.docx
 
Your Name Professor Name Subject Name 06 Apr.docx
Your Name  Professor Name  Subject Name  06 Apr.docxYour Name  Professor Name  Subject Name  06 Apr.docx
Your Name Professor Name Subject Name 06 Apr.docx
 
Your muscular system examassignment is to describe location (su.docx
Your muscular system examassignment is to describe location (su.docxYour muscular system examassignment is to describe location (su.docx
Your muscular system examassignment is to describe location (su.docx
 
Your midterm will be a virtual, individual assignment. You can choos.docx
Your midterm will be a virtual, individual assignment. You can choos.docxYour midterm will be a virtual, individual assignment. You can choos.docx
Your midterm will be a virtual, individual assignment. You can choos.docx
 
Your local art museum has asked you to design a gallery dedicated to.docx
Your local art museum has asked you to design a gallery dedicated to.docxYour local art museum has asked you to design a gallery dedicated to.docx
Your local art museum has asked you to design a gallery dedicated to.docx
 
Your letter should include Introduction – Include your name, i.docx
Your letter should include Introduction – Include your name, i.docxYour letter should include Introduction – Include your name, i.docx
Your letter should include Introduction – Include your name, i.docx
 
Your legal analysis should be approximately 500 wordsDetermine.docx
Your legal analysis should be approximately 500 wordsDetermine.docxYour legal analysis should be approximately 500 wordsDetermine.docx
Your legal analysis should be approximately 500 wordsDetermine.docx
 
Your Last Name 1Your Name Teacher Name English cl.docx
Your Last Name  1Your Name Teacher Name English cl.docxYour Last Name  1Your Name Teacher Name English cl.docx
Your Last Name 1Your Name Teacher Name English cl.docx
 
Your job is to delegate job tasks to each healthcare practitioner (U.docx
Your job is to delegate job tasks to each healthcare practitioner (U.docxYour job is to delegate job tasks to each healthcare practitioner (U.docx
Your job is to delegate job tasks to each healthcare practitioner (U.docx
 
Your job is to look at the routing tables and DRAW (on a piece of pa.docx
Your job is to look at the routing tables and DRAW (on a piece of pa.docxYour job is to look at the routing tables and DRAW (on a piece of pa.docx
Your job is to look at the routing tables and DRAW (on a piece of pa.docx
 
Your job is to design a user interface that displays the lotto.docx
Your job is to design a user interface that displays the lotto.docxYour job is to design a user interface that displays the lotto.docx
Your job is to design a user interface that displays the lotto.docx
 
Your Introduction of the StudyYour Purpose of the stud.docx
Your Introduction of the StudyYour Purpose of the stud.docxYour Introduction of the StudyYour Purpose of the stud.docx
Your Introduction of the StudyYour Purpose of the stud.docx
 
Your instructor will assign peer reviewers. You will review a fell.docx
Your instructor will assign peer reviewers. You will review a fell.docxYour instructor will assign peer reviewers. You will review a fell.docx
Your instructor will assign peer reviewers. You will review a fell.docx
 
Your initial reading is a close examination of the work youve c.docx
Your initial reading is a close examination of the work youve c.docxYour initial reading is a close examination of the work youve c.docx
Your initial reading is a close examination of the work youve c.docx
 
Your initial posting must be no less than 200 words each and is due .docx
Your initial posting must be no less than 200 words each and is due .docxYour initial posting must be no less than 200 words each and is due .docx
Your initial posting must be no less than 200 words each and is due .docx
 

Recently uploaded

Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpinRaunakKeshri1
 
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...anjaliyadav012327
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...fonyou31
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
Russian Call Girls in Andheri Airport Mumbai WhatsApp 9167673311 💞 Full Nigh...
Russian Call Girls in Andheri Airport Mumbai WhatsApp  9167673311 💞 Full Nigh...Russian Call Girls in Andheri Airport Mumbai WhatsApp  9167673311 💞 Full Nigh...
Russian Call Girls in Andheri Airport Mumbai WhatsApp 9167673311 💞 Full Nigh...Pooja Nehwal
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Celine George
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAssociation for Project Management
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 

Recently uploaded (20)

Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpin
 
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Russian Call Girls in Andheri Airport Mumbai WhatsApp 9167673311 💞 Full Nigh...
Russian Call Girls in Andheri Airport Mumbai WhatsApp  9167673311 💞 Full Nigh...Russian Call Girls in Andheri Airport Mumbai WhatsApp  9167673311 💞 Full Nigh...
Russian Call Girls in Andheri Airport Mumbai WhatsApp 9167673311 💞 Full Nigh...
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 

An Overview of Cyber Attack and Computer Network Operations Si.docx

  • 1. An Overview of Cyber Attack and Computer Network Operations Simulation Sylvain P. Leblanc, Andrew Partington Computer Security Laboratory Royal Military College of Canada [email protected] Ian Chapman, Mélanie Bernier Centre for Operational Research and Analysis Defence Research and Development Canada [email protected] [email protected] Keywords: Overview, Survey Paper, Cyber Attacks, Cyber Warfare, Computer Network Operations Abstract This paper represents a snapshot of the current state of
  • 2. the art in the simulation and modeling of cyber attacks and defensive responses to those. It discusses a number of simulations of cyber warfare, including live, virtual, and constructive simulations. The simulations discussed in this paper were found in the open literature and were conducted in the private sector, academia, and government. Each simulation is briefly described, including goals, methodology, and a brief discussion of its accomplishments. These modeling and simulation efforts are of particular interest to the military modeling and simulation community, as it is likely that military forces will continue to rely ever more heavily on computer and communication networks. 1. INTRODUCTION The concepts and technical challenges behind the simulation of military conflicts in the traditional operational domains – land, maritime, and air – have been well understood for several decades, and thus numerous applications have been developed to support computer
  • 3. wargaming. These wargames are typically used to support training and experimentation, and are seen as a safe and cost-effective way to assess the effects of new technologies and equipment before deploying them to the real battlefield. Recent events, such as the 2007 cyber attack on Estonia, have shown the rising importance of computer network operations (CNO) 1 in an increasingly inter- networked world. Both civilian and military domains have become increasingly reliant on computer networks for communication, information management, utilities management, financial systems, air traffic control, and many other critical applications. In fact, the authors argue elsewhere at this conference that CNO education is vital for both technical and non-technical commanders, and propose using simulation to further these educational goals [1]. 1 Per US Doctrine, CNO is comprised of Computer Network
  • 4. Defense (CND), Computer Network Attack (CNA) and Computer Network Exploitation (CNE). Many sources use cyber warfare; we use both terms. Cyber attacks have the potential to be extremely disruptive to a wired society. To understand some of the ramifications of these events, including their potential impact on the use of networks, the research community has begun the development of a number of applications to simulate cyber warfare. The paper is separated in two main sections. The first part will discuss prominent private sector and academic research, while the second will discuss public sector research in the field of modeling and simulation for cyber warfare. This paper is intended to present the results of our survey of current unclassified research literature, openly published on the topic of simulation for cyber warfare. It is not meant to be all encompassing. The authors have not
  • 5. found other works that attempt to summarize key efforts in this area of study. The authors believe that simulation will make ever greater contributions to the field of cyber warfare and CNO. This paper and the Military Modeling Symposium that flow from it should be viewed as an attempt to engage the research community on this important emerging topic. 2. PROMINENT PRIVATE SECTOR AND ACADEMIC RESEARCH The idea of simulating cyber attacks has been investigated by several researchers and students at universities as well as in private organizations. The simulations discussed in this section have been selected for discussion because they represent some of the most significant work in cyber attack modeling. 2.1. Cyber Attack Modeling using ARENA ARENA is a constructive simulation developed by researchers at the Rochester Institute of Technology (RIT),
  • 6. partially sponsored by the U.S Air Force Research Laboratory (AFRL) in Rome, NY. The ARENA simulation software was used to simulate cyber attacks against a computer network from an external source such as the internet [2-3]. The simulation models step-by-step attacks on a computer network. The attacks can be automatically created within the constructs of the tool, or they can be predefined in XML files that can be loaded by the simulation tool. Each 92 attack has a specific associated attack type and a target computer on the network under attack. The simulation supports a variety of attack types such as Denial of Service (DoS) attacks and the installation of a backdoor on a target computer. Each attack will typically go through numerous steps to attempt access to a target computer. Therefore, each attack will typically involve an attacker infiltrating several
  • 7. intermediary computers and servers on a network in order to compromise the target computer. Along with its defined type and target, each attack includes characteristics of the attacker by giving a normalized value for efficiency, stealth and skill. Efficiency refers to the speed and swiftness with which the attacker can move from one intermediary host to another in a multi-tiered network. Stealth refers to the attacker's ability to avoid unnecessary intermediate steps which may alert network defenders to his presence. Finally, the attacker's skill parameter is used to determine stochastically the success of each intermediary steps required to prosecute the attack against the target computer. The ARENA simulation also allows the user to construct a computer network and execute a series of cyber attacks on target hosts within that network. The simulated network can be multi-tiered, with several layers separated by routers and other network hardware. Host characteristics can be specified such as the IP address, the operating
  • 8. system, and the type of Intrusion Detection System (IDS) sensor used on the hosts (servers or client computers). Once the network is created, attacks can be simulated manually (by choosing the attack type, the target and the time when the attack is launched) or automatically (by using pre- defined XML attack files). Statistics on the attacks can be collected by applying the attack details and attacker characteristics (the attacker's skill, stealth and efficiency parameters) against the target network architecture. This ARENA simulation tool is primarily used to analyze IDS sensors. IDS sensors are deployed at specific locations within the target network to examine network traffic and generate alerts based on programmed rules. Not all alerts are legitimate; some are the result of attacks, while others are the result of non-malicious activity. The simulation outputs an attack log, detailing the target and the time of occurrence of each attack. The simulation also lists which attacks triggered alerts, and for each IDS, notes the
  • 9. details between the true and false positives. Overall, this is a very well developed simulation tool capable of simulating many forms of attack on a specific, user-defined network. The focus on analysis of IDS sensors makes the output of the simulation somewhat limited, but useful nonetheless. At the end of a simulation run, the user is presented with a list of attacks that occurred on the simulated network and a list of the alerts reported by the IDS sensors. This output can help analyze the target network topology; however it offers limited benefits in training and experimentation. 2.2. RINSE The Real-Time Immersive Network Simulation Environment (RINSE) is a live simulation developed by researchers at the University of Illinois at Urbana- Champaign in 2006 [4]. RINSE was designed with the aim of developing a simulation capable of supporting large-scale wide-area networks (WAN) consisting of hundreds of local-
  • 10. area networks (LAN), each administered by users. In RINSE simulations, attacks are carried out against the WAN and users attempt to diagnose and counter the attacks to keep their LAN's network services running. Physically, the simulator consists of an enclosed network with several users acting as LAN managers on different computers joining the same simulation exercise. The users are tasked with the defence of their LAN against computer attacks carried out by the simulation tool. A game manager coordinates the simulation and plays the role of the attacker. Through the command prompt, the user can input commands that fall into five different categories: attack, defence (such as the installation of packet filters), diagnostic networking tools (such as ping), device control (shutting down or rebooting devices such as hosts and routers), and simulator data. The focus of the simulation is on external attack vectors
  • 11. such as Distributed DoS (DDoS), worms and other attacks involving high-intensity traffic flows. Simulator commands are used to control the output of the simulation in order to highlight the trace flow from a selected host. RINSE also contains other useful features such as save points and the ability to vary the pace of the simulation. In addition, RINSE allows the game manager to adjust the resources of simulated computers, such as memory and CPU speed, which is important when modeling DDoS attacks. In summary, RINSE is a very powerful and well designed live simulation tool capable of simulating attacks on complex networks involving a large number of network defenders. It is limited by the small number of cyber attacks that it can simulate. Also, the use of a command-line interface, instead of a full graphic user interface (GUI), makes its use cumbersome. While the tool helps with the training and education of network defenders, it does not
  • 12. contribute to the general understanding of the implications of CNO by senior leaders. 2.3. Simulating Cyber Attacks, Defenses and Consequences by Cohen Simulating Cyber Attacks, Defences and Consequences is a paper written by Fred Cohen of Sandia National Laboratories in the year 1999 [5]. Despite its publication more than 10 years ago, the paper's discussion of developments in cyber attack simulation are still largely 93 relevant and have helped contribute to the work on Secusim (Section 2.4). Cohen’s simulation is constructive, runs on a single computer and models various attacks on a simulated network. Cohen simulates various attack scenarios using the attacker’s and defender’s skills as the primary simulation parameter. Cohen went to great lengths to classify attackers
  • 13. and gives them various attributes and skill levels. Each attack was given a classification such as vandalism, professional-theft, military or insider action. Combining these parameters and attributes yields 34 different classes of attackers. Each class has a different skill level, different predetermined attack goals and indication of their ability to hack stealthily. This extensive classification scheme makes the simulation easier to understand and the results easily analyzed for different types of computer attackers. Unfortunately Cohen does not detail how he carried out the classifications. Even if he made very good generalizations about certain types of attackers, the differences between individuals are not captured by the simulation. Nevertheless the idea is intuitive and represents an interesting concept in cyber attack simulations. Interestingly, Cohen’s simulation is based on a set of 37 types of threats, 94 types of attacks, and approximately 140
  • 14. types of protective methods. A database tracks the attacks and their associated protective methods. This was seen as very innovative as there is a variety of possible cyber attacks and only certain defences are possible against certain attacks. We see no evidence of validation of this extensive classification scheme. The output of interest in the simulation is the simulated duration of the attack and its outcome (whether the attacker or the defender “wins”). The attacker will win if he achieves his goals and the defender will win if he successfully prevents the attacker from achieving his goals. Depending on the attacker’s goals and the respective skill level of the attacker and defender, the simulated time of the attack can range from minutes to years. This is comparable to real life where attackers may try to accomplish their goals quickly or wait months or even years for the opportunity to attack. Cohen extends the usefulness of his simulation by attempting to value the cost to the attacker and defender in
  • 15. terms of time spent and the expense of equipment used, focusing on the cost of a skilled defender versus an unskilled defender. He posits that hiring a very skilled computer administrator may be more expensive than the loss incurred from a cyber attack. Cohen’s work in the modeling of cost is very simplistic; nevertheless considering the financial costs in a cyber simulation model is an idea that may have considerable appeal. Cohen’s simulation was ground breaking in scope, attempting to cover many forms of cyber attack and defence. However, Cohen admits a struggle with validating his model as he was unable to compare his simulation with large amounts of data from real world cyber attacks. However, he maintains that his simulation was validated by various experts who agreed that his model was accurate. Nevertheless, since it has been over 10 years since Cohen designed his simulation, and as he was unable to do much in the way of validation, one cannot place much faith in the
  • 16. accuracy of his model. Nevertheless, the ideas, concepts and methodology in his attempt to simulate cyber attacks are all very important and applicable to any modern simulation of cyber attacks. 2.4. SECUSIM Secusim is constructive simulation software that was developed at the Department of Computer Engineering at Hangkong University in Korea in 2001 [6]. It was designed for the purpose of "specifying attack mechanisms, verifying defence mechanisms, and evaluating their consequences.” It is programmed in C++ for use on a single computer and includes a GUI allowing the user to create a virtual computer network of his or her design. The software has different modes: Basic, Intermediate, Advanced, Professional and Application. Each mode has different levels of functionality and customizability. The research paper contrasts the modes as follows: - attack mechanisms by retrieving the scenario database.
  • 17. of a given network by selecting arbitrary attacker model and target host as well as setting the attack scenario. -level testing of a given cyber-attack into the given network models. and node vulnerability of given network by allowing multiple cyber-attack simulation. allowing users to create and simulate their own customized network configurations.” The different modes enable users without much CNO expertise to operate the software in order to run the simulation while giving those with more knowledge the ability to design their own networks and test them against multiple cyber attacks in a single simulation run. Secusim is interesting primarily because of its customizability and its user-friendly GUI. It builds on the initial research of Fred Cohen and provides a good example
  • 18. of simulation software used for cyber attack modeling and analysis. 2.5. Research Efforts Involving OPNET There have been a few cyber attack simulations that use the computer software OPNET Modeler. This commercial simulation software is designed to aid in the analysis and 94 design of communication networks, devices, protocols, and applications. The software allows the modeling of “all network types and technologies” [7]. This includes VoIP, TCP, OSPFv3, MPLS, and IPv6. Among OPNET's many features are a user interface, support for simulations distributed across several computers and a library of device models with source code. OPNET’s ability to simulate computer networks makes it an ideal basis for a cyber attack simulation [7]. In this section, two research papers discuss the use of OPNET in
  • 19. cyber attack simulations. 2.5.1. Sakhardande - SUNY "The use of modeling and simulation to examine network performance under Denial of Service attacks” is a master’s thesis written by Rahul R. Sakhardande of the State University of New York in 2008 [8]. Sakhardande modeled a computer network in OPNET and analyzed its performance under normal operating conditions and again when undergoing a simulated DoS attack. The model was fairly limited as the authors did not configure OPNET to represent many different network topologies in order to conduct a more thorough analysis. Furthermore, Sakhardande was unable to properly validate his model against real operating environments. Nevertheless, the work shows that a model of DoS attacks on a network can be simulated using OPNET, even if the results in this particular instance were of limited general applicability.
  • 20. 2.5.2. Frequency-Based IDS “A Frequency-Based Approach to Intrusion Detection” is a research paper written by Mian Zhou and Sheau-Dong Lang of the University of Central Florida in 2003 [9]. The simulation that they created using OPNET was primarily used to test an experimental intrusion detection algorithm. They tested the effectiveness of the detection algorithm by observing network intrusion data in a simulated network using OPNET while simulating several types of DoS attacks and probe attacks. The two papers discussed above demonstrate that OPNET can be used to simulate a computer network sufficiently well for experimentation. However, OPNET modeling efforts reported in the literature were not detailed enough to assist in the training of network defenders or the education of senior leaders. 2.6. NetENGINE The Institute of Security Technology Studies at Dartmouth College developed a cyber attack simulation tool
  • 21. called NetEngine in a paper published in 2003 [10]. The tool was designed to be a virtual simulation, involving several users on different computers connected to the same simulation program. NetEngine is designed to be able to represent very large IP networks and is intended to be used to train IT staff in combating cyber attacks. NetEngine features a user interface where the user views network topology maps, the simulated network’s status, and router load plots. The software is built so that it can be accessed through the web using an internet browser. The simulation software itself is written in C++ and is designed to be run on Linux machines. The simulation can model workstations, routers, firewalls, servers, host clusters and ISPs. Each user of the simulation is placed in charge of a simulated domain which is a collection of hardware and software systems on the simulated computer network. Various cyber attacks are launched against these simulated domains. The users are able to communicate with each other
  • 22. during the simulation by using simulated email, facsimile, telephone or instant message. These communications processes are also vulnerable to the simulated cyber attacks. This allows team work to play a role in the simulation. This simulation tool does not focus on the technical details of the attacks but instead focuses on their effects. Therefore, the simulation implements generic attacks such as DDoS attacks, viruses and worms but makes little attempt to simulate attacks that rely on targeted computer exploits. The simulated attacks are predetermined and released according to a master driving script. This script effects state changes in the network to simulate an attack. For example, it can change the load level on a particular link or change the status of routers, workstations and other devices to simulate compromises or service degradation. Although the master driving script contains details and release time for each attack, these are first reviewed by an exercise controller who can either accept or cancel the release of the
  • 23. scripted attack. NetEngine has been quite successful. It was used as the basis of Livewire, a four day US national cyber defence exercise conducted in October 2003. This exercise involved over 300 participants in the US, including representatives from the energy and finance sectors. The exercise simulated a cyber attack against critical infrastructures which required the participants to communicate and work together to defend against the attacks or mitigate their impact. NetEngine has proven to be very useful simulation software with the ability to simulate large computer networks under cyber attacks. 2.7. Concluding Remarks on Prominent Private Sector and Academic Research Efforts The private sector and academia have conducted substantial research on cyber attack modeling. Many of the simulations have been constructive simulations, automated to execute without much user intervention [2,5,6,8,9]. These
  • 24. provided results that enabled the discovery of general patterns in cyber attacks but the accuracy of these results are dependent on the models used to drive the simulation. 95 Unfortunately most of these models offer little in the way of validation, a fact well captured by Fred Cohen who states that it is very difficult to set parameter values and adjust simulation mechanisms within a cyber attack simulation that are validated against real world events. Similarly, the virtual and live simulations discussed in this section may also suffer these same problems because of poorly defined attack scenarios [1,4,7,10,11]. It appears that live simulations are more geared towards education than analysis of computer attacks in general, and as such, non-validated attack details still allow the simulations to be effective educational tools. It is worth noting that the constructive simulations and virtual simulations discussed above focused on the effects of
  • 25. attacks on computer networks while mostly ignoring the bigger effect they can have on an organization or nation. If one wishes to understand these larger-scale effects (as was the case in many live simulation efforts), it stands to reason that the scope must be widened and the details of the attacks must be abstracted. 3. PUBLIC SECTOR RESEARCH Governments throughout the world, along with their military forces, have become increasingly interested in the applications of CNO as well as the necessity to defend against domestic or foreign cyber attacks. By far, the largest CNO research presented in the open literature comes from the US, France, China and Israel. While recent events such as StuxNet and GhostNet suggest that Israel [12] and China [13] may have links to CNO, the open literature does not offer much insight into their efforts. Our discussion of public sector research will therefore not involve China or
  • 26. Israel. By no means is the information presented here complete. The majority of CNO research, especially recent work, conducted by military forces is classified and thus inaccessible. In this section we discuss the information on simulations of cyber attacks that has been garnered from public sources, through such means as press releases and public reports, on the results of simulations. Unfortunately, this means that even though results are sometimes published, the specific simulation methods are not discussed in detail. 3.1. US Cyber Command and Air Force Cyber Operations Division The US Cyber Command (USCYBERCOM) is subordinate to the US Strategic Command [14]. It acts as a sub-unified command with service elements from the US Army (Army Cyber Command), the US Air Force (24th US Air Force), the US Navy (Fleet Cyber Command/10 th
  • 27. Fleet) and the US Marine Corps (Marine Forces Cyber Command). USCYBERCOM was formed in May 2010, when it achieved initial operational capability. It achieved full operational capability, meaning that it demonstrated the ability to accomplish its mission, at the end of October 2010 [15]. Although a military audience would surely be able to contribute much more on CYBERCOM, we offer the following from information available in the open literature. Its published mission statement reads: "USCYBERCOM plans, coordinates, integrates, synchronizes, and conducts activities to: direct the operations and defense of specified Department of Defense information networks and; prepare to, and when directed, conduct full-spectrum military cyberspace operations in order to enable actions in all domains, ensure US/Allied freedom of action in cyberspace and deny the same to our
  • 28. adversaries."[14] The service components listed above were in existence before CYBERCOM was established. CYBERCOM's status as a sub-unified command reflects a recognition by senior leadership that CNO affect numerous armed services, and that effective cyber responses required coordination and leadership. An interesting development in the evolution of CYBERCOM is the suggestion by some authors that because the traditional Army, Navy, Air Force and Marine cultures have difficulty dealing with CNO, a separate branch of service should be established for cyber operations [16]. Although one should expect much from USCYBERCOM in the future, recent US military cyber simulation efforts come mostly from the US Air Force. The US Air Force modified its mission statement “to deliver sovereign options for the defense of the US of America and its global interests - to fly and fight in Air, Space, and Cyberspace” in 2005. The addition of the word
  • 29. “Cyberspace” has had a major impact on their subsequent outlook toward CNO. The US Air Force has been a leading innovator in cyber warfare [17]. Most recently, in June 2010, a new officer training course in cyber warfare has been developed with a budget of $US 11.7 million. This included $US 7.6m spent on upgrades of facilities, computer infrastructure, laboratory networks and “simulators” [18]. Even though the news article announcing this development did not specify what these simulators are, it is known that the US Air Force has been developing and experimenting with at least two simulation programs over recent years: SIMTEX and CAAJED. 3.1.1. SIMTEX The Simulator Training Exercise Network (SIMTEX) is a simulation infrastructure used in training to automatically simulate various computer network attacks. The simulator mimics the three tier network architecture of the US Air Force. It can be set up to link together multiple simulators to form an “intra-network” [19].The simulator includes a
  • 30. simulated internet with domain name resolution complete with mimicked websites such as Google.com and CNN.com. 96 Bulwark Defender, whose previous incarnation was known as Black Demon, is a training exercise using the SIMTEX infrastructure. This training exercise is carried out once a year by military services and government agencies [20]. Participating services and agencies train against simulated cyber enemies that attempt to steal information and cause damage to their computer networks. Overall, SIMTEX is widely used and is therefore an important virtual simulation infrastructure. 3.1.2. CAAJED ‘06 While SIMTEX simulates the mechanics of an attack on a computer network, CAAJED focuses on the bigger picture and the kinetic effects of cyber attacks in a war
  • 31. situation [21]. CAAJED is a manual integration of CNO and cyber attacks with the US Air Force war simulator Modern Air Power (MAP). CAAJED consists of all the features of MAP such as the ability to play the war game as a human versus human, human versus computer opponent, or computer versus computer contest. In CAAJED, the cyber attacks are not automatically controlled by computers but are manually implemented by operators. When the cyber attacks affect network services the operators are instructed to disable or degrade the associated assets. Assets (including air bases, SAM sites, radar sites, and individual aircraft) have capabilities (such as anti-aircraft artillery, radar coverage, ability to launch aircraft) which can be enabled, disabled or reduced in effectiveness through cyber attack. The users of the simulator were not aware that the operators sitting at consoles helped simulate the cyber attacks, but they were able to observe effects that were consistent with the
  • 32. simulated cyber attacks. Overall, while this simulation was implemented as a proof of concept, it showed a lot of potential as a method of more seamlessly integrating simulated cyber attacks in a wargame. The CAAJED simulation was used in a Cyber Defence Exercise in 2007. This took the form of a competition between two teams where each team only controlled the cyber warfare elements while a constructive simulator controlled the remaining MAP elements. The participating undergraduate teams were scored to make the exercise more interesting to the participants, but these scores were not analytical in nature; they were not considered valid analytical data.. Overall, the US Air Force’s recent focus on cyber warfare has led them to produce useful simulations. There is a big difference between SIMTEX’s simulation of CNOs at the network level and the bigger picture view that is provided by the CAAJED simulation. Regardless, both types of simulations are valuable, achieving very different
  • 33. training and simulation goals. 3.2. USMA IWAR and RMC CSL The Information Warfare Analysis and Research (IWAR) laboratory at the US Military Academy (USMA – West Point, NY) is a network attack and defence simulator used to train cadets and faculty in information warfare [22]. It is capable of simulating defences such as cryptography, encryption and access control methods. IWAR is also able to simulate attacks such as Trojan horses, vulnerability scanners, viruses, worms, DoS, DDoS, and password hacking. IWAR is more akin to a large isolated network than simulation software. It requires extensive effort to maintain and the set-up for each use is very complex. While in use, IWAR requires very close monitoring and its configuration must be adjusted to ensure that it can support the aims of the exercise for which it is being used. The RMC Computer Security Laboratory (RMC CSL)
  • 34. uses a similar isolated network for CNO education and training, allowing us to gain perspective into the efforts required to run such a network. The RMC CSL isolated network uses virtualization software to enable multiple guests to run on a series of physical hosts. These virtual hosts can be configured to represent the hosts on a network, which can then be attacked and defended. The RMC CSL infrastructure requires a full time technician to maintain approximately seven physical hosts hosting approximately 15 – 20 guests being defended by approximately 10 – 15 participants. In addition, the RMC CSL isolated network typically employs an attack team of some five to eight members, and exercise coordination cell of approximately three to five controllers. Running such an isolated network is not cheap. Notwithstanding the lack of automated simulation software and resource costs involved in their use, the IWAR and RMC CSL isolated network are very successful and
  • 35. they are continuously being evolved and improved upon. The IWAR and RMC CSL isolated networks have been used for the NSA sponsored annual Cyber Defence Exercise (CDX). The USMA has used IWAR since the inception of the CDX in 2000 and the RMC CSL has used its isolated network since 2009. The CDX is an annual competition for the US Military, Naval, Air Force, Merchant Marine, and Coast Guard Academies as well as the Air Force Institute of Technology, the Naval Postgraduate School and the Royal Military College of Canada. Each institution is tasked with the design and implementation of a network in support of a notional NATO operation. Each institution monitors its network through their network operation centre, and must respond to attacks being carried out by an NSA attack team. 3.3. Cyber Storm I, II and III Cyber Storm I,II and Cyber Storm II were live simulations conducted in February 2006, March 2008 and September 2010 respectively [23-24]. The three simulation
  • 36. exercises were developed by the US Department of Homeland Security National Cyber Security Division. Cyber Storm involved over 100 participants from industry, 97 military and government, mostly from the US, but also including participants from the UK, Canada, Australia and New Zealand. Cyber Storm II was essentially a repetition of Cyber Storm I with more participants and different scenarios acted out. For its part, Cyber Storm III added yet more international, state and private sector participation. Cyber Strom III was also the first opportunity to exercise the National Cyber Incident Response Plan and helped test the National Cyber Security and Communications Integration Centre. As Cyber Storm I, II and III were very similar, they will be discussed at the same time. The exercise had the aim of examining the “preparedness, response, coordination, and recovery
  • 37. mechanisms to a simulated cyber event within international, Federal, and State Governments in conjunction with the private sector” [23]. As a result, the simulation was mostly about education, bringing attention to the problem of international cyber security, and assessing how well different organizations from across the world can work together in the face of cyber attacks. The simulation itself saw organizations receiving cyber attack injects related to several scenarios over the course of four days and requiring them to work with other organizations to develop strategies and responses to the attacks. The simulation was not designed to test the technical security of computer networks but instead to test the policy response of organizations and their ability to coordinate with other organizations. The various scenarios involved cyber attacks on infrastructure within the Energy, Information Technology, Transportation and Telecommunication sectors.
  • 38. Even though Cyber Storm did not focus on the actual methodologies of cyber attacks and their prevention, it still had great value as it simulated the effects of cyber attacks and brought many organizations together to think about potential cyber threats and how they would respond to them. Highlighting the potential threat from cyber attacks, along with practicing cooperation across industries and the public sector, is invaluable as it better prepares the world for potential future attacks. 3.4. DARPA National Cyber Range The US Government’s Defence Advanced Research Projects Agency (DARPA) announced in 2008 the creation of a National Cyber Range (NCR). The project is intended to become a resource available to US military forces and government agencies for testing cyber programs. The project is still in progress with the latest news being the selection of two primary contractors to build and evaluate prototype ranges.
  • 39. The NCR aims to simulate cyber attacks on computer networks and help develop strategies to defend against them. If implemented as planned, it will be able to test host security systems, local and wide area networks, and security tools by integrating or simulating them within an overall integrated system. The infrastructure of the NCR will allow the testing of new technologies and systems, such as new network protocols and other communications protocols, before their actual implementation. Unfortunately, the project is unlikely to move past the prototyping phase. This bleak outlook is due to the fact that military and intelligence organizations, dissatisfied with the project's slow progress, want to build their own cyber ranges. For example, the US Navy wants to expand a small range at their Network Warfare Command and the US Air Force are planning a range dubbed “Cyber Safari” [25]. Even if DARPA's NCR does not move past prototype phase, its work there will be beneficial, especially if the
  • 40. insights gained can be integrated within the Navy and Air Force’s respective cyber ranges. The obvious concern shown at DARPA’s slow progress indicates that there is a strong desire for a large scale simulation infrastructure to test cyber defences. 3.5. France's Piranet Piranet is one of the confidential defence plans of the French government [26-27]. Unlike other French plans that are geared specifically toward military crises such as a chemical attack (Piratox) or a nuclear attack (Piratome), Piranet is designed as the response to a major cyber attack on France's telecommunications and information systems infrastructure which impacts the military, public and private sectors. From 23-24 June 2010, the French government ran a live simulation exercise (Piranet 2010) to test the Piranet response. The exact details of the exercise, along with its results are classified. However, the purpose of the exercise was to
  • 41. train government teams and to validate the emergency measures taken in order to decide if Piranet defences are still valid. The results of the exercise may be used to adjust the emergency response detailed in Piranet. It can be assumed that the exercises would have been conducted in a manner similar Cyber Storm, as the focus would have been on the officials’ responses to attack scenarios instead of focusing on the technical side with network defence systems. 3.6. India's Divine Matrix In March 2009 the Indian Army ran a war game called Divine Matrix [28]. The game simulated a notional nuclear attack by China on India in 2017. Beyond the more traditional war mechanics that were applied in the simulation; it is noteworthy that Divine Matrix simulated a massive cyber attack on India prior to the launch of any physical attacks. The cyber attacks had a kinetic result on the simulation, for example: the attacks disabled
  • 42. communication systems, damaged banking systems and 98 disabled power grids. The simulated attacks highlighted the need for cyber defence to senior Indian military leadership. 3.7. Concluding Remarks on Public Sector Research Governments throughout the world are becoming increasingly concerned with CNO. This concern is demonstrated by an increase in training for defence against particular attack scenarios and the preparation of contingency plans. Some of the most interesting work conducted in the public sector has been done by the US Air Force who has been using virtual and constructive simulations to train for cyber attacks. The US Air Force has been experimenting with network defence simulations in SIMTEX, as well as focusing on the more global effect of cyber warfare by integrating cyber attack scenarios within existing war game simulators such as Modern Air Power.
  • 43. Furthermore, work in developing an experimental infrastructure to simulate cyber attack defences is on-going, as demonstrated in the efforts to develop the National Cyber Range as well as other military divisions’ work to build their own cyber ranges. Finally, the reader should note that simulation and training for CNO is a resource intensive activity. 4. CONCLUSION There has been considerable interest in the private and public sectors (including military forces) in the development of simulations of cyber attacks and CNO. Significant progress has already been made. Regrettably there appears to be very little coordination and cooperation across private sector organizations and governments in the development of effective cyber attack simulations. Some simulations share common traits and achieve similar results, which suggests that redundant work and research is being conducted. Many of the simulations have had very different goals
  • 44. from each other. Costantini [3] and Cohen’s work [5] were aimed at analyzing patterns and learning about cyber attacks, whereas CAPP [11] was aimed at highlighting the importance of cyber defence. Other simulations were entirely intended as training systems such as CAAJED [21], IWAR [22] and NetEngine [10]. Nevertheless, out of all the simulations discussed, very few attempted to integrate the technical details of cyber attacks with the global effect of CNO. Such integration, should it be developed, would result in an increased understanding and awareness of the threat cyber attacks pose to the world. REFERENCES [1] Chapman, I., Leblanc, S.P., Partington, A., "Taxonomy of Cyber Attacks and Simulation of their Effects" Proceedings of the 2010 Military Modeling and Simulation Symposium (MMS'11), (2011). [2] Kuhl, M. E., Kistner, J., Costantini, K., & Sudit, M. (2007). Cyber
  • 45. attack modeling and simulation for network security analysis. Proceedings of the 2007 winter simulation conference (pp. 1180-1188). http://www.informs-sim.org/wsc07papers/139.pdf. [3] Costantini, K. C. (2007). Development of a cyber attack simulator for network modeling and cyber security analysis. Unpublished manuscript, Department of Industrial and Systems Engineering, Rochester Institute of Technology, Rochester, New York. Retrieved from https://ritdml.rit.edu/bitstream/handle/1850/5440/KCostantiniTh esis1 0-2007.pdf?sequence=1 [4] Liljenstam, M., & Liu, J. (2006). Rinse: the real-time immersive network simulation environment for network security exercises (extended version). SIMULATION, 82(1), 43-59. [5] Cohen, F. (1999). Simulating cyber attacks, defences, and consequences. Computers & Security (pp. 479-518). Elsevier Science Ltd. [6] Park, J. S., Lee, J., K, H. K., Jeong, J., Yeom, D., & Chi S. (2001). Secusim: a tool for the cyber-attack simulation. Information and Communications Security (pp. 471-475). Heidelberg: Springer
  • 46. Berlin [7] Network simulation. (2010). Retrieved from http://www.opnet.com/solutions/network_rd/modeler.html [8] Sakhardande, R. R. (2008). The use of modeling and simulation to examine network performance under denial of service attacks. Unpublished manuscript, Department of Telecommunications, SUNY Institute of Technology, Utica, NY. [9] Zhou, M., & Lang, S. (2003). A Frequency-based approach to intrusion detection. Systemics, Cybernetics and Informatics, 2(3), 52- 56. [10] Brown, B., Cutts, A., McGrath, D., Nicol, D. M., Smith, T. P., & Tofel, B. (2003). Simulation of cyber attacks with applications in homeland defense training. In E. M. Carapezza (Ed.), Sensors, and command, control, communications, and intelligence (c3i) technologies for homeland defense and law enforcement ii (pp. 63- 71). [11] FS-ISAC. (2010, June). 2010 capp exercise executive summary. Retrieved from http://www.fsisac.com/files/public/db/p243.pdf
  • 47. [12] Semantec, "W32.StuxNet dossier", Available from: http://www.symantec.com/content/en/us/enterprise/media/securi ty_re sponse/whitepapers/w32_stuxnet_dossier.pdf [13] Northrup-Gruman, “Capability of the People’s Republic of China to Conduct Cyber Warfare and Computer Network Exploitation”. Available from: Northrup-Gruman, “Capability of the People’s Republic of China to Conduct Cyber Warfare and Computer Network Exploitation”. Available from: http://www.uscc.gov/researchpapers/2009/NorthropGrumman_P RC_ Cyber_Paper_FINAL_Approved%20Report_16Oct2009.pdf [14] US Cyber Command Fact Sheet (2011, February). Retrieved from http://www.stratcom.mil/factsheets/Cyber_Command/ [15] Cyber Command Achieves Full Operational Capability, US DOD News Release No. 1012-10, (3 November 2010), Retrieved from http://www.defense.gov/releases/release.aspx?releaseid=14030 [16] G. Conti and B. Surdu; "Army, Navy, Air Force, Cyber: Is it Time for a Cyberwarfare Branch of the Military;" Information Assurance 99
  • 48. http://www.informs-sim.org/wsc07papers/139.pdf https://ritdml.rit.edu/bitstream/handle/1850/5440/KCostantiniTh esis10-2007.pdf?sequence=1 https://ritdml.rit.edu/bitstream/handle/1850/5440/KCostantiniTh esis10-2007.pdf?sequence=1 http://www.opnet.com/solutions/network_rd/modeler.html http://www.fsisac.com/files/public/db/p243.pdf http://www.symantec.com/content/en/us/enterprise/media/securi ty_response/whitepapers/w32_stuxnet_dossier.pdf http://www.symantec.com/content/en/us/enterprise/media/securi ty_response/whitepapers/w32_stuxnet_dossier.pdf http://www.uscc.gov/researchpapers/2009/NorthropGrumman_P RC_Cyber_Paper_FINAL_Approved%20Report_16Oct2009.pdf http://www.uscc.gov/researchpapers/2009/NorthropGrumman_P RC_Cyber_Paper_FINAL_Approved%20Report_16Oct2009.pdf http://www.rumint.org/gregconti/publications/2009_IAN_12- 1_conti-surdu.pdf http://www.rumint.org/gregconti/publications/2009_IAN_12- 1_conti-surdu.pdf Newsletter, Vol. 12, No. 1, Spring 2009, pp. 14–18. Retrieved from: http://www.rumint.org/gregconti/publications/2009_IAN_12- 1_conti- surdu.pdf [17] Gettle, M. (2005, December 14). Air force releases new mission statement. Retrieved from http://www.af.mil/news/story.asp?storyID=123013440 [18] Griggs, S. (2010, June 16). New officer course boosts cyberspace transformation. Retrieved from
  • 49. http://www.keesler.af.mil/news/story.asp?id=123209671 [19] McBride, A. (2007, June). Air force cyber warfare training. The Defense Standardization Program Journal, 9-13. [20] Hernandez, J. (2010, March 2). The Human element complicates cybersecurity. Retrieved from http://www.defensesystems.com/Articles/2010/03/11/Industry- Perspective-1-human-side-of-cybersecurity.aspx?Page=2 [21] Mudge, R. S., & Lingley, S. (2008). Cyber and air joint effects demonstration (caajed). Unpublished manuscript, Air Force Research Laboratory, Information Directorate, Rome Research Site, Rome, NY. Retrieved from http://www.dtic.mil/cgi- bin/GetTRDoc?AD=ADA481288&Location=U2&doc=GetTRDo c.pd f [22] Lathrop, S. D., Conti, G. J., & Ragsdale, D. J. (2002). Information warfare in the trenches. Unpublished manuscript, US Military Academy, West Point, NY. Retrieved from http://www.rumint.org/gregconti/publications/iwar.doc [23] Department of Homeland Security, National Cyber Security Division. (2006). Cyber storm exercise report. Retrieved from
  • 50. http://www.dhs.gov/xlibrary/assets/prep_cyberstormreport_sep0 6.pdf [24] Department of Homeland Security, National Cyber Security Division. (2010). Cyber storm exercise report. Retrieved from http://www.dhs.gov/files/training/gc_1204738275985.shtm [25] Fulghum, D. A. (2010, June 21). Battle for cyber-range: military dumps darpa. Retrieved from http://www.aviationweek.com/aw/generic/story_channel.jsp?cha nnel =defense&id=news/asd/2010/06/21/03.xml&headline=Battle%20 For %20Cyber-Range:%20Military%20Dumps%20Darpa%3E [26] Naudon, M. (2010, June 25). Exercice piranet 2010. Retrieved from http://www.ssi.gouv.fr/IMG/pdf/2010-06- 25_Communique_de_presse_Piranet_2010.pdf [27] Morel, I. (2006, October). Les exercices de crise ssi. Sécurité Informatique, 57, Retrieved from http://www.dgdr.cnrs.fr/fsd/securite-systemes/revues- pdf/num57.pdf [28] Singh, R. (2009, March 26). Divine matrix: indian army fears china
  • 51. attack by 2017. Retrieved from http://www.infowar- monitor.net/2010/02/divine-matrix-indian-army-fears-china- attack- by-2017/ Biographies Sylvain (Sly) Leblanc is an Assistant Professor at the Royal Military College of Canada (RMCC). He obtained his Master’s of Engineering in Software Engineering from RMCC in 2000, where he is also a doctoral candidate. Sly was a Canadian Army Signals Officer for over 20 years, where he developed his interest in computer network operations. His research interests are in computer security and computer network operations. Ian Chapman is a defence scientist with the Defence Research and Development Canada Centre for Operational Research and Analysis in Ottawa, Canada. Mr. Chapman’s work has included analytical support to a number of modeling and simulation activities at the Canadian Army Experimentation Centre and is now working with the
  • 52. Canadian Cyber Task Force to determine the effects of cyber attacks on military mission effectiveness. Andrew Partington is in his final year of undergraduate studies, studying for his Bachelor of Engineering with Honors in Mechatronics Engineering at the University of Canterbury in New Zealand. He was a recent participant in a university exchange program, studying at Queen’s University in Canada for a year in 2010. During the exchange he worked full time in the summer and part time during the school year at the Royal Military College of Canada researching computer network operations and simulations. Melanie Bernier is a Defense Scientist with the Defence Research and Development Canada’s Center for Operational Research and Analysis in Ottawa, Canada. She has experience in modeling and simulation of land forces requirements, concept development and experimentation, joint C4ISR, and computer networks. Most recently, she has
  • 53. been leading studies in force development for the cyber environment. 100 http://www.af.mil/news/story.asp?storyID=123013440 http://www.keesler.af.mil/news/story.asp?id=123209671 http://www.defensesystems.com/Articles/2010/03/11/Industry- Perspective-1-human-side-of-cybersecurity.aspx?Page=2 http://www.defensesystems.com/Articles/2010/03/11/Industry- Perspective-1-human-side-of-cybersecurity.aspx?Page=2 http://www.dtic.mil/cgi- bin/GetTRDoc?AD=ADA481288&Location=U2&doc=GetTRDo c.pdf http://www.dtic.mil/cgi- bin/GetTRDoc?AD=ADA481288&Location=U2&doc=GetTRDo c.pdf http://www.dtic.mil/cgi- bin/GetTRDoc?AD=ADA481288&Location=U2&doc=GetTRDo c.pdf http://www.rumint.org/gregconti/publications/iwar.doc http://www.dhs.gov/xlibrary/assets/prep_cyberstormreport_sep0 6.pdf http://www.aviationweek.com/aw/generic/story_channel.jsp?cha nnel=defense&id=news/asd/2010/06/21/03.xml&headline=Battle %20For%20Cyber- Range:%20Military%20Dumps%20Darpa%3E http://www.aviationweek.com/aw/generic/story_channel.jsp?cha nnel=defense&id=news/asd/2010/06/21/03.xml&headline=Battle %20For%20Cyber- Range:%20Military%20Dumps%20Darpa%3E http://www.aviationweek.com/aw/generic/story_channel.jsp?cha nnel=defense&id=news/asd/2010/06/21/03.xml&headline=Battle %20For%20Cyber-
  • 54. Range:%20Military%20Dumps%20Darpa%3E http://www.ssi.gouv.fr/IMG/pdf/2010-06- 25_Communique_de_presse_Piranet_2010.pdf http://www.ssi.gouv.fr/IMG/pdf/2010-06- 25_Communique_de_presse_Piranet_2010.pdf http://www.dgdr.cnrs.fr/fsd/securite-systemes/revues- pdf/num57.pdf http://www.infowar-monitor.net/2010/02/divine-matrix-indian- army-fears-china-attack-by-2017/ http://www.infowar-monitor.net/2010/02/divine-matrix-indian- army-fears-china-attack-by-2017/ http://www.infowar-monitor.net/2010/02/divine-matrix-indian- army-fears-china-attack-by-2017/ Chapter 11 Education: What Are We Learning? © SAGE Publications, Inc. 2017 © SAGE Publications, Inc. 2017 * Schooling: Learning skills like reading, writing, and math, in a building, through systematic instruction by a trained professionalIn most affluent countries and urban areas, formal schooling is necessary for survival and success.Literacy is necessary for democratic governments, where informed citizenry elect officials and vote on public policies.Formal schooling is a modern concept, which became necessary once
  • 55. jobs required literacy and math skills. Overview of the World’s Education © SAGE Publications, Inc. 2017 © SAGE Publications, Inc. 2017 * UNESCO: The United Nations Educational, Scientific, and Cultural Organization“global center for discussion and implementation of educational ideas and organization models” The UNESCO standard:6 years of primary school 3 years each of intermediate and secondary schoolEmphasis on comprehensive rather than specialized training Overview of the World’s Education © SAGE Publications, Inc. 2017 What is considered essential knowledge to be taught in schools is based on a country’s level of development, cultural values, and political ideology, and on international guidelines.Education around the world is strongly influenced by models developed in Global North countries. Overview of the World’s Education © SAGE Publications, Inc. 2017 Overview of the World’s Education © SAGE Publications, Inc. 2017 Symbolic Interaction PerspectiveFocuses on meaningful
  • 56. interaction in schools and classrooms, and how students actively construct realityFor example, popularity contestsBecause young people spend much time in school or school-related activities, the status of students affects their self-concepts and selves. Education: Micro-Level Theories © SAGE Publications, Inc. 2017 © SAGE Publications, Inc. 2017 Rational Choice TheoryFocuses on cost/benefit analysis in individual decisions about educationIf benefits of an action outweigh costs, individuals are likely to take the action; if costs outweigh benefits, they will seek other courses of action.For example:Students deciding whether to drop out of school Teachers deciding whether to stay in the profession Education: Micro-Level Theories © SAGE Publications, Inc. 2017 © SAGE Publications, Inc. 2017 Students and the Peer Culture of Schools Student peer culture: A stable set of activities, routines, artifacts, values, and concerns that children produce and share in interaction with peersPeer cultures create identities and labels.Students’ class, race, gender, and sexuality affect their school experiences.The environment outside the school affects students’ experiences within it. Statuses and Roles in Education Systems © SAGE Publications, Inc. 2017 © SAGE Publications, Inc. 2017 Teachers: The Front LineThe front line in implementing school
  • 57. goalsServe as gatekeepers, controlling the flow of students, activities, resources, and privilegesRole strain: need to judge students’ performance while also encouraging themFair status and rewards?Threats to professional autonomy and self- regulation Statuses and Roles in Education Systems © SAGE Publications, Inc. 2017 © SAGE Publications, Inc. 2017 Administrators: Managers of the school systemThe top of the hierarchy in local schoolsMediate between individual schools and larger educational systemsResponsible for:Budgeting, reporting, regulatory complianceStaff hiring, firing, training, and negotiations Parent and public relations; acting as a buffer in conflicts between parents and teachersOverseeing discipline Statuses and Roles in Education Systems © SAGE Publications, Inc. 2017 © SAGE Publications, Inc. 2017 The Informal SystemInformal system of schooling: Unspoken, unwritten, and implicit norms of behaviorCreated and enforced by teachers and/or by student peer cultureIncludes the hidden curriculum, educational climate, value climate, and classroom power dynamics and coping strategiesThe hidden curriculum: The implicit “rules of the game” students must learn and respond to in school to be socially accepted and to succeed in the education system What Really Happens Inside Schools? © SAGE Publications, Inc. 2017 © SAGE Publications, Inc. 2017
  • 58. The Informal System, cont.The educational climate of schools: The general social environment of schools and classrooms, for example, stimulating or stiflingInfluenced by factors such as teacher expectations, student groups, classroom layouts, architectureMay vary by students’ gender, race, ethnicity, class The value climate of schools: Students’ motivation, aspirations, and achievementsShaped by students’ home environments, parental and teacher expectations What Really Happens Inside Schools? © SAGE Publications, Inc. 2017 © SAGE Publications, Inc. 2017 Power dynamics and coping strategies in the classroom:Teachers try to get students to obey, cooperate, take responsibility; students try to win some control and freedom from teachers.Both develop coping strategies, which become part of the “hidden curriculum.” What Really Happens Inside Schools? © SAGE Publications, Inc. 2017 © SAGE Publications, Inc. 2017 Merton’s strain theory of deviance applied to students’ coping strategies:Conformity: acceptance of school- established goals and means; for example, doing expected workInnovation: finding alternative means to achieve conventional goals; for example, cheating to pass a courseRetreatism: rejecting school goals and means; for example, rebelling, not conforming or cooperatingRitualism: ambivalence about goals; for example, following rules but not excelling at schoolRejection with replacement: rejecting goals
  • 59. and means and pursuing an alternative; for example, dropping out of school to pursue other activities What Really Happens Inside Schools? © SAGE Publications, Inc. 2017 © SAGE Publications, Inc. 2017 Formal Education SystemsDeveloped in 16th-century Europe, when other social institutions required new roles, skills, and knowledge that parents could not teachOriginally, schooling was only for the elite; later it became available to the masses and some societies began to require it for basic literacy (usually the third-grade level)Schools became major formal organizations and developed extensive bureaucracies The Meso-Level: Educational Organizations © SAGE Publications, Inc. 2017 © SAGE Publications, Inc. 2017 The Bureaucratic School StructureWeber’s bureaucratic model applied to schools:Division of laborAdministrative hierarchySpecific rules and proceduresFormalized relationsRationalityPros of bureaucratic schools: Cost-effective, efficient, productiveCons of bureaucratic schools: Impersonal, rigid, alienating, lack of attention to personal needs The Meso-Level: Educational Organizations © SAGE Publications, Inc. 2017 Education and the social institution of family:Family background is thought to be the most important influence on children’s school achievement.Role of parents in motivating and preparing children for schoolSocial class and changing work
  • 60. structures affect parents’ ability to encourage and direct children The Meso-Level: Educational Organizations © SAGE Publications, Inc. 2017 © SAGE Publications, Inc. 2017 The Meso-Level: Educational Organizations Education and Racial background“Cradle to Pipeline” (Children’s Defense Fund)Gap in educational achievement for boys is especially strong for African American, Hispanic, and low-income malesBlack students are 3.5 times and Hispanic students 1.5 as likely to be suspended as white students © SAGE Publications, Inc. 2017 © SAGE Publications, Inc. 2017 Educational decision-making at the meso level:Who should decide what children learn?Decision-making in the United States:Local level influences: Interest groups engage in conflict over contents of school curriculums and librariesNational level influences:National influence limited by the U.S. Constitution, which leaves many educational decisions to the statesAbility to give or withhold funding to schools depending on compliance with federal lawsThe Race to the Top for all schoolsObama’s plan to focus on Early Childhood Education No Child Left Behind (NCLB) The Meso-Level: Educational Organizations © SAGE Publications, Inc. 2017
  • 61. © SAGE Publications, Inc. 2017 Educational decision-making at the meso level: No Child Left Behind (NCLB):To create accountability, requires schools to administer achievement tests in math and readingSchools that fail to meet guidelines are penalizedHas had an impact: 70% of schools have reduced instructional time in subjects that are not tested The Meso-Level: Educational Organizations © SAGE Publications, Inc. 2017 © SAGE Publications, Inc. 2017 Educational decision-making at the meso level:Positive aspects of NCLB:Expects every child to succeedHelps create consistency between school systemsNegative aspects of NCLB:Overemphasizes testingPenalizes schools with high numbers of low-income and/or disabled studentsGives schools unrealistic timetables for improvementDoes not provide necessary funding Disadvantages small, poor, and rural school districts The Meso-Level: Educational Organizations © SAGE Publications, Inc. 2017 © SAGE Publications, Inc. 2017 The Purposes of Education: The Functionalist Perspective Education: Macro-Level Theories © SAGE Publications, Inc. 2017
  • 62. © SAGE Publications, Inc. 2017 Stratification and Education: Conflict PerspectiveSchools are used by powerful and affluent groups to ensure that their self-interests are met.Schools do not provide equal educational opportunities for all children in society.Opportunities are manipulated to preserve privileges for the children of “haves”; children of “have-nots” are prepared for less rewarding positions.This results in the reproduction of class: socioeconomic positions are transmitted across generations. Education: Macro-Level Theories © SAGE Publications, Inc. 2017 © SAGE Publications, Inc. 2017 Can schools bring about equality in society?Equal opportunity: All people have an equal chance of achieving high socioeconomic status regardless of class, ethnicity or race, or gender The goals of equal educational opportunity, according to James Coleman:Provide a common curriculum for all children, regardless of backgroundProvide for children from diverse backgrounds to attend the same schoolsProvide equality within a given locality Education: Macro-Level Theories © SAGE Publications, Inc. 2017 © SAGE Publications, Inc. 2017 Can schools bring about equality in society?The Coleman Report:Differences in test scores between minority and white
  • 63. students were due not only to in-school factors but also to parents’ education levels and other environmental factors.Coleman recommended integration of schools to create a climate for achievement.Busing and magnet schools were two policies enacted to address the problems.Jencks’s study of inequality:Schools alone cannot create equal opportunity. Education: Macro-Level Theories © SAGE Publications, Inc. 2017 © SAGE Publications, Inc. 2017 The Role of Education in StratificationEducation is supposed to be a meritocracy.Meritocracy: a formal system in which people are allocated to positions according to their ability and credentials.Meritocracy is consistent with bureaucracy.However, in many cases educational meritocracy does not exist.Conflict theorists maintain that education perpetuates inequality. Education: Macro-Level Theories © SAGE Publications, Inc. 2017 © SAGE Publications, Inc. 2017 The Role of Education in Stratification Sources of Inequality:Testing A means of placing students in school according to their achievement and merit, and of determining their progressCritics claim tests are biased against lower-class, immigrant, minority, and/or female studentsInternational tests reveal educational inequalities between countries Education: Macro-Level Theories © SAGE Publications, Inc. 2017 © SAGE Publications, Inc. 2017
  • 64. Sources of Inequality: Testing © SAGE Publications, Inc. 2017 The Role of Education in Stratification Sources of Inequality:Tracking or streaming: Placing students in ability groups so educators can better address individual learning needsResearch suggests that track placement is not always a measure of a student’s abilityTracks correlate with ethnicity, language skills, appearance, and other socioeconomic variablesTracking can reinforce preexisting inequalitiesOther research suggests that children learn more when working in groups based on achievement level. Education at the Macro-Level © SAGE Publications, Inc. 2017 © SAGE Publications, Inc. 2017 The Role of Education in Stratification Sources of Inequality:School FundingIn the United States, unequal school spending results from reliance on local property taxes as well as state and federal funds.Spending is closely related to the race and class composition of the schools, and to student achievement levels.Spending differences perpetuate existing inequalities. Education at the Macro-Level © SAGE Publications, Inc. 2017 © SAGE Publications, Inc. 2017 Public and Private Schools
  • 65. About 10% of U.S. students attend private schools, including religious and preparatory schools. Private schools are more academically demanding, stringent, disciplined, and orderly. Private schools have higher achievement rates, in part due to the select student population they admit. Choice and voucher plans would allow parents to choose private schools, but potentially at the expense of public schools. Education at the Macro-Level © SAGE Publications, Inc. 2017 © SAGE Publications, Inc. 2017 Educational Policies in the United StatesDespite numerous policies and reports, data on school success show a worsening picture.There are 27 million functionally illiterate citizens.Many 17-year-olds lack the basic skills needed to enter business and the military.In response each new presidential administration proposes reforms:The Bush administration sponsored NCLB.The Obama administration is attempting to increase funding for early-childhood education. Educational and Social Policy Issues © SAGE Publications, Inc. 2017 © SAGE Publications, Inc. 2017 Providing Early Childhood EducationTouted as providing the start that many children need to be successful in school The Head Start program offers compensatory education for disadvantaged 3–5-year-olds to help narrow the opportunity gap.Children attending Head Start are more likely to stay in school, receive preventive health care, avoid remedial classes later on, and not become juvenile delinquents.Head Start also includes parental education.However, fewer than half of eligible
  • 66. children are able to take part due to fluctuations in support. Educational and Social Policy Issues © SAGE Publications, Inc. 2017 © SAGE Publications, Inc. 2017 Early Childhood Education, cont.Research on early-childhood education in multiple countries demonstrates:Children from birth to age five make rapid gains in linguistic, cognitive, emotional, and other abilities.In the early years, the child’s “growth trajectory” should not be interrupted.Needs of young children are not always adequately addressed.Child survival programs in developing countries have produced long-term economic benefits. Educational and Social Policy Issues © SAGE Publications, Inc. 2017 © SAGE Publications, Inc. 2017 Comparative research shows that:A society’s social and economic values are reflected in its approach to learning and in motivation of students.There is some evidence of global convergence in school curricula.National education systems are affected by external political, economic, and technological trends. Global Issues in Education © SAGE Publications, Inc. 2017 © SAGE Publications, Inc. 2017 Education of girls around the globe:Lack of basic education for the poor, especially girls, is a “silent killer” in developing countries.In past surveys, more than 110 million children—60%
  • 67. of them girls from ages 6 to 11—received no schooling at all.More educated girls have lower fertility rates, lower maternal and infant mortality, lower rates of HIV/AIDS, increased labor force participation and earnings, and greater ability to pass on these benefits to the next generation. Global Issues in Education © SAGE Publications, Inc. 2017 © SAGE Publications, Inc. 2017 The Future of Education in the Global SystemNeed to keep up with 21st-century technological and economic needsUse of electronic educational materials and distance learningThe “school-to-work” transition Global Issues in Education © SAGE Publications, Inc. 2017 © SAGE Publications, Inc. 2017 F e B r U A r y 2 0 1 0 | v O l . 5 3 | n O . 2 | c o m m u n i c At i o n s o f t h e A c m 29 V viewpoints o F F i c i
  • 69. N c E J a c k S o N Communications’ Inside Risks col- umns over the past two decades have frequently been concerned with trust- worthiness of computer-communica- tion systems and the applications built upon them. This column considers what is needed to attain new progress toward avoiding the risks that have prevailed in the past as a U.S. national cybersecu- rity R&D agenda is being developed. Al- though the author writes from the per- spective of someone deeply involved in research and development of trustwor- thy systems in the U.S. Department of Homeland Security, what is described here is applicable much more univer- sally. The risks of not doing what is de- scribed here are very significant. —Peter G. Neumann
  • 70. C Y B E r S pA C E I S T H E complex, dynamic, globally intercon- nected digital and infor- mation infrastructure that underpins every facet of so- ciety and provides critical support for our personal communication, econo- my, civil infrastructure, public safety, and national security. Just as our de- pendence on cyberspace is deep, so too must be our trust in cyberspace, and we must provide technical and policy solutions that enable four critical aspects of trustworthy cyber- space: security, reliability, privacy, and usability. The U.S. and the world at large are currently at a significant decision point. We must continue to defend our existing systems and networks. At the same time, we must attempt to be ahead of our adversaries, and ensure future generations of technology will position us to better protect critical infrastructures and respond to at- tacks from adversaries. Government- funded research and development must play an increasing role toward achieving this goal of national and economic security. Background On January 8, 2008, National Security
  • 71. Presidential Directive 54/Homeland Se- curity Presidential Directive 23 formal- ized the Comprehensive National Cyber- security Initiative (CNCI) and a series of continuous efforts designed to establish a frontline defense (reducing current vulnerabilities and preventing intru- sions), which will protect against the full spectrum of threats by using intel- ligence and strengthening supply chain security, and shaping the future environ- ment by enhancing our research, devel- Inside risks The need for a national Cybersecurity research and Development Agenda Government-funded initiatives, in cooperation with private- sector partners in key technology areas, are fundamental to cybersecurity technical transformation. DOI:10.1145/1646353.1646365 Douglas Maughan President Barack obama greets White house cyber security chief howard A. schmidt, who was appointed in December 2009. ARt in DeVeLoPment 30 c o m m u n i c At i o n s o f t h e A c m | F e B r U A r y 2 0 1 0 | v O l . 5 3 | n O . 2
  • 72. viewpoints opment, and education, as well as invest- ing in “leap-ahead” technologies. No single federal agency “owns” the issue of cybersecurity. In fact, the federal government does not uniquely own cybersecurity. It is a national and global challenge with far-reaching consequences that requires a coopera- tive, comprehensive effort across the public and private sectors. However, as it has done historically, the U.S. gov- ernment R&D community, working in close cooperation with private-sector partners in key technology areas, can jump-start the necessary fundamental technical transformation. Partnerships The federal government must reener- gize two key partnerships to success- fully secure the future cyberspace: the partnership with the educational sys- tem and the partnership with the private sector. The Taulbee Survey2 has shown that our current educational system is not producing the cyberspace workers of the future and the current public- private partnerships are inadequate for taking R&D results and deploying them across the global infrastructure. Education. A serious, long-term problem with ramifications for na-
  • 73. tional security and economic growth is looming: there are not enough U.S. cit- izens with computer science (CS) and science, technology, engineering, and mathematics (STEM) degrees being produced. The decline in CS enroll- ments and degrees is most acute. The decline in undergraduate CS degrees portends the decline in master’s and doctoral degrees as well. Enrollments in major university CS departments have fallen sharply in the last few years, while the demand for computer scien- tists and software engineers is high and growing. The Taulbee Survey2 confirmed that CS (including comput- er engineering) enrollments are down 50% from only five years ago, a pre- cipitous drop by any measure. Since CS degrees are a subset of the overall requirement for STEM degrees and show the most significant downturn, CS degree production can be consid- ered a bellwether to the overall condi- tion and trend of STEM education. The problems with other STEM degrees are equally disconcerting and require im- mediate and effective action. At the same time, STEM jobs are growing, and CS jobs are growing faster than the national average. At a time when the U.S. experiences cyberattacks daily and as global com- petition continues to increase, the U.S.
  • 74. cannot afford continued ineffective ed- ucational measures and programs. Re- vitalizing educational systems can take years before results are seen. As part of an overall national cybersecurity R&D agenda, the U.S. must incite an extraor- dinary shift in the number of students in STEM education quickly to avoid a serious shortage of computer scien- tists, engineers, and technologists in the decades to come. Public-Private Partnerships. Infor- mation and communications net- works are largely owned and operated by the private sector, both nationally and internationally. Thus, addressing cybersecurity issues requires public- private partnerships as well as inter- national cooperation. The public and private sector interests are dependent on each other and share a responsibil- ity for ensuring a secure, reliable infra- structure. As the federal government moves forward to enhance its partner- ships with the private sector, research and development must be included in the discussion. More and more private- sector R&D is falling by the wayside and, therefore, it is even more impor- tant that government-funded R&D can make its way to the private sector, given it designs, builds, owns, and operates most of the critical infrastructures. technical Agenda
  • 75. Over the past decade there have been a significant number of R&D agendas published by various academic and in- dustry groups, and government depart- ments and agencies (these documents can be found online at http://www.cyber. st.dhs.gov/documents.html). A 2006 federal R&D plan identified at least eight areas of interest with over 50 project topics that were either being funded or should be funded by federal R&D entities. Many of these topic areas have been on the various lists for over a decade. Why? Because the U.S. has un- derinvested in these R&D areas, both within the government and private R&D communities. The Comprehensive National Cy- ber Initiative (CNCI) and the Presi- dent’s Cyberspace Policy Review3 challenged the federal networks and IT research community to figure out how to “change the game” to address these technical issues. Over the past year, through the National Cyber Leap Year (NCLY) Summit and a wide range of other activities, the U.S. government research community sought to elicit the best ideas from the research and technology community. The vision of the CNCI research community over the next 10 years is to “transform the cyber- infrastructure to be resistant to attack so that critical national interests are
  • 76. protected from catastrophic damage and our society can confidently adopt new technological advances.” The leap-ahead strategy aligns with the consensus of the U.S. networking and cybersecurity research communi- ties: That the only long-term solution to the vulnerabilities of today’s network- ing and information technologies is to ensure that future generations of these technologies are designed with security built in from the ground up. Federal agencies with mission-critical needs for increased cybersecurity, which in- cludes information assurance as well as network and system security, can play a direct role in determining research pri- orities and assessing emerging technol- ogy prototypes. The Department of Homeland Secu- rity Science and Technology Director- ate has published its own roadmap in an effort to provide more R&D direction for the community. The Cybersecurity Research Roadmap1 addresses a broad R&D agenda that is required to enable production of the technologies that will protect future information systems and the current public- private partnerships are inadequate for taking R&D results and deploying them
  • 77. across the global infrastructure. viewpoints F e B r U A r y 2 0 1 0 | v O l . 5 3 | n O . 2 | c o m m u n i c At i o n s o f t h e A c m 31 networks. The document provides de- tailed research and development agen- das relating to 11 hard problem areas in cybersecurity, for use by agencies of the U.S. government. The research top- ics in this roadmap, however, are rel- evant not just to the governments, but also to the private sector and anyone else funding or performing R&D. While progress in any of the areas identified in the reports noted previous- ly would be valuable, I believe the “top 10” list consists of the following (with short rationale included): Software Assurance: poorly writ-1. ten software is at the root of all of our security problems; Metrics: we cannot measure our 2. systems, thus we cannot manage them; Usable Security: information se-3. curity technologies have not been de- ployed because they are not easily usable;
  • 78. Identity Management: the ability 4. to know who you are communicating with will help eliminate many of today’s online problems, including attribution; Malware: today’s problems contin-5. ue because of a lack of dealing with ma- licious software and its perpetrators; Insider Threat: one of the biggest 6. threats to all sectors that has not been adequately addressed; Hardware Security: today’s com-7. puting systems can be improved with new thinking about the next generation of hardware built from the start with se- curity in mind; Data Provenance: data has the 8. most value, yet we have no mechanisms to know what has happened to data from its inception; Trustworthy Systems: current sys-9. tems are unable to provide assurances of correct operation to include resil- iency; and Cyber Economics: we do not un-10. derstand the economics behind cyber- security for either the good guy or the bad guy. Life cycle of innovation
  • 79. R&D programs, including cybersecu- rity R&D, consistently have difficulty in taking the research through a path of development, testing, evaluation, and transition into operational envi- ronments. Past experience shows that transition plans developed and applied early in the life cycle of the research program, with probable transition paths for the research product, are ef- fective in achieving successful transfer from research to application and use. It is equally important, however, to ac- knowledge that these plans are subject to change and must be reviewed often. It is also important to note that differ- ent technologies are better suited for different technology transition paths and in some instances the choice of the transition path will mean success or failure for the ultimate product. There are guiding principles for transitioning research products. These principles in- volve lessons learned about the effects of time/schedule, budgets, customer or end-user participation, demonstra- tions, testing and evaluation, product partnerships, and other factors. A July 2007 U.S. Department of De- fense Report to Congress on Technol- ogy Transition noted there is evidence that a chasm exists between the DoD S&T communities and acquisition of a system prototype demonstration in
  • 80. an operational environment. DOD is not the only government agency that struggles with technology transition. That chasm, commonly referred to as the “valley of death,” can be bridged only through cooperative efforts and investments by both research and ac- quisition communities. There are at least five canonical tran- sition paths for research funded by the federal government. These transition paths are affected by the nature of the technology, the intended end user, par- ticipants in the research program, and other external circumstances. Success in research product transition is often accomplished by the dedication of the program manager through opportu- nistic channels of demonstration, part- nering, and sometimes good fortune. However, no single approach is more effective than a proactive technology champion who is allowed the freedom to seek potential utilization of the re- search product. The five canonical tran- sition paths are: Department/Agency direct to ˲ Acquisition Department/Agency to ˲ Government Lab Department/Agency to Industry ˲ Department/Agency to ˲ Academia to Industry
  • 81. Department/ ˲ Agency to Open Source Community In order to achieve the full results of R&D, technology transfer needs to be a key consideration for all R&D invest- ments. This requires the federal gov- ernment to move past working models where most R&D programs support only limited operational evaluations and ex- periments. In these old working mod- els, most R&D program managers con- sider their job done with final reports, and most research performers consider their job done with publications. In or- der to move forward, government-fund- ed R&D activities must focus on the real goal: technology transfer, which follows transition. Current R&D principal inves- tigators (PIs) and program managers (PMs) aren’t rewarded for technology transfer. Academic PIs are rewarded for publications, not technology transfer. The government R&D community must reward government program managers and PIs for transition progress. conclusion As noted in the White House Cyber- space Policy Review,3 an updated na- tional strategy for securing cyberspace is needed. Research and development must be a full partner in that discus- sion. It is only through innovation cre- ation that the U.S. can regain its posi- tion as a leader in cyberspace.
  • 82. References 1. a roadmap for cybersecurity research, Department of homeland Security Science and technology Directorate, November 2009; http://www.cyber.st.dhs. gov/documents.html 2. taulbee Survey 2006–2007, computing research News 20, 3. Computer Research Association, May 2008. 3. White house cyberspace Policy review; http://www. whitehouse.gov/assets/documents/cyberspace_ Policy_review_final.pdf Douglas Maughan ([email protected]) is a program manager for cybersecurity r&D at the U.S. Department of homeland Security in Washington, D.c. copyright held by author. in order to achieve the full results of R&D, technology transfer needs to be a key consideration for all R&D investments.